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Dielectric relaxation in a deuteron glass
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We obtain the dielectric susceptibility of a deuteron glass based on a mean-field analysis of an Ising model
with random bond strengths and random fields using a system-plus-bath approach. The two Ising pseudospin
states represents two equivalent sites that the deuteron can occupy. Relaxation is caused by the random jumps
of the deuteron from one site to another. It is then reasonable to assume an Arrhenius form of relaxation, on
which we find that our derived results are in good qualitative agreement with experimental measurements on
recently studied prototypical deuteron glasses, namely,_g&bD,),D,PO, and RR_,(ND,),D,AsO;,
above the glass transition.
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I. INTRODUCTION range in character. Because of the long-range nature of the
deuteron interbond coupling, the Sherrington-Kirkpatrick
The formation of a glassy phase in mixed ferroelectric-(SK) model for spin glasses has been adopted as the starting
antiferroelectric crystals continues to generate considerablgoint for several theoretical investigatioHs:> However, the
experimental and theoretical interest. Among the mosHeuteron glass model differs from the classical spin glass in
widely studied systems of this kind is Rb(ND,),D,P0O;,  one important aspect. The random substitutional disorder
commonly denoted as D-RADP® The Rb system by itself ND, in place of Rb tilts the deuteron double well in a ran-
is ferroelectric whereas theDy, system by itself is antifer- dom fashion caused by local, random strain fields. Thus the
roelectric. The paraelectric phases of D-RDP and D-ADP argimplest theoretical model to study deuteron glasses is the
characterized by a disordered arrangement of the-©©  SK model with longitudinal random fields coupled linearly
bonds connecting the phosphate group. In D-RDP, below thgy the pseudospin.
ferroelectric transition temperature, the deuteron bonds order |t is perhaps pertinent to mention here that the quantum
spontaneously, yielding a macroscopic electrical polarizatiomounterpart of deuteron glass is the proton glass
parallel to thec axis of the crystal. In D-ADP, on the other Rb,_,(NH,),H,PO,. Because hydrogen is a light quantum
hand, a different arrangement of the deuterons yields antipaparticle, unlike its deuterated version, the hydrogen can
allel dipole moments ordered perpendicularly to thaxis. move among the possible two sites by a tunneling process.
A random substitution of the D, group in D-RADP  Tunneling can be incorporated by adding a term that couples
breaks the ferroelectric bonds at substituted sites. For suffto the transverse component of the pseudospin with respect
cient dilution, the “all up” or “all down” configurations are to the easy axis of the Ising interaction. Hence the transverse
suppressed and the long-range order, either ferroelectric @sing model with random bond strengths and random fields is
antiferroelectric, is no longer viable. The presence of ranthe simplest possible statistical mechanical model to describe
dom, competing interactions makes it impossible for the deuthis systemt3~°0n the other hand, deuterons are heavy, and
teron bonds to satisfy all of the interactions simultaneouslytherefore have extremely small tunneling frequencies. As a
Such systems are known as spin glasses. The mixed systefdnsequence, quantum effects are negligible in deuteron
Rb; _,(ND,4)D,PO, shows spin-glass behavior in the glasses. Here the deuteron is expected to jump among the
concentration range 0.2x<0.8 at low temperaturés. possible two sites by thermal activation.
The glassiness is a result of the freezing 0DO-0O intra- The low-frequency dielectric measurements have become
bond motion, as evidenced from experimental measurements important tool to examine the relaxation time distributions
of the dielectric permittivity Here, because the basic ran- and mechanisms around the glass transition temperature. In
dom interaction is between deuterons, D-RADP is calledhe present paper, we calculate the dielectric permittivity of a
a deuteron glass. Another widely studied deuteron glasdeuteron glass using a simple theoretical framework based
is the deuterated rubidium ammonium arsenateon the mean-field approximation of the Ising model with
Rb;_«(ND,)«D,AsSQ, or D-RADA. Extensive experimen- random bonds and random fields. This model has been sub-
tal data on dielectric relaxation of this system exist in thejected to extensive theoretical activity in recent years. An
literature?*° important contribution has been made by Pirc and co-
The deuteron can occupy two sites in theDO-O bond.  workers toward the development of the mean-field analysis
The “left” and the “right” positions of the deuteron in the of this model and the calculation of static properties this
O-D- - O bond can be mapped onto an Ising pseudospin varipaper, we extend these calculations to treat relaxation effects.
able o, which may take values-1 or —1. Since the inter- Our treatment is different from the recently published paper
action between the electric dipoles is induced in the materiabf Kim et al® in which Chamberlinet al’s correlated do-
as a result of distortion caused by the deuteron, it is longnain model’ has been used to fit the experimental data on
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the dielectric permittivity of D-RADP. On the other hand, we glass model represented by E@) has been carried out
introduce explicit irreversible effects to study dissipative dy-within replica symmetric formalism, known from the theory
namics by coupling the Hamiltonian, successfully used earef spin glasse&?° Within this approach, the single-site
lier to describe the static effect$to a surrounding heat bath. Hamiltonian for the replica symmetric phase above the spin-
Our analysis is therefore a natural extension of the correglass transition temperature is written as

