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Ab initio calculations of the lattice dynamics of boron nitride nanotubes

Ludger Wirtz and Angel Rubio
Department of Material Physics, University of the Basque Country, Centro Mixto CSIC-UPV,
and Donostia International Physics Center, Po. Manuel de Lardizabal 4, 20018 Donostia-San SelBssim

Raul Arenal de la Concha and Annick Loiseau
LEM, ONERA-CNRS, BP72, 92322 @Han Cedex, France
(Received 24 March 2003; published 30 July 2003

We present an extensive first-principles study of the phonons in boron nitride nanotubes using density
functional perturbation theory in the local density approximation. Based on the nonsymmorphic rod-group
symmetry of the tubes, the Raman- and infrared-active modes &t gfmént of the one-dimensional Brillouin
zone are evaluated. For zigzag and chiral nanotubes, the set of infrared-active modes is a subset of the
Raman-active modes. In particular, the radial breathing mode is not only Raman but also infrared active.
However, for armchair tubes, the sets of infrared- and Raman-active modes are disjoint. This may serve to
spectroscopically distinguish between macroscopic samples of zigzag-chiral and armchair nanotubes. We
present the frequencies of the active modes of zigzag, chiral, and armchair tubes as a function of the tube
diameter and compare the results with the frequencies obtained by the zone-folding method, i.e., the rolling of
a single hexagonal BN sheet into a tube. Except for the high-frequency tangential modes, the zone-folding
results are in very good agreement with #ieinitio calculations. The radial breathing mode frequency can be
derived by folding a sheet dfinite width. Finally, we show that the effects of bundling on the phonon
frequencies are small. This demonstrates that the obtained results for isolated BN tubes may serve as a basis for
an accurate assignment of phonon modes in spectroscopic measurements.
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[. INTRODUCTION nearly free-electron-like state. This state remains the bottom
of the conduction band even in the multiwall case and, in the
Besides carbon nanotubBeshich are a promising mate- case ofn-type doping, will play an important role for poten-
rial due to both their mechanical strength and their interesttial applications in field emission devices and molecular
ing electronic propertied® boron nitride (BN) tubes have transport’
recently attracted increased attention. Their stability was first Raman and infraredR) spectroscopy in which phonons
predicted based on tight-bindihgnd first-principle3calcu-  are excited by inelastic scattering of light or light absorption,
lations, and shortly afterwards, their synthesis was achi®vedrespectively, are convenient tools to investigate the compo-
Meanwhile, production of BN tubes has been reported bysition of macroscopic samples of nanotubes. Early Rdfan
different groups around the world® Recently, the fabrica- and infrared® investigations were performed on samples of
tion of single-wall BN tubes in gram quantities has beenmultiwall carbon nanotube6MWNT's) and showed signa-
achieved:* tures close to those of graphite. However, after the produc-
In contrast to C nanotubes which can be either semicontion of single-wall nanotube6€SWNT'’s) in large quantities,
ducting or metallic, depending on the chirality of the tube,resonant Raman spectroscopy turned into a very precise,
BN nanotubes are always semiconducting with a large bantighly diameter selective identification to®l Especially the
gap of about 5.5 eV. Density functional thediFT) calcu-  low-frequency Raman modes such as the radial breathing
lations and quasi particle calculations have shown that thisnode (RBM) strongly depend on the tube diameter and fa-
gap is nearly independent of the tube diameter, chirality, andilitate identification. The high-frequency modes are only
whether the nanotube is single walled, multiwalled, orweakly diameter dependent, but their intensity in the reso-
packed in bundle$® [The DFT band gap is pinned at the nant Raman spectra strongly depends on the diameter
constant value of about 4 eV whereas self-energy correctiorthrough the electronic excitation enefdylR spectroscopy
to the quasiparticle energies open the gap to 5.5(Ref. on SWNT's (Ref. 22 shows only small differences when
15)]. A structural difference between BN and C tubes is thattcompared to IR data of graphite. For BN nanotubes, the situ-
for tubes with small diameter, the BN system buckles withation is quite different: The Raman intensities in the visible
the B atoms moving inward and the N atoms outwaldhis  light frequencies are weaker than for C nanotubes, since the
results in a dipolar double cylinder shell structure, whichRaman scattering is nonresonant due to the wide band’gap.
combined with the fact that BN tubes exhibit quantum polar-On the other hand, BN is a polar material and shows a much
ization effect$® makes them attractive for electromechanicalhigher IR absorbance than C nanotub&¥' It is expected
applications and as piezoelectrics. The uniform electronithat the combination of Raman and IR spectroscopy will
properties suggest that BN nanotubes may have significamtevelop into a standard characterization tool for BN tubes
advantages for applications in electronic and mechanical desuch as it is already in the case of C tubes. At this stage it is
vices. Furthermore, the bottom of the conduction band is aery important to have a detailed knowledge of phonon fre-
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quencies in BN nanotubes and to understand the dependengmximation(LDA) (Ref. 39. We employ Troullier-Martins
on diameter and chirality, in order to guide future experi-pseudopotentia$and a plane-wave basis set with an energy
ments. This is the goal of the present work where for the firstutoff at 80 Ry. The(infinitely long) BN tubes are periodic
time reliableab initio phonon calculations are presented for along the tube axisz( direction. Since the use of a plane-
BN nanotubes. wave expansion requires periodic supercells in all three di-
For graphite and carbon nanotubes, many calculations ahensions, we calculate effectively a triangular periodic array
phonons have been performed using the force constamif nanotubes. In order to keep the effect of intertube interac-
approach® where interatomic force constants up to fourth- tions low, we use a closest distance of 7.4 A between the
nearest-neighbor interaction have been fitted to experimentalibes. In a first step, the tube geometry is optimized until the
data. This approach is very fast and, in combination with théorces acting on all atoms are smaller than 2.5
zone-folding method (i.e., the construction of phonons in x 1072 eV/A. At the same time, the stress along the tube
the tube from the phonons of a sheet which is rolled up taaxis is minimized by optimizing the unit-cell size in tlze
form the tubg, allows a good intuitive understanding of direction. The resulting tube geometry is discussed in Sec.
phonons in nanotubes. Howevah initio calculations of the i,
phonon dispersion relation of grapHite?® using DFT dis- The phonon frequencies as a function of the phonon

