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Dielectric relaxation in a deuteron glass
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We obtain the dielectric susceptibility of a deuteron glass based on a mean-field analysis of an Ising model
with random bond strengths and random fields using a system-plus-bath approach. The two Ising pseudospin
states represents two equivalent sites that the deuteron can occupy. Relaxation is caused by the random jumps
of the deuteron from one site to another. It is then reasonable to assume an Arrhenius form of relaxation, on
which we find that our derived results are in good qualitative agreement with experimental measurements on
recently studied prototypical deuteron glasses, namely, Rb12x(ND4)xD2PO4 and Rb12x(ND4)xD2AsO4,
above the glass transition.
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I. INTRODUCTION

The formation of a glassy phase in mixed ferroelectr
antiferroelectric crystals continues to generate consider
experimental and theoretical interest. Among the m
widely studied systems of this kind is Rb12x(ND4)xD2PO4,
commonly denoted as D-RADP.1–6 The Rb system by itsel
is ferroelectric whereas the ND4 system by itself is antifer-
roelectric. The paraelectric phases of D-RDP and D-ADP
characterized by a disordered arrangement of the O-D••O
bonds connecting the phosphate group. In D-RDP, below
ferroelectric transition temperature, the deuteron bonds o
spontaneously, yielding a macroscopic electrical polariza
parallel to thec axis of the crystal. In D-ADP, on the othe
hand, a different arrangement of the deuterons yields anti
allel dipole moments ordered perpendicularly to thec axis.

A random substitution of the ND4 group in D-RADP
breaks the ferroelectric bonds at substituted sites. For s
cient dilution, the ‘‘all up’’ or ‘‘all down’’ configurations are
suppressed and the long-range order, either ferroelectri
antiferroelectric, is no longer viable. The presence of r
dom, competing interactions makes it impossible for the d
teron bonds to satisfy all of the interactions simultaneou
Such systems are known as spin glasses. The mixed sy
Rb12x(ND4)xD2PO4 shows spin-glass behavior in th
concentration range 0.22<x<0.8 at low temperatures.7

The glassiness is a result of the freezing of O-D••O intra-
bond motion, as evidenced from experimental measurem
of the dielectric permittivity.8 Here, because the basic ra
dom interaction is between deuterons, D-RADP is cal
a deuteron glass. Another widely studied deuteron g
is the deuterated rubidium ammonium arsen
Rb12x(ND4)xD2AsSO4 or D-RADA. Extensive experimen
tal data on dielectric relaxation of this system exist in t
literature.9,10

The deuteron can occupy two sites in the O-D••O bond.
The ‘‘left’’ and the ‘‘right’’ positions of the deuteron in the
O-D••O bond can be mapped onto an Ising pseudospin v
ablesz which may take values11 or 21. Since the inter-
action between the electric dipoles is induced in the mate
as a result of distortion caused by the deuteron, it is lo
0163-1829/2003/68~5!/054202~8!/$20.00 68 0542
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range in character. Because of the long-range nature of
deuteron interbond coupling, the Sherrington-Kirkpatri
~SK! model for spin glasses has been adopted as the sta
point for several theoretical investigations.11,12 However, the
deuteron glass model differs from the classical spin glas
one important aspect. The random substitutional disor
ND4 in place of Rb tilts the deuteron double well in a ra
dom fashion caused by local, random strain fields. Thus
simplest theoretical model to study deuteron glasses is
SK model with longitudinal random fields coupled linear
to the pseudospin.5

It is perhaps pertinent to mention here that the quant
counterpart of deuteron glass is the proton gla
Rb12x(NH4)xH2PO4. Because hydrogen is a light quantu
particle, unlike its deuterated version, the hydrogen c
move among the possible two sites by a tunneling proc
Tunneling can be incorporated by adding a term that coup
to the transverse component of the pseudospin with res
to the easy axis of the Ising interaction. Hence the transve
Ising model with random bond strengths and random field
the simplest possible statistical mechanical model to desc
this system.13–15On the other hand, deuterons are heavy, a
therefore have extremely small tunneling frequencies. A
consequence, quantum effects are negligible in deute
glasses. Here the deuteron is expected to jump among
possible two sites by thermal activation.

