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Orientational field dependence of low-lying excitations in the mixed state
of unconventional superconductors
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Orientational field dependence of the zero-energy density of SAEB0S is calculated for superconduct-
ors with the polar statdine node, axial statgpoint node, and three-dimensiondlwave state. Depending on
the gap topology and the relative field direction the field dependencies of ZEDOS sensitively differ, providing
us a useful and practical method to identify the gap topology. It is also demonstrated thatdoe state the
field rotation in the basal plane shows a sizable oscillatie3%) of ZEDOS. This is directly measurable in
low-T specific heat experiment in the mixed state.
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Much attention has been focused on various unconverargument:? which is qualitative in naturésee discussion in
tional superconductors, ranging from high- cuprates, Ref. 5. In this paper we calculate the zero-energy density of
heavy Fermion materials, Boro-carbides, MgBo Skutteru-  StateSZEDOS in the mixed state for various situations—its
dite PrOgSh;,. The unconventionality is associated with the direction dependence for the polar and axial state and the
gap anisotropy of the orbital function in addition to the spin@ngular dependence fdrwave state, in order to examine the
structure of the Cooper pair. It is quite important to deter-experimental f¢a5|b|I|ty. We devel_op af_uII three-dlmensmn_al
mine the detailed nodal topology of the gap function; either3D) computation based on quasiclassical framework, which
point or line node and their location on the Fermi surface!S Valid for superconductors witkeé>1 (kg Fermi wave

The determination of these characteristics is expected to ledd'MPer and the coherence lengitiThis kind of calculation
to an understanding to the pairing mechanism of exoti%'ves quantltatl\_/ely reliable re_sults. Spherlcal Fermi surface
superconductors. as be_en used in our cal_cul_atlon to enlighten the role of gap

There are several experimental methods to probe the garf)OdeS. n Iovy-ene.rgy excitations. -

. . o : 2~ " Anisotropic pairing is routinely analyzed within the sepa-
anisotropy. One can basically distinguish the line and pomtrable model of pairing potentiaV/(k,k’)=V,Q(K)Q(K')
nodes because these give rise to different and distinct POW&! on order parameter takes the 'followinog fora(r k).
law temperaturéT) dependence in various physical quanti- —w(nQ(K). In the clean limit, quasiclassical equ,ations
ties. As for the orientation of these nodes, there are only a4 45 '
few ways to probe it. The field-dependent thermal conduc-
tivity «(H) and the polarization-dependent sound attenuation
are typical ones. By measuring(H,«) for different field
direction a one can detect the location of the node in prin-
ciple because the nodal quasiparticl€¥P) under H with
zero-energy transport heat current. In fact, a series of experi-
ments by Izawat al? have determined the location of nodes
in several systems. These transport measurements are, ho,
ever, ineyitably involved by the s_cattering time effect "’.‘ndquencies;; is Fermi velocity,®, is flux quantum, and, f',
localization effect of nodal QP, which hamper the determlna—g are Green’s functions integrated over energy normalized so

tion of the nodal direction in some casks. thatff"+g2=1. The Fermi surface is assumed to be sphere.
: !—|ere We propose anothe_r f"ethOd based_ on thermo_d_ynana)-rder parameteW (r) and vector potentiah(r) are obtained
ics: The Sommgrfeld coefficieny of the T-I|_near spec.|f|c. selfconsistently from the following equations:

heat at lowerT is most fundamental physical quantity in

Fermionic systems of interest. Since the nodal QP created T W (r)

around a vortex core in the mixed state sensitively reflect its V(r)in==2aT >, —{(Q(¢,0)f) ], (3
gap structure, the angle-depende(, «) can yield charac- T wn=0 | fron

teristic oscillation pattern relative to the nodal position under ArZENT

a fixed H. Recent angle-resolveg(H,a) measurement on _ TN Ng

YNi,B,C by Parket al* demonstrates a fourfold oscillation VXVXA(N)=- D, Im‘,,%o (gv). @

in the basal plane whose amplitudet %, nicely coinciding

with x(H,a) experiment by Izawat al?> They agree with Average over the Fermi surface is denoted(as- ). First,
the nodal direction100], but disagree with the topology polar state with a line nodé)(¢,6)= /3 cosg and axial
[point (line) in the latter(formen]. The observed oscillation state with point node® (¢, ) = J3/2 sing are analyzed. Po-
amplitude ~4%) in y(H,a) is far off the theoretical pre- lar and azimuthal angle refer to the coordinate system with
diction (~30%) based on the so-called Doppler shift axis that coincide withc crystal direction. Factors/3 and

