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Magnetic relaxation in partly penetrated critical states of type-II superconductors
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Magnetic relaxation in a thin flat type-II superconductor of arbitrary shape placed in an external magnetic
field perpendicular to its plane is analyzed in the general case when flux penetration is not necessarily com-
plete. We derive an expression for the magnetic relaxation rate that generalizes the well-known formula of
Beasleyet al.obtained for superconductors in the fully penetrated critical state. Our result allows one to extract
the effective height of the activation barrier from experimental data even when the critical state has a compli-
cated structure, in particular when the applied magnetic field is less than the field of full flux penetration into
the sample.
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I. INTRODUCTION

There is a great body of experimental data on magn
relaxation in type-II superconductors, see, e.g., Ref. 1 fo
recent review. These data enable one to estimate the
called effective depth of a flux-pinning well,U0, using the
expression2 for the magnetic relaxation rateR[dM/d ln t:

R52
T

U0
Mc . ~1!

Here M is the magnetic moment of the sample,Mc is its
value in the critical state,T is the temperature, andt is the
time. This formula was first derived by Beasley, Labus
and Webb,2 for a superconducting cylinder in an extern
magnetic field applied along its axis. However, Eq.~1! is also
valid for a plate in a field parallel to its plane3 and for a thin
strip or a thin disk in a transverse magnetic field.4 The as-
sumptions used in deriving formula~1! are the following:
First, flux-line pinning should be isotropic and independe
of the magnetic inductionB; second, the ratioT/U0 is small;
and third, the fully penetrated critical state is reached in
sample. The magnetic relaxation rate of anisotropic su
conductors was investigated in Refs. 5–8. WhenT/U0 is not
too small, deviations from the logarithmic decay,dM} ln t,
become observable9 at larget. This so-called long-term mag
netic relaxation was analyzed in Refs. 10–14. Here we s
go beyond the framework of the third assumption.

Formula~1! can be interpreted as coming from the log
rithmic decay of the current densityj:

j ~ t !5 j cS 12
T

U0
ln t D , ~2!

where j c is the critical current density. Indeed, whenj c and
U0 are independent of the magnetic inductionB, and the
sample is in the fully penetrated critical state, one h
M (t)} j (t), and formula~1! follows from Eq.~2!. It is clear
from this consideration that in fact, the expression~1! is
valid for any shape of the superconductor. But this form
fails when some partly penetrated critical state occurs in
superconductor. Such a state is realized if, e.g., the exte
0163-1829/2003/68~5!/052509~4!/$20.00 68 0525
ic
a
o-

,

t

e
r-

ll

-

s

a
e
al

magnetic field is less than the field of full flux penetratio
into the sampleHp or if in the initial critical state there is a
flux front separating regions of the sample withj 5 j c and j
52 j c ~in the ‘‘virgin case’’ H,Hp the front separates re
gions with j 5 j c and j 50). During relaxation the front
shifts, and this leads to an additional change ofM as com-
pared with the fully penetrated critical state, i.e., with E
~1!. In this case the magnetic relaxation rateR generally
depends on the shape of the front, and thus on the shap
the sample. Up to now, explicit formulas forR in a partly
penetrated critical state have been available only for a pl3

in a longitudinal field and for a disk6 in axial field. In this
paper we find an expression forR that generalizes Eq.~1!
to partly penetrated critical states in flat superconductors
arbitrary shape.

II. MAGNETIC RELAXATION RATE

We define a flat superconductor here as a sample wi
constantthicknessd that is considerably less than the later
extensions of the superconductor~but d should exceed the
London penetration depth!. In lateral directions the super
conductor can have arbitrary shape. Note that platelet-sha
crystals of high-Tc superconductors satisfy these condition
The external magnetic fieldH is assumed to be applied alon
the thickness~the z axis!. Throughout the paper we also us
the approximationB5m0H ~i.e., the magnetic fieldH is im-
plied to exceed noticeably the lower critical fieldHc1) and
assume thatj c andU0 are independent ofB.

We begin our analysis with the situation when the exter
magnetic field is less than the fieldHp , and the initial critical
state originates from partial magnetic-flux penetration in
the uniform state of the superconductor withB50. In this
situation there is a flux frontg separating the inner region o
the sample withj 50 from its outer region wherej 5 j c ~Fig.
1!. The critical state of this type was investigated in Ref. 1
As shown in that paper, the three-dimensional critical st
problem in the flat superconductor can be split into a o
dimensional problem across the thickness of the sample
a two-dimensional problem of an infinitely thin superco
ductor of the same shape. It is essential here that in
considered case of constant sheet currentJc5 j cd in the pen-
©2003 The American Physical Society09-1
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etrated region~i.e., outside the curveg0 in Fig. 1!, the solu-
tion of the two-dimensional problem is completely dete
mined by the ratioH/Jc .15–17Thus, the magnetic moment i
the critical state,Mc , can be written in the form

Mc5Mc
satF~H/Jc!,

Mc
sat5CJc , ~3!

whereMc
sat is the saturation value ofMc , reached in the fully

penetrated critical state;C is some geometrical factor whic
depends on the shape and lateral dimensions of the fla
perconductor, and the functionF(x) is determined by the
shape of the sample.