The low-frequency dielectric measurements have beco
an important tool to examine the relaxation time distributio
and mechanisms around the glass transition temperatur
the present paper, we calculate the dielectric permittivity o
deuteron glass using a simple theoretical framework ba
on the mean-field approximation of the Ising model w
random bonds and random fields. This model has been
jected to extensive theoretical activity in recent years.
important contribution has been made by Pirc and
workers toward the development of the mean-field analy
of this model and the calculation of static properties.13 In this
paper, we extend these calculations to treat relaxation effe
Our treatment is different from the recently published pa
of Kim et al.16 in which Chamberlinet al.’s correlated do-
main model17 has been used to fit the experimental data
©2003 The American Physical Society02-1
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VARSHA BANERJEE AND SUSHANTA DATTAGUPTA PHYSICAL REVIEW B68, 054202 ~2003!
the dielectric permittivity of D-RADP. On the other hand, w
introduce explicit irreversible effects to study dissipative d
namics by coupling the Hamiltonian, successfully used e
lier to describe the static effects,13 to a surrounding heat bath
Our analysis is therefore a natural extension of the co
sponding static method based on an Ising model with rand
bonds and random fields.

The paper is organized as follows. In Sec. II, we descr
the representative Hamiltonian for the deuteron glass.
mean-field analysis of the Hamiltonian is carried out in S
III. Section IV is devoted to the calculation of the dielectr
permittivity. Finally, Sec. V contains the computed dielect
response, its analysis, and comparison with experimenta
servations on D-RADP and D-RADA.

II. MEAN-FIELD HAMILTONIAN

As mentioned in the Introduction, our starting Ham
tonian for the deuteron glass is thus the Ising model w
long-range interactions,5

Hs5 (
i , j 51

N

Ji j s i
zs j

z2(
i 51

N

f is i
z . ~1!

Here, Ji j represents the long-range interaction between
pseudospins denoting the deuteron occupation. As stated
lier, there is an additional term inHs to incorporate the cou
pling between the spin and the local random fieldf i repre-
senting strain fields generated by the random substitu
~say, ND4 in place of Rb!. In the absence of$ f i%, the Hamil-
tonian of Eq.~1! is the SK model for the Ising spin glass.
is customary to assume that the distributions ofJi j and f i are
Gaussian and independent:

P~Ji j !5
1

A2pD2
expF2

~Ji j 2J0!2

2D2 G , ~2!

P~ f i !5
1

A2pD f

expF2
~ f i !

2

2D f
G . ~3!

Thus, Eq.~1!, together with Eq.~2! and Eq.~3!, describe the
deuteron glass. We make a specific connection with the
perimentally studied compounds1,2,18,19 by associating2J
and 1J coupling constants with the antiferroelectric a
ferroelectric bonds and lettingx and (12x) be their relative
concentrations, respectively. Equating the mean and the
ance of the Gaussian distribution, Eq.~2!, with that of the
bimodal distribution of (6J) then requires

J05~122x!J, D254x~12x!J2. ~4!

A similar ~but independent! concentration dependence can
assumed for the mean and variance of the distribution for
local random field.

We now use a mean-field approximation to replace
Hamiltonian of the interacting system by an equivale
Hamiltonian representing a noninteracting system in a s
consistent external field expressed in terms of an order
rameter. A systematic mean-field theory for the deute
05420
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glass model represented by Eq.~1! has been carried ou
within replica symmetric formalism, known from the theo
of spin glasses.8,20 Within this approach, the single-sit
Hamiltonian for the replica symmetric phase above the sp
glass transition temperature is written as

Hs52hsz. ~5!

Hereh is an effective field acting along thez axis as a result
of the presence of a ‘‘ferromagnetic’’ orderJo , the longitu-
dinal field D f , as well as a nonzero spin-glass order para
eterq,

h~j!5
1

2
D̃jAq1D̃ f1 J̃0p, ~6!

J̃05NJ0 , D̃ f54D f /J2, D̃5DAN,

with j the excess static noise arising from the random in
actionsJi j and the random fieldsf i andp the local polariza-
tion.

The mean-field equations for the local polarization a
the Edwards-Anderson order parameterq are

p~j!5tanh@bh~j!#, ~7!

and

q5E
2`

` dj

A2p
e2j2/2p2~j!. ~8!

WhenJo50, the polarizationp is strictly zero at all tem-
peratures. The spin-glass phase is characterized by a non
q, thus characterizing the ‘‘disordered’’ phase by bothp and
q being equal to zero. In deuteron and proton glasses, on
other hand, the presence of the Gaussian random field ac
an effective ordering field for the order parameterq without
inducing an average polarizationp. As a result,q remains
finite even at temperatures much above the transition t
perature under the influence of the random fields. As
pected, forD f50, the above equations reduce to the cor
sponding equations for the SK model in the repli
symmetric phase above the Almeida-Thouless line.

