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Magnetic relaxation in partly penetrated critical states of type-1l superconductors
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Magnetic relaxation in a thin flat type-1l superconductor of arbitrary shape placed in an external magnetic
field perpendicular to its plane is analyzed in the general case when flux penetration is not necessarily com-
plete. We derive an expression for the magnetic relaxation rate that generalizes the well-known formula of
Beasleyet al. obtained for superconductors in the fully penetrated critical state. Our result allows one to extract
the effective height of the activation barrier from experimental data even when the critical state has a compli-
cated structure, in particular when the applied magnetic field is less than the field of full flux penetration into

the sample.
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[. INTRODUCTION magnetic field is less than the field of full flux penetration

into the sampleH, or if in the initial critical state there is a
There is a great body of experimental data on magnetiflux front separating regions of the sample wjth j. andj
relaxation in type-Il superconductors, see, e.g., Ref. 1 for & —j. (in the “virgin case” H<H, the front separates re-
recent review. These data enable one to estimate the sgions with j=j. and j=0). During relaxation the front
called effective depth of a flux-pinning wellJ,, using the  shifts, and this leads to an additional changdvbhs com-

expressiofi for the magnetic relaxation raR=dM/d Int: pared with the fully penetrated critical state, i.e., with Eq.
(2). In this case the magnetic relaxation rdakegenerally
T depends on the shape of the front, and thus on the shape of
R=— U_OMC' D the sample. Up to now, explicit formulas f&t in a partly

penetrated critical state have been available only for a®blate
Here M is the magnetic moment of the sampM, is its  in a longitudinal field and for a diSkin axial field. In this
value in the critical state] is the temperature, andis the  paper we find an expression f& that generalizes EqJ1)
time. This formula was first derived by Beasley, Labusch,to partly penetrated critical states in flat superconductors of
and Webl?, for a superconducting cylinder in an external arbitrary shape.
magnetic field applied along its axis. However, EL.is also
valid for a plate in a field parallel to its plahand for a thin

. R o Il. MAGNETIC RELAXATION RATE
strip or a thin disk in a transverse magnetic fiélflhe as-

sumptions used in deriving formuld) are the following: We define a flat superconductor here as a sample with a
First, flux-line pinning should be isotropic and independentconstantthicknessd that is considerably less than the lateral
of the magnetic inductioB; second, the ratid/Ug is small;  extensions of the superconductdaut d should exceed the

and third, the fully penetrated critical state is reached in thé_ondon penetration depthin lateral directions the super-
sample. The magnetic relaxation rate of anisotropic superonductor can have arbitrary shape. Note that platelet-shaped
conductors was investigated in Refs. 5—8. Whéb, is not  crystals of hight. superconductors satisfy these conditions.
too small, deviations from the logarithmic decaiy « Int, The external magnetic field is assumed to be applied along
become observablat larget. This so-called long-term mag- the thicknessthe z axis). Throughout the paper we also use
netic relaxation was analyzed in Refs. 10—-14. Here we shathe approximatioB= wuoH (i.e., the magnetic fieltH is im-

go beyond the framework of the third assumption. plied to exceed noticeably the lower critical fietth;) and
Formula(1) can be interpreted as coming from the loga-assume that, andU, are independent d8.
rithmic decay of the current densijy We begin our analysis with the situation when the external

magnetic field is less than the fieit},, and the initial critical
. . T state originates from partial magnetic-flux penetration into
J(t):Jc( 1- U—Olnt), (2)  the uniform state of the superconductor wik=0. In this
situation there is a flux frony separating the inner region of
wherej is the critical current density. Indeed, whegnand  the sample withj =0 from its outer region wherg=j . (Fig.
U, are independent of the magnetic inductiBn and the 1). The critical state of this type was investigated in Ref. 15.
sample is in the fully penetrated critical state, one hasAs shown in that paper, the three-dimensional critical state
M (t)<j(t), and formula(l) follows from Eq.(2). Itis clear  problem in the flat superconductor can be split into a one-
from this consideration that in fact, the expressidn is  dimensional problem across the thickness of the sample and
valid for any shape of the superconductor. But this formulaa two-dimensional problem of an infinitely thin supercon-
fails when some partly penetrated critical state occurs in theluctor of the same shape. It is essential here that in the
superconductor. Such a state is realized if, e.g., the externabnsidered case of constant sheet curdgntj.d in the pen-
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that generalizes Ed1l) to the case of partly penetrated criti-
cal states. Note that formuld) is also valid when the mag-
netic field lies in the plane of the superconductor.