sponding static method based on an Ising model with random

bonds and random fields. Hs=—ho?. (5)

The paper is organized as follows. In Sec. Il, we describ hi ttactive field acti | . |
the representative Hamiltonian for the deuteron glass. The€r€Nn Is an effective field acting along treaxis as a result
of the presence of a “ferromagnetic” orddy,, the longitu-

mean-field analysis of the Hamiltonian is carried out in Sec.”. ) :
lll. Section IV is devoted to the calculation of the dielectric din@l fieldA¢, as well as a nonzero spin-glass order param-
permittivity. Finally, Sec. V contains the computed dielectric ©€r%

response, its analysis, and comparison with experimental ob-

. 1. = ~
servations on D-RADP and D-RADA. h(&)= EA? lq+ R+ Jqp, (6)

Il. MEAN-FIELD HAMILTONIAN _ _ _
. _ _ _ , Jo=NJo, A;=4A;13%, A=AN,
As mentioned in the Introduction, our starting Hamil-

tonian for the deuteron glass is thus the Ising model withwith £ the excess static noise arising from the random inter-

long-range interactiorss, actionsJ;; and the random field andp the local polariza-
tion.
N , N . The mean-field equations for the local polarization and
Hs=”2:1 Jijoio] _21 fiaf. (D the Edwards-Anderson order paramedeare

Here, J;; represents the long-range interaction between the p(¢é)=tank Bh(¢)], )
pseudospins denoting the deuteron occupation. As stated ear-
lier, there is an additional term iH¢ to incorporate the cou-
pling between the spin and the local random fiéldepre-
senting strain fields generated by the random substitution _[” Eefg/z 2(¢) ®)
(say, ND, in place of Rb. In the absence dff;}, the Hamil- —o 27 prLe).
tonian of Eq.(1) is the SK model for the Ising spin glass. It
is customary to assume that the distributiong;pfandf; are WhenJ,=0, the polarizatiorp is strictly zero at all tem-
Gaussian and independent: peratures. The spin-glass phase is characterized by a nonzero
g, thus characterizing the “disordered” phase by bptand
1 (Jij —Jo)? g being equal to zero. In deuteron and proton glasses, on the
P(Jij)= \/ﬁex T oaz | (2) other hand, the presence of the Gaussian random field acts as
an effective ordering field for the order paramegewithout
1 £)2 inducing an average polarizatign As a result,q remains
P(f,)= ex;{—( i) } 3) finite even at temperatures much above the transition tem-
V2mA, 2A; perature under the influence of the random fields. As ex-

) . pected, forA;=0, the above equations reduce to the corre-
Thus, Eq.(1), together with Eq(2) and Eq.(3), describe the  sponding equations for the SK model in the replica

deuteron glass. We make a specific connection with the eXsymmetric phase above the Aimeida-Thouless line.
perimentally studied ComDOUfT]_C%lS’lg by associating—J In disordered systems, a physically observable quantity is
and +J coupling constants with the antiferroelectric and cajculated by computing the corresponding quantity in accor-
ferroelectric bonds and lettingand (1-x) be their relative  dance with the statistical mechanical prescription for a given
concentrations, respectively. Equating the mean and the vafjealization of the disorder and then performing an averaging
ance of the Gaussian distribution, E@), with that of the  over the underlying probability distribution of the disorder.
bimodal distribution of (=J) then requires In proton and deuteron glasses, an additional averaging over
) ) the distribution of the random fields is essential. In the mean-
Jo=(1-2x)J, AT=4x(1-x)J% (4)  field approximation the combined disorder is represented en-