It was shown by Beasley, Labusch, and Webb2 that in the
case of a cylinder, the equations for the magnetic relaxa
allow separation of the temporal and spatial variables to lo
est order in the small parameterT/U0!1. Recently, this
result was extended to superconductors of ot
shapes.4,6,13,18,19 It is important that this separation work
also in the partly penetrated critical state.6,19 Taking into ac-
count these results, we find that expression~2! remains true
even for partial penetration.

ReplacingJc in Eq. ~3! by j (t)d with j (t) from formula
~2!, differentiating the obtained expression with respect
ln t, and using the identity

dF

dJc
52

H

Jc

dF

dH
,

we arrive at the expression,

R[
dM

d ln t
52

T

U0
S Mc2H

dMc

dH D ~4!

FIG. 1. The front of the magnetic flux penetrating into a th
rectangular superconductor plate with pinning when the app
perpendicular magnetic field is increased from zero. The top fig
shows the two-dimensional~2D! curveg0 that forms the equator o
the three-dimensional flux frontg shown in the lower plot. Inside
this 3D front the magnetic inductionB and the current density ar
exactly zero, and inside the curveg0 the perpendicular componen
of Bz is practically zero whend!a,b for a thin plate with dimen-
sions 2a32b3d.
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that generalizes Eq.~1! to the case of partly penetrated crit
cal states. Note that formula~4! is also valid when the mag
netic field lies in the plane of the superconductor.

Within our approximationj c5 const, the magnetic mo
ment Mc becomes constant and is equal to its saturat
valueMc

sat at H>Hp . Then, the second term in Eq.~4! van-
ishes, and this formula goes over into Eq.~1!. It is the second
term in Eq.~4! that takes into account the above-mention
shift of the flux front during relaxation. In obtaining this term
we have used the fact that in the critical state a shift of
front also occurs when the external magnetic field chang
This has enabled us to express the shift caused by relaxa
in terms of the shift caused by a change ofH. Besides this,
the second term takes into account the relaxation of the fl
line directions19,20 when the critical state contains so-calle
rotating flux lines.15

III. EXAMPLES

Consider flat superconductors of the following shapes
disk of radiusb0, a strip of width 2b0, and an elliptic-shaped
platelet with the axes 2b0 and 2a0 (a0.b0). The exact so-
lutions of the critical state problem are known for the disk21

and for the strip,22–24 while for elliptic-shaped platelets a
approximate analytical solution was recently obtained25 that
gives the magnetic momentMc with very high accuracy.
Using these solutions and formula~4!, we present here ex
plicit formulas for the magnetic relaxation rateR in these
three cases.

A. Disk

In the disk the two-dimensional frontg0, Fig. 1, is a circle
of radiusb that is the following function ofH:21

b̃[
b

b0
5

1

cosh~H/Hd!
~5!

with Hd5Jc/2. As to the magnetic moment in the critica
state,Mc , one has21

Mc
disk5Mc

sat2

pS arccosb̃1b̃tanh
H

Hd
D ~6!

with Mc
sat52pJcb0

3/3 and field of full penetrationHp

5Hdln(4b0 /d).26 From Eqs.~4!–~6! we find

Rdisk52
T

U0
Mc

sat2

pS arccosb̃1b̃tanh
H

Hd
22b̃3

H

Hd
D . ~7!

This expression exactly coincides with Eq.~43! of Ref. 6
whereRdisk was obtained in a different way.

B. Strip

In the strip the two-dimensional frontg0 comprises two
straight lines separated by a distance 2b. This b is still de-
scribed by Eq.~5! but with Hd5Jc /p, while Mc per unit
length of the strip is given by22–24

d
re
9-2
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Mc
strip5Mc

satA12b̃25Mc
sattanh

H

Hd
~8!

with Mc
sat52Jcb0

2 and penetration field Hp5Hd@1
1 ln(2b0 /d)#.26 Formulas~4! and ~8! then give

Rstrip52
T

U0
Mc

satS tanh
H

Hd
2

~H/Hd!

cosh2~H/Hd! D . ~9!

C. Elliptic-shaped platelet

In elliptic-shaped platelets the two-dimensional frontg0
approximately is an ellipse with the shorter axis 2b implic-
itly determined by the following relation:25

H

Hd
5E

b̃

1 E~k!db8

b8A12b82
, ~10!

where b̃5b/b0 , Hd5Jc /p, E(k) is the complete elliptic
integral of the second kind with

k2512S b8e

cos~earccosb8!
D 2

ande5b0 /a0. The magnetic momentMc is now

Mc
ell52

2

3
Jca0b0

2Fcos~arcsinb̃1earccosb̃!

