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Ab initio calculations of the lattice dynamics of boron nitride nanotubes
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We present an extensive first-principles study of the phonons in boron nitride nanotubes using density
functional perturbation theory in the local density approximation. Based on the nonsymmorphic rod-group
symmetry of the tubes, the Raman- and infrared-active modes at theG point of the one-dimensional Brillouin
zone are evaluated. For zigzag and chiral nanotubes, the set of infrared-active modes is a subset of the
Raman-active modes. In particular, the radial breathing mode is not only Raman but also infrared active.
However, for armchair tubes, the sets of infrared- and Raman-active modes are disjoint. This may serve to
spectroscopically distinguish between macroscopic samples of zigzag-chiral and armchair nanotubes. We
present the frequencies of the active modes of zigzag, chiral, and armchair tubes as a function of the tube
diameter and compare the results with the frequencies obtained by the zone-folding method, i.e., the rolling of
a single hexagonal BN sheet into a tube. Except for the high-frequency tangential modes, the zone-folding
results are in very good agreement with theab initio calculations. The radial breathing mode frequency can be
derived by folding a sheet offinite width. Finally, we show that the effects of bundling on the phonon
frequencies are small. This demonstrates that the obtained results for isolated BN tubes may serve as a basis for
an accurate assignment of phonon modes in spectroscopic measurements.

DOI: 10.1103/PhysRevB.68.045425 PACS number~s!: 78.20.Bh, 63.22.1m, 61.48.1c, 78.30.2j
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I. INTRODUCTION

Besides carbon nanotubes1 which are a promising mate
rial due to both their mechanical strength and their intere
ing electronic properties,2,3 boron nitride ~BN! tubes have
recently attracted increased attention. Their stability was
predicted based on tight-binding4 and first-principles5 calcu-
lations, and shortly afterwards, their synthesis was achiev6

Meanwhile, production of BN tubes has been reported
different groups around the world.7–13 Recently, the fabrica-
tion of single-wall BN tubes in gram quantities has be
achieved.14

In contrast to C nanotubes which can be either semic
ducting or metallic, depending on the chirality of the tub
BN nanotubes are always semiconducting with a large b
gap of about 5.5 eV. Density functional theory~DFT! calcu-
lations and quasi particle calculations have shown that
gap is nearly independent of the tube diameter, chirality,
whether the nanotube is single walled, multiwalled,
packed in bundles.4,5 @The DFT band gap is pinned at th
constant value of about 4 eV whereas self-energy correct
to the quasiparticle energies open the gap to 5.5 eV~Ref.
15!#. A structural difference between BN and C tubes is t
for tubes with small diameter, the BN system buckles w
the B atoms moving inward and the N atoms outward.5 This
results in a dipolar double cylinder shell structure, whi
combined with the fact that BN tubes exhibit quantum pol
ization effects16 makes them attractive for electromechanic
applications and as piezoelectrics. The uniform electro
properties suggest that BN nanotubes may have signifi
advantages for applications in electronic and mechanical
vices. Furthermore, the bottom of the conduction band
0163-1829/2003/68~4!/045425~13!/$20.00 68 0454
t-

st

.
y

n-
,
d

is
d

r

ns

t

-
l
ic
nt
e-
a

nearly free-electron-like state. This state remains the bot
of the conduction band even in the multiwall case and, in
case ofn-type doping, will play an important role for poten
tial applications in field emission devices and molecu
transport.17

Raman and infrared~IR! spectroscopy in which phonon
are excited by inelastic scattering of light or light absorptio
respectively, are convenient tools to investigate the com
sition of macroscopic samples of nanotubes. Early Rama18

and infrared19 investigations were performed on samples
multiwall carbon nanotubes~MWNT’s! and showed signa
tures close to those of graphite. However, after the prod
tion of single-wall nanotubes~SWNT’s! in large quantities,
resonant Raman spectroscopy turned into a very prec
highly diameter selective identification tool.20 Especially the
low-frequency Raman modes such as the radial breath
mode~RBM! strongly depend on the tube diameter and
cilitate identification. The high-frequency modes are on
weakly diameter dependent, but their intensity in the re
nant Raman spectra strongly depends on the diam
through the electronic excitation energy.21 IR spectroscopy
on SWNT’s ~Ref. 22! shows only small differences whe
compared to IR data of graphite. For BN nanotubes, the s
ation is quite different: The Raman intensities in the visib
light frequencies are weaker than for C nanotubes, since
Raman scattering is nonresonant due to the wide band g23

On the other hand, BN is a polar material and shows a m
higher IR absorbance than C nanotubes.23,24 It is expected
that the combination of Raman and IR spectroscopy w
develop into a standard characterization tool for BN tub
such as it is already in the case of C tubes. At this stage
very important to have a detailed knowledge of phonon f
©2003 The American Physical Society25-1
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quencies in BN nanotubes and to understand the depend
on diameter and chirality, in order to guide future expe
ments. This is the goal of the present work where for the fi
time reliableab initio phonon calculations are presented f
BN nanotubes.

For graphite and carbon nanotubes, many calculation
phonons have been performed using the force cons
approach2,25 where interatomic force constants up to fourt
nearest-neighbor interaction have been fitted to experime
data. This approach is very fast and, in combination with
zone-folding method2 ~i.e., the construction of phonons i
the tube from the phonons of a sheet which is rolled up
form the tube!, allows a good intuitive understanding o
phonons in nanotubes. However,ab initio calculations of the
phonon dispersion relation of graphite26–28 using DFT dis-
play a deviation of up to 200 cm21 from the dispersion re-
lation obtained with the force constants of Ref. 25 wh
being in good agreement26,27 with experimental data. Going
beyond the force constant approach, phonons in car
nanotubes have been calculated using tight-bind
techniques,29 DFT with a localized-orbital approach,30,31 and
DFT calculations employing plane waves28,32,33 which are
the most accurate calculations up to date. For this reaso
a recent joint experimental and theoretical study of Ram
and IR spectra of single-wall BN nanotubes,23 we have em-
ployed this method to calculate phonons for a reliable d
cussion of the observed peaks. In this paper, we prese
detailed account of the calculations and the theoretical
sults. Phonons in BN nanotubes have also been calculate
a tight-binding technique34 and by a valence-shell model o
the lattice dynamics.35 The tight-binding results lack predic
tive power as they show important differences in the hig
and medium-frequency regimes of the dispersion relation
the single sheet when compared with experiment and w
earlier ab initio calculations of hexagonal BN.36 However,
the valence-shell model, as its parameters are fitted to
data onh-BN, reproduces rather well the phonons of t
tubes.