A similar (but independeficoncentration dependence can belirély in terms of the local polarizatiop [cf. Eq. (7)]. Thus

assumed for the mean and variance of the distribution for th@!l Physical quantities are to be first calculated for a given
local random field. value ofp and the results averaged over the distributiop,of

We now use a mean-field approximation to replace th&lefined by W(p). The averaged probability distribution
Hamiltonian of the interacting system by an equivalentV(P) for Ising spins is defined as
Hamiltonian representing a noninteracting system in a self-

. ) . 1
consistent external field expressed in terms of an order pa- W(p)= — S(b—(o?)) = f DéSTD— 9
rameter. A systematic mean-field theory for the deuteron (P) N E. (p=(e)) glp—p@)l.
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where the angular brackets represent a thermal averagdere the angular brackets indicate thermal as well as statis-
Equation(9) for the caser,= +1 yields™ tical averaging over the random bonds and fields. The quan-
tity s is related to the applied frequeney 6 is a small real
1 1, _— valued parameter to ensure convergence of the Laplace trans-
W(p)= Tex - 550(9) [1=p°]"% (100 form, andg is the inverse temperature.
pIN2mq We now proceed to calculate the spin-correlation function

where &,= £,(p) is the inverse function op(&) which sat-  of Eq. (15) which in the equilibrium ensemble is explicitly
isfies Eq.(7) for p in the intervall — 1,+1]. It is easy to see 1
that the first moment of the distribution ¥¥(p) is the total _ - z iHot 7 —iHt
polarization(which is zero in the absence of an external elec- c Zy Tpeqr(0)eTea*(0)e I 18
tric field) while its second moment is the Edwards-AndersothereH
order parameteq for spin glasses. With these equations at
hand, which have been used earlier for calculating stati
properties, we now proceed to evaluate the frequenc
dependent dielectric response of the deuteron glass.

o IS the total Hamiltonian as in E411) andZ, is the

corresponding partition function. Assuming that the coupling

% the heat bath is much weaker than the thermal enkfgy

Yof the subsystem, it is possible to decompose the trace into
two parts—one over the states of the subsystem and the other

over the states of the heat bath. With this simplification, we
I1. FREQUENCY—DEPENDENT PERMITTIVITY can Write the CO”e'ation function %.ls

To study the dissipative dynamics of the spin system we 1 B
have to expand the scope of the Hamiltonian in Eg.by C(t)==-Tr{e PHsgq U(t)],,02. (17)
including a coupling to the surrounding bath as follows: Zs
[U(t)],, . referred to as the averaged time-development op-

Ho=Hs+H +Hg. (1) erator, is
H, describes the interaction between the spin system and the ~BHg
heat bath which is characterized by the Hamiltortign. As [U(t)]a=Trg > e'a). (18
B

is seen later, the explicit structure Hfy does not enter our
calculations of the dynamic properties. The bath, usually. is the Liouville operator associated with the total Hamil-
comprised of phonons, introduces thermal fluctuations in theonian of the bath as well as the subsystem of interest. It can
spin system leading to spin “flips,” one at an instant of time. be decomposed as

This mechanism of relaxation in an Ising model via spin-

lattice coupling is referred to as the spin-flip Glauber L=Lst L+ Ly, (19

model®! Thus, the choice of, is dictated by the require- whereLs and Ly are the Liouville operators associated with
ment that the relaxation mechanism is of the Glauber typey,e g psystem and the bath, respectively, whijlalescribes
yielding the Bolj[zmann d|s'Fr|but|on at equilibrium. We as- the interaction between the two. Sinpe(t)],, involves a
sume the following type of interaction: trace over the bath degrees of freedom, it therefore includes
H, = X all the relaxational effects of the system.
| =gbd™. (12 Since d . : )
ynamic measurements are in the frequency do
In Eq. (12), b is a heat-bath operator which acts on the Hil-main, it is convenient to work with the Laplace transform
bert space of the bath Hamiltoni&hs andg is a multiplica-  [U(s)],, of [U(t)]a, - Evaluation off U(s)],, is facilitated
tive coupling constant. This interaction, responsible for Isingby writing it as a resolvent expansion in which the interac-
spin flips, is purely off diagonal in the representation intion term H, is treated perturbatively. Such an expansion
which Hg is diagonal. Such a coupling is known to yield yields the following general expression for the time-averaged
Glauber kinetics for the underlying Hamiltoni&hjustifying  operator®*
the choice ofH, .

