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Possibility of c-axis voltage steps for a cuprate superconductor in a resonant cavity
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Very anisotropic cuprate superconductors, such as,B&CuG; . ,, when driven by currents parallel to the
c axis, behave like stacks of underdamped Josephson junctions. Here, we analyze the possibility that such a
stack can be caused to phase lock, to exhibit self-induced resonant voltagéS$R®'s, and hence to radiate
coherently when placed in a suitable resonant electromagnetic cavity. We analyze this possibility using equa-
tions of motion developed to describe such SIRS'’s in stacks of artificial Josephson junctions. We conclude that
such steps might be observable with a suitably chosen cavity and resonant frequency.
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I. INTRODUCTION Il. MODEL EQUATIONS AND ESTIMATE OF MODEL
PARAMETERS

Barbaraet al! have recently shown that underdamped
Josephson-junction arrays can be made to phase lock, and to . ] s .
radiate efficiently, if placed in a suitable resonant cavity. This AS was first shown by Kieineet al.” the c-axislV char-
phase locking is believed to occur because of interaction@cteristics of BiSfCaCuG; . resemble those of a stack of
between the Josephson junctions and the cavity resonaHfderdamped Josephson junctions, exhibiting such key char-
mode. This interaction causes each junction to lock to th&cteristic features of underdamped junctions as Shapiro steps
cavity frequency, creating an indirect interaction betweerfNd hysteresis in the/ characteristics. _
any two junctions. Because any two junctions are interacting, SUPPOse that a sample of such a cuprate superconductor is
the locking tendency grows with increasing numbers of juncp!ageq in a suitable resonant cavity. We assume that a current
tions. If there are more than a critical number of junctions,! iS injected parallel to the axis into one face of the sample,
there is global phase locking, the array current-voltaye) ( and extracted from the other face. The _sample is consudt_ared
characteristic shows so-called self-induced resonant stefd$ @ Stack oN underdamped Josephson junctions. According
(SIRS'9, analogous to the usual single-junction Shapiroto tr_]e merI of Ref. 3, t_he combmed system_ofjuncnons and
steps, and there is efficient radiation into the cavity. Severafavity satisfy the following equations of motion:
authors have developed models for this proéeéSome of
these models appear to reproduce most of the features of the - 1. o |
experiments, although certain features related to the ob- 71+Q_iji+sm7j_lc(1+Aj)
served threshold number of junctions may be at variance
with experiment Y

This paper colnsiders whether the type qf locking observed §R+ Q) %ag= _aﬂ_ E (1+ Aj):i’j _ )
by Barbaraet al." can be caused to occur innaturally oc- (=]
curring Josephson-junction array, namely, a single-crystal
sample of cuprate superconductor. Some of these materialderey; is the gauge-invariant phase difference across the jth
notably BiSsCaCuQ;,, near optimal doping, behave ex- junction, Q; is its quality factor, and (1+4;)=1; is its
perimentally like stacks of underdamped Josephsogritical current. The dots represent derivatives with respect to
junctions® Further evidence of this Josephson behaviora dimensionless timept. w, is the average of the Josephson
comes from effects of Josephson plasmon resonancgfasmon frequencies wy;= \2E¢E,j/f=2el /(A C;),
(JPR'9,° such as terahertz radiation from high-materials WhereEc,-=(2e)2/(ZCj) is the capacitive energy of the jth
resulting from resonant excitation of JPRBy analogy with junction, C; is its capacitance, anf;;=%l.;/(2e) its Jo-
Ref. 1, it should therefore be possible to place such materialsephson coupling energy. In the resistively and capacitively
in a_suitable resonant cavity, and generate ph{:\se _Iocking;hunted junctiofRCSJ model® Qj=wp;R;C;, whereR,;
self_—mduced_resonant steps, and efflglent radlatllon into thes he jth shunt resistancéar=\gag, where ag=(a
cavity. We will use t_he model of Ref. 3 in order to _|nvest|gate+af)/2, aanda' being the standard Bose creation and an-
the parameters which may apply to the most anisotropic Cugjnijation operators for the cavity mode. The equations of
prate superconductors. . motion (1) and (2) are applicable in the “classical” limit

The remainder of this paper is arranged as follows. In Se hen there are many photons in the cavity. In this regime,