Section II describes the method of calculation. The eq
librium geometry of the tubes is discussed in Sec. III. In S
IV we present the dispersion relation of the hexagonal
sheet and of BN tubes and discuss the characteristic di
ences with respect to the graphene sheet and C nanotub
Sec. V we review the symmetry analysis of the Raman-
infrared-active modes at theG point. In Sec. VI we explain
how the symmetry assignment can be intuitively underst
by the zone-folding method. In Sec. VII we present the m
results of this paper, the frequencies of active modes in
zag, chiral, and armchair tubes as a function of tube dia
eter. Finally, Sec. VIII discusses how the phonon frequenc
are influenced by packing the tubes into bundles. The App
dix discusses the deviation of the zone-folding proced
from theab initio results for the low phonon frequencies a
presents a derivation for the frequency of the radial breath
mode by folding a sheet of finite width.

II. METHOD

The calculations have been performed with the codeAB-

INIT ~Ref. 37! using DFT~Ref. 38! in the local density ap-
04542
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proximation~LDA ! ~Ref. 39!. We employ Troullier-Martins
pseudopotentials40 and a plane-wave basis set with an ener
cutoff at 80 Ry. The~infinitely long! BN tubes are periodic
along the tube axis (z direction!. Since the use of a plane
wave expansion requires periodic supercells in all three
mensions, we calculate effectively a triangular periodic ar
of nanotubes. In order to keep the effect of intertube inter
tions low, we use a closest distance of 7.4 Å between
tubes. In a first step, the tube geometry is optimized until
forces acting on all atoms are smaller than 2
31023 eV/Å. At the same time, the stress along the tu
axis is minimized by optimizing the unit-cell size in thez
direction. The resulting tube geometry is discussed in S
III.

The phonon frequenciesv as a function of the phonon
wave vectorq are the solution of the secular equation

detU 1

AMsMt

Cst
ab~q!2v2~q!U50. ~2.1!

Ms and Mt denote the atomic masses of atomss and t and
the dynamical matrix is defined as

Cst
ab~q!5

]2E

]us*
a~q!]ut

b~q!
, ~2.2!

whereus
a denotes the displacement of atoms in directiona.

The dynamical matrix can be calculated by displacing
atoms of the unit cell into all three directions, performing
energy calculation of the perturbed geometry and calcula
the second derivatives in Eq.~2.2! by a finite-difference
method. This way has been chosen in the phonon calc
tions of Ref. 28 for carbon nanotubes. In our calculations,
treat the atomic displacement as a perturbation of the e
librium geometry and use density functional perturbati
theory~DFPT! ~Ref. 41! as implemented inABINIT ~Ref. 42!
for the calculation of the dynamical matrix. Since the spa
group symmetry of a periodic array of nanotubes does
reflect the helical symmetry of isolated BN nanotubes,
principle, each atom of the unit cell has to be displaced in
three directions. However, if the distance between the tu
is large enough such that they are quasi-isolated, it is su
cient to displace only the symmetry-inequivalent atoms
the unit cell. The residual elements of the dynamical ma
are obtained by application of the appropriate symme
transformations. Thus, in carbon nanotubes, only the
placements of one atom need to be calculated,28,43and in BN
tubes the displacements of two atoms~one B and one N!
have to be calculated. For BN tubes, this symmetrizat
only works if a sufficiently large intertube distance~7.4 Å! is
used, because a smaller intertube distance leads to arti
deformations from the cylindrical geometry of the tube.44

We used a 10310 Monkhorst-Packk-point sampling of
the first two-dimensional~2D! Brillouin zone ~BZ! for the
BN sheet~corresponding to a 1031031 grid in the 3D BZ
of the periodic supercell with an intersheet distance of
Å!. For the 1D BZ of armchair~zigzag! BN tubes, 10~6!
points were used, corresponding to 5~3! irreduciblek points.
We have checked that this set ofk points and energy cutoff a
5-2
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AB INITIO CALCULATIONS OF THE LATTICE . . . PHYSICAL REVIEW B 68, 045425 ~2003!
80 Ry leads to phonon frequencies converged to wit
4 cm21. Since hexagonal BN and BN tubes are wide-ba
gap insulators with relatively flat bands, considerably fewek
points are needed to reach convergence for BN than
graphite and carbon nanotubes. The proper description o
phonon modes in metallic C nanotubes requires a m
largerk-point sampling due to the subtle opening of an el
tronic band gap for certain phononic displacements.33

Sinceh-BN is a polar material where N is slightly nega
tively charged and B slightly positively, the long-range ch
acter of the Coulomb potential gives rise to a macrosco
electric fieldE for longitudinal optical phonons in the limi
q→0. This gives rise to a splitting~LO-TO splitting! be-
tween the longitudinal and transverse optical modes wh
amounts to about 200 cm21 at the G point.36 In order to
properly account for this effect, the dynamical matrix@Eq.
~2.2!# must be corrected under inclusion of the Born effect
charge tensorZs*

ab of the ions and the static dielectric tens
e`

ab . Both quantities can be calculated in DFPT~Refs. 41
and 42! from the macroscopic electric polarizationP of the
medium. For a densely packed periodic array of tubes
similar splitting is expected and can indeed be observe45

However, this effect is restricted to three-dimensional~infi-
nitely extended! systems. In this article we are dealing wi
the frequencies of isolated tubes or small bundles of tub
As long as the diameter of the nanotube bundles is sma
than the wavelength of the laser light, the system is eff
tively one dimensional and no LO-TO splitting takes plac

III. EQUILIBRIUM GEOMETRY

The calculation of phonons starts with a determination
the optimized tube geometry by minimizing both stress a
Hellmann-Feynman forces. Minimization of the stress in
sheet leads to a BN bond length of 1.44 Å which is close
the literature value of 1.45 Å for bulkh-BN.46 It was already
noted in the first LDA studies of BN tubes5 that the boron-
nitrogen bonds display a buckling with the nitrogen ato
moving slightly outwards and the boron atoms movi
slightly inwards~see inset of Fig. 1!. This leads to the for-

FIG. 1. Buckling distance in BN single-wall nanotubes as
function of tube diameter.
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mation of a negative outer N cylinder and a positive inner
cylinder. Figure 1 shows that the buckling distance betwe
these two cylinders is to a very good approximation
versely proportional to the tube diameter~except for the
tubes with very small diameters where the decrease is fas!.
In Ref. 5 it was described that the threefold-coordinated~and
slightly positively charged! boron atoms have the tendenc
to keep the planarsp2 bonding geometry with bond angles o
120° while the~slightly negatively charged! nitrogen atoms
are more susceptible to an admixture ofsp3 hybridization
leading to smaller bond angles. With this hypothesis, a v
simple explanation of the 1/r dependence can be given. Th
inset of Fig. 1 shows a two-dimensional projection of t
buckled geometry for a (n,0) zigzag tube. The nitrogen a
oms are located at the corners of the polygon with dista
r N from the center. The boron atoms are accordingly pla
at the midpoints of the sides of the polygon. The angleu is
inversely proportional ton and thereby to the tube radiusr.
Therefore, also the buckling distance is inversely prop
tional to the radius:r N2r B5r 2r cosu'r2r(121

2u
2)}1/r .