The dynamic susceptibilityy(w) evaluated within the [D(s)]au=[s—i£5+§(s)]*1, (20)
purview of linear-response theory vyields the dielectric per- -
mittivity e(w). The two are related via the equation whereX(s), as specified below, contains all the information
about the interactions of the heat bath and hence is aptly
€(w)=1+x(v). (13)  called the “relaxation matrix.” In order to simplify our cal-

culations, we restrict ourselves to the Markovian approxima-
tion, which assumes that the fluctuations associated with the
) ~ heat bath are characterized by frequencies which are much
)= lm  [1-sCs)], (14 |arger than the frequencies associated with This assump-
070 smmiets tion is tantamount to ignoring certain memory effects in the

whereC(s) is the Laplace transform of the correlation func- System. While it is possible to evalua¥(s) to arbitrary
tion defined as orders in perturbation theory, it suffices in the Markovian

approximation to use an expansion up to second ordes in
C(t)={{a*(0)d*(1))). (15  which yields

In linear-response theory(w) is given by*

054202-3



VARSHA BANERJEE AND SUSHANTA DATTAGUPTA PHYSICAL REVIEW B68, 054202 (2003

~ The bath correlations can be parametrized in terms of a
3(s)=| L Tk (2)  phenomenological relaxation rate by making use of the
S B la following Kubo relation:

The correlation function can now be written explicitly as o _ to _
j dte*z'ht<b(t)b(0)>=e2f”hf dte”2"(b(t)b(0)).

~ 1 ~
Co=5 2 ™ ulon){vull0(S)]alv '} (30)
s ,U«YVV,U«’VV’
, ) We now definex by rewriting Eq.(30) as
X{(v' | u'). (22)
.. . . . w +Bh
In writing this equation, we have used the properties of the f* +2iht _ €
Liouville operators(refer to Chap. 1 of Ref. 2las well as —o dte™(b(1b(0)) )\e+Bh+ e B’ 3
the notation
where
(]l v) = 8, (I HI ') = B,(v [HIw). (23 B
Using Eq.(23) the matrix elements of the superoperathy REJ dt(e™?"+e" 2" (b(t)b(0))
can be written as o
+o0 )
(vl Lo v' ") =h(pn—=v)8,, 8, (24 =f dte* 2" (b(t)b(0))+(b(0)b(t))]. (32
resulting in -
Since we have restricted ourselves to the Markovian approxi-
0 0 0 0 mation, the fluctuations in the bath have a very short lifetime
0 0 0 0 as compared to the time scales associated withithin this
Ls= , (25) assumption\ becomes real and can be approximated by the
0 0 -2h 0 following expression:
00 0 2 .
where the rows and columns labeled|y.) take the values A~ fﬁw dt[(b(t)b(0))+(b(0)b(t))]. (33
[++),|——), |+-), and|—+), respectively.

The Markovian approximation further allows us to write Further, the Kubo relation in E¢30) leads to the follow-
ing detailed balance conditions for transitions:

S(s)=3(0)= JO dtc e'(fst Lty (26) W, —e 28w __ (34

The calculation of the relaxation matrix is straightforward. Aand the Markovian approximation leads to
similar calculation has been done by us earlier in the context Wo = —W. =xp

of a magnetic quantum glass, well described by the trans- T +-= AP
verse Ising modél® In the present case, the transverse field _ .\ eq
introducing quantum effects is absent, but there is a presence Wo_==W_,=Apy, (39
of a random field at each site due to substitutional disordefyhere is given by Eq.(33) andp®® denote the equilibrium
Proceeding along similar lines, we obtain from E28) and  probabilities

after some lengthy algebra, a typical relaxation matrix ele-

ment of the following form: e ph

pil=— . (36)
~ = gtBhy g ph
W++:(++|2(O)|+ +)