2i
V+—A”f=2\1’(r)ﬂ(¢,0)g, (1)
0

2hw,tho )

2i
Zﬁwn—hv(v—FOAHfJEZ‘If*(r)Q(qB,H)g. 2

Were hw,=7mT(2n+1) with integern are Matsubara fre-

0163-1829/2003/68)/0525014)/$20.00 68 052501-1 ©2003 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B58, 052501 (2003

1 1
a) b) a)
0.8 0.8}
o c o
% 0.5 §0.6
A o
3 5
w 04 \ 0.4 |
Z H E
0.2 B« 0.2}
0 0 0.5 10 1 2 0 -
Bich B 0 0.5 10 0.5 1 1.5
B/H.. B

FIG. 1. (a) Field dependence of ZEDOS for polar state. Scaling
factor H., is different for each direction. The best fit to low-field
(B<0.2H.,) dependence isN(E=0B)/Ny=vy(B)/yy~1.14
X (B/H,)*2®for Hl|c (full circles) and 1.06< (B/H,)%**for HLc
(empty circle$. (b) ZEDOS against inductioB (in dimensionless
units).

J312 assure that average (b 9)|2 over the spherical to thaF of 2Dd-wave case for fields along theaxis. Power
Fermi surface is unity. We are interested in Green’s functioAaW Wlth_exponentﬁw_o.45 calculatgd here sh_oulo_l be com-
g(r.v,) that describe QP excitations associated with vorti-Pared with self-consistent calculation on cylindrical Fermi
ces. The QP density of statB§E) with energyE relative to surface and 2Dd-wave gap function, which reveal(E

FIG. 2. (a) Field dependence of ZEDOS for axial state. Scaling
factor H., is different for each direction. The best fit to low-field
(B<0.28H.,) dependence isN(E=0B)/Ny=y(B)/yy~1.25
X (B/H,) %% for HL ¢ (empty circle$. (b) ZEDOS against induc-
tion B (in dimensionless unifs

the Eermi level is defined as =0,B)/Ny~ (B/H¢,)%*® power law? For this geometry
Hlc, QP in planel H experience zero gap only if their

N(E) (N(E,v)) — momentum is in basal plane. Therefore, they are more diffi-
No = N, =(Reg(r,v,0—0"—iE)), (5 cult to excite compared to parallel geomektyc, hence the

exponentg is bigger.
where N, is ZEDOS in the normal state. Green’s function It is important to emphasize that ZEDOS in Figa)lis
g(r) spatially averaged over vortex lattice unit cell is de- plotted againsB/H,, whereH,; is different for each geom-
noted asg(r). We focus on ZEDOS at low temperatures. etry. For polar state, there is a large anisotropy of upper
This is because low temperature specific heatds  critical field HL%ZH@. When plotted versus magnetic
=y(B)T=27?4?N(E=0,B)T/3. Therefore, the equations field, Fig. 1(b), ZEDOS lines crosses at some critical field
are solved forT=0.1T,. It is sufficient to know Green’s B, . Therefore, by rotating magnetic field fromaxis to-
function only in the vortex lattice unit cell, which is divided ward the basal plane, ZEDOS may increase or decrease de-
in mesh 4 41. Once the order parameter and vector potenpending on field value.

tial are obtained selfconsistently, Eq$) and(2) are solved For axial state with two point nodes aftlc, energy gap
again for w—0". Typically, we choosew=0.0017T./%. is small only for small fraction of QP that flow along tice
Method of solution is extended from Ref. 6 and details will axis, which makes small contribution to total ZEDOS. In this
be described elsewhefddere we present the results. geometry, ZEDOS resembles thatsiwave superconductors.