play a deviation of up to 200 cnt from the dispersion re- wave vectorg are the solution of the secular equation
lation obtained with the force constants of Ref. 25 while

being in good agreeméfit’” with experimental data. Going 1

beyond the force constant approach, phonons in carbon de \/chtﬁ(q)_wz(q) =0. 2.9
nanotubes have been calculated using tight-binding st

techniques;? DFT with a localized-orbital approach**and M, and M, denote the atomic masses of atosandt and
DFT calculations employing plane wa?&s>3 which are  the dynamical matrix is defined as

the most accurate calculations up to date. For this reason, in

a recent joint experimental and theoretical study of Raman 9’E
and IR spectra of single-wall BN nanotulfésye have em- Clla)=—— 5 (2.2
ployed this method to calculate phonons for a reliable dis- Jug “(q)aur(q)

cussion of the observed peaks. In this paper, we present,gnarey
detailed account of the calculations and the theoretical r
sults. Phonons in BN nanotubes have also been calculated

< denotes the displacement of aterm direction a.
€The dynamical matrix can be calculated by displacing the
lélfoms of the unit cell into all three directions, performing an

a tight-binding te(_:hgr;iqu’é and by a valence-shell model of onqr4y calculation of the perturbed geometry and calculating
the lattice dynamics? The tight-binding results lack predic- the second derivatives in Ed2.2) by a finite-difference

tive power as they show important differences in the high+othod. This way has been chosen in the phonon calcula-

and medium-frequency regimes of the dispersion relation 0{ions of Ref. 28 for carbon nanotubes. In our calculations, we

thel_singée_s_h_eet v;/hein .Comp?rﬁd with eTpe%ment and withye ot the atomic displacement as a perturbation of the equi-
earlier ab Initio calculations of hexagona B .However, librium geometry and use density functional perturbation
the valence-shell model, as its parameters are fitted to thﬁeory(DFPT) (Ref. 41 as implemented inaINIT (Ref. 42
data onh-BN, reproduces rather well the phonons of the, yhe calculation of the dynamical matrix. Since the space-

tubes. o

. . ) .group symmetry of a periodic array of nanotubes does not
_ Section II describes the method of calculation. The equiyefiect the helical symmetry of isolated BN nanotubes, in
librium geometry of the tubes is discussed in Sec. Ill. In Sec