Using Eg. (25 and Eqg. (35 in Eg. (26), the time-

+
=ng dtfe"?"(b(0)b(t))+e 2"(b(t)b(0))]. development operator can be written as
0
27) U, g g
The bath correlations are defined as [U(S)]ay= _ (37)
e Ats . Ug
e''etb(0)e Meb(0)|. (28 0 0

(b(t)b(0))=Tr

Z
] ] ° ~ Here, we have substituted
Using the time-symmetry property of the bath correlation

function, W, . can be rewritten as 1

U/ﬁm (39

s+Aps?  Ap®d
ApS? s+apfd)’

2 [T int
wo=g?[ ate Mbwpo). @9
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FIG. 1. Real and imaginary parts of the dielectric permittivity for a series of temperature values above the freezing tempépame in

(b), respectively. The insets show corresponding experimental data on D-RADP taken from Ref. 6 for qualitative comparison.
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Inserting Eq.(37) in Eq. (22), we finally obtain the
expression for the ac susceptibility as defined by &d) et
to be e

0.01 | T

e(wp)

A
— _n2
x(@,p)=p—~(1-p%). (40)
The local polarizatiorp is defined by Eq(7) as well as the
relation

0.001

p= piq— p‘iq . (41) 1 10 100

The ac permittivitye(w) is now easy to evaluate. Explicitly, w0

experiment'al data =
line of best fit -------

1 r1
e(w)=1+ Eﬁldpvv(p)x(w,p), (42

where W(p) is as given by Eq(9). We are now setto
compute the real and imaginary parts of the dielectric _ P
permittivity and discuss the effects of temperature on these £ 'f I
evaluations.

IV. COMPUTED DIELECTRIC PERMITTIVITY
AND DISCUSSION

There are a large number of parameters in the model that | , , , ‘ ,
are required to be fixed. In the experiments of Kétral. on by 10 100 1000 10000 100000 fox08
D-RADP, the value ofx, the dilution content, was fixed at *

0.4. All our evaluations are for this experimentally relevant FIG. 2. Plots of peak value of'(w,) versusw, of our theoreti-

value ofx. Further,A andA have been selected on the basiscally obtained datéa) and corresponding experimental values from
of NMR and dielectric measurements to be 119.6 K and 0.34ef. 6 (b) for different values of temperatures.
K, respectively’ . . . :

Having fixed the parameters as in the above the only fit!S routinely employed for describing the motion of the

ting parameter is the relaxation raie related to the bath PrOtONS in solid$’ Since deuterons are heavier than protons

correlations, which is a function of the temperature of theand are consequently endowed with smaller tunneling

bath. In the simplest model is assumed to follow an frequencies, it is not unexpected that even if the deuteron
Arrhenius law. This form has been frequently used to obtaifmoton is governed by tunneling, the latter will be largely

the distribution of relaxation times using phenomenologicaImCOherem' . .
theorie€*? and is given by The results, all in units of temperature, have been

obtained for T/T.=1.1 to 1.9 in steps of 0.2T. has
A=N,e PAE (43  been selected to be 40 K to be consistent with the experi-
mentally studied deuteron glasses D-RAD[Ref. 6
where \, is related to the time between two consecutiveand D-RADAX® With this choice of temperature range,
attempts to pass the barrier. Although there is a report inve have ensured that our evaluations are in the regime
literature thatAE, the height of the energy barrier, increasesof experimental measurements, namely, just above the
strongly with the concentration?* we have selectedE to  spin-glass phase.
be 100 K. However, we have checked that the numerical In Figs. 1a) and Xb), we plot the real part’(w) and
computation ofe(w) is qualitatively unaffected over a range the imaginary pare”(w) of the dielectric permittivity as a
of values ofAE. function of the frequencw for different temperatures. Since
A remark about the chosen form of the relaxation mate T is lowered, they provide clear evidence tléfw) versus
in Eq. (43) is in order. While the exponential temperature log » becomes more asymmetric and polydispersive. The
dependence is indeed what is expected for classical phonopeak becomes broader as the freezing temperature is ap-
induced hopping over a thermal barrier, it turns out thatproached. There is a shift in the peak frequency as the tem-
an Arrhenius-like form ensues even when the underlyingperature is lowered. Further, there is also a quenching of the
process involves tunneling but tunneling is stronglyresponse at lower temperatures as envisaged by the decrease
incoherent® In that caseAE is referred to as the “coinci- in the peak value ot”(w). These features are quite typical
dence energy.” Such a picture of incoherent tunnelingof conventional spin glasses. The data exhibit qualitative
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FIG. 3. Plots ofe”(w,) versusw, of our scaled theoretically FIG. 4. Plots ofe”(w,) versus temperature for calculated data
obtained data and corresponding experimental values from Ref. & Well as corresponding experimental data on D-RADP from Ref. 6
for different values of temperatures. and on D-RADA of Ref. 10.