In disordered systems, a physically observable quantit
calculated by computing the corresponding quantity in acc
dance with the statistical mechanical prescription for a giv
realization of the disorder and then performing an averag
over the underlying probability distribution of the disorde
In proton and deuteron glasses, an additional averaging
the distribution of the random fields is essential. In the me
field approximation the combined disorder is represented
tirely in terms of the local polarizationp @cf. Eq. ~7!#. Thus
all physical quantities are to be first calculated for a giv
value ofp and the results averaged over the distribution ofp,
defined by W(p). The averaged probability distributio
W(p) for Ising spins is defined as

W~p!5
1

N (
i

d~p2^s i
z&!5E Djd@p2p~j!#, ~9!
2-2
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DIELECTRIC RELAXATION IN A . . . PHYSICAL REVIEW B 68, 054202 ~2003!
where the angular brackets represent a thermal aver
Equation~9! for the casesz561 yields13

W~p!5
1

bJA2pq
expF2

1

2
j0

2~p!G@12p2#21, ~10!

wherejo5jo(p) is the inverse function ofp(j) which sat-
isfies Eq.~7! for p in the interval@21,11#. It is easy to see
that the first moment of the distribution ofW(p) is the total
polarization~which is zero in the absence of an external el
tric field! while its second moment is the Edwards-Anders
order parameterq for spin glasses. With these equations
hand, which have been used earlier for calculating st
properties, we now proceed to evaluate the frequen
dependent dielectric response of the deuteron glass.

III. FREQUENCY-DEPENDENT PERMITTIVITY

To study the dissipative dynamics of the spin system
have to expand the scope of the Hamiltonian in Eq.~1! by
including a coupling to the surrounding bath as follows:

Ho5HS1HI1HB . ~11!

HI describes the interaction between the spin system and
heat bath which is characterized by the HamiltonianHB . As
is seen later, the explicit structure ofHB does not enter ou
calculations of the dynamic properties. The bath, usu
comprised of phonons, introduces thermal fluctuations in
spin system leading to spin ‘‘flips,’’ one at an instant of tim
This mechanism of relaxation in an Ising model via sp
lattice coupling is referred to as the spin-flip Glaub
model.21 Thus, the choice ofHI is dictated by the require
ment that the relaxation mechanism is of the Glauber ty
yielding the Boltzmann distribution at equilibrium. We a
sume the following type of interaction:

HI5gbsx. ~12!

In Eq. ~12!, b is a heat-bath operator which acts on the H
bert space of the bath HamiltonianHB andg is a multiplica-
tive coupling constant. This interaction, responsible for Is
spin flips, is purely off diagonal in the representation
which HS is diagonal. Such a coupling is known to yie
Glauber kinetics for the underlying Hamiltonian,22 justifying
the choice ofHI .

The dynamic susceptibilityx(v) evaluated within the
purview of linear-response theory yields the dielectric p
mittivity e(v). The two are related via the equation

e~v!511x~v!. ~13!

In linear-response theory,x(v) is given by21

x~v!5b lim
d→0, s→2 iv1d

@12sC̃~s!#, ~14!

whereC̃(s) is the Laplace transform of the correlation fun
tion defined as

C~ t !5^^sz~0!sz~ t !&&. ~15!
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Here the angular brackets indicate thermal as well as st
tical averaging over the random bonds and fields. The qu
tity s is related to the applied frequencyv, d is a small real
valued parameter to ensure convergence of the Laplace tr
form, andb is the inverse temperature.

We now proceed to calculate the spin-correlation funct
of Eq. ~15! which in the equilibrium ensemble is explicitly

C~ t !5
1

Zo
Tr@reqs

z~0!eiH otsz~0!e2 iH ot#, ~16!

whereHo is the total Hamiltonian as in Eq.~11! andZo is the
corresponding partition function. Assuming that the coupli
to the heat bath is much weaker than the thermal energykT
of the subsystem, it is possible to decompose the trace
two parts—one over the states of the subsystem and the o
over the states of the heat bath. With this simplification,
can write the correlation function as21

C~ t !5
1

Zs
Tr$e2bH̃ssz@U~ t !#avsz%. ~17!