he di . lati t the h | rinciple, each atom of the unit cell has to be displaced in all
IV-we present the dispersion relation of the hexagonal BNpee directions. However, if the distance between the tubes

sheet and of BN tubes and discuss the characteristic diffetg large enough such that they are quasi-isolated, it is suffi-

ences with res_pectrt]o the graphene slhe'et afn(:]C nanotubes. iént to displace only the symmetry-inequivalent atoms of
Sec. V we review the symmetry analysis of the Raman- anghe it cell. The residual elements of the dynamical matrix

infrared-active modes gt tHeé point. In Slec..\./l we explain - 5.0 optained by application of the appropriate symmetry
how the symmetry assignment can be intuitively understoog, \sformations. Thus, in carbon nanotubes, only the dis-

by the zone-folding method. In Sec. VIl we present the mainyiacements of one atom need to be calculd#édand in BN

results of this paper, the frequencies of active modes in Zigfubes the displacements of two atorfme B and one N

zag, chiral, and armchair tubes as a function of tube diampaye o pe calculated. For BN tubes, this symmetrization

eter: Finally, Sec. VIII Qiscusses hovy the phonon frequenciegnly works if a sufficiently large intertube distan@4 A) is

are influenced by packing the tubes into bundles. The Appen;seq pecause a smaller intertube distance leads to artificial

dix discusses the deviation of the zone-folding procedurgaformations from the cylindrical geometry of the te.

from theab initio results for the low phonon frequencies and  \yis ysed a 18 10 Monkhorst-Pack-point sampling of

presents a derivation for the frequency of the radial breathingne first two-dimensiona(2D) Brillouin zone (BZ) for the

mode by folding a sheet of finite width. BN sheet(corresponding to a 2010x 1 grid in the 3D BZ

of the periodic supercell with an intersheet distance of 7.3

A). For the 1D BZ of armchaifzigzag BN tubes, 10(6)
The calculations have been performed with the cagle  points were used, corresponding t§3} irreduciblek points.

INIT (Ref. 37 using DFT(Ref. 38 in the local density ap- We have checked that this setlopoints and energy cutoff at

IIl. METHOD
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mation of a negative outer N cylinder and a positive inner B

80 Ry leads to phonon frequencies converged to withirb : . . ;
AT . ylinder. Figure 1 shows that the buckling distance between
4 cm . Since hexagonal BN and BN tubes are wide-bandy,,qe 0 cylinders is to a very good approximation in-

gap insulators with relatively flat bands, considerably fekver versely proportional to the tube diameté@xcept for the

points_ are needed fo reach convergence for BN fchan f bes with very small diameters where the decrease is faster
graphite and carpon nano.tubes. The proper despnphon of abﬁ Ref. 5 it was described that the threefold-coordindtedl
lphonol? mp;jes InI_megalllct Cthnanoéldbes requwe? a r’r|1uc lightly positively chargedboron atoms have the tendency
t?é?](iacr b-gr?:jn Zar?grlggrt;ﬁ Ohoneoﬁ?c dies O|F;ecglrr:,gé??tsan €1€C0 keep the planasp? bonding geometry with bond angles of
gap P P ' 120° while the(slightly negatively chargednitrogen atoms

Sinceh-BN is a polar material where N is slightly nega- are more susceptible to an admixture sg® hybridization

tively charged and B slightly positively, the long-range Char'Ieading to smaller bond angles. With this hypothesis, a very
acter of the Coulomb potential gives rise to a macroscopic . ' -

L R . . ~ - P 8imple explanation of the d/dependence can be given. The
electric fieldE for longitudinal optical phonons in the limit

S . o o inset of Fig. 1 shows a two-dimensional projection of the
q—0. This gives rise fo a splittingL O-TO splitting be- buckled geometry for an(0) zigzag tube. The nitrogen at-

tween the longitudinal and transverse optical modes whicl?)mS are located at the comners of the polygon with distance

amounts to about 200 cm at theT' point3® In order to ;

properly account for this effect, the (F:l)ynamical matfisy. ry from 'Fhe genter. The l:_)oron atoms are accordingly placed
(2.2 ] must be corrected under inclusion of the Born effectivef’it the n|1|dp0|nts .Of thle 5|dez OI] thebpolyg(r)]n. Tge angie
charge tensar? *# of the ions and the static dielectric tensor Inversely proportiona’ to and thereby 1o the tube radius

b Both qugntities can be calculated in DFFRefs. 41 Therefore, also the buckling distance is inversely propor-
€. .

