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Effective field theory for the SÄ1 quantum nematic
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For theS51 system with general isotropic nearest-neighbor exchange, we derive the low-energy description
of the spin nematic phase in terms of theRP2 nonlinears model. In one dimension, quantum fluctuations
destroy long-range nematic~quadrupolar! ordering, leading to the formation of a gapped spin liquid state being
an analog of the Haldane phase for a spin nematic. Nematic analog of the Belavin-Polyakov instanton withp2

topological charge 1/2 is constructed. In two dimensions the long-range order is destroyed by thermal fluctua-
tions and at finite temperature the system is in a renormalized classical regime. Behavior in external magnetic
field is discussed.
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Low-dimensional spin systems have been attracting p
manent attention of researchers over more than half a
tury. A rich palette of their physical properties determined
the essential role played by quantum fluctuations ma
them a very attractive playground for testing various theo
ical concepts. In the last two decades, this interest has g
considerable impact, motivated particularly by the increas
availability of quasi-low-dimensional magnetic materials.
number of exotic ‘‘quantum spin liquid’’ states has been d
covered, the most widely known example being the fam
Haldane phase in integer-spin antiferromagnetic~AF!
chains.1

A generic example of the Haldane phase is the isotro
Heisenberg spin-1 AF chain. However, the most general
tropic exchange interaction for spinS51 includes biqua-
dratic terms as well, which naturally leads to the model
scribed by the following Hamiltonian:

Ĥ5(
^nd&

cosu~Sn•Sn1d!1sinu~Sn•Sn1d!2, ~1!

whereSn are spin-1 operators at the lattice siten, and sum-
mation over the nearest neighbors is implied. There
indications2,3 that moderate biquadratic exchange is pres
in the quasi-one-dimensional compound LiVGe2O6. The
points u5p and u50 correspond to the Heisenberg ferr
and antiferromagnet, respectively. In one dimension~1D!,
the model~1! is studied rather extensively, and a number
analytical and numerical results for several particular ca
are available.1,4–19 It is firmly established that the Haldan
phase with a finite spectral gap occupies the interval2p/4
,u,p/4, and the ferromagnetic state is stable forp/2,u
,5p/4, while u55p/4 is an SU~3! symmetric point with
highly degenerate ground state.20

Exact solution is available14 for the Uimin-Lai-Sutherland
~ULS! point u5p/4 which has SU~3! symmetry. The ULS
point was shown12 to mark the Berezinskii-Kosterlitz
Thouless~BKT! transition from the massive Haldane pha
into a massless phase occupying the intervalp/4,u,p/2
between the Haldane and ferromagnetic phase; this is
ported by numerical studies.13
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The properties of the remaining region between
Haldane and ferromagnetic phase are more controver
The other Haldane phase boundaryu52p/4 corresponds to
the exactly solvable Takhtajan-Babujian model;15 the transi-
tion at u52p/4 is of the Ising type and the ground state
u,2p/4 is spontaneously dimerized with a finite gap to t
lowest excitations.4–9,13The dimerized phase extends at lea
up to and over the pointu52p/2 which has a twofold de-
generate ground state and finite gap.16–18

Chubukov11 used the Holstein-Primakoff-type Boson
representation of spin-1 operators10 based on the quadrupola
ordered ‘‘spin nematic’’ reference state with^S&50, ^Sx,y

2 &
51, ^Sz

250&, and suggested, on the basis of the renorm
ization group ~RG! arguments, that the region withu
*5p/4 is a disordered nematic phase. Early numeri
studies21 seemed to have ruled out this possibility, and
common belief now22,23 is that the dimerized phase exten
all the way up to the ferromagnetic phase, i.e., that it ex
in the entire interval 5p/4,u,7p/4. However, recent nu-
merical results24 indicate that the dimerized phase ends
certainuc.5p/4, casting doubt on the conclusion reach
nearly a decade ago.

The aim of the present paper is to show that the lo
energy dynamics of the model~1! for u*5p/4 can be effec-
tively described by the nonlinears model for a unitdirector
field ~i.e., a unit vector whose opposite directions are phy
cally identical!. The coupling constant becomes small in t
vicinity of the ferromagnetic phase boundaryu55p/4. This
formulation allows one to establish many properties of
nematic phase by using extensive results available for
standard~vector field! O~3! nonlinear s model. We also
study the effect of external magnetic field, which can
easily incorporated in our formalism. We argue that in 1D t
ground state is disordered, in a complete analogy with
Haldane phase in case of the vector O~3! model, and its
elementary excitation is a massive triplet. In 2D, long-ran
nematic order exists only atT50. An explicit solution for
the Belavin-Polyakov instanton withhalf integercharge in a
(111)-dimensional isotropic nematic is presented.

We start by introducing the following set of cohere
states forS51:
©2003 The American Physical Society01-1
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uu,v&5(
j

~uj1 iv j !ut j&, j P~x,y,z!, ~2!

whereut j& are three ‘‘Cartesian’’ spin-1 states:

u6&57~1/A2!~ utx&6 i uty&), u0&5utz&. ~3!