@U(t)#av , referred to as the averaged time-development
erator, is

@U~ t !#av5TrBS e2bHB

ZB
eiLtD . ~18!

L is the Liouville operator associated with the total Ham
tonian of the bath as well as the subsystem of interest. It
be decomposed as

L5LS1LI1LB , ~19!

whereLS andLB are the Liouville operators associated wi
the subsystem and the bath, respectively, whileLI describes
the interaction between the two. Since@U(t)#av involves a
trace over the bath degrees of freedom, it therefore inclu
all the relaxational effects of the system.

Since dynamic measurements are in the frequency
main, it is convenient to work with the Laplace transfor

@Ũ(s)#av of @U(t)#av . Evaluation of@Ũ(s)#av is facilitated
by writing it as a resolvent expansion in which the intera
tion term HI is treated perturbatively. Such an expansi
yields the following general expression for the time-averag
operator:21

@Ũ~s!#av5@s2 iLS1S̃~s!#21, ~20!

whereS̃(s), as specified below, contains all the informatio
about the interactions of the heat bath and hence is a
called the ‘‘relaxation matrix.’’ In order to simplify our cal
culations, we restrict ourselves to the Markovian approxim
tion, which assumes that the fluctuations associated with
heat bath are characterized by frequencies which are m
larger than the frequencies associated withHS . This assump-
tion is tantamount to ignoring certain memory effects in t
system. While it is possible to evaluateS̃(s) to arbitrary
orders in perturbation theory, it suffices in the Markovi
approximation to use an expansion up to second order inHI ,
which yields
2-3
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S̃~s!5S LI

1

s2 iLS2 iLB
LI D

av

. ~21!

The correlation function can now be written explicitly a

C̃~s!5
1

Zs
(

m,n,m8,n8
ebhm^muszun&$nmu@Ũ~s!#avun8m8%

3^n8uszum8&. ~22!

In writing this equation, we have used the properties of
Liouville operators~refer to Chap. 1 of Ref. 21! as well as
the notation

~mnuLum8n8!5dnn8^muHum8&2dmm8^n8uHun&. ~23!

Using Eq.~23! the matrix elements of the superoperatorLS
can be written as

~nmuLSun8m8!5h~m2n!dnn8dmm8 , ~24!

resulting in

LS5S 0 0 0 0

0 0 0 0

0 0 22h 0

0 0 0 2h

D , ~25!

where the rows and columns labeled byunm) take the values
u11), u22), u12), andu21), respectively.

The Markovian approximation further allows us to writ

S̃~s!'S̃~0!5E
0

`

dtL Ie
i (LS1LB)tLI . ~26!

The calculation of the relaxation matrix is straightforward.
similar calculation has been done by us earlier in the con
of a magnetic quantum glass, well described by the tra
verse Ising model.23 In the present case, the transverse fi
introducing quantum effects is absent, but there is a prese
of a random field at each site due to substitutional disor
Proceeding along similar lines, we obtain from Eq.~23! and
after some lengthy algebra, a typical relaxation matrix e
ment of the following form:

W115~11uS̃~0!u11 !

5g2E
0

1`

dt@e12iht^b~0!b~ t !&1e22iht^b~ t !b~0!&#.

~27!

The bath correlations are defined as

^b~ t !b~0!&[TrFe2bHB

ZB
eiH Btb~0!e2 iH Btb~0!G . ~28!

Using the time-symmetry property of the bath correlati
function,W11 can be rewritten as

W115g2E
2`

1`

dte22iht^b~ t !b~0!&. ~29!
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The bath correlations can be parametrized in terms o
phenomenological relaxation ratel by making use of the
following Kubo relation:

E
2`

1`

dte12iht^b~ t !b~0!&5e2bhE
2`

1`

dte22iht^b~ t !b~0!&.

~30!

We now definel by rewriting Eq.~30! as

E
2`

1`

dte62iht^b~ t !b~0!&5l
e6bh

e1bh1e2bh
, ~31!

where

l[E
2`

1`

dt~e12iht1e22iht!^b~ t !b~0!&

5E
2`

1`

dte12iht@^b~ t !b~0!&1^b~0!b~ t !&#. ~32!

Since we have restricted ourselves to the Markovian appr
mation, the fluctuations in the bath have a very short lifeti
as compared to the time scales associated withh. Within this
assumption,l becomes real and can be approximated by
following expression:

l'E
2`

1`

dt@^b~ t !b~0!&1^b~0!b~ t !&#. ~33!

