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Generation of triplications in transversely isotropic media
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Triplications and cusp edges can occur in homogeneous transverse isgktppyovided the strength of
anisotropy exceeds a critical value. The critical strength of anisotropy is 9.50% for axial triplication, 9.71% for
basal triplication, 8.86% for oblique triplication, and 9.72% for double triplication. No Tl with strength less
than the critical can display triplications. On the other hand, high values of the strength of anisotropy do not
guarantee the existence of triplications. Hence, observations of triplications on the wave surface cannot serve
as a unique criterion defining strong TI.
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[. INTRODUCTION and the conditions that prevent tifeand SV slowness or
phase-velocity surfaces to intersect one another:
Triplications and cusp edges on the wave front can sig-

nificantly complicate modeling of wave fields. They produce a1~ au>0, aszz—ag>0, 2
energy focusing® and phase shifting of signat!! In ho-
mogeneous transverse isotropy with normal polarization, ajztas>0, (3

triplications can occur for the SV wave only and can be

classified into four different typegsee Fig. 1 (i) oblique, | . ‘ . e
s P ; : Iy the Voigt notation. Equatioi) is also the condition for the
(i) axial, (i) basal, andiv) double(axial and basaltripli so-called “normal polarization” ofP and SV waves?® For

cations. The existence of triplications is conditioned by the vsi der | trict diti PR
existence of concave or saddle-shaped areas on the slownégg analysis under _eszs restrictive conditions, see n
shits and Chadwick

surface(see Fig. 2 These areas are separated from the con—A : . . . o
vex areas by parabolic lines, formed by points of zero Gauss- The foIIowEg equation conditions the axial triplications
ian curvaturé2-15 Generally, the stronger the anisotropy, the :S€€ Musgrave; Eq. (8.3.4]
larger the part of the slowness surface which may be concave
or saddle shaped, and the more developed the triplications. If
anisotropy is decreased, the concave or saddle-shaped arehs basal triplicationfsee Musgravé’ Eq. (8.3.5],
are reduced and the triplications are restricted to a narrower
interval of angles. If two cusps defining the triplication coa- (a3t a44)°—agy(ay;— a4 =0; 5)
lesce into ondthe width of the triplication reduces to only
one direction, we speak of “incipient” triplication. In this
case, the medium represents a borderline between the me
with and without a triplicatiort®

Triplication conditions in transverse isotrog¥1) yield
inequalities, with which one can uniquely decide whether the
Tl under study triplicates or ndt->* The inequalities are, —2\(Az3— a4z (11— a40)
however, rather complicated and difficult to understand.

Hence, it is possible to classify any specific T, but it is notyhere the equality sign stands for the incipient triplication.
easy to establish simple generalizations. We expect that nphe slowness anglé; of the incipient triplication is;=0°
triplication can occur in a sufficiently weak ¥1,but we have for the axial triplication,d,=90° for the basal triplication,

no understanding of which combinations of elastic param-, 4

eters generate triplication and how strong anisotropy must be

to generate triplications. Furthermore, it is not clear whether

the occurrence of a triplication can be used as a criterion for ~ sir? 6,=
distinguishing weak from strong TI.

where a,, are the density normalized elastic parameters in

(@13+ A44)°— A11(Az3— 40 =0; 4

and the oblique triplicationgsee Dellingef’ Eq. (2.19; Th-
fgsen and Dellingét, (Eq. 9],

2 2
3aj,— (A3t a44)°— Asa(@zztagy) +3a37a33

2

Aq1d33— Ay

——— =<0, (b
a3t ag

11— Aag
Ay tags—2ay,

A3z~ 8aq

—, C0§ 0,=
ajytags—2ay '

(7)
for the oblique triplication. Note that Ed6) is the exact

Il. TRIPLICATION CONDITIONS opposite of the approximate conditions proposed by various

authors:819:21-23
We consider Tl media, which satisfy the “stability”

conditiong®2®
I1l. ANISOTROPY PARAMETERS

435>0, au>0, as>0, an—as>0, Triplication conditions(4)—(6) can also be expressed in

) terms of parameters, v, o, k, anda,,, which represent an
agz(@y1~ age) > a13, (1) alternative parametrization of Pf2°
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FIG. 1. Types of triplications in transverse
isotropy. Vertical sections of wave surfaces are
shown for(a) oblique,(b) basal,(c) axial, and(d)
double triplications.