For smaller tube radii (D52r ,7 Å) the strain energy due
to the curvature of the tube~see Ref. 5! becomes so large tha
the boron atoms no longer keep their planar bonding ge
etry but also acquire an admixture ofsp3 hybridization.

IV. PHONON DISPERSION RELATIONS

We start the presentation of phonons with the calcula
phonon dispersion relation of the hexagonal BN sheet in F
2. Through the zone-folding procedure this gives a go
quantitative estimate for the phonon frequencies in the tub
For comparison we have added with dotted lines the pho
dispersion relation of the graphene sheet. The latter one
almost perfect agreement with the recent calculation
Dubay and Kresse.28,47 In general, the phonons of the BN
sheet are considerably softer than the phonons of
graphene sheet which is related to the fact that the ela
constants ofh-BN are smaller than the ones of graphite. Fu
thermore, the degeneracy of the out-of-plane acoustic
optical ~ZA and ZO! modes and the degeneracy of the lo
gitudinal acoustic and optical~LA and LO! modes in

FIG. 2. Calculated phonon dispersion relation of the single h
agonal BN sheet~solid lines! in comparison with graphene~dotted
lines!.
5-3
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WIRTZ, RUBIO, de la CONCHA, AND LOISEAU PHYSICAL REVIEW B68, 045425 ~2003!
graphene is lifted in BN due to the different masses of B a
N. As discussed in Ref. 28, the agreement between the
and experimental data on phonons in graphite50,51 is very
good except for the LA branch at theM point which seems
too low by about 200 cm21. The origin of this discrepancy is
not yet clear and needs to be revisited both experiment
and theoretically. We note, therefore, that a similar discr
ancy could occur for the BN sheet at theM point. Due to the
difficulty of producing high-quality crystals ofh-BN, experi-
mental data on the phonon-dispersion relation is so far o
available for a monolayer ofh-BN on a metal substrate,52

giving rise to strong deviations from the theoretical phon
dispersion relation.36

The phonon dispersion relation of the sheet follows v
closely theab initio calculated dispersion relation of bul
hexagonal BN~Ref. 36! when one subtracts the phono
branches that are influenced by the interplane interact
This is analogous to the comparison of phonon dispers
relations in the graphene sheet28 and in bulk graphite26,27and
due to the fact that the intersheet interaction is much wea
than the interaction between atoms within the sheet. H
ever, in contrast to the nonpolar graphite, BN is a polar s
stance with a long-range dipole-dipole interaction betwe
the sheets. This leads to a splitting between the longitud
and transverse optical mode~LO-TO splitting! at theG point
with the LO mode being higher in energy due to its coupli
to a self-induced homogeneous electric field. Therefore,
dispersion relation of bulk hexagonal BN~Fig. 3 of Ref. 36!
displays two LO modes; the lower branch shows a stro
overbending in the directionM→G but is degenerate with
one of the TO branches atG. This is the branch which cor
responds to an oscillation with a phase difference ofp be-
tween nearest-neighbor planes. The higher LO branch
which neighboring planes oscillate in phase displays a s
ting of more than 200 cm21 with respect to the correspond
ing TO mode atG.

As pointed out in Refs. 16 and 34, the effect of LO-T
splitting should be absent in a two-dimensional single sh
Since we use a plane-wave DFT code, however, we ca
calculate a really isolated sheet of BN, but only a ‘‘bulk
system with enlarged intersheet distance. We have obse
that the corresponding artificial LO-TO splitting decreas
with the intersheet distance, but still amounts to 180 cm21 at
an intersheet distance ofdz57.3 Å which is about twice the
equilibrium distance of hexagonal BN and a distance wh
the ‘‘chemical’’ interaction that would arise from the overla
of wave functions of neighboring sheets has long faded
In order to simulate an isolated sheet, we have there
applied a computational trick for the LO branch: We calc
late the dispersion using az component of the phonon wav
vectorqz5p/dz where two neighboring sheets oscillate o
of phase and the dipoles created in a unit cell through ato
displacement are exactly canceled out through the oppo
dipole in a neighboring sheet. In this way, the interpla
electrostatic interaction decreases much faster and adz
57.3 Å, the phonon frequencies of the LO branch have
ready converged to an estimated value of 10 cm21 from the
isolated sheet. The resulting LO branch in Fig. 2 displays
overbending which is not only much stronger than the ov
04542
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bending in the graphene sheet, but also more pronoun
~and with a maximum closer toG) than the corresponding
LO branch of hexagonal BN. Also, the overbending is mo
pronounced than in the calculation of the sheet dispers
relation by Miyamotoet al.53 who used DFT employing a
periodic supercell.

In Fig. 3 we compare theab initio phonon dispersion
relation of a~6,6! BN nanotube with the corresponding zon
folding dispersion relation. The zone-folding method wor
equally good as in the case of carbon nanotubes.28 Here and
there, the major difference lies in the low-frequency part
the spectrum and is due to the coupling of in-plane and o
of-plane modes of the sheet upon rolling into a tube. T
leads to a stiffening of the low-frequency tube modes. A
other pronounced difference is the avoided crossings in
ab initio dispersion relation. According to the noncrossi
rule of von Neumann and Wigner,54 energy levels of modes
which have the same symmetry do not cross when an a
batic parameter~in this case the phonon wave vectorq) is
changed. A prime example is the longitudinal optical mo
~marked by boxes! which starts from zero frequency at theG
point with the same slope as the LA mode of the sheet~com-
pare Fig. 2! and displays a clear avoided crossing with t
radial breathing mode@v(k50)5251 cm21, marked by as-
terisks# at k'0.2p/T. Both modes haveA1 symmetry at the
G point ~see next section!. Note that the ‘‘diabatic’’ disper-
sion curve of the RBM is nearly planar inq over a wide
range of the Brillouin zone. This is independent of chiral
~we observed the same behavior in the dispersion of zig
tubes! and can also be seen in the dispersion relations of R
28 for carbon tubes.

A more detailed analysis of the zone-folding of Rama
and infrared-active modes follows in Sec. VI and in the A
pendix. In general, the zone-folding method not only rep
duces quite well the dispersion relation, but also yields
good estimate of the total phonon density of states, e

FIG. 3. Calculated phonon dispersion relation and density
states~DOS! in the (6,6) armchair BN nanotube. We compare t
results ofab initio calculations with the zone-folding method~see
text for details!. In the right panel the solid line is theab initio DOS
and the dotted line the zone-folding DOS. The symbols in the
panel indicate the avoided crossing between the RBM~asterisks!
and the longitudinal acoustic mode~boxes!.
5-4
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AB INITIO CALCULATIONS OF THE LATTICE . . . PHYSICAL REVIEW B 68, 045425 ~2003!
though some systematic deviation towards higher pho
frequencies is clearly visible in the right panel of Fig. 3.

