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Orientational field dependence of low-lying excitations in the mixed state
of unconventional superconductors
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Department of Physics, Okayama University, Okayama 700-8530, Japan

~Received 16 May 2003; published 6 August 2003!

Orientational field dependence of the zero-energy density of states~ZEDOS! is calculated for superconduct-
ors with the polar state~line node!, axial state~point node!, and three-dimensionald-wave state. Depending on
the gap topology and the relative field direction the field dependencies of ZEDOS sensitively differ, providing
us a useful and practical method to identify the gap topology. It is also demonstrated that ford-wave state the
field rotation in the basal plane shows a sizable oscillation (;3%) of ZEDOS. This is directly measurable in
low-T specific heat experiment in the mixed state.
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Much attention has been focused on various unconv
tional superconductors, ranging from high-Tc cuprates,
heavy Fermion materials, Boro-carbides, MgB2, to Skutteru-
dite PrOs4Sb12. The unconventionality is associated with th
gap anisotropy of the orbital function in addition to the sp
structure of the Cooper pair. It is quite important to det
mine the detailed nodal topology of the gap function; eith
point or line node and their location on the Fermi surfa
The determination of these characteristics is expected to
to an understanding to the pairing mechanism of exo
superconductors.1

There are several experimental methods to probe the
anisotropy. One can basically distinguish the line and po
nodes because these give rise to different and distinct po
law temperature~T! dependence in various physical quan
ties. As for the orientation of these nodes, there are on
few ways to probe it. The field-dependent thermal cond
tivity k(H) and the polarization-dependent sound attenua
are typical ones. By measuringk(H,a) for different field
directiona one can detect the location of the node in pr
ciple because the nodal quasiparticles~QP! under H with
zero-energy transport heat current. In fact, a series of exp
ments by Izawaet al.2 have determined the location of nod
in several systems. These transport measurements are,
ever, inevitably involved by the scattering time effect a
localization effect of nodal QP, which hamper the determi
tion of the nodal direction in some cases.3

Here we propose another method based on thermodyn
ics: The Sommerfeld coefficientg of the T-linear specific
heat at lowerT is most fundamental physical quantity
Fermionic systems of interest. Since the nodal QP crea
around a vortex core in the mixed state sensitively reflec
gap structure, the angle-dependentg(H,a) can yield charac-
teristic oscillation pattern relative to the nodal position und
a fixed H. Recent angle-resolvedg(H,a) measurement on
YNi2B2C by Parket al.4 demonstrates a fourfold oscillatio
in the basal plane whose amplitude;4%, nicely coinciding
with k(H,a) experiment by Izawaet al.2 They agree with
the nodal direction@100#, but disagree with the topolog
@point ~line! in the latter~former!#. The observed oscillation
amplitude (;4%) in g(H,a) is far off the theoretical pre-
diction (;30%) based on the so-called Doppler sh
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argument,12 which is qualitative in nature~see discussion in
Ref. 5!. In this paper we calculate the zero-energy density
states~ZEDOS! in the mixed state for various situations—i
direction dependence for the polar and axial state and
angular dependence ford-wave state, in order to examine th
experimental feasibility. We develop a full three-dimension
~3D! computation based on quasiclassical framework, wh
is valid for superconductors withkFj@1 (kF Fermi wave
number andj the coherence length!. This kind of calculation
gives quantitatively reliable results. Spherical Fermi surfa
has been used in our calculation to enlighten the role of
nodes in low-energy excitations.

Anisotropic pairing is routinely analyzed within the sep
rable model of pairing potentialV(k,k8)5V0V(k)V(k8).
Then order parameter takes the following form:D(r,k)
5C(r)V(k). In the clean limit, quasiclassical equation
read as

F2\vn1\vS“1
2p i

F0
AD G f 52C~r!V~f,u!g, ~1!

F2\vn2\vS“2
2p i

F0
AD G f †52C* ~r!V~f,u!g. ~2!

Here \vn5pT(2n11) with integern are Matsubara fre-
quencies,v is Fermi velocity,F0 is flux quantum, andf, f †,
g are Green’s functions integrated over energy normalized
that f f †1g251. The Fermi surface is assumed to be sphe
Order parameterC(r) and vector potentialA(r) are obtained
selfconsistently from the following equations:

C~r!ln
Tc

T
52pT (

vn.0
FC~r!