FIG. 2. Vertical sections of slowness surfaces
generating different types of triplications. For de-
tails, see the caption of Fig. 1. Parabolic points
(marked by dots separate convexsolid line),
concave(dotted ling, and saddle-shapgdashed
line) areas.
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. all_ a33 _ 1 K
e= 283, (8) Oc=Tome g (20
Aee—al Parameteir . is the critical value ofo under which the in-
— 768 44, 9 cipient triplication occurs. The condition for oblique triplica-
284, tion (6) yields the following cubic equation:
1 (a3t ag)?
0= Zar| A~ s ﬁ , (10) o3+ A2 +Bo.+C=0, (21)
where
K= a33/a44. (11)
1 |3 3
Parameterg, y, ando are called the anisotropy parameters A= — 1 §K2(28+1)+ k(e+1)+ 71t
and are frequently used for describing weak TI. For example, K
they control the angular variations of phase velocities in «
weak Tl as follows: 322(’(__1)2(8+1)[K2(28+1)+1]’
o
(cP)2=kay, 1+2esiP §—2—sirt dcos 0|, (12 2
K c=—2W[K(2s+1)2—28—1]. (22)

cSY\2=a,(1+ 20 sir? 6 cos 6), 13
(%9 o sl ) 13 The solution of Eq(21) yields the interval of values for the

Sh2 . o parameter under which the medium triplicatder an
(cS)2=ay,(1+2ysir? 6), (14 equivalent solution in a different notation, see PaytbEg.

where 6 is the angle between the slowness vector and thé2-4.12]
axis of symmetry. The anisotropy parameters become zero in
isotropy and can thus serve as a measure of strength of TI.
Therefore, expressing the triplication conditions using thesevhere
parameters provides a better understanding of how strong the
anisotropy must be for the triplication to occur. 1

o=0g, (23

Equations1)—(3) limit the values ofx, ¢, , ando. Equa- oc=utv—a, (24)
tion (2) yields for k and e
92 [(p 3711/3
1
+1-——> > u=| — -+ - +| = ,
26+1- >0, «>1, (15 |2 2 3
Egs.(1), (2), and(10) yield for o q q\2 [p 3|13
v=| — E— E + g , (25)
1 e —a (Vaisags+ag? e 1 (By— a0
_2a44 117 Q44 —a33_ s _2a44 11 441:6 . . ,
(16) p=B—-A2 q=--AB+ —-A%+C. (26)
and using Eq(1), we obtain fory 3 3 27
2 Note that the triplication conditions do not depend on param-
B E< 7<£ ayq8s3 313_1). 17) ete.ra44, which is only a sca!ing factor, and on parameger
2 2\ aggy which controls the propagation of ti&H wave.
IV. TRIPLICATION CONDITIONS EXPRESSED USING V. BEHAVIOR OF CRITICAL o

ANISOTROPY PARAMETERS . . S .
We consider only the basal and oblique triplications, since

Following Thomsen and Dellingéf, the conditions for the condition for the axial triplication is elementary. Figure 3
the axial and basal triplications can be expressed as followshowso, dependent orz and « ranging in the intervals 1
<k<10 and—0.2<g<0.2. The total interval foi is sub-
o=<o0¢, (18)  divided into two intervals, ¥ k<2 (lower plot9 and 2<
<10 (upper plot$, because the variation of for small  is

with o, expressed for the axial triplicatiorg(=0°) as . o i ,
very strong. Figure 3 indicates tha{ attains negative values

1 for the basal triplication, but positive values for the oblique
Te= " 5 (19 triplication. Hence, the basal and oblique triplications cannot
occur simultaneously under the same TI. The figure also
and for the basal triplication{=90°) as shows that triplications can occur fervery close to zero. If
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FIG. 3. Behavior of the critical
value of o. The blank areas in the left
corner of the bottom plots are the areas
in which Eq.(15) is not satisfied.
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Total anisotropy

axial triplication basal triplication oblique triplication
&0 . , o N

L i

3.5 70 {g“‘-’ 70 3.5 R
i —" E
Pl 50
3.04 50 50 3.0 . I
Y ’
© © e © 30
Q [-% £ -3 ‘T
o 25 a |0 o 25 |
© Y ©
x ~ ey x> =
Tk
2.0 - 0 2.0
gL 3 =~ 15
& st
1.5 ol 15 1.5 - {
u.;~ 10
-
1.04 » — 1o 1.0 ;‘5
0.4 0.2 0.4 0.4 0.2 0.0 0.2 0.4
epsilon epsilon epsilon

axial triplication basal triplication oblique triplication
\ . \

kappa
kappa
kappa

epsilon epsilon epsilon

FIG. 7. Minimum values of the total anisotropy as a function of parameteasd ¢ for the incipient axial(left), basal(middle), and
oblique (right) triplications. The lower plots show the detailed behavior of anisotropy near its minimum.

xk—1 ande=0, theno.—0. This means that no threshold irrespective ofc. For k— 1 ande =0, theP-wave anisotropy
value for o exists for either triplication. tends to zero. On the contrary, the pattern of ¥wave

anisotropy depends on the type of the triplication. But the
VI. CRITICAL STRENGTH OF ANISOTROPY critical strength of theSV anisotropy can also be zero. It

We now ask how strong transverse isotropy must be t§ccurs for«—1 ande =0 independently of the type of trip-
generate triplications. Figures 4—6 show the critical valuedication. For basal and oblique triplications, ze3% anisot-
of the P-, SV-, andSHwave anisotropy for the occurrence OPY iS observed also fok and e close to the borderline,
of the axial, basal, and oblique triplications as a function ofd€limiting the area of their permissible values. Hence, we
parameters ande. The strength of anisotropy is defined as observe thaP andSV anisotropies can simultaneously attain
values very close to zero fat— 1 ande =0. This means that