V. SYMMETRY ANALYSIS

In Raman and IR spectroscopy, only phonons at~or close
to! theG point of the one-dimensional Brillouin zone can b
excited ~as long as we restrict our discussion to first-ord
processes!. Furthermore, in Raman spectroscopy, only mod
that transform under symmetry operations as a quadr
form are active, in IR spectroscopy only modes that tra
form as a vector.55 For ~infinitely extended! systems with
translational symmetry, the ‘‘point group in the space grou
determines through the selection rules which modes are
tive and which are not. In quasi-one-dimensional syste
with translational symmetry, it is accordingly the ‘‘poin
group in the rod group’’ that has to be evaluated. This w
done recently by Damnjanovic´ et al.56 and by Alon57 for C
nanotubes and BN nanotubes.58 Figure 4 summarizes th
findings for BN tubes: It can be easily seen that the unit c
of a (n,0) zigzag tube possesses ann-fold rotation axis~with
rotation anglef52p/n). In addition,n ~indeed, even 2n)
vertical reflection-symmetry planes~containing the tube
axis! can be found. Thus the unit cell of a zigzag tube tra
forms under theCnv symmetry group. In the infinitely ex
tended tube, the operations of theCnv point group are valid
as well, but—in addition—a rotation byf/2 with subsequen
translation byT/2 also maps the system onto itself. Th
leads to the conclusion that for the infinitely extended s
tem, theC2nv symmetry group is the relevant one for sym
metry analysis of Raman- and IR-active modes. Analogou
for (n,n) armchair tubes, the symmetry group of the unit c
is Cnh and the symmetry group of the infinitely extend
tube isC2nh . Finally, for chiral (n,m) tubes, the unit cell has
the low point-group symmetryCd , whered is the greatest
common divisor ofn andm. However, the infinitely extended
tube is described by theCN symmetry group, whereN is the
number of hexagons (52 times the number of atoms! per
unit cell which is, in general, much larger thand.

The number of active modes is found by determining h
often each irreducible representation appears in the~reduc-
ible! representation of the symmetry group (C2nv , C2nh , or
CN , respectively! which is given by the 12n vibrational de-
grees of freedom of the unit cell. For zigzag tubes this le
to 14 Raman-active modes58 ~3 with A1 symmetry, 5 withE1
symmetry, and 6 withE2 symmetry, where theE1 and theA1
modes with vanishing frequency have already been s

FIG. 4. Comparison of the point-group symmetry of the unit c
with the space-group symmetry of zigzag BN tubes.
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tracted!. Out of these modes, 8 modes (3A1 and 5E1) are
also IR active. In the case of chiral tubes, there are 15 Ra
active modes (4A, 5E1, and 6E2) out of which 9 modes
(4A and 5E1) are also IR active. The small difference in th
number of active modes between zigzag and chiral tu
stems from the fact that the additional vertical reflecti
symmetry of the zigzag tube causes a distinction betw
Raman1IR active A1 modes and nonactiveA2 modes. The
sets of Raman- and IR-active modes for BN armchair tu
are disjoint: 9 modes are Raman active~3 with Ag symmetry,
2 with E1g symmetry, and 4 withE2g symmetry! and 4
modes are IR active~1 with Au symmetry and 3 withE1u
symmetry!.59 In the next section, it will be explained how
these modes can be constructed from the modes at or clo
the G point in the BN sheet.

Under certain experimental conditions, if the tubes a
short compared to the wavelength of the scattered laser li
the tubes are expected to display the spectroscopic prope
of very large molecules rather than of infinitely extend
systems~finite-size effect!. The BN tubes that were recentl
investigated by IR and Raman spectroscopy had a typ
length between 100 nm and 400 nm,23 i.e., of the order of the
wavelength of visible light and definitely shorter than t
wavelength of infrared light. These tubes are indeed lo
enough such that the phonon frequencies correspond to
frequencies of infinitely extended systems. However, for
evaluation of active modes, the point group of the ‘‘mo
ecule’’ should be used. Assuming that the closing caps at
tube ends are constructed such that they do not further re
the symmetry of the system, the point group of the fin
zigzag tube isCnv , coinciding with the point group of the
unit cell. The symmetry of the finite armchair tubes can
either Cnh or S2n . Finite-length chiral tubes have either n
point group symmetry or a very lown-fold rotation axis,
depending on the rotation symmetry of the unit cell.

Due to the relaxation of symmetry constraints, addition
active modes may show up in the spectra. For zigzag tu
16 additional modes (4A1 , 6E1, and 6E2) are Raman ac-
tive, out of which 10 (4A1 and 6E1) correspond to modes
that are also IR active. For armchair tubes~assumingCnh
symmetry!, 10 additional modes (4Ag , 2E1g , and 4E2g) are
Raman active and 6 additional modes are IR active (2Au and
4E1u).60 In the zone-folding picture, these additional mod
correspond to modes at or close to theM point in the BN
sheet. In chiral tubes, if the unit cell does not have any sy
metry, all modes can, in principle, be Raman and IR acti
However, the intensity of most of the modes may be ve
weak and decreases with increasing tube length. We note
the reduced symmetry of finite-length tubes does not in
ence the fact that Raman- and IR-active modes are disj
for armchair tubes and for zigzag and chiral tubes the
active modes are a subset of the Raman-active modes.

VI. ZONE-FOLDING METHOD

In this section we review the zone-folding method whi
has been frequently used for the calculation of electro
band structure and phonons in C nanotubes2,3 and demon-
strate how the different Raman- and infrared-active mo

l
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can be deduced from it in the case of BN nanotubes. Th
the symmetry analysis of the previous section can be un
stood in a pictorial way. Figure 5~a! demonstrates the sce
nario for (n,0) zigzag nanotubes. The sheet is rolled up s
that the tube axis is parallel to the translation vectorTW whose
lengths corresponds to the lengths of the one-dimensi
unit cell of the tube. The componentK' of the phonon wave
vector KW which points into the circumferential direction o
the tube is quantized. For zigzag nanotubes this means th
reciprocal space,K' can assume 2n discrete values (m
50, . . . ,2n21) along the lineG→K→M→K→G. The
parallel componentK i is unrestricted. However, the Rama
and IR-active modes are modes at theG point of the one-
dimensional Brillouin zone of the tube and correspond th
to K i50. Since the points atm and 2n2m are equivalent in
reciprocal space, all modes of the tube are doubly dege
ate, except for the mode that corresponds tom50 ~the G
point of the sheet! and the mode that corresponds tom5n
~the M point of the sheet!. If one applies the strict selectio
rules according to theC2nv symmetry group, the modes o
the sheet atG map onto tube modes withA symmetry, the
modes atM map onto modes ofB symmetry, and the mode

