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Effective field theory for the S=1 quantum nematic
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For theS=1 system with general isotropic nearest-neighbor exchange, we derive the low-energy description
of the spin nematic phase in terms of tRé? nonlinearc model. In one dimension, quantum fluctuations
destroy long-range nematiquadrupolarordering, leading to the formation of a gapped spin liquid state being
an analog of the Haldane phase for a spin nematic. Nematic analog of the Belavin-Polyakov instanten with
topological charge 1/2 is constructed. In two dimensions the long-range order is destroyed by thermal fluctua-
tions and at finite temperature the system is in a renormalized classical regime. Behavior in external magnetic
field is discussed.
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Low-dimensional spin systems have been attracting per- The properties of the remaining region between the
manent attention of researchers over more than half a ceifaldane and ferromagnetic phase are more controversial.
tury. A rich palette of their physical properties determined byThe other Haldane phase bound#ry — 7/4 corresponds to
the essential role played by quantum fluctuations makeghe exactly solvable Takhtajan-Babujian motfethe transi-
them a very attractive playground for testing various theorettion at 9= — «/4 is of the Ising type and the ground state at
ical concepts. In the last two decades, this interest has got g« — 7/4 is spontaneously dimerized with a finite gap to the
considerable impact, motivated particularly by the increasinggest excitation4-2*3The dimerized phase extends at least

availability of quasi-low-dimensional magnetic materials. Aup to and over the poing= — /2 which has a twofold de-
number of exotic “quantum spin liquid” states has been dis-

4. th t widely k I being the f generate ground state and finite gap®
covered, the most widely known example being the 1amous: o, kod! used the Holstein-Primakoff-type Bosonic
Haldane phase in integer-spin antiferromagneti&F)

chainsk representation of spin-1 operattbased on the quadrupolar

A generic example of the Haldane phase is the isotropit?rdered2 spin nematic” reference state W_'¢5>:0’ <S>2<vy>
Heisenberg spin-1 AF chain. However, the most general iso= 1. (S;=0), and suggested, on the basis of the renormal-
tropic exchange interaction for spi8=1 includes biqua- ization group (RG) arguments, that the region wittd
dratic terms as well, which naturally leads to the model de=57/4 is a disordered nematic phase. Early numerical
scribed by the following Hamiltonian: studie$' seemed to have ruled out this possibility, and a

common belief no#*?3is that the dimerized phase extends
all the way up to the ferromagnetic phase, i.e., that it exists
A= cosf(S, Sy: 5 +SINO(S, St 5 (1)  in the entire interval &/4<6<7w/4. However, recent nu-
(nd) merical result$ indicate that the dimerized phase ends at
certain 6.>5/4, casting doubt on the conclusion reached
whereS, are spin-1 operators at the lattice siteand sum- nearly a decade ago.
mation over the nearest neighbors is implied. There are The aim of the present paper is to show that the low-
indication$ that moderate biquadratic exchange is presenenergy dynamics of the modél) for #=5/4 can be effec-
in the quasi-one-dimensional compound Li\Gg. The tively described by the nonlinear model for a unitdirector
points #= 7 and 6=0 correspond to the Heisenberg ferro- field (i.e., a unit vector whose opposite directions are physi-
and antiferromagnet, respectively. In one dimensibb), cally identica). The coupling constant becomes small in the
the model(1) is studied rather extensively, and a number ofvicinity of the ferromagnetic phase boundaty: 57/4. This
analytical and numerical results for several particular caseformulation allows one to establish many properties of the
are availablé:*~°It is firmly established that the Haldane nematic phase by using extensive results available for the
phase with a finite spectral gap occupies the intervat/4  standard(vector field O(3) nonlinear o model. We also
< 0<mw/4, and the ferromagnetic state is stable f0P<6#  study the effect of external magnetic field, which can be
<57/4, while 6=57/4 is an SU3) symmetric point with  easily incorporated in our formalism. We argue that in 1D the
highly degenerate ground stéfe. ground state is disordered, in a complete analogy with the