\vn
2^V~f,u! f &G , ~3!

“3“3A~r!52
4p2\N0T

F0
Im (

vn.0
^gv&. ~4!

Average over the Fermi surface is denoted as^•••&. First,
polar state with a line nodeV(f,u)5A3 cosu and axial
state with point nodesV(f,u)5A3/2 sinu are analyzed. Po-
lar and azimuthal angle refer to the coordinate system wiz
axis that coincide withc crystal direction. FactorsA3 and
©2003 The American Physical Society01-1
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A3/2 assure that average ofuV(f,u)u2 over the spherica
Fermi surface is unity. We are interested in Green’s funct
g(r,v,v) that describe QP excitations associated with vo
ces. The QP density of statesN(E) with energyE relative to
the Fermi level is defined as

N~E!

N0
5

^N~E,v !&
N0

5^Reg~r,v,v→012 iE !&, ~5!

whereN0 is ZEDOS in the normal state. Green’s functio
g(r) spatially averaged over vortex lattice unit cell is d
noted asg(r). We focus on ZEDOS at low temperature
This is because low temperature specific heat isCs
5g(B)T52p2\2N(E50,B)T/3. Therefore, the equation
are solved forT50.1Tc . It is sufficient to know Green’s
function only in the vortex lattice unit cell, which is divide
in mesh 41341. Once the order parameter and vector pot
tial are obtained selfconsistently, Eqs.~1! and~2! are solved
again for v→01. Typically, we choosev50.001pTc /\.
Method of solution is extended from Ref. 6 and details w
be described elsewhere.7 Here we present the results.

In Fig. 1 field dependence of ZEDOS for polar state w
a line node is shown forHic ~full circles! andH'c ~empty
circles!. RatioN(E50,B)/N0 at low T is equal tog(B)/gN ,
whereg(B)T (gNT) is low T specific heat of superconduc
ing ~normal! phase. We discuss the power-law exponent oB
dependence of ZEDOS. It is difficult to fit the data with
single power-law function (B/Hc2)b. At least in low field we
can estimateN(E50,B)/N0;(B/Hc2)0.35 for Hic, i.e., very
steep increase with field. Here is the explanation. The m
important contribution to ZEDOS is coming from QP th
flow in the plane perpendicular to the applied field. ForHic
geometry, those QP experience zero-energy gap. They
easily excited and extended outside of the vortex core e
in low field in comparison tos-wave superconductors. Th
outcome is steep increase of ZEDOS with field. Experim
tally similar small exponent is observed in MgB2. The phys-
ics is analogous to the case of polar state. Small expone
coming from the small gap at thep band8 in MgB2, while
coming from the line node in the polar state. For perpendi
lar orientationH'c ~empty circles! the problem is analogou

FIG. 1. ~a! Field dependence of ZEDOS for polar state. Scal
factor Hc2 is different for each direction. The best fit to low-fiel
(B,0.25Hc2) dependence isN(E50,B)/N05g(B)/gN'1.14
3(B/Hc2)0.35 for Hic ~full circles! and 1.063(B/Hc2)0.45 for H'c
~empty circles!. ~b! ZEDOS against inductionB ~in dimensionless
units!.
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to that of 2Dd-wave case for fields along thec-axis. Power
law with exponentb'0.45 calculated here should be com
pared with self-consistent calculation on cylindrical Fer
surface and 2Dd-wave gap function, which revealsN(E
50,B)/N0;(B/Hc2)0.43 power law.6 For this geometry
H'c, QP in plane'H experience zero gap only if thei
momentum is in basal plane. Therefore, they are more d
cult to excite compared to parallel geometryHic, hence the
exponentb is bigger.

It is important to emphasize that ZEDOS in Fig. 1~a! is
plotted againstB/Hc2, whereHc2 is different for each geom-
etry. For polar state, there is a large anisotropy of up
critical field Hc2

i '2Hc2
' . When plotted versus magneti

field, Fig. 1~b!, ZEDOS lines crosses at some critical fie
Bcr . Therefore, by rotating magnetic field fromc axis to-
ward the basal plane, ZEDOS may increase or decrease
pending on field value.