Within our approximationj.= const, the magnetic mo-
ment M, becomes constant and is equal to its saturation
valueMg*atH=H,. Then, the second term in E(f) van-
ishes, and this formula goes over into Ef). It is the second
term in Eq.(4) that takes into account the above-mentioned
shift of the flux front during relaxation. In obtaining this term
we have used the fact that in the critical state a shift of the
front also occurs when the external magnetic field changes.
This has enabled us to express the shift caused by relaxation
in terms of the shift caused by a changetbfBesides this,

-dr2 the second term takes into account the relaxation of the flux-
line direction$®?° when the critical state contains so-called

FIG. 1. The front of the magnetic flux penetrating into a th'nJotating flux linest®

rectangular superconductor plate with pinning when the applie
perpendicular magnetic field is increased from zero. The top figure
shows the two-dimension&2D) curve vy, that forms the equator of
the three-dimensional flux frong shown in the lower plot. Inside
this 3D front the magnetic inductioB and the current density are
exactly zero, and inside the curgg the perpendicular component
of B, is practically zero wheml<a,b for a thin plate with dimen-
sions X 2bxd.

Ill. EXAMPLES

Consider flat superconductors of the following shapes: a
disk of radiush, a strip of width 2y, and an elliptic-shaped
platelet with the axesl®, and 22, (ayg>bg). The exact so-
lutions of the critical state problem are known for the dfsk
and for the strif?=2* while for elliptic-shaped platelets an
etrated regiorfi.e., outside the curvey in Fig. 1), the solu- approximate analytical solution was recently obtaffietat
tion of the two-dimensional problem is completely deter-9ives the magnetic momer . with very high accuracy.
mined by the raticH/J. .15~1"Thus, the magnetic moment in Usmg these solutions and formud&), we present here ex-
the critical stateM,, can be written in the form plicit formulas for the magnetic relaxation rakein these

three cases.
M =MZF(H/J,),
A. Disk

In the disk the two-dimensional fron, Fig. 1, is a circle
of radiusb that is the following function oH:*

MP=CJ,, 3

whereM $is the saturation value &l ., reached in the fully

penetrated critical staté is some geometrical factor which - b 1

depends on the shape and lateral dimensions of the flat su- bEb—= W 5

perconductor, and the functioR(x) is determined by the 0 d

shape of the sample. with Hy=J./2. As to the magnetic moment in the critical
It was shown by Beasley, Labusch, and Wetitat in the  state,M ., one had'

case of a cylinder, the equations for the magnetic relaxation

allow separation of the temporal and spatial variables to low-

est order in the small paramet&/U,<1. Recently, this

result E\_)/\/1631318 léaxtended to superconductors of other

shapes.>™**% It is important that this separation WOIKS yjith M$= — 73,b¥3 and field of full penetrationH,,

also in the partly penetrated critical stdt€.Taking into ac- H In(4b./d) 28 E Eqs.(4)—(6) find

count these results, we find that expressipnremains true dIn(4bo/d).> From Egs.(4)—(6) we fin

even for partial penetration. T
Replacingd. in Eqg. (3) by j(t)d with j(t) from formula _

(2), differentiating the obtained expression with respect to Uo

Int, and using the identity

. 2
disk__ p g sat
M c M c ;

- o~ H
arccod+ btan m—) (6)
d

Rdisk: _ M iatz
T

B+ Btan 253'*) ;
arccop+ tanm—d— H_d (7)

This expression exactly coincides with E@3) of Ref. 6
whereR¥X was obtained in a different way.

dF  HdF
dJ. J.dH’
¢ ¢ B. Strip
we arrive at the expression, In the strip the two-dimensional frong, comprises two
straight lines separated by a distande Zhis b is still de-
re M T 9M (a)  scribed by Eq(5) but with Hy=Jc/a, while M per unit
dint U\ ¢  dH length of the strip is given 5y~
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. - H
M itnp: M zat 1— b2: M za{anh—'—d (8)

with M$P=—J.b§ and penetration field H,=Hq[1
+1n(2b,/d)].26 Formulas(4) and (8) then give

T H (H/Hy)

' pgsa R

e (ta”hl-Td cosR(HHy)  ©

C. Elliptic-shaped platelet

Rstrip= _

In elliptic-shaped platelets the two-dimensional fronpt
approximately is an ellipse with the shorter axis @nplic-
itly determined by the following relatiof?