II, we briefly review the model, and estimate parameters fon:[he operators, a', andag can be treated asnumbers’
the more anisotropic cuprates. Section Il describes some Finally R R '

model calculations carried out using these parameters. In
Sec. IV, we give a brief concluding discussion, discussing
possible model limitations and connections to other g=(ﬁ02/Q)[(27r)3/d>3]{fE(x)-de
approaches. i

A. Basic equations

—2ag, (1)

2

: ()
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where®,=hc/(2e) is the flux quantum, the line integral is ing »=300 GHz, d=1.5nm, e=10, and arbitrarily
taken across the junction, ar(x) is proportional to the choosingL,=1 um, S=(15 um)?, ande,= u.=1, we find
cavity mode electric field, normalized so thiy] E(_X)|2d3X g~2x10"°, avalue which is obviously very sensitive to the
=1, whereVis the cavity volume, an€l is the cavity mode  harameter values. This type of coupling might be achievable
frequency. The renormalized coupling constard  in a geometry in which a thin film of superconductor is ori-
—gE,/(fiwy), and in terms ofy, (Q')2=0%[1+2g3;(1  ented within a cavity, such that itsaxis is parallel to the
+4;)]. In a real cuprate superconductty’ ~() to less small dimension of a cavity. Possibly the film might actually
than 1%. form one wall of this cavity, whose large dimensions extend
parallel to theab plane.

B. Estimate of model parameters The estimates given above assume that the cavity electric
field can penetrate without restriction between the €uO
planes. In reality, this penetration is restricted by screening.
The relevant screening length is the Josephson penetration
depth, denoted ;, which characterizes the spatial variation
of fields within thec-axis Josephson junctions. This length
has been experimentally estimated as B in
BiSr,CaCuQ;.  for T<T.,* and presumably substantially
larger at higheiT. These values are comparable to the linear

dimensions we assumed for our Cu@lanes forg=2

We assume that thd junctions in the cuprate supercon-
ductor consist oN+ 1 layers of CuQ, spaced a distanat
apart, and each of aréa The capacitancén esy is there-
fore C~eS/(4wd), where e is the relative dielectric con-
stant of the material between the Cuyers. A typical
value of the c-axis resistivity for BiSyCaCuGg,, is
~10Q cm at a temperature just above the superconduct-
ing transition temperatur&,> corresponding to a shunt re-
sistanceR;=dp.;/S, wherep; is the resistivity of the ma-

terial in the jth junction. X 10°°. Hence, this value ofy may be experimentally
We estimatel.; using a modified zero-temperature achievable. For larger linear dimensions, our “small junc-
Ambegaokar-Baratoff relatidf 2elRj=aA(0) tion” model would need to be generalized, as discussed be-

=2elg;dpc;/S, whereA(0) is theT=0 superconducting en- low (Sec. IV).
ergy gap. In the original Ambegaokar-Baratoff relatfSny
=1/2, but according to  measurements for lIl. NUMERICAL RESULTS

BiSrZCaZCuOSH,ll the IR product corresponds tax To illustrate these predictions, we have solved E

~0.2. From the above relations fas,; and 21.R;, the (2) numerically forpa range of parameters. As in Rqe$f. 3,

Josephson plasmon frequency dg~4maA(0)/(fiepc;).  this was accomplished by rewriting these equations as a set

Using all these expressions fG 2elR;, andaf,, we find  of coupled first-order differential equations:

Q?zaA(O)pc-e/(Mrh). Thus, for a material with a given o -

A(0), Qyj=Vpg,j- ¥j=n;—2Qa, (4)
Using these expressions faR;; and wg;, we find

wpQ,;=aA(0)/%. This relation is useful becaugg; does ~ I n; ) Q.

not appear directly. Using the estimaté0)/kgz=400 K and nj=] (114 —Q—Jj—sm( 7’1‘)+2Q_Jjal ' )
«=0.2, we get aA(0)/h~10%sec!, and hence

wp;/(2)~(1600Q;;) GHz. 3R=§5| ' 6)

Next, we estimatg for a cuprate superconductor such as
B_iSrZCaQCuOSH. We assume thdE(x) is polarized perpen- - -3 B _
dicular to the layers with constant magnitulg throughout  a,=—Qar—2Qg— 2 (1+Aj)+gz (1+A))sin(yj)
that layer. Theng=2m(2e)2d?E2/(Q#%V) and henceg Qi 7] !
=2mE,(2€)2d’E3/[h2Qw,]. 13 B