similarities with experimental data of Kinetal. shown sponding experimental data on D-RAD#&sterisks (Ref. 6)
in the inset of each of the figures as regards the featureand D-RADA (open squarggRef. 10. All three sets of data
mentioned above. can be fitted to straight lines whose equations are

We point out here that the mean-field Eq6)—(8) for
the local field, the local polarization, and the Edwards-

) . " =0.027T—0.10 (calculated da
Anderson order parameter, respectively, have been derived €'(wp) ( . .

within the replica symmetric formalism of the SK model. =0.04T—-0.57 (D-RADA data)
The replica symmetric solutions, which are the only stable
solutions of the model, represent the high-temperature =0.11T—-3.411 (D-RADP data.

paramagnetic phase _above_ the Almeida-Thouless line. A?hese results, along with Fig(@, lend credence to the ap-
a consequence, the dielectric response very close to the tran-

” X : .__proximations made in the model as well as the assumed
sition temperature is expected to differ from our theoretical ; S
calculations Arrhenius relaxation in deuteron glass.

. . . In conclusion, we may point out that analytic techniques
In order to facilitate further qualitative comparisons of our or studvina nonequilibrium phenomena are few and comoli-
theoretically obtained data with experimental data, we pIo{ ying d P b

the peak value o€ (w.) versusws on a double logarithmic cated as well. Our aim was to construct a simple model,
p p i iali i
scale in Fig. 2. Our calculated data are plotted in Fig) 2 which captures the essential ingredients of the deuteron glass

while the experimental data from Ref. 6 are plotted in Fig.bUt at the same time, remains analytically tractable for study-

2(b). Both sets of data can be fitted to straight-line equationd’d NoNnequilirium properties. Because of the long-range na-

implying a power-law dependence ef(w,) on w, as the
temperature is varied. The equations of the best-fit curve
governing the two data sets are

Yure of the interactions, mean-field theory is quite appropriate
to calculate the static as well as the dynamic properties en-
(s,apsulated by the dielectric response. Fortunately for us, the
deuteron glass has well-studied experimental realizati@ms
a-vis the D-RADP and the D-RADA systems, which have
Y=0.3755X—-0.3878 (calculateddata (44  made it possible to compare our calculated data with the
experimental ones to check the validity of our approxima-
Y=0.1052-0.5254 (experimental data (45) tions. The mean-field calculation and_ our choic_e of the
Arrhenius form for the phenomenological relaxational pa-
where X and Y have been substituted for lag) rameter\ yield satisfactory comparisons with experimental
and log€'(wp)], respectively. We now try to obtain scaling data.
factors for theX and Y coordinates of the calculated data  We should also emphasize that our treatment is quite dif-
to ensure that the two sets of data lie in the same parametésrent from Chamberlin’s correlated domain mddéhat has
range. To achieve this, we match the valuesXobnd Y  been recently employed for analyzing the experimental
for the point corresponding tor=60 K in both data datal®!® It has been speculated that the physical origin of
sets. With this exercise, we obtain the scale factors fororrelated domains in deuteron and proton glasses may be
the X andY coordinates for the theoretical data. The scaleddue to the quenched randon fields which are of paramount
data, along with the experimental data, are plotted inmportance in these systems. However, further research will
Fig. 3. be necessary in order to clarify the very existence of inde-
In Fig. 4, we plote”(wp) versusT, the temperature for pendently relaxing domainlike regions in deuteron glasses
our calculated datdfilled squares as well as the corre- such as D-RADP and D-RADA. On the other hand, through-
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