For axial state with two point nodes andHic, energy gap
is small only for small fraction of QP that flow along thec
axis, which makes small contribution to total ZEDOS. In th
geometry, ZEDOS resembles that ins-wave superconductors
Most of the low-energy QP are trapped at vortex cores
least in low field, thusN(E50,B)/N0;B/Hc2. This is con-
firmed by numerical calculation shown in Fig. 2~a! ~full
circles!. For field H'c ~empty circles! power-law exponent
is smaller than that in line node polar state for both fie
geometries, Fig. 1~a!. Roughly speaking, the larger is th
angular area of suppressed gap, the faster ZEDOS is incr
ing with induction B. Note that the field dependenceN(E
50,B)/N0;(B/Hc2)ln(B/Hc2) predicted by the Doppler
shift calculation for point node case9 is far off the present
result in Fig. 2, warning us the range of its applicabilit
Similar to the polar state, ZEDOS curves for two field dire
tions cross at some critical fieldBcr , as shown in Fig. 2~b!.
Assuming that the role of the anisotropic Fermi surface
merely to shift theHc2 values, data in Figs. 1~a! and 2~a!
may be viewed as independent of the ratioHc2

ic /Hc2
'c .

We show the importance of the mutual arrangement
line node and magnetic field on ZEDOS. In this sense
is interesting to examine 3D version ofkx

22ky
2 symmetry

of the gap function, which is given byV(f,u)

FIG. 2. ~a! Field dependence of ZEDOS for axial state. Scali
factor Hc2 is different for each direction. The best fit to low-fiel
(B,0.25Hc2) dependence isN(E50,B)/N05g(B)/gN'1.25
3(B/Hc2)0.64 for H'c ~empty circles!. ~b! ZEDOS against induc-
tion B ~in dimensionless units!.
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5A15/4sin2 u cos 2f. The form of the gap function is a natu
ral choice for spherical Fermi surface. The question is,
we guess for which field direction in the basal plane ZED
is maximum based on the calculation for polar sta
Namely, if the magnetic fieldH'c is along the node, then a
QP flowing perpendicular to the field experience zero-ene
gap~see inset in Fig. 3! analogous to polar state withHic. If
the field is along the antinode direction then QP that fl
perpendicular to the field experience zero gap only if th
momenta are along thec axis, analogous to polar state an
H'c. These simple qualitative arguments, suggestingN(E
50,antinode),N(E50,node), are misleading since ou
calculation gives opposite result. It is because one must
into account the contribution from QP that are flowing
some angle with respect to the field in this 3D problem. I
instructive to see how angle-resolved ZEDOSN(E50,v),
averaged over anglef8 in plane perpendicular to field
changes with angleu8 between QP velocityv and vortex
axis. We plot this quantity, multiplied with weighting facto
sinu8 in Fig. 3 at some very low field. Total ZEDOS is are
under the curve. Two field directions perpendicular to thc
axis are considered,node and antinode. For QP that flow
perpendicular to the magnetic field,u8590°, ZEDOS for
node field direction is about three times larger than for a
node field direction. However, for antinode direction QP e
perience gap node as long as the angle between QP vel
and field direction is 45°,u8,90°. In spite of the sinu8
weighting factor there is a significant contribution to the to
ZEDOS that are coming from these QP. As a result, at
field N(E50,antinode) is larger thanN(E50,node) by a
few percents.

In Fig. 4~a! field dependence of ZEDOS for node an
antinode field directions is shown. Exponentb'0.32 for an-
tinode direction differs fromb'0.45 of polar state (H'c)
in Fig. 1. This difference comes from the different pow
expansion of the gap function in the node vicinity. In t
antinode case, in plane perpendicular to the field, gap fu
tion can be approximated asuV(f,u)u'V0u2 in the vicinity
of gap nodeu50. On the other hand,uV(f,u)u;uu6p/2u
near nodeu56p/2 for polar state andH'c. The latter case
is analogous to 2Dd-wave function andHic giving b

FIG. 3. Angle-resolved ZEDOS averaged over anglef8 in
plane perpendicular to field, ^N(u8)&/N05(1/2p)*N(E
50,v) df8 for antinode~full circles! and node~empty circles! field
directions. Line node is schematically presented with dashed lin
the inset. Magnetic inductionB50.0217Hc2

node (Hc2
node/Hc2

antinode

50.828 atT50.1Tc).
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'0.45. It was shown by Barash and Svidzinsky10 that tem-
perature dependence of specific heat is closely related to
exponentn of gap function power expansion near node. T
larger is exponentn, the faster specific heatCs is increasing
with T/Tc . Similar qualitative arguments can be applied
field dependence of specific heat.