In Fig. 1 field dependence of ZEDOS for polar state withMost of the low-energy QP are trapped at vortex cores, at
a line node is shown for||c (full circles) andH.Lc (empty  leastin low field, thusN(E=0,B)/Ny~B/H,. This is con-
circles. RatioN(E=0,B)/N, at low T is equal toy(B)/yy, firmed by numerical calculation shown in Fig(a2 (full
wherey(B)T (y,T) is low T specific heat of superconduct- Circles. For fieldH.Lc (empty circleg power-law exponent
ing (norma) phase. We discuss the power-law exponers of is smaller than that in line node polar state for both field
dependence of ZEDOS. It is difficult to fit the data with a geometries, Fig. (). Roughly speaking, the larger is the
single power-law function®/H.,)”. At least in low field we ~ angular area of suppressed gap, the faster ZEDOS is increas-
can estimat&l(E=0,8)/Ny~ (B/H,)%for H|c, i.e., very  ing with inductionB. Note that the field dependent¥(E
steep increase with field. Here is the explanation. The most 0,B)/No~(B/Hc2)In(B/Hc) predicted by the Doppler
important contribution to ZEDOS is Coming from QP that shift calculation for point node Ca%ds far off the present
flow in the plane perpendicular to the applied field. Fgc ~ result in Fig. 2, warning us the range of its applicability.
geometry, those QP experience zero-energy gap. They a,?émilar to the polar state, ZEDOS curves for two field direc-
easily excited and extended outside of the vortex core evefions cross at some critical fieB.,, as shown in Fig. @).
in low field in comparison taswave superconductors. The Assuming that the role of the anisotropic Fermi surface is
outcome is steep increase of ZEDOS with field. Experimenmerely to shift theH, values, data in Figs.(& and 2a)
tally similar small exponent is observed in MgBThe phys- may be viewed as independent of the ratig/ HLS .
ics is analogous to the case of polar state. Small exponent is We show the importance of the mutual arrangement of
coming from the small gap at the band in MgB,, while  line node and magnetic field on ZEDOS. In this sense it
coming from the line node in the polar state. For perpendicuis interesting to examine 3D version kf—k§ symmetry
lar orientationH L ¢ (empty circle$ the problem is analogous of the gap function, which is given byQ(¢,0)

052501-2



BRIEF REPORTS

PHYSICAL REVIEW B58, 052501 (2003

1 T 3 1
ANTINODE o a)
- 08 [ 08!
% NODE )
T 0.6 2
=
E So6t
Z\i qo.s
& 04 R LS T
z w 0.4
V0.2 oo’ =
0 boossee22 YT El s 0.2
0 30 60 90
6’ 0
0 0.5 10 05 1 15 2
FIG. 3. Angle-resolved ZEDOS averaged over angle in BM.. B

plane perpendicular to field, (N(6'))/Ny=(1/27) N(E . )
=0,p) dg¢’ for antinode(full circles) and nodgempty circle field FIG. 4. () Field dependence of ZEDOS for antinodtll

directions. Line node is schematically presented with dashed line iffirc/e9 and node(empty circles field directions. The best fit to
the inset. Magnetic inductioB=0 021-Hngde (Hngde/Hagtinode low-field (B<0.28H.,) dependence isN(E=0,B)/Ny~1.14
. . C. C. C