Further, the Kubo relation in Eq.~30! leads to the follow-
ing detailed balance conditions for transitions:

W125e22bhW22 ~34!

and the Markovian approximation leads to

W1152W125lp2
eq ,

W2252W215lp1
eq , ~35!

wherel is given by Eq.~33! andp6
eq denote the equilibrium

probabilities

p6
eq5

e6bh

e1bh1e2bh
. ~36!

Using Eq. ~25! and Eq. ~35! in Eq. ~26!, the time-
development operator can be written as

@U~s!#av5S UA

0 0

0 0

0 0

0 0
UB

D . ~37!

Here, we have substituted

UA5
1

s~s1l! S s1lp1
eq lp2

eq

lp1
eq s1lp2

eqD , ~38!

and
2-4
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FIG. 1. Real and imaginary parts of the dielectric permittivity for a series of temperature values above the freezing temperature~a! and
~b!, respectively. The insets show corresponding experimental data on D-RADP taken from Ref. 6 for qualitative comparison.
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UB5
1

s~s1l!14h2 S s1l22ih l

l s1l12ih D . ~39!

Inserting Eq. ~37! in Eq. ~22!, we finally obtain the
expression for the ac susceptibility as defined by Eq.~14!
to be

x~v,p!5b
l

l2 iv
~12p2!. ~40!

The local polarizationp is defined by Eq.~7! as well as the
relation

p5p1
eq2p2

eq . ~41!

The ac permittivitye(v) is now easy to evaluate. Explicitly

e~v!511
1

4pE21

1

dpW~p!x~v,p!, ~42!

where W(p) is as given by Eq.~9!. We are now set to
compute the real and imaginary parts of the dielec
permittivity and discuss the effects of temperature on th
evaluations.

IV. COMPUTED DIELECTRIC PERMITTIVITY
AND DISCUSSION

There are a large number of parameters in the model
are required to be fixed. In the experiments of Kimet al. on
D-RADP, the value ofx, the dilution content, was fixed a
0.4. All our evaluations are for this experimentally releva
value ofx. Further,D̃ andD̃ f have been selected on the ba
of NMR and dielectric measurements to be 119.6 K and 0
K, respectively.8

Having fixed the parameters as in the above the only
ting parameter is the relaxation ratel, related to the bath
correlations, which is a function of the temperature of t
bath. In the simplest modell is assumed to follow an
Arrhenius law. This form has been frequently used to obt
the distribution of relaxation times using phenomenologi
theories24,25 and is given by

l5loe2bDE, ~43!

where lo is related to the time between two consecut
attempts to pass the barrier. Although there is a repor
literature thatDE, the height of the energy barrier, increas
strongly with the concentrationx,24 we have selectedDE to
be 100 K. However, we have checked that the numer
computation ofe(v) is qualitatively unaffected over a rang
of values ofDE.

A remark about the chosen form of the relaxation ratel
in Eq. ~43! is in order. While the exponential temperatu
dependence is indeed what is expected for classical pho
induced hopping over a thermal barrier, it turns out th
an Arrhenius-like form ensues even when the underly
process involves tunneling but tunneling is strong
incoherent.26 In that caseDE is referred to as the ‘‘coinci-
dence energy.’’ Such a picture of incoherent tunnel
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is routinely employed for describing the motion of th
protons in solids.27 Since deuterons are heavier than proto
and are consequently endowed with smaller tunnel
frequencies, it is not unexpected that even if the deute
motion is governed by tunneling, the latter will be large
incoherent.

The results, all in units of temperature, have be
obtained for T/Tc51.1 to 1.9 in steps of 0.2.Tc has
been selected to be 40 K to be consistent with the exp
mentally studied deuteron glasses D-RADP~Ref. 6!
and D-RADA.10 With this choice of temperature range
we have ensured that our evaluations are in the reg
of experimental measurements, namely, just above
spin-glass phase.