We calculateg for Q=w,. Combining the relatiorE, _NQEJFQ_JJ. ; (1+Apn;. (@)
=#l./(2e) with our expressions fo€ and »?, we obtain

9= evE3/2, wherev =Sdis the junction volume. To make a : _ .

rough estimate, we consider a rectangular cavity with dimenSCIVe these equations using a constant-time-step fourth-order

sionsL. L. andL. with L.~L.>L. and with L Runge-Kutta procedure with a time step of 0.001. We begin
X1 y Z X y Z y

>L,, containing material of dielectric constantand mag- the simulation by initializing the parametees, a;, and
netic permeabilityu . In this case, the lowest TE mode has I/l., and then;’s to zero, while they;’s are initialized at
frequencyQ = (c/ e \/772/|_§+772/|_)2/; the correspond- independent random values uniformly distributed between 0
ing electric field i E(x,z)=E0§sin(rrx/Lx)sin(Try/L ), and 277'. For a givenl/l., the differential equations were

AL . Y then integrated, and the voltages averaged, over a dimension-
where we assume thatis parallel to thec axis. Requiring

less time interval ofr=5x 10°. The ratiol /I, was then in-
243y — i _ c
that [|E(x.y.2)|*d x=1 gives Eo=2\V, whgre V' creased or decreased by an amount 0.01 and the set of equa-
=LyLyL,, and henceg=2ev/V. The lowest cavity fre- tions was solved again.

quency () is approximatelycy2m/(Lecuc), which im- When we solve these equations usi@g;~100, as ex-
plies thatg~4ee.u Sdv?/(c?L,), wherev=Q/(27). Tak-  pected for BiSsCaCuG;,,, we have not as yet found nu-

Hereﬁzﬂ/;p, andn; is the scaled number variablene
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FIG. 1. Full curve: calculatedV characteristics for an array FIG. 2. Same as full curve in Fig. 1 but witk=100 andg

with T=0.0 (no damping from cavity walls N=40, g=1.75 =1.75x10°,

X104, Q,=5, Q=2.5, and disorder parametAr=0.05. Param-

eters are defined in the text. Dashed curve: same as full curve but 10~ ° (not shown we have seen thus far only the upper

with cavity damping parametdt=0.01. step. Thus, even for a coupling as weak as X.76 6, these

SIRS’s should show up for a suitable cuprate superconductor

merical evidence of SIRS's. We have therefore rerun oufl @n appropriate cavity. We have also carried out calcula-
calculations using other model parameters which may b&0ns with 200 junctions in an undamped cavity, with other
suitable for a cuprate superconductor slightly less anisotropiBarameters the same as those of Fig. 2; we obtained results
than BiSpCaCuQ;. . We find that, for all values 00;; similar to those for 100 junctions for all three valuesgof
between 1 and 5, such SIRS’s are easily detectable in our The choice of parameters in Figs. 1 and 2 is based on
simulations. arguments of the preceding section. According to those argu-
Typical numerical results are shown as the full curve inments, a value 0Q;~5 would correspond to a cuprate su-

Fig. 1. In these calculations, we have chosen all @  perconductor less anisotropic than BiS&CuG;., but

—5. The other parameters afb=2.5 N=40 and§=1.75 still in the underdamped regime where the superconductor
%10~ * the disorder parameters;’s ’vvere cﬁosen as inde- should behave like a stack of underdamped Josephson junc-

pendent random numbers uniformly distributed betweer{ions- Although even a largé®, should produce SIRS’s, we
—0.05 and +0.05. Two SIRS's are visible, one at Nave notyet seen them in our simulations.
(V)I(NRI;)=1/2 and one at 1/4. The step at 1/2 is wider

than that at 1/4, possibly because there are more junctions IV. DISCUSSION

phase locked on the higher-voltage step: all the junctions are
phase locked on the 1/2 step, while only half are locked o,

':f/lle _1/14 §tept.)tT'hedIowt:ar vtohltag(avnh tthe Iarget Jump néar 4, ,se recently proposed by Hekehal® to describe the inter-
e ) IS obtained when the current 1S SWeptin an INCréass, i, petween an intrinsic Josephson junction and an optical
ing direction, while the upper voltage curve corresponds to ?)honon in a cuprate superconductor. In fact, our Etjsand

decreasing current sweep. : o :
The result of the full curve in Fig. 1 corresponds to no (2) would be identical in form to Eq(5) and(6) of Ref. 8 if