Exact solution is availabté for the Uimin-Lai-Sutherland Haldane phase in case of the vecto30Omodel, and its
(ULS) point 8= /4 which has SIB) symmetry. The ULS elementary excitation is a massive triplet. In 2D, long-range
point was showlf to mark the Berezinskii-Kosterlitz- nematic order exists only a&=0. An explicit solution for
Thouless(BKT) transition from the massive Haldane phasethe Belavin-Polyakov instanton withalf integercharge in a
into a massless phase occupying the intewsl<#<w/2  (1+1)-dimensional isotropic nematic is presented.
between the Haldane and ferromagnetic phase; this is sup- We start by introducing the following set of coherent
ported by numerical studiés. states forS=1:
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FIG. 1. Schematid=0 phase diagram of the modd)) in the
vicinity of the critical pointJ,=J;: (a) in dimensionD=2; (b) in
one dimension.

uv)=2 (Utivplt), je(xy.2), )
wherelt;) are three “Cartesian” spin-1 states:

|=)=F(AN2)(ty=it)), [0)=]t,). 3)

The coherent state is characterized by vectoendv satis-

fying the normalization constraint?+v2=1. The freedom
to choose an overall phase factor can be fixed by settin
u-v=0. It is easy to check that the resolution of identity

(3/47%) [ D(u,v)|u,v){u,v|=1 holds.

In what follows we are interested in the region arouhd

=5/4, hence it is convenient to use the notation

cosf=—-1J,, sin=-J,, J,=J,>0.
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the ground staje Note that vectou is in this case alirector
sinceu and —u correspond to the same state. In external
field the system acquires finite magnetizati® =B/[Z(J,
—J;)], whereZ is the coordination number of the lattice,
while nematic order persists in plane perpendiculd.tdhe
magnetization increases with the field, and BtZ(J,

—J;) the nematic undergoes a second-order phase transition
into the phase with fully saturated magnetic moment.

Our next aim is to study how the above classical mean-
field picture changes due to quantum or thermal fluctuations.
We pass to the continuum limit in Eq&ta) and (4b), view-
ing u andv as smooth field distributions. From the mean-
field solution one may assume thaku, and from the form
of the Lagrangian4a) it is clear thatv plays the role of
momentum conjugate to, so thatv will be eventually pro-
portional to the time derivative ofi (later this will be
checked in a self-consistent wayVe will thus keep only
terms up to the second orderdn and derivatives ob will
be neglected. Doing so, one obtains the following continuum
version of the Lagrangian:

L[u,v]=Valf dDr[ —2hv - du—2Z(J,— J;) u?v?

Z
+20-(BXU)—(J,/2) 21 [(8,-V)ul?{, (5

where V, is the volume of the elementary cell of the
D-dimensional latticeg, are vectors describing the position
8f Z nearest neighbors with respect to a given lattice site, and
constrainta’+v?=1, u-v=0 are implied. In what follows,
we will assume for simplicity that the lattice is hypercubic,
thenZ=2D, V,=aP°, and (6:V)=aV,, k=1---D, where
a is the lattice constant.

The “slave” variablev under the assumptian<u can be
integrated out, yielding

Using the state&?), one can construct the coherent state path

integral, and the effective Lagrangian will have the form

Leﬁ:_Zh; vn'atun_% <ﬁn,n+ﬁ>’ (4a)

where the average of the local Hamiltonian for two neigh-

boring sites 1 and 2 is, up to a constant, given by

(R1p)=—431{(us- Up)(v1-v5) — (U-v2) (V1 Up)}
—Jo{(Up-Uy—01-02)%+ (Uy vt 01 Uy) %)
_B'(U1X01+U2X02). (4b)

Here we have included the Zeeman ternB- =S, describ-
ing external magnetic fiel.