In Figs. 1~a! and 1~b!, we plot the real parte8(v) and
the imaginary parte9(v) of the dielectric permittivity as a
function of the frequencyv for different temperatures. Sinc
T is lowered, they provide clear evidence thate9(v) versus
log v becomes more asymmetric and polydispersive. T
peak becomes broader as the freezing temperature is
proached. There is a shift in the peak frequency as the t
perature is lowered. Further, there is also a quenching of
response at lower temperatures as envisaged by the dec
in the peak value ofe9(v). These features are quite typic
of conventional spin glasses. The data exhibit qualitat

FIG. 2. Plots of peak value ofe9(vp) versusvp of our theoreti-
cally obtained data~a! and corresponding experimental values fro
Ref. 6 ~b! for different values of temperatures.
2-6
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DIELECTRIC RELAXATION IN A . . . PHYSICAL REVIEW B 68, 054202 ~2003!
similarities with experimental data of Kimet al. shown
in the inset of each of the figures as regards the feat
mentioned above.

We point out here that the mean-field Eqs.~6!–~8! for
the local field, the local polarization, and the Edward
Anderson order parameter, respectively, have been der
within the replica symmetric formalism of the SK mode
The replica symmetric solutions, which are the only sta
solutions of the model, represent the high-temperat
paramagnetic phase above the Almeida-Thouless line.
a consequence, the dielectric response very close to the
sition temperature is expected to differ from our theoreti
calculations.

In order to facilitate further qualitative comparisons of o
theoretically obtained data with experimental data, we p
the peak value ofe9(vp) versusvp on a double logarithmic
scale in Fig. 2. Our calculated data are plotted in Fig. 2~a!
while the experimental data from Ref. 6 are plotted in F
2~b!. Both sets of data can be fitted to straight-line equati
implying a power-law dependence ofe9(vp) on vp as the
temperature is varied. The equations of the best-fit cur
governing the two data sets are

Y50.3755X20.3878 ~calculated data!, ~44!

Y50.105220.5254 ~experimental data!, ~45!

where X and Y have been substituted for log(vp)
and log@e9(vp)#, respectively. We now try to obtain scalin
factors for theX and Y coordinates of the calculated da
to ensure that the two sets of data lie in the same param
range. To achieve this, we match the values ofX and Y
for the point corresponding toT560 K in both data
sets. With this exercise, we obtain the scale factors
the X andY coordinates for the theoretical data. The sca
data, along with the experimental data, are plotted
Fig. 3.

In Fig. 4, we plote9(vp) versusT, the temperature for
our calculated data~filled squares!, as well as the corre

FIG. 3. Plots ofe9(vp) versusvp of our scaled theoretically
obtained data and corresponding experimental values from Re
for different values of temperatures.
05420
es

-
ed

e
re

s
an-
l

t

.
s

s

ter

r
d
n

sponding experimental data on D-RADP~asterisks! ~Ref. 6!
and D-RADA~open squares! ~Ref. 10!. All three sets of data
can be fitted to straight lines whose equations are

e9~vp!50.027T20.10 ~calculated data!

50.04T20.57 ~D-RADA data!

50.11T23.411 ~D-RADP data!.

These results, along with Fig. 2~c!, lend credence to the ap
proximations made in the model as well as the assum
Arrhenius relaxation in deuteron glass.

In conclusion, we may point out that analytic techniqu
for studying nonequilibrium phenomena are few and com
cated as well. Our aim was to construct a simple mod
which captures the essential ingredients of the deuteron g
but at the same time, remains analytically tractable for stu
ing nonequilibrium properties. Because of the long-range
ture of the interactions, mean-field theory is quite appropri
to calculate the static as well as the dynamic properties
capsulated by the dielectric response. Fortunately for us,
deuteron glass has well-studied experimental realizationsvis-
á-vis the D-RADP and the D-RADA systems, which hav
made it possible to compare our calculated data with
experimental ones to check the validity of our approxim
tions. The mean-field calculation and our choice of t
Arrhenius form for the phenomenological relaxational p
rameterl yield satisfactory comparisons with experimen
data.

We should also emphasize that our treatment is quite
ferent from Chamberlin’s correlated domain model17 that has
been recently employed for analyzing the experimen
data.10,16 It has been speculated that the physical origin
correlated domains in deuteron and proton glasses ma
due to the quenched randon fields which are of paramo
importance in these systems. However, further research
be necessary in order to clarify the very existence of in
pendently relaxing domainlike regions in deuteron glas
such as D-RADP and D-RADA. On the other hand, throug

6

FIG. 4. Plots ofe9(vp) versus temperature for calculated da
as well as corresponding experimental data on D-RADP from Re
and on D-RADA of Ref. 10.
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out our analysis, we have remained faithfully close to
time-tested static approach4,5 and have built in the dynamica
treatment as a logical extension of the static one, via h
bath-induced relaxation phenomena.
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