. . i . fthere is only a single junction and the optical phonon in the
damping of the cavity mode itself. To see the influence o model of Ref. 8 is assumed undamped. The precise mapping
cavity damping, we included a cavity damping term to Eq

L . < . ‘for a single junction isig= — K p, wherep is a polarization
(7) by arpltrarlly add.mg the 'Ferm—Fa, to the rlght-ha_nd current appearing in the model of Ref. 8. The proportionality
side,I" being the cavity damping parameter. For sufflclentlyConstantK depends on the choice of time units in the two
largeT", we find that the SIRS’s are damped out, while for sets of differential equations
I'<0.05, thgy are siill visible. For sufficiently Smd".’ the The interaction between a Josephson junction and an op-
SI.RS.S are I'tt.le changed from those (.)f Fig. 1. We lllustrateyq phonon has been observed experimentally and the pre-
this similarity in the dashed curve of Fig. 1, which shows thedi

IV ch istics foF —0.01- the oth cted IV structure has been experimentally confirfied.
characteristics fot =0.01; the other parameters are un- 1y the SIRS's predicted by our model for the Josephson-
changed from the full curve.

X L N cavity system are the analogs of th€ subgap structure
A typical result for a weaker coupling is showg in Fig. 2, calculated for BiSjCaCuQs,, with a Josephson optical
which_shows thelV characteristics foN=100, g=1.75  phonon interaction. The most important difference is that the
X 10°°, andl'=0.0; the other parameters are the same as iRavity interaction tends to cause the junctions to phase lock,
Fig. 1. ForN=100, we have found both the 1/2 and the 1/4pecause each intrinsic junction interacts with saenecavity
steps forg=1.75<10 * and 1.75<10°°, while for 1.75 mode, whereas in Ref. 8, the optical phonons in different

There is a remarkable formal similarity between Eds.
d(2) governing the coupled Josephson-cavity system and
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junctions are independent; so no locking is predicted. coupled solitons interacting with a resonant cavity.

If all the intrinsic junctions were to interact with tlsame To summarize, we have proposed that when a very aniso-
vibrational mode, then these junctions might also be inducetropic cuprate superconductwhich behaves like a stack of
to phase lock, as with the electromagnetic cavity mode. Thisinderdamped Josephson junctipiiss placed in a suitable
type of locking may be conceivable using a suitable micro-single mode resonant cavity, the stack should be able to
mechanical resonator. Such resonators can now be fabricatptiase lock and to exhibit self-induced resonant voltage steps
with fundamental vibrational modes in the range of 0.01-1(SIRS’S at a frequency related to the cavity frequency. In
GHz (Refs. 14 and 1 and interact with small underdamped support of this suggestion we have provided numerical illus-
Josephson junctions according to the same Hamiltonian asations of these steps for suitable parameters. We also pro-
that discussed here for electromagnetic cavifiddence, a  vide estimates showing that these parameters may be achiev-
similar type of phase locking is possible, given a suitableable in a physically realizable cuprate superconductor in a
experimental geometry. realistic cavity.

Finally, we briefly discuss the small junction approxima- If this suggestion is verified, it might have a range of
tion used here. Specifically, we have characterized each lay@ntriguing consequences. For example, an array locked on a
by a single phase and have neglected the spatial variation &IRS would radiate coherently into the caVity. Thus, a
that phase in theb plane. In a more realistic model, this suitable cuprate superconductor might be usable in this way
variation would be included, as would the coupling betweeras a source of coherent microwave radiation. This possibility
the intrinsic junctions induced by that phase variation. As hasvould be particularly exciting because the source would not
been shown by Sakai al.’ the junction dynamics are then be an artificially nanostructured material but one within the
described by a set of equations for coupled weakly dampedquilibrium phase diagram of a multicomponent system.
sine-Gordon solitons. If, however, both the linear dimensions
of the junctions in theab plane and the thickness of the
junction in thec direction are small compared to;, then
their equations reduce to the ones used here. Thus, the This work was supported by NSF Grant No. DMRO1-
present approach should be accurate for disklike cuprat@4987 and by the U.S./Israel Binational Science Foundation.
samples(“mesas”) of linear dimensions in theb plane  Some of the calculations were carried out using the facilities
smaller tharh ;~15 um for T<T..*® For much larger me- of the Ohio Supercomputer Center. Conversations with Dr.
sas, the present model should be generalized to the case Bf Almaas are gratefully acknowledged.
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