Assuming a uniform ground state and minimizitg),

v=[2Z(3;— 3] H{(BXU)—~hau}. 6

Substituting Eq.(6) back into Eq.(5) gives the following
effective Lagrangian depending anonly:

. sz dPr [((9 Bxu
=— [ u— -
eff CZ aD_2 t ﬁ

wherec=[22J,(J,—J;)]¥?a/# is the characteristic limiting
velocity, andu now should be considered as a unit vector,
u?=1. Note that according to E@6) a change of sign of
automatically means a sign change #qrso thatu is in this
approximation completely equivalent tou. The above de-
scription is valid at the energy scalés<Ey=2Z(J,—J,).
One readily observes that ET) is nothing but the Lagrang-
ian of the well-known nonlineas- model used as the effec-

2 D
—&Z<wm1,m
k=1

one arrives at the mean-field phase diagram shown in Figive theory for antiferromagnéeté® (without the topological

1(a): at zero field the ferromagnetic phase with=v

term). Even the additional terms in the second line of &9,

=1/\2 is stable forJ,<J;, and atJ,=J; one has a degen- describing the effect of the external magnetic field, are iden-

erate first-order transition into the nematic phase withO

tical to those appearing in the model for antiferromagnets.

and parallel alignment af (actually,u andv can be used on Thus, the low-energy dynamics of modé) in the nematic

equal terms, and we just voluntarily choaseéo be zero in

phase is similar to the dynamics of an antiferromagnet, with
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the only yetimportant difference that instead of the unit  (a) .
vector of sublattice magnetization one now has the nematic o

directoru: the order parameter spaceR$” instead ofS?.
The o-model formulation, in contrast to the spin-wave ap-

proach of Chubukot! allows one to study full nonlinear d b s
dynamics of the problem. = = = s
At zero field, one can rewrite the Lagrangi&h in a "7 N\ra

standard notation using dimensionless space-time variables O e e e e N N S
x=(Xq,X), X=rla, Xxp=ict/a. The effective Euclidean ac-

tion takes the following compact form: NN N NN NN N -
Az 1 ((9“)2do+1 - NN NN NN~
—_— T — — X’
with the coupling constary is defined as —_——— e . ! l ' i v o
9={Z(J—31)123,}*2 9 —==~N\\| \\\~——
Note that smallness of the coupling constant does not require
a largeS approximation, and is controlled solely by the —=~N\ \ \ NN~
closeness to the ferromagnetic phase boundary. ~——— -
In one dimensiofD =1) continuous symmetry cannot be SNNNNYN
broken, and the ground state of E@®) is disordered with ~— N N TN TN N T

exponentially decaying correlations. The correlation lerggth . o . .

for the usual @) (vecto) o model can be obtained within ~ FIG. 2. Belavin-Polyakov-type soliton in a spin nemata) the

Polyakov's RG approaéh as 50(3)~ae2”’9. In theRP? o s_,olunon is given by_/vl(z) in the upper half plan_eespectlve to the
model, however, there is a rescaling in flow equations bell® connecting pointa andb), and byw,(z) in the lower half

cause of the change in the measure: the physical field is n@ﬂane, with the appr.opriate branch cuts shown as th.ick solid lines
u. but the bilinear projectoR=uT®u The action can be and numbers denoting the phasevgf(b) schematic view of the
réwritten as ' solution, nematic directan is shown as an ellipsoid in a projection
onto the figure plane; white spot indicates the end of ellipsoid that is
Az 1 under the figure plane.
TZEJ (d,R,a,R)dP"x, (10
merons constituting a BPI. It was speculat&®® that the

where (A,B)=tr(A'B) denotes the scalar product. T  correlation lengthéos)xe8P/2 is related to the concentra-
function in the leading order is the same as for th&)O tion of merons.

model?’ B(I") = — (1/2m)I'?, with the trivially rescaled cou- | the RP? case the director nature of the field makes
pling constant”=2g. Thus for the correlation length in the possible BPI-type defects with half integ@ whose action
RP” ¢ model one obtains is exactly one-half of that for their (B) o model counter-

parts: Indeed, consider a solution of the fomr=w,(z)
=./(z—a)/(z—b). For the @3) o model such a solution

in agreement with Chubukov’s one-loop RG reSufor in-  Would be invalid, because it has a branch cut. In a nematic,
teracting spin waves. The elementary excitation is a massiv@oweverw(u) andw(—u) are physically identical, and the
Spin_l trip|et, and the gap:hc/f opens up exponentia”y above solution can be matched with another @me,Wz(Z)
slow as one moves away from the phase transition phint = V(z—b)/(z—a), so thatw,(u)=w;(—u) on some line.