At B5Bcr , two ZEDOS curves cross, the same as
polar and axial state, see Fig. 4~b!. In the inset of Fig. 4~b!,
ratio R5N(antinode)/N(node) is plotted against induc-
tion B. Physics of the crossing is very simple and will b
explained on the 3Dd-wave case. In the present model, t
Fermi surface is assumed to be sphere and upper critical
anisotropy is determined by the gap function. For our sim
3D d-wave case,Hc2

node,Hc2
antinode. Therefore, for a fixed

high field, N(E50,node).N(E50,antinode) because
along the node field direction the superconductor is close
the normal state and ZEDOS is closer to the normal s
valueN0. On the other hand, forB!Hc2, the QP excitations
probe the gap structure, since the biggest contribution to
ZEDOS is coming from the delocalized QP. It was calcula
N(E50,node),N(E50,antinode).

The value of crossing fieldBcr depends on the Ferm
surface model. Upper critical field is also affected by t
Fermi surface anisotropy, and can reverse the sign of fo
fold Hc2 oscillations in the basal plane. For example,
YNi2B2C the gap node is along@100#, @010# directions, im-
plying that those are also the directions ofHc2 minima. But
in borocarbides the Fermi surface is highly anisotropic. If
accept that LuNi2B2C has similar electronic structure a
Y-borocarbide, then minimum of upper critical field alon
@110# direction11 implies the decisive role of the Fermi su
face onHc2 anisotropy. Thus, in this case, the high fie
inequality should beN(E50,node),N(E50,antinode).
Since we expect that the Fermi surface anisotropy has no
in low-field ZEDOS, then the sign of fourfold ZEDOS osci
lation should be the same for allB, i.e., there is no crossing
of two ZEDOS lines.

In Fig. 5 low-field angular dependence of ZEDOS f

in

FIG. 4. ~a! Field dependence of ZEDOS for antinode~full
circles! and node~empty circles! field directions. The best fit to
low-field (B,0.25Hc2) dependence isN(E50,B)/N0'1.14
3(B/Hc2)0.324 ~antinode! and N(E50,B)/N0'1.073(B/Hc2)0.327

~node!. ~b! ZEDOS is plotted vs inductionB ~in dimensionless
units!. In the inset ratioR5N(antinode)/N(node) is shown as a
function of induction;Hc2

n denotes upper critical field along nod
direction.
1-3
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field rotating in the basal plane is shown. Fourfold oscillati
is what one expects from the symmetry of the gap functi
Angular variation is'3% at low fields, which is measurabl
with present experimental techniques.4 Note that in the 2D
d-wave case Doppler-shift calculation12 estimates angula
variation as large as 30%. Parabolalike minimum in angu
dependence of ZEDOS is in contrast with cusplike minim
in 2D d-wave case~and the cylindrical Fermi surface!.12–14

FIG. 5. ZEDOS atB50.0217Hc2
node as a function of anglea

between the applied field and antinode direction.
n
P

05250
.

r

Cusplike minimum in thermal conductivity angular depe
dence is predicted in thes1g model ~point node! and ob-
served experimentally.2 While shape of ZEDOS minimum
can rule out some forms of the gap function, it cannot p
vide the unique answer on the question of node topolo
~line or point!. It is necessary to tilt the field out of the bas
plane and study ZEDOS to gain additional information. Th
was done by measuring thermal conductivity2 and specific
heat4 with fields rotating aroundc axis in YNi2B2C.

We have studied the orientational field dependence of
nodal QP with zero-energy in the mixed state for the th
representative gap functions, namely, axial, polar, anddx22y2

states. Our computation is based on quasiclassical appr
for the 3D Fermi sphere. We have demonstrated that
orientational dependence and angle-resolved specific
measurements are ideal tools to distinguish line and p
nodes and to locate the nodal direction free from scatte
time or localization effects associated with transport exp
ments and also that this can be feasible in the present
technical limitations. When conducting field-rotation expe
ment, it is important to keep the field low (B,Bcr) to probe
the intrinsic gap structure.

We thank Y. Matsuda, T. Sakakibara, K. Izawa, I. Vekht
M. B. Salamon, and T. Park for useful discussions.
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