The coherent state is characterized by vectorsu andv satis-
fying the normalization constraintu21v251. The freedom
to choose an overall phase factor can be fixed by set
u•v50. It is easy to check that the resolution of ident
(3/4p2)*D(u,v)uu,v&^u,vu51 holds.

In what follows we are interested in the region aroundu
55p/4, hence it is convenient to use the notation

cosu[2J1 , sinu[2J2 , J2*J1.0.

Using the states~2!, one can construct the coherent state p
integral, and the effective Lagrangian will have the form

Leff522\(
n

vn•] tun2(
^nd&

^ĥn,n1d&, ~4a!

where the average of the local Hamiltonian for two neig
boring sites 1 and 2 is, up to a constant, given by

^ĥ12&524J1$~u1•u2!~v1•v2!2~u1•v2!~v1•u2!%

2J2$~u1•u22v1•v2!21~u1•v21v1•u2!2%

2B•~u13v11u23v2!. ~4b!

Here we have included the Zeeman term2B•(nSn describ-
ing external magnetic fieldB.

Assuming a uniform ground state and minimizing^Ĥ&,
one arrives at the mean-field phase diagram shown in
1~a!: at zero field the ferromagnetic phase withu5v
51/A2 is stable forJ2,J1, and atJ25J1 one has a degen
erate first-order transition into the nematic phase withv50
and parallel alignment ofu ~actually,u andv can be used on
equal terms, and we just voluntarily choosev to be zero in

FIG. 1. SchematicT50 phase diagram of the model~1! in the
vicinity of the critical pointJ25J1: ~a! in dimensionD>2; ~b! in
one dimension.
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g

h

-

g.

the ground state!. Note that vectoru is in this case adirector
since u and 2u correspond to the same state. In extern
field the system acquires finite magnetization^S&5B/@Z(J2
2J1)#, whereZ is the coordination number of the lattice
while nematic order persists in plane perpendicular toB. The
magnetization increases with the field, and atB5Z(J2
2J1) the nematic undergoes a second-order phase trans
into the phase with fully saturated magnetic moment.

Our next aim is to study how the above classical me
field picture changes due to quantum or thermal fluctuatio
We pass to the continuum limit in Eqs.~4a! and ~4b!, view-
ing u and v as smooth field distributions. From the mea
field solution one may assume thatv!u, and from the form
of the Lagrangian~4a! it is clear thatv plays the role of
momentum conjugate tou, so thatv will be eventually pro-
portional to the time derivative ofu ~later this will be
checked in a self-consistent way!. We will thus keep only
terms up to the second order inv, and derivatives ofv will
be neglected. Doing so, one obtains the following continu
version of the Lagrangian:

L@u,v#5V0
21E dDr H 22\v•] tu22Z~J22J1!u2v2

12v•~B3u!2~J2/2! (
a51

Z

@~da•“ !u#2J , ~5!

where V0 is the volume of the elementary cell of th
D-dimensional lattice,da are vectors describing the positio
of Z nearest neighbors with respect to a given lattice site,
constraintsu21v251, u•v50 are implied. In what follows,
we will assume for simplicity that the lattice is hypercubi
thenZ52D, V05aD, and (dk•“)5a¹k , k51•••D, where
a is the lattice constant.

The ‘‘slave’’ variablev under the assumptionv!u can be
integrated out, yielding

v5@2Z~J22J1!#21$~B3u!2\] tu%. ~6!

Substituting Eq.~6! back into Eq.~5! gives the following
effective Lagrangian depending onu only:

Leff5
J2

c2E dDr

aD22 H S ] tu2
B3u

\ D 2

2c2(
k51

D

~¹ku!2J , ~7!

wherec5@2ZJ2(J22J1)#1/2a/\ is the characteristic limiting
velocity, andu now should be considered as a unit vect
u251. Note that according to Eq.~6! a change of sign ofu
automatically means a sign change forv, so thatu is in this
approximation completely equivalent to2u. The above de-
scription is valid at the energy scalesE,E052Z(J22J1).
One readily observes that Eq.~7! is nothing but the Lagrang
ian of the well-known nonlinears model used as the effec
tive theory for antiferromagnets1,25 ~without the topological
term!. Even the additional terms in the second line of Eq.~7!,
describing the effect of the external magnetic field, are id
tical to those appearing in thes model for antiferromagnets
Thus, the low-energy dynamics of model~1! in the nematic
phase is similar to the dynamics of an antiferromagnet, w
1-2
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the only yet important difference that instead of the un
vector of sublattice magnetization one now has the nem
directoru: the order parameter space isRP2 instead ofS2.
The s-model formulation, in contrast to the spin-wave a
proach of Chubukov,11 allows one to study full nonlinea
dynamics of the problem.

At zero field, one can rewrite the Lagrangian~7! in a
standard notation using dimensionless space-time varia
x5(x0 ,x), x5r/a, x05 ict/a. The effective Euclidean ac
tion takes the following compact form:

AE

\
5

1

2gE S ]u

]xm
D 2

dD11x, ~8!

with the coupling constantg is defined as

g5$Z~J22J1!/2J2%
1/2. ~9!