~0.828 atT=0.1T,). X (B/H¢p) 3% (antinode and N(E:_o,B)/r\_l0~1._07><_(B/Hc_2)°-327
(node. (b) ZEDOS is plotted vs inductioB (in dimensionless
units). In the inset ratidcR=N(antinodg/N(node€ is shown as a
=/15/4sirf  cos 2p. The form of the gap function is a natu- function of induction;H{, denotes upper critical field along node
ral choice for spherical Fermi surface. The question is, canlirection.
we guess for which field direction in the basal plane ZEDOS
is maximum based on the calculation for polar state?~0.45. It was shown by Barash and Svidzinkkghat tem-
Namely, if the magnetic fielth L c is along the node, then all perature dependence of specific heat is closely related to the
QP flowing perpendicular to the field experience zero-energgxponentn of gap function power expansion near node. The
gap(see inset in Fig. Banalogous to polar state witt|c. If larger is exponent, the faster specific he&l; is increasing
the field is along the antinode direction then QP that flowwith T/T.. Similar qualitative arguments can be applied to
perpendicular to the field experience zero gap only if theirfield dependence of specific heat.
momenta are along the axis, analogous to polar state and At B=B,,, two ZEDOS curves cross, the same as for
Hlc. These simple qualitative arguments, suggeshif§  polar and axial state, see Figb# In the inset of Fig. &),
=0,antinodg <N(E=0,node), are misleading since our ratio R=N(antinodg/N(node is plotted against induc-
calculation gives opposite result. It is because one must takiéon B. Physics of the crossing is very simple and will be
into account the contribution from QP that are flowing atexplained on the 3@-wave case. In the present model, the
some angle with respect to the field in this 3D problem. It isFermi surface is assumed to be sphere and upper critical field
instructive to see how angle-resolved ZEDOSE=0p), anisotropy is determined by the gap function. For our simple
averaged over anglg)’ in plane perpendicular to field, 3D d-wave caseH[59°<H27""°% Therefore, for a fixed
changes with angle#’ between QP velocitw and vortex high field, N(E=0node>N(E=0,antinode because
axis. We plot this quantity, multiplied with weighting factor along the node field direction the superconductor is closer to
sin#’ in Fig. 3 at some very low field. Total ZEDOS is area the normal state and ZEDOS is closer to the normal state
under the curve. Two field directions perpendicular to ¢he valueN,. On the other hand, fd<H_,, the QP excitations
axis are consideredhode and antinode For QP that flow probe the gap structure, since the biggest contribution to the
perpendicular to the magnetic field, =90°, ZEDOS for ZEDOS is coming from the delocalized QP. It was calculated
node field direction is about three times larger than for antiN(E=0,node <N(E=0,antinode.
node field direction. However, for antinode direction QP ex- The value of crossing field., depends on the Fermi
perience gap node as long as the angle between QP velocisyirface model. Upper critical field is also affected by the
and field direction is 45%6'<90°. In spite of the si# Fermi surface anisotropy, and can reverse the sign of four-
weighting factor there is a significant contribution to the totalfold H., oscillations in the basal plane. For example, in
ZEDOS that are coming from these QP. As a result, at lowyNi,B,C the gap node is alorid.00], [ 010] directions, im-
field N(E=0,antinodg is larger tharlN(E=0,node by a  plying that those are also the directionstbf, minima. But
few percents. in borocarbides the Fermi surface is highly anisotropic. If we
In Fig. 4(a field dependence of ZEDOS for node and accept that LUNiB,C has similar electronic structure as
antinode field directions is shown. Exponght0.32 for an-  Y-borocarbide, then minimum of upper critical field along
tinode direction differs fromB=~0.45 of polar stateH L c) [110] direction'! implies the decisive role of the Fermi sur-
in Fig. 1. This difference comes from the different powerface onH., anisotropy. Thus, in this case, the high field
expansion of the gap function in the node vicinity. In theinequality should beN(E=0nhode <N(E=0,antinodé.
antinode case, in plane perpendicular to the field, gap funcSince we expect that the Fermi surface anisotropy has no role
tion can be approximated #8 (¢, 8)| ~Q,6? in the vicinity  in low-field ZEDOS, then the sign of fourfold ZEDOS oscil-
of gap node#=0. On the other handQ(¢,6)|~|6= /2|  lation should be the same for @ i.e., there is no crossing
near nodegg= =+ 7r/2 for polar state an#l L c. The latter case of two ZEDOS lines.
is analogous to 2Dd-wave function andH|c giving B In Fig. 5 low-field angular dependence of ZEDOS for
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1.01 ——— Cusplike minimum in thermal conductivity angular depen-
H dence is predicted in the+g model (point node and ob-
L SO 4 oo served experimentalf.While shape of ZEDOS minimum
", ~ can rule out some forms of the gap function, it cannot pro-
S 099 yd ] vide the unique answer on the question of node topology
§ \\ s (line or poin). It is necessary to tilt the field out of the basal
S o8 | “ ] plane and study ZEDOS to gain additional information. This
z was done by measuring thermal conducti¥ignd specific
007 LY # | heaf with fields rotating around axis in YNi,B,C.
' ‘\ v We have studied the orientational field dependence of the
¢ nodal QP with zero-energy in the mixed state for the three
0.9 =0 20 30 40 50 60 70 80 90 representative gap functions, namely, axial, polar, dyad,
o states. Our computation is based on quasiclassical approach

for the 3D Fermi sphere. We have demonstrated that the
orientational dependence and angle-resolved specific heat
measurements are ideal tools to distinguish line and point
] o ) ~ nodes and to locate the nodal direction free from scattering
_fleld rotating in the basal plane is shown. Fourfold osc:|llat_|ontime or localization effects associated with transport experi-

is what one expects from the symmetry of the gap functionnents and also that this can be feasible in the present day
Angular variation is~3% at low fields, which is measurable (gchnjcal limitations. When conducting field-rotation experi-

with present experimenta_l techniqutgslote _that in the 2D ment, it is important to keep the field lovB& B,,) to probe
d-wave case Doppler-shift calculatBnestimates angular the intrinsic gap structure.

variation as large as 30%. Parabolalike minimum in angular
dependence of ZEDOS is in contrast with cusplike minimum  We thank Y. Matsuda, T. Sakakibara, K. Izawa, |. Vekhter,
in 2D d-wave casdgand the cylindrical Fermi surfagé®* M. B. Salamon, and T. Park for useful discussions.

FIG. 5. ZEDOS atB=0.021H"3% as a function of angler
between the applied field and antinode direction.
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