2~ae™9=aemI2 /(%271 11
RP:

=J;: This is easily achieved by choosing the cuts as shown in Fig.
2. This solution ha®= + 3, and its action is just one-half of
A~2[J5(J,— 1) ]M2%e ™I2/0270), (120  that for the @3) BPI. Curiously, this fact correlates with the
extra factor; in the correlation length exponefitl).
The RP? and O3) o models are also different with re- In the RP? model there is another type of topological

spect to their topological excitations. In thé3pmodel there  defects, disclinations characterized by ar, topological

is a localized solution with nonzere, topological charge charge(vorticity) g. It is argued that their presence could
Q= (1/8m) fd?xe ,,u- (d,uxd,u), known as the Belavin- produce the BKT transitioin the isotropic casé’ However,
Polyakov instantordBPI).?® The simplest BPI withQ=1 is  one can see that such a transition would occur above some
described byv=(z—a)/(z—b), where the complex variable critical value of the couplinggkt of the order of 1, and as
w(u)=(u;+iu,)/(1—uy) is defined as a function of the long asg=(1-J;/J,)¥><1, one may expect that the dis-
complex coordinateg=x;+ixq, and generallyany analyti-  clinations will be bound in pairs and their effect can be ne-
cal function wW(z) yields a solutiorf® The BPI action4gp;  glected.

=47hQ/g does not depend on the parametard which Our approach easily allows one to incorporate the effect
can be interpreted as coordinates of elementary entitiegf an external magnetic field. Weak magnetic fiBld A acts
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on the spectrum only in a trivial waffhe Zeeman shiff but
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the correlation lengtii~ae?™2/T (note the extra factof in

at B=A the gap closes and the system enters the criticathe exponent, as compared to the standard f&sult
phase with algebraically decaying correlations, which can be In summary, we have shown that the low-energy dynam-

characterized as the Tomonaga-Luttinger ligtlihe result-
ing phase diagram for the one-dimensional case is shown
Fig. 4b).

ics of the bilinear-biquadrati&=1 system(1) for 6=5m/4
IBan be effectively mapped onto tRP? nonlinears model.
We have argued that in one dimension this model exhibits a

For D=2, at zero temperature the ground state shoulgjisordered nematic state, supporting early proposition of
have long-range nematic order, in agreement with recent NYehubukow! and recent numerical reSLﬁfsagainst the com-

merical results?
finite valueg. of the order of 1 which marks the transition

as long asg is small compared t0 some  monly adopted23 point of view. Using parallels with the

extensively studied vector version of tlemodel, one can

into a quantum disordered phase. This latter transition is €Xsasijly extract necessary information on the properties of
pected to be the same as a finite-temperature transition in thes matic phase. An instanton solution of the Belavin-

three-dimensional classical Lebwohl-Lasher model, which i

$olyakov type with half integer topological charge is pre-

the first order supposedly due to the effect of disclinationggpteq.
lines3® At T=0 the phase diagram in presence of magnetic

field has the mean-field form of Fig(d. At T#0 andB

This work was supported in part by Grant No. 1/75895

=0 nematic order is destroyed by thermal fluctuations, withfrom the Volkswagen-Stiftung.

*Electronic address: bivanov@i.com.ua

TURL: http://www.itp.uni-hannover.de/kolezhuk

1E.D.M. Haldane, Phys. Let®3A, 464(1983; Phys. Rev. Lett50,
1153(1983.