FIG. 5. Sketch of the zone-folding method~a! for (n,0) zigzag
nanotubes,~b! for (n,n) armchair nanotubes, and~c! for (4n,n)
chiral nanotubes. Left side: a hexagonal BN sheet is rolled i

perpendicular direction to the primitive translation vectorTW . The
componentK' of the phonon wave vector in the circumferenti
direction is quantized. Right side: in the two-dimensional Brillou
zone of zigzag nanotubes, the quantization corresponds to 2n steps
along the lineG→K→M→K→G. In armchair nanotubes 2n dis-
crete steps are taken along the lineG→M→G, while in chiral tubes
the discretization proceeds along a line connecting more distaG
points. The points at and close toG give rise to the Raman- an
IR-activeA, E1, andE2 modes.
04542
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at m51, . . . ,n21 map onto modes of symmetr
E1 , . . . ,En21. Since there are six different phonon branch
in the sheet, there are six different phonon modes in the t
for each of the above symmetries. Each of the six phon
branches leads ton11 different phonon modes in the tube
(n21) E modes, oneA mode, and oneB mode. Since theE
modes are doubly degenerate, this sums up to 12n phonon
modes corresponding to the 4n atoms in the unit cell of a
zigzag tube.

Figures 6 and 7 demonstrate the mapping of the th
optical modes of the sheet atG onto the correspondingA
modes of the tube. The out-of-plane optical~ZO! modes of
the sheet lead to radial~R! ‘‘buckling’’ modes of the tube
where all boron atoms move inwards~outwards! at the same
time and all nitrogen atoms move outwards~inwards!, giving
rise to an oscillation of the buckling amplitude in the tub
The transverse optical~TO! mode of the sheet maps onto
longitudinal ~L! mode of the tube and, accordingly, the lo
gitudinal optical~LO! mode of the sheet maps onto a tran
verse or tangential~T! mode of the tube. In theA modes, all

a

FIG. 6. Sketch of the optical phonon modes atG in the hexago-
nal BN sheet:~a! out-of-plane mode,~b! transverse optical~TO!
mode, and~c! longitudinal optical~LO! mode. For the assignmen
of ‘‘transverse’’ and ‘‘longitudinal,’’ the phonon wave vector point
in a horizontal direction withq→0.

FIG. 7. Sketch of high-frequencyA modes in a BN zigzag tube
~a! radial buckling~R! mode,~b! bond-stretching or longitudinal~L!
mode, and~c! bond-bending or tangential~T! mode.
5-6
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atoms along the circumference move in phase~correspond-
ing to K'50). In the modes ofEi symmetry, there are 2i
nodes along the circumference (i nodal planes containing th
symmetry axis of the tube!. The B modes contain 2n nodes
along the circumference which means that a rotation byf/2
~with the proper translation along the tube axis! maps the
mode onto its negative. In other words, for theB modes,
neighboring ‘‘columns’’ of atoms oscillate with a phase d
ference ofp.

The points in the Brillouin zone of the sheet that give r
to the Raman- and IR-activeA, E1, andE2 modes are de-
noted in Fig. 5. They are the points at and close toG. With
larger tube diameter~increasingn), the points giving rise to
the E1 and E2 modes converge towards theG point of the
BN sheet. Therefore, as a first check on the frequencie
active modes of large diameter tubes, it is sufficient to lo
at the frequencies at theG point of the sheet. The frequencie
of modes that correspond to the acoustic branches of
sheet converge accordingly to zero for large diameters. N
that not all of theA, E1, and E2 modes may be Rama
active, because one still has to distinguish between the
ferent ‘‘subsymmetries.’’ E.g., the TO mode of the sheet aG
@see Fig. 6~b!# folds into a tube mode ofA1 symmetry@see
Fig. 7~b!# and is thus Raman active, whereas the LO mode
the sheet atG @see Fig. 6~c!# folds into a mode ofA2 sym-
metry@see Fig. 7~c!# which changes sign under reflection a
plane that contains the symmetry axis of the tube.

If one uses the lowerCnv point group for the symmetry
analysis, the modes that haveB symmetry in theC2nv group
turn into A modes. Similarly, modes ofEn21 symmetry turn
into modes ofE1 symmetry and modes ofEn22 symmetry
turn into modes ofE2 symmetry. Thus, in addition to th
modes at and close toG, some modes at and close to theM
point of the sheet become Raman- and IR-active when
lower point-group symmetry is used which may be requi
in the case of finite-length tubes.

The zone folding for armchair tubes works in an ana
gous way to the zone folding for zigzag tubes@see Fig. 5~b!#.
The only difference is that the active modes of the tube c
respond to a discrete set of modes along the lineG→M
→G in the reciprocal space of the sheet. As in the case of
zigzag nanotubes, it is the sheet modes at and close toM that
become active upon using the lowerCnh point group for the
symmetry analysis.

Finally, Fig. 5~c! illustrates the zone folding for a gener
chiral nanotube. In the example, we have chosen a (4n,n)
tube with a relatively short primitive translation vectorTW . As
in the case of armchair and zigzag tubes, the quantizatio
the circumferential phonon wave vector corresponds in
reciprocal space of the sheet to a discrete set of modes a
a line G→M→G. However, the line does not connect nea
est or next-nearestG points but connectsG points farther
apart ~with the distance depending on the chirality of t
tube!.

VII. DIAMETER DEPENDENCE OF RAMAN- AND
IR-ACTIVE MODES

In this section we present the results of ourab initio cal-
culations of selected zigzag, chiral, and armchair tubes
04542
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compare with the results obtained by zone folding theab
initio dispersion relation of the single sheet. Th
C2nv , C2nh , and CN symmetry groups have been used
evaluate the section rules for the zigzag, armchair, and ch
tubes, respectively. I.e., in structurally perfect and ‘‘in
nitely’’ long tubes, only the displayed modes are expected
be active. Figure 8 displays the frequencies of the Ram
and IR-active modes of the three types of tubes as a func
of the tube diameterD. The ab initio values are plotted as
symbols, while the zone-folding values are connected
lines in order to guide the eye and extrapolate to larger t
diameters. Three frequency regimes are easily distingu
able.

~1! The low-frequency modes whose frequencies
proach zero forD→` are the modes that are derived fro
the acoustic branches of the sheet.

~2! The three modes that approachv'818 cm21 for D
→` are radial~R! modes@see Fig. 7~a!# which are related to
the optical out-of-plane~ZO! modes@Fig. 6~a!# in the disper-
sion relation of the sheet~Fig. 2!.

~3! The high-frequency regime above 1200 cm21 consists
of longitudinal~L! and transverse~T! modes@Figs. 7~b! and
7~c!# which are zone-folded TO and LO modes of the sh
@Figs. 6~b! and 6~c!#.

We discuss at first the three different frequency regim
separately in the case of the zigzag tubes~left panel of Fig.
8!. Afterwards, we extend the discussion to the chiral a
armchair tubes.