Note that smallness of the coupling constant does not req
a large-S approximation, and is controlled solely by th
closeness to the ferromagnetic phase boundary.

In one dimension(D51) continuous symmetry cannot b
broken, and the ground state of Eq.~8! is disordered with
exponentially decaying correlations. The correlation lengtj
for the usual O~3! ~vector! s model can be obtained within
Polyakov’s RG approach26 as jO(3);ae2p/g. In the RP2 s
model, however, there is a rescaling in flow equations
cause of the change in the measure: the physical field is
u, but the bilinear projectorR5uT

^ u. The action can be
rewritten as

AE

\
5

1

4gE ^]mR,]mR&dD11x, ~10!

where ^A,B&5tr(ATB) denotes the scalar product. Theb
function in the leading order is the same as for the O~3!
model,27 b(G)52(1/2p)G2, with the trivially rescaled cou-
pling constantG52g. Thus for the correlation length in th
RP2 s model one obtains

jRP2;aep/g5aepAJ2 /(J22J1), ~11!

in agreement with Chubukov’s one-loop RG result11 for in-
teracting spin waves. The elementary excitation is a mas
spin-1 triplet, and the gapD5\c/j opens up exponentially
slow as one moves away from the phase transition poinJ2
5J1:

D;2@J2~J22J1!#1/2e2pAJ2 /(J22J1). ~12!

The RP2 and O~3! s models are also different with re
spect to their topological excitations. In the O~3! model there
is a localized solution with nonzerop2 topological charge
Q5(1/8p)*d2x«mnu•(]mu3]nu), known as the Belavin-
Polyakov instanton~BPI!.28 The simplest BPI withQ51 is
described byw5(z2a)/(z2b), where the complex variable
w(u)5(u11 iu2)/(12u3) is defined as a function of th
complex coordinatez5x11 ix0, and generallyany analyti-
cal function w(z) yields a solution.28 The BPI actionABPI
54p\Q/g does not depend on the parametersa, b which
can be interpreted as coordinates of elementary enti
05240
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merons, constituting a BPI. It was speculated,25,29 that the
correlation lengthjO(3)}eABPI/2\ is related to the concentra
tion of merons.

In the RP2 case the director nature of the field mak
possible BPI-type defects with half integerQ, whose action
is exactly one-half of that for their O~3! s model counter-
parts: Indeed, consider a solution of the formw5w1(z)
5A(z2a)/(z2b). For the O~3! s model such a solution
would be invalid, because it has a branch cut. In a nema
however,w(u) andw(2u) are physically identical, and the
above solution can be matched with another one,w5w2(z)
5A(z2b)/(z2a), so thatw2(u)5w1(2u) on some line.
This is easily achieved by choosing the cuts as shown in
2. This solution hasQ56 1

2 , and its action is just one-half o
that for the O~3! BPI. Curiously, this fact correlates with th
extra factor1

2 in the correlation length exponent~11!.
In the RP2 model there is another type of topologic

defects, disclinations, characterized by ap1 topological
charge~vorticity! q. It is argued that their presence cou
produce the BKT transitionin the isotropic case.30 However,
one can see that such a transition would occur above s
critical value of the couplinggBKT of the order of 1, and as
long asg5(12J1 /J2)1/2!1, one may expect that the dis
clinations will be bound in pairs and their effect can be n
glected.

Our approach easily allows one to incorporate the eff
of an external magnetic field. Weak magnetic fieldB,D acts

FIG. 2. Belavin-Polyakov-type soliton in a spin nematic:~a! the
solution is given byw1(z) in the upper half plane~respective to the
line connecting pointsa and b), and byw2(z) in the lower half
plane, with the appropriate branch cuts shown as thick solid li
and numbers denoting the phase ofw; ~b! schematic view of the
solution, nematic directoru is shown as an ellipsoid in a projectio
onto the figure plane; white spot indicates the end of ellipsoid tha
under the figure plane.
1-3



ic
b

n

u
n

e
n
e
t

io
ti

it

m-

ts a
of

of
in-
e-

5

,
e

s.

tt.

a

BRIEF REPORTS PHYSICAL REVIEW B68, 052401 ~2003!
on the spectrum only in a trivial way~the Zeeman shift!, but
at B5D the gap closes and the system enters the crit
phase with algebraically decaying correlations, which can
characterized as the Tomonaga-Luttinger liquid.31 The result-
ing phase diagram for the one-dimensional case is show
Fig. 1~b!.

For D52, at zero temperature the ground state sho
have long-range nematic order, in agreement with recent
merical results,32 as long asg is small compared to som
finite valuegc of the order of 1 which marks the transitio
into a quantum disordered phase. This latter transition is
pected to be the same as a finite-temperature transition in
three-dimensional classical Lebwohl-Lasher model, which
the first order supposedly due to the effect of disclinat
lines.33 At T50 the phase diagram in presence of magne
field has the mean-field form of Fig. 1~a!. At TÞ0 andB
50 nematic order is destroyed by thermal fluctuations, w
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