2p. Millet, F. Mila, F.C. Zhang, M. Mambrini, A.B. Van Oosten,

V.A. Pashchenko, A. Sulpice, and A. Stepanov, Phys. Rev. Lett.

83, 4176(1999.

3J. Lou, T. Xiang, and Z. Su, Phys. Rev. L&, 2380(2000.

41. Affleck, Nucl. Phys. B265, 409 (1986); I. Affleck and F.D.M.
Haldane, Phys. Rev. B6, 5291(1987).

5J. Oitmaa, J.B. Parkinson, and J.C. Bonner, J. Phy9,d.595
(1986.

5H.W.J. Bldte and H.W. Capel, Physica 239, 387 (1986.

7J. Sdyom, Phys. Rev. B36, 8642 (1987).

SR.R.P. Singh and M.P. Gelfand, Phys. Rev. L&1.2133(1988.

9K. Chang, I. Affleck, G.W. Hayden, and Z.G. Soos, J. Phys.:
Condens. Matteft, 153(1989.

10N Papanicolaou, Nucl. Phys. 805, 367 (1988.

LAV, Chubukov, J. Phys.: Condens. Matzr1593(1990; A.V.
Chubukov, Phys. Rev. B3, 3337(1991.

12¢. Itoi and M.-H. Kato, Phys. Rev. B5, 8295(1997).

13G. Fah and J. Styom, Phys. Rev. B47, 872 (1993.

¥G.V. Uimin, Pis'ma Zh. Eksp. Teor. FiZl2, 332 (1970 [JETP
Lett. 12, 225(1970]; C.K. Lai, J. Math. Phys15, 1675(1974);
B. Sutherland, Phys. Rev. B2, 3795(1975.

15 A. Takhtajan, Phys. LetB7A, 479(1982; H.M. Babuijian,ibid.
90A, 479(1982; Nucl. Phys. B215 317(1983; P. Kulish, N.
Reshetikhin, and E. Sklyanin, Lett. Math. Ph$s.393(1981).

163 B. Parkinson, J. Phys. 71, 3793(1988.

1A, Kltimper, Europhys. Lett9, 815 (1989; J. Phys. A23, 809
(1990; Int. J. Mod. Phys. B4, 871(1990.

18M.N. Barber and M.T. Batchelor, Phys. Rev.4B, 4621(1989.

19) Affleck, T. Kennedy, E.H. Lieb, and H. Tasaki, Phys. Rev. Lett.

59, 799 (1987; Commun. Math. Physl15 477 (1988.

20C D. Batista, G. Ortiz, and J.E. Gubernatis, Phys. Re\653
180402ZR) (2002.

21G. Fah and J. Styom, Phys. Rev. B51, 3620(1995.

22A. Schadschneider and J. Zittartz, Ann. Phgiseipzig) 4, 157
(1995.

23K. Katsumata, J. Magn. Magn. Matdr40-144 1595(1995, and
references therein.

24N. Kawashima, Prog. Theor. Phys. Suppi5, 138 (2002.

25|, Affleck, J. Phys.: Condens. Mattér 3047(1989.

26A.M. Polyakov, Phys. Lett59B, 79 (1975; D.R. Nelson and
R.A. Pelcovits, Phys. Rev. B6, 2191(1977).

273. Zinn-Justin,Quantum Field Theory and Critical Phenomena
(Oxford University Press, New York, 20§2Chap. 15.6.

287 A. Belavin and A.M. Polyakov, Pis'ma Zh. Eksp. Teor. F22,
503 (1975 [JETP Lett.22, 245(1979)].

29E. Moreno and P. Orland, J. High Energy Ph#s2 (1999.

30H. Kunz and G. Zumbach, Phys. Rev.4B, 662 (1992).

31, Affleck, Phys. Rev. B43, 3215(1991); R. Konik and P. Fend-
ley, Phys. Rev. B56, 014416(2002.

32K Harada and N. Kawashima, Phys. Rev68 052403(2002.

3N.V. Priezjev and R.A. Pelcovits, Phys. Rev. &, 031710
(2002.

052401-4