Figure 9 is a double-logarithmic plot of the low-frequen
modes in the zigzag nanotubes. For the RBM~marked by
asterisks!, we have also included the values of chiral a
armchair tubes. From phonon calculations in C nanotube
is well known that the RBM is inversely proportional to th
tube diameter25: vRBM}1/D. The same holds for BN nano
tubes. In fact, not only the RBM, but most of the low
frequency modes display the same 1/D scaling. This can be
easily understood from the phonon dispersion of the sh
~Fig. 2! in combination with the zone-folding procedure
Fig. 5: The LA and TA branches of the sheet have a lin
slope at theG point. The distance between theG point and
the points that map onto theE1 and E2 modes in Fig. 5 is
proportional to 1/N ~with N being the number of hexagons i
the tube unit cell! and hence proportional to 1/D. Hence, all
the low-frequency modes in the tubes that are folded fr
the LA and TA branches of the sheet exhibit the 1/D scaling.
Only the frequency of the lowestE2 mode in Fig. 9 displays
a 1/D2 proportionality.28 This is because it is folded from th
ZA mode of the sheet which does not increase linearly
quadratically around theG point.2 For small diameter, the
phonon modes deviate from the functional formA/D or
A/D2, because the linear-quadratic behavior in the acou
branches of the sheet ceases to be valid further away f
the G point. Only the RBM follows the functional behavio
A/D down to very low radius. In fact, in the case of th
RBM, this radius dependence does not follow from the zo
folding picture, but can be proven analytically~see Ref. 25
and the Appendix of this paper!.

It is commonly stated that the RBM cannot be obtain
with the zone-folding procedure because it is anA mode and
5-7
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FIG. 8. Frequencies of Raman- and IR-active modes in BN nanotubes as a function of tube diameter: comparison ofab initio values
~symbols! with zone-folding method~lines!. The shape of the symbols denotes the symmetry of the modes~see legend!. Black filling marks
modes which are Raman active only. White filling stands for IR active only. Gray filling stands for modes which are both Raman
active. R, L, and T mark the radial, longitudinal, and tangential high-frequency modes~as in Fig. 7!.
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the predicted frequency would be zero. Surprisingly, in F
8, the RBM lies exactly on a line obtained by zone foldin
However, this is the line of the tangentialE1 mode whoseab
initio values~gray triangles! are stiffened with respect to th
zone-folding values. Similarly, theab initio values of the
tangentialE2 mode~black squares! are stiffened with respec
to the corresponding zone folding line. While it is true th
the RBM cannot be obtained from zone folding of aninfinite
sheet, it is related to the in-plane stretching mode of a sh

FIG. 9. Double-logarithmic plot of the low phonon frequenci
in the BN zigzag tubes. The dashed lines are least-squares fits t
form A/D2 for the lowestE2 mode and to the formA/D for all
other modes. The fit has been performed on the diameter inte
between 6 Å and 14 Å.
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of finite width. This relation—which similarly holds for C
nanotubes—is discussed in the Appendix where we use
simple analogy of a ring of atoms and a finite linear chain
atoms.

The power-law fit of the RBM scaling in Fig. 9 yields
scaling constantA551562 cm21 Å and may be used for the
diameter determination in Raman characterization of
tubes. As is the general trend of phonons in BN as compa
to carbon, this value is considerably lower than the cor
spondingab initio value AC5572 cm21 Å for the RBM in
carbon nanotubes.28,32 Since the other low-frequencie
modes with 1/D scaling may be used as well for the radi
determination, we list in Table I the corresponding scali
constants.

We discuss now the radial phonon modes in t
intermediate-frequency regime around 800 cm21 @see, e.g.,
panel ~a! of Fig. 8#. According to the zone-folding picture
the A mode should be diameter independent and have c

the

al

TABLE I. First-principles determination of scaling constants f
the A/D dependence of the low-frequency modes as a function
the tube diameterD.

Mode symmetry A(cm21 Å)

E1 ~L! 324
A ~RBM! 515
E2 ~L! 640
E1 ~T! 702
E2 ~T! 1058
5-8
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stant frequency of'818 cm21. Indeed, theab initio values
lie almost exactly on this line. TheE1 branch is the neares
neighbor in frequency of theA mode and theE2 branch is the
next-nearest neighbor, because in the zone-folding pic
~Fig. 5!, theE1 andE2 modes derive from the points close
the G point of the sheet. Since in the dispersion relation
the BN sheet~Fig. 2! the ZO branch approaches theG point
from below, the radialE1 and E2 modes both have lowe
frequency than the correspondingA mode. At small diam-
eters, theab initio values lie below the zone-folding curve
due to bond weakening introduced by curvature effects.

The L and T modes of the high-frequency branch co
verge towards the asymptotic valuev51380 cm21 for D
→`. In the zone-folding picture, theE1 and E2 L modes
approach this value from below since in the dispersion re
tion of the sheet~Fig. 2!, the corresponding TO branch from
which these modes are derived approach theG point from
below. The LO branch, in contrast, displays a strong ov
bending which leads to the nonmonotonic diameter sca
of the E1 ~T! and E2 ~T! modes in Fig. 8. Theab initio
values follow the general trend of the zone-folding curv
However, all high-frequency T and L modes, even theA
modes which should be diameter independent, experien
strong downshift for small diameter. This general trend
also observed for the C nanotubes28 and can be attributed to
curvature effects. TheE1 ~T! mode displays the nonmono
tonic behavior which is predicted by zone folding, but due
the curvature-induced softening at small radius, it reaches
maximum at a higher diameter than the zone-folding cur
It is expected that theE2 ~T! mode displays a similar behav
ior, but since theab initio calculations are restricted in diam
eter ~due to computational feasibility!, we can only assume
that theE2 ~T! branch will bend down for larger diamete
and ultimately converge towards the asymptotic value
1380 cm21.

The scaling of the phonon frequencies with tube diame
is very similar for zigzag, chiral, and armchair tubes as c
be seen from comparing the three panels of Fig. 8. In
case of the chiral tubes, the zone-folding lines of the lo
frequency L modes and—to a lesser extent—the ones of
low-frequency T modes display a zigzag pattern. We h
calculated all chiral nanotubes in the diameter range betw
3 and 20 Å and connected the discrete points by lines
order to guide the eye. For large diameter, the frequencie
the low-frequency modes follow the same scaling as give
Table I for the zigzag tubes. This is because the slope of
acoustic branches of the sheet atG is independent of the
direction in the Brillouin zone~corresponding to an isotropi
sound velocity in all directions!. Only at smaller diameter
corresponding to a larger distance from theG point in the
dispersion relation of the sheet where the LA and TA mo
deviate from the linear behavior, does the frequency cle
depend on the chiral angle. The slopes of the zigzag
armchair curves are the limiting cases. E.g., the zone-fold
curve of theE2 ~T! mode reaches a value of 1000 cm21 at
D53 Å for the zigzag tubes and a value of 1150 cm21 for
the armchair tubes.