12e

1
cos~arcsinb̃2earccosb̃!

11e
G . ~11!

When b̃→0, it follows from this formula that

Mc
sat52

4

3
Jca0b0

2cos~ep/2!

12e2 . ~12!

Using expressions~10! and ~11!, we find:

H
dMc

ell

dH
52

2

3
Jca0b0

2 H

Hd

b̃

E~k!
@sin~arcsinb̃1earccosb̃!

1sin~arcsinb̃2earccosb̃!# ~13!

with k2512@be/cos(earccosb̃)#2. Insertion of Eqs.~11! and
~13! into Eq. ~4! yields the magnetic relaxation rateRell of
elliptic-shaped platelets.

D. Generalizations

The H dependences of the magnetic relaxation rates
the disk, for the strip, and for the elliptic-shaped platelet
presented in Fig. 2. With high accuracy of about 1022, all
these dependences can be approximated by the follow
formula:

R52
T

U0
Mc

satS tanh
H

H1
2

~H/H1!

cosh2~H/H1! D , ~14!

where
05250
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H15Jc

E~k!

p

cos~ep/2!

12e2 ~15!

andk2512e2, e5b0 /a0. This approximation is good sinc
the magnetic moments of the disk, strip, and of ellipt
shaped platelets in increasingH can be well fitted by the
dependence25 Mc5Mc

sattanh(H/H1). In Fig. 2 we also show
the magnetic relaxation rate of a rectangular plateletRrec

obtained from formula~4! using the magnetic moment o
thin rectangles computed as in Ref. 16. TheRrec can be also
fitted by Eq.~14! if one takes an appropriate scaleH1. Note
that if the magnetic field lies in the plane of the samples, o
hasM slab5Mc

satH(2Hp2H)/Hp
2 ~per unit area of the super

conductor and for 0<H<Hp) and3

Rslab52
T

U0
Mc

satH
2

Hp
2 , ~16!

whereHp5Jc/2 andMc
sat52Jcd/4.

It follows from the formulas of this section thatRdisk,
Rstrip andRell ~andRrec) are all proportional toH3 whenH
!Jc . On the other hand, if the magnetic field lies in th
plane of the samples, the magnetic relaxation rateR is pro-
portional toH2. This difference is due to the different curre
distributions in the critical states for transverse and long
dinal geometries.17 Note that the dependenceR}H3 was ob-
served for YBaCuO crystals in Ref. 3, but in that paper t
finding was explained by a dependence of the critical curr
density j c on B. Our results show that the proportionality o
R to H3 can be due to the geometry of the experiments.

We have analyzed above the relaxation rate in the pa
penetrated critical state which results from the increase of
external magnetic field from zero toH,Hp . We now con-
sider the situation when the superconductor was initially i

FIG. 2. TheH dependences of the magnetic momentsM and
relaxation ratesR5dM/d ln t, Eq. ~4!, calculated for the thin disk
and strip~solid lines!, an elliptic-shaped platelet withb0 /a050.5
~dash-dotted line!, and for a thin rectangle with side ratio 1:
~circles!. The dashed line showsRslab, Eq. ~16!. The magnetic field
H is measured in units ofJc , M in units Mc

sat, and R in units
2(T/U0)Mc

sat.
9-3
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spatially uniform state withBini5m0H iniÞ0, and then the
external field increases or decreases, butuH2H iniu,Hp . For
example, this situation may occur when remanent magn
zation is investigated. In this case the functionF in Eq. ~3!
depends onuH2H iniu/Jc , and we obtain the following gen
eralization of Eq.~4!:

R52
T

U0
S Mc2~H2H ini!

dMc

dH D . ~17!

One more type of partially penetrated critical state occ
when the external field initially increased up toH ini so that
the superconductor was in the fully penetrated critical st
and then the external field decreases down toH with H ini
2H,Hp . Note that if one measures a magnetization loop
the superconductor, this situation necessarily takes p
during the transition from the ascending branch to the
scending branch of the loop. In this case a flux front in
flat superconductor appears, which separates regions
j 56 j c . Since in such a critical state the functionF in Eq.
~3! still depends on (H ini2H)/Jc , one finds that formula
ys

er,

B

s.
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~17! remains valid in this case. Interestingly, it follows fro
Eq. ~17! that at someMcÞ0 the magnetic relaxation rat
vanishes in this critical state.

Finally, we hypothesize the following: Whenj c and U0

are constant, formulas~3! seem to hold true not only for fla
superconductors but also for samples of anarbitrary shapeif
one substitutesj cL for Jc . Here L is some scale of length
that can depend on the direction of the magnetic field. Th
we again arrive at expressions~4! and~17!. In other words, it
is quite possible that whatever shape the superconductor
these expressions describe the magnetic relaxation rate
both fully and partly penetrated critical states and thus g
eralize formula~1!.
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