W _ow the triplications can occur even under infinitesimally wé&ak
aV=2 = . 100%, (27) an_d SV anisotropies and né& anq S_V a_nisot_ropy threshold
maxT Cmin exists for the occurrence of triplications in TI. However,

where P and SV anisotropy simultaneously attain values
whereW denotes the type of wav®, SV, or SH), andc,,ox  close to zero, th&H anisotropy should be nonze(see Figs.
andc,, denote the maximum and minimum phase velocities4—6, right-hand plots This follows from the stability con-
of the P, SV, or SHwaves. The total strength of anisotropy ditions(17), which constrain the values of ti8H anisotropy.
sums the strength of anisotropy of all waves in the followingRemember that the triplication conditions yield no other con-
way: straints on theSH anisotropy.

Figure 7 shows the total strength of anisotropy, which
sums the strength of all waves. The figure shows that the
minimum strength of anisotropy for the occurrence of a trip-
lication is close to 10%. This applies to all types of triplica-

Interestingly, the pattern of the critical strength of thetions. Specifically, the minimum strength of anisotropy is
P-wave anisotropy is very similar for all types of triplica- 9.50% for the axial triplication £=0.04 and x=1.16),
tions. The strength is sensitive & but almost insensitive to  9.71% for the basal triplicatione(= —0.01 andx=1.22),

«. For ¢ close to zero, thé-wave anisotropy is very small 8.86% for the oblique triplicationg(=0 and«x=1.46), and

a=\(aP)%+ (a2 +(aS")2 (28)
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oblique triplication double triplication

30 I 1 1 1 I 1 1 ) 1
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FIG. 8. Minimum values of thé>-, SV-, and SH-wave anisotropy(dashed linestogether with the total anisotropigolid line) as a
function of parametek for the double(left-hand plot$ and oblique(right-hand plots triplications. Parameter equals zero.

9.72% for the double triplications(=0 andx=1.20). These &#0 and o> —0.5, only basal triplication can occur. The
values represent the global minima of the critical strength otondition for this triplication yields

anisotropy. No triplication can occur in Tl whose total

strength of anisotropy is less than these minima. The minima laj;—ay

are, however, rather shallow, because the strength of anisot- Te= 75 Az Ay, (29)
ropy increases very slightly with increasing On the con-

trary, if « decreases{— 1), the strength of anisotropy rap-
idly increases.

A closed view of the strength of anisotropy as a function
of k is shown in Fig. 8. Parameter is fixed at zero. The
critical P-wave anisotropy steeply increases from zero for
k—1, reaching its maximum at 6% far=1.4 (double trip-
lication) or for k= 1.8 (oblique triplication. For higher val-
ues of , the P anisotropy decreases to less than 2% #or

= 10. Also the criticalSV anisotropy steeply increases from yance the basal and oblique triplications or axial and ob-

zero (k—1) to 12% forx=3. Thereafter théSVanisotropy  |igue triplications cannot occur simultaneously under the
increases very slowly, being less than 14%#er10. Onthe g5 TRO

contrary, theSH anisotropy is high for«—1, but rapidly Analyzing the strength of anisotropy under which T trip-
decreases with increasing The SH anisotropy is zero for jicates, we conclude that the critical strength of anisotropy is
«x>1.2 (double triplication or for x> 1.5 (oblique triplica- g 5094 for axial triplication, 9.71% for basal triplication,
tion). 8.86% for oblique triplication, and 9.72% for double tripli-
cation. No Tl whose strength is less than the critical can
display triplications. On the other hand, high values of the
VIl. DISCUSSION strength of anisotropy do not guarantee the existence of trip-
lications. This can be illustrated on Tl with elliptical angular
The simplest triplication condition in Tl is the condition dependence of phase velocities. Even an extremely high
for axial triplication. This condition requires theparameter strength of such anisotropy produces no triplications. Hence,
to be less thar-0.5. No other parameters control the occur-observations of triplications on the wave surface cannot
rence of this triplication. The condition for the basal triplica- serve as a unique criterion defining strong TI.
tion is more involved. This triplication is controlled by an-
isotropy parametersr and ¢, and by parametek. The
triplication condition requiresr to be negative. Therefore, if
o is less than-0.5, then doublé¢axial and basaltriplication The study was supported by the Consortium Project
can occur. Fore =0, the condition for the axial and basal “Seismic Waves in Complex 3D Structures,” and by the
triplications becomes identical, hence they cannot be obGrant Agency of the Academy of Sciences of the Czech Re-
served separately but only as the double triplication. Fopublic, Grant No. A3012309.

Taking into account Eq.2), one can readily see that, can
never be positive. The maximum value that can attain is
zero.

The most complicated condition is established for the ob-
lique triplication. This triplication is controlled by anisotropy
parameterso and e and by parametek. The triplication
requireso to be positive. A more detailed analysis would
show that Tl conditioned by Eq$1)—(3) could never pro-
duce the oblique triplication with negative values of
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