In Fig. 8, only Raman- or IR-active modes are show
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This leads to a different number of displayed values in
three different panels as outlined in Sec. V. The fact that
zigzag and chiral tubes the IR-active modes are a subse
the Raman-active modes while for armchair tubes the
sets are disjoint should help in the experimental identifi
tion of the ratio of different chiralities in a macroscopic tub
sample. In particular, the RBM can be detected both by
man and IR spectroscopy in zigzag and chiral tubes, while
the case of armchair tubes, it should only appear in the
man spectrum. Of course, an exact theoretical calculatio
the chirality dependence of IR and Ramanintensitiesis de-
sirable for this purpose.

VIII. BUNDLING OF TUBES

So far, we have assumed that the tubes are isolated.
we have chosen a large intertube distance in a periodic a
of tubes in order to minimize the effects of intertube intera
tion on the phonon frequencies. In the produced sample
single-walled BN tubes,14,23 some tubes are indeed isolate
but many tubes appear in bundles containing on average
to ten tubes. The nonuniform deformation of tubes and
close intertube distance may lead to a modification of so
of the phonon frequencies. For carbon nanotubes, the e
of bundling was calculated by a tight-binding method inclu
ing a Lennard-Jones potential to properly describe the in
atomic forces beyond the cutoff radius which is inherent
the tight-binding parametrization.61–63 In the calculations of
Kahn and Lu61 the effect of bundling does not excee
10 cm21 except for the very-low-energyE1 andE2 modes.
Interestingly, in their calculations, the low-frequency mod
are stiffened while the high-frequency modes are sligh
softened. The RBM is stiffened by 10%.62 In Ref. 63, it was
pointed out that due to the intertube interaction, the RB
hybridizes with anEn mode, leading to a splitting into two
modes. The lower of these two modes is stiffer than
RBM of the isolated tube for small and medium tube ra
and is slightly softer for large tube radii.

We investigate the effect of bundling in BN nanotubes
calculating a close-packed~hexagonal! lattice of nanotubes
with an intertube distance of 3.7 Å. As in the case of ‘‘is
lated’’ tubes, the geometry is optimized. Due to the packi
the tubes acquire a slightly oval form. For the~8,8! tube with
a diameter of 11.1 Å, the difference between the long a
short axes is 0.04 Å which is about the same magnitude
the buckling distance between B and N atoms for this tu
This slight deviation from the ideal cylindrical symmetr
prevents the symmetrization of the dynamical matrix a
requires the displacement of all atoms in the unit cell for
calculation of phonon frequencies.

In Table II we compare the~Raman- and IR-active! pho-
non frequencies of a close-packed~8,8! tube with a~quasi-!
isolated~8,8! tube. The general effect of bundling is a spl
ting of the doubly degenerateE modes of the isolated tub
into two modes with slightly different frequencies. Mo
phonon modes~except for the lowestE2g mode! are soft-
ened. The effect, however, is weak and does not exc
10 cm21 in most cases. Surprisingly, also the radial brea
ing A1 mode and theA1(R) buckling mode are slightly soft-
5-9
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ened. Apparently, the electrostatic intertube interaction a
on average, as an attractive force which counteracts the h
ening of phonons that would take place if only the repuls
caused by the beginning intertube overlap of the wave fu
tions would modify the frequency. A notable exception to t
weak influence of bundling is theE1 modes@especially the
high-frequencyE1u(T) mode# which are more strongly soft
ened than their relatedA and E2 modes of like frequency
The reason for this is the polar nature of BN. In theE1
modes, at the distance of closest approach between neig
ing tubes, equivalent atoms are locally moving as in t
parallel planes. This softens the mode and makes it sus
tible to LO-TO splitting. Accordingly, in C nanotubes, whe
the electrostatic interaction is absent, theE1 modes do not
experience a different shift by bundling than theA and E2
modes.

IX. CONCLUSION

We have presentedab initio calculations for the lattice
dynamics of various BN nanotubes with different diamet
and chiralities. In combination with the zone-folding meth
which allows extrapolation to tubes with higher radii, th
calculations offer an accurate tool for the assignment
peaks in experimental Raman and IR spectra.

The lattice dynamics of BN tubes is similar to that
carbon nanotubes. The most important difference is the
larity of the system which leads to softer bonds and low
phonon frequencies. Furthermore, the lower symmetry of
tubes gives rise to a higher number of Raman- and IR-ac
modes than in C tubes~provided that in both cases the no
symmorphic rod groups are used for the selection rules57,58!.

As for carbon nanotubes, the lattice dynamics of B
nanotubes can be explained to a large extent by the z
folding method, i.e., the rolling of a single sheet of BN in
a tube with quantization of the vibrations along the tu

TABLE II. Change of phonon modes due to close packing
BN tubes in a periodic array: Raman- and IR-active modes for
‘‘isolated’’ BN ~8,8! tube ~with an intertube distance of 7.4 Å! in
comparison with the modes in a ‘‘solid of tubes’’~intertube distance
3.7 Å!. R, L, and T denote radial, longitudinal, and tangent
modes~see Fig. 7!.

Isolated BN~8,8! Close-packed BN~8,8!

E2g R 20.8 7.7/22.7
E1g L 115.7 115.0/115.6
Ag R 189.3 186.9
E1u T 264.7 262.7/263.7
E2g T 412.0 409.6/410.5
E2g R 795.2 791.2/791.5
E1u R 805.0 798.5/798.8
Ag R 815.8 812.8
Ag T 1364.2 1356.8
E1g L 1368.3 1356.0/1356.6
Au L 1372.0 1360.6
E1u T 1472.1 1424.8/1425.6
E2g T 1530.7 1528.9/1529.1
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circumference. The sheet dispersion relation is very sim
to that of bulk hexagonal BN.36 However, the splitting be-
tween the longitudinal and transverse optical branches
missing. Instead, the LO branch displays a strong overbe
ing which is much more pronounced than in the phon
dispersion of the single graphene sheet. This strong o
bending is responsible for the strongly nonmonotonic dia
eter scaling of the transverse high-frequency modes in
tubes. The low-frequency modes scale inversely proporti
ally to the diameter squared as predicted by the zone-fold
method. This may serve as an accurate tool for the spec
scopic determination of tube radii. The frequency of the
dial breathing mode cannot be deduced from the conv
tional zone-folding method. However, its frequency can
understood by rolling up a sheet of finite width.

A combined study of BN tubes by Raman and IR spe
troscopy can serve to distinguish armchair tubes, where
and Raman-active modes are disjoint, from chiral and zig
tubes, where the IR-active modes are a subset of the Ram
active modes. In particular, the radial breathing mode is b
Raman and IR active for chiral and zigzag tubes but o
Raman active for armchair nanotubes. We have shown
the effect of bundling on the phonon frequency is low. Th
justifies the use of the phonon frequencies of isolated tu
for a spectroscopic assignment of macroscopic sam
where both isolated and bundled tubes appear.