H _fl E(k)db’ 0
He Job' y1-b'2’

whereb=b/by, Hy=J./7, E(k) is the complete elliptic
integral of the second kind with

b'e ) 2
cogearccod’)

ande=by/ay,. The magnetic momer¥l . is now

k2=1—(

2 cog arcsirb + earcco®)
M g”: - _‘]caobtz) !

3 1—-e
coq arcsirb — earcco®) 1
1+e ' (1)
Whenb— 0, it follows from this formula that
4 cogemn/2)
M= — §Jcaob(Z)W (12

Using expressiongl0) and(11), we find:

dlvlg”_ 2 bZH b = £
H aq ——§Jca0 OH—dW[sm(arca + earccod)

+ sin(arcsirb— earcco®)] (13)

with k?=1—[be/cosgarcco®)]?. Insertion of Eqs(11) and
(13) into Eq. (4) yields the magnetic relaxation rag®" of
elliptic-shaped platelets.

D. Generalizations
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FIG. 2. TheH dependences of the magnetic momektsand
relaxation ratefR=dM/d Int, Eq. (4), calculated for the thin disk
and strip(solid lineg, an elliptic-shaped platelet withy/a;=0.5
(dash-dotted ling and for a thin rectangle with side ratio 1:2
(circles. The dashed line showR™2® Eq.(16). The magnetic field
H is measured in units of., M in units M3, andR in units
—(T/Ug)M3,

E(k) coqemn/2)
R

(15
andk?=1-e? e=by/a,. This approximation is good since
the magnetic moments of the disk, strip, and of elliptic-
shaped platelets in increasirtd can be well fitted by the
dependenc@ M =M3%anhH/H,). In Fig. 2 we also show
the magnetic relaxation rate of a rectangular plat&&t
obtained from formula4) using the magnetic moment of
thin rectangles computed as in Ref. 16. TRIE® can be also
fitted by Eq.(14) if one takes an appropriate scalg. Note
that if the magnetic field lies in the plane of the samples, one
hasM =M $*H(2H,— H)/H} (per unit area of the super-
conductor and for &H<H,) and’

H2

sat

slab_ __
R Up © H3’

(16)

whereH,=J./2 andM = —J.d/4.

It follows from the formulas of this section thadk
RSP and R®' (and R™®9 are all proportional tH® whenH
<J.. On the other hand, if the magnetic field lies in the
plane of the samples, the magnetic relaxation Riis pro-
portional toH?. This difference is due to the different current

The H dependences of the magnetic relaxation rates fofistributions in the critical states for transverse and longitu-

the disk, for the strip, and for the elliptic-shaped platelet ar

presented in Fig. 2. With high accuracy of about 10all

Jinal geometries! Note that the dependen&e«H* was ob-

served for YBaCuO crystals in Ref. 3, but in that paper this

these dependences can be approximated by the followintnding was explained by a dependence of the critical current

formula:

_ T sa( H (H/Hy) )
R——U—OMC tan"h—l—m , (14

where

ensityj. on B. Our results show that the proportionality of
R to H® can be due to the geometry of the experiments.

We have analyzed above the relaxation rate in the partly
penetrated critical state which results from the increase of the
external magnetic field from zero t4<<H,. We now con-
sider the situation when the superconductor was initially in a

052509-3



BRIEF REPORTS PHYSICAL REVIEW B8, 052509 (2003

spatially uniform state withB;,= uoHi,i#0, and then the (17) remains valid in this case. Interestingly, it follqws from
external field increases or decreases,|but Hiy|<H,. For ~ Eq. (17) that at someM.#0 the magnetic relaxation rate
example, this situation may occur when remanent magnetivanishes in this critical state.

zation is investigated. In this case the functiénn Eq. (3) Finally, we hypothesize the following: When and U,
depends onH —H;,|/J., and we obtain the following gen- are constant, formula8) seem to hold true not only for flat
eralization of Eq.(4): superconductors but also for samples oBapitrary shapeif
one substituteg.L for J.. HerelL is some scale of length
R= — l M.~ (H—H, _)% (17) that can depend on the direction of the magnetic field. Then,
Upl ¢ MOdH ) we again arrive at expressio® and(17). In other words, it

. N is quite possible that whatever shape the superconductor has,
One more type of partially penetrated critical state occur§nese expressions describe the magnetic relaxation rates in

when the external field initially increased up gy so that  poth fully and partly penetrated critical states and thus gen-
the superconductor was in the fully penetrated critical stategralize formula(1).

and then the external field decreases dowrHtavith Hy;

—H<H,. Note that if one measures a magnetization loop of

the. superconduqor, this situation ne_cessarlly takes place ACKNOWLEDGMENTS
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