The present study provides reference data on vibratio
properties for future experimental analysis. In particular
would be very much desirable to perform UV resonant R
man scattering in BN samples in order to obtain higher
tensities of the modes and to asses how the resonant
nonresonant Raman spectra are related. This could have
implications for the present understanding of the Ram
spectra in C tubes which are always resonant.
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APPENDIX: ZONE FOLDING OF THE RADIAL
BREATHING MODE

The frequency of the radial breathing mode cannot
obtained from the ordinary zone-folding procedure, beca
it would be given by the frequency of the acoustic modes
the sheet at theG point yielding zero frequency. However, a
shown in Fig. 8 theab initio values of the RBM of BN tubes
lie exactly on the zone-folding line for the tangentialE1
mode. This behavior is not accidental but can also be
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served in the case of carbon nanotubes. In this appendix
explain this coincidence with a simple analytical model.

The important point to note is that the RBM cannot
explained from the zone folding of aninfinite sheet but can
be constructed from the in-plane stretching mode of a sh
of finite width. Reducing the problem by one dimension, w
compare the RBM of a ring of atoms with the linear stretc
ing mode in a finite one-dimensional chain containingN at-
oms ~see Fig. 10!. We assume that the atoms of massM are
connected by springs of strengthK which only act between
nearest neighbors. We follow closely the derivation of t
phonon dispersion relation in the infinite monatomic chain
Ref. 64 where Born–von Karman boundary conditions
used; i.e., the atomN1n coincides with atomn. If un de-
notes the deviation of thenth atom from its equilibrium po-
sition, the total harmonic potential can be written as

U5
1

2
K (

n51

N

~un112un!2. ~A1!

Assuming a time dependence of exp@ivt# for all the atoms,
this leads to the secular equation

Mv2S u1

A

A

A

A

un

D 5KS 2 21 0 ••• 0 21

21 2 21 � 0

0 21 � � � A

A � � � 21 0

0 � 21 2 21

21 0 � 0 21 2

D
3S u1

A

A

A

A

un

D . ~A2!

For the infinite chain, the eigenvectors are given by

un~k!5exp@ ikna#, ~A3!

wherea denotes the distance between neighboring atoms
the Born–von Karman boundary conditions require that

FIG. 10. Schematic model system for the construction of
radial breathing mode: RBM in a ring of atoms and linear stretch
mode in a finite linear chain of atoms connected by springs.
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k5
2p

a

m

N
, ~A4!

with m50,1, . . . ,N21. The corresponding eigenvalue
yield the well-known dispersion relation

v~k!52AK

MUsin
1

2
kaU. ~A5!

The mode withm51, which in the zone-folding picture
should fold onto theE1 mode whose frequency is ‘‘taken’’ by
the RBM, has the frequency

v1
( in f )52AK

MUsin
p

NU'2AK

M

p

N
. ~A6!

For the finite chain, the matrix in Eq.~A2! has the form

S 1 21 0 ••• 0 0

21 2 21 � 0

0 21 � � � A

A � � � 21 0

0 � 21 2 21

0 0 � 0 21 1

D ; ~A7!

i.e., the coupling of atom 1 to atomn is suppressed. How
ever, if the chain is very long, the influence of the open e
is not very strong and matrix~A7! can be approximated by
the one of Eq.~A2!. With this approximation, we obtain th
same eigenvectors as for the infinite chain@Eq. ~A3!#; how-
ever, the open ends lead to the condition

k5
p

a

m

N
, ~A8!

with m50,1, . . . ,N21, as opposed to Eq.~A4!. For the
linear stretching mode which we suggest as a candidate
folding onto the RBM of the ring,m51, and

v1
( f in)52AK

MUsin
p

2NU'AK

M

p

N
. ~A9!

For the ring of atoms connected by nearest-neigh
springs, it is considerably more complex to write down t
secular equation, because the system is intrinsically t
dimensional, corresponding to tangential and radial displa
ments of the atoms. However, for the case of the RB
where all the atoms are moving in radial direction, the pro
lem reduces to one dimension. When all the atoms are
placed by dr , the displacement difference between tw
neighboring atoms in Eq.~A1! equals the elongation of th
circumference divided by the number of atoms,N,

un112un5
2p

N
dr, ~A10!

and the harmonic potential is

e
g
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U~dr !5
1

2
KNS 2p

N D 2

dr 2. ~A11!

Newton’s equation of motion yields then immediately t
frequency

vRBM5AK

M

2p

N
5AK

M

a

r
. ~A12!

An analogous equation was originally derived by Jis
et al.25 in order to prove the 1/r scaling of the RBM fre-
quency in C nanotubes. This was done within a for
constant model that takes up to fourth-nearest-neighbor
teraction into account. Equation~A12! corresponds to the
nearest-neighbor interaction term of Eq.~7! in Ref. 25. The
1/r scaling does not depend on the range of atom-atom
teractions to be included~ab initio calculations yield the
same scaling!. For this reason we use the simple neare
neighbor-interaction-only model in order to highlight th
connection of RBM and line-stretching modes.

Note the equalityvRBM5v1
( in f )52v1

( f in) . The second
equality states that while the linear stretching mode of
open chain folds onto the RBM of the ring, its frequency
doubled. Instead, the frequency of the RBM coincides w
the frequency of the first longitudinal mode in theinfinite
chain ~which has two nodes perN atom unit cell and coin-
cides with the second longitudinal mode in the finite chai!.
However, in the usual zone-folding procedure, the la
,

ic
P

tt

n,

rd

.
tt

to

y

s.

-L
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mode should fold onto the tangentialE1 mode of the ring,
which also contains two nodes along the circumference.
calculations of the tube~see Fig. 8! and also a numerica
solution of the frequencies of theN-atom ring show that the
E1 mode is stiffened considerably with respect to the zo
folding value. Similarly, the tangentialE2 mode with four
nodes along the circumference is stiffened with respect to
zone-folding value which is the frequency of the seco
~fourth! longitudinal mode infinite~finite! chain, respec-
tively. It is important to note that this stiffening is not
curvature effect, i.e., not due to the modification of the bo
strength due to an admixture ofsp3 hybridization to thesp2

bonds of the sheet. This possibility can be ruled out beca
the stiffening persists for large tube radii and the stiffening
also present in the ring model where the interaction of ne
est neighbors is described by a simple spring irrespectiv
of the curvature of the system. While we could not find
simple analytical formula for the amount of stiffening w
deduce that it is due to the coupling of tangential and rad
motion when the in-line~in-plane! modes of the chain~sheet!
are mapped into the corresponding modes of a ring~tube!. In
contrast, the frequency of the out-of-plane modes of the sh
match almost perfectly the frequencies of the correspond
modes in the tubes. In this case, the out-of-plane mo
translates directly into a radial motion. The remaining d
crepancies in the frequencies for small tubes can safely
assigned to curvature effects.
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