. i i tional to the radiusry—rg=r—r cosf~r—r(1—36*)=<1/r.
and 43 from the macroscopic electrlc_: pqlanzau@hof the  Eor smaller tube radii=2r<7 A) the strain energy due
medium. For a densely packed periodic array of tubes, &, the curvature of the tutisee Ref. 5becomes so large that
similar splitting is expected and can indeed be obsef¥ed. yo yoron atoms no longer keep their planar bonding geom-
However, this effect is restricted to three-dimensiofiai-

. ; 3 e
nitely extended systems. In this article we are dealing with etry but also acquire an admixture p" hybridization.
the frequencies of isolated tubes or small bundles of tubes.
As long as the diameter of the nanotube bundles is smaller
than the wavelength of the laser light, the system is effec- We start the presentation of phonons with the calculated
tively one dimensional and no LO-TO splitting takes place. phonon dispersion relation of the hexagonal BN sheet in Fig.
2. Through the zone-folding procedure this gives a good
guantitative estimate for the phonon frequencies in the tubes.
For comparison we have added with dotted lines the phonon
The calculation of phonons starts with a determination ofdispersion relation of the graphene sheet. The latter one is in
the optimized tube geometry by minimizing both stress andilmost perfect agreement with the recent calculation of
Hellmann-Feynman forces. Minimization of the stress in theDubay and Kressé*’ In general, the phonons of the BN
sheet leads to a BN bond length of 1.44 A which is close tesheet are considerably softer than the phonons of the
the literature value of 1.45 A for bulk-BN.*® It was already  graphene sheet which is related to the fact that the elastic
noted in the first LDA studies of BN tub&shat the boron- constants oh-BN are smaller than the ones of graphite. Fur-
nitrogen bonds display a buckling with the nitrogen atomsthermore, the degeneracy of the out-of-plane acoustic and
moving slightly outwards and the boron atoms movingoptical (ZA and ZO modes and the degeneracy of the lon-
slightly inwards(see inset of Fig. 1 This leads to the for- gitudinal acoustic and opticalLA and LO) modes in

IV. PHONON DISPERSION RELATIONS

Ill. EQUILIBRIUM GEOMETRY

045425-3



WIRTZ, RUBIO, de la CONCHA, AND LOISEAU PHYSICAL REVIEW B58, 045425 (2003

graphene is lifted in BN due to the different masses of B and ab initio zone-folding DOS
N. As discussed in Ref. 28, the agreement between theorn 1600 ] e T
and experimental data on phonons in grapfiitéis very 1400 '
good except for the LA branch at th point which seems

too low by about 200 cmt. The origin of this discrepancy is 1200 !
not yet clear and needs to be revisited both experimentally ;000
and theoretically. We note, therefore, that a similar discrep-"_g
ancy could occur for the BN sheet at tNepoint. Due to the £ 800E===g

difficulty of producing high-quality crystals df-BN, experi- 8 600 = N |
mental data on the phonon-dispersion relation is so far only
available for a monolayer dfi-BN on a metal substrafé, 400 1
giving rise to strong deviations from the theoretical phonon 200 N
dispersion relatiori® .

The phonon dispersion relation of the sheet follows very 0 r X 0 0.(')05 001
closely theab initio calculated dispersion relation of bulk states/atom/cm’

hexagonal BN(Ref. 36 when one subtracts the phonon
branches that are influenced by the interplane interaction. FIG. 3. Calculated phonon dispersion relation and density of
This is analogous to the comparison of phonon dispersioftates(DOS) in the (6,6) armchair BN nanotube. We compare the
relations in the graphene sh&xnd in bulk graphit@”and results ofab_ initio calc_ulatlons with the _zo_ne-f_oldmg_mgthnﬁslee
due to the fact that the intersheet interaction is much weakéfX! for detail3. In the right panel the solid line is tra initio DOS
than the interaction between atoms within the sheet. How&"d th? d_otted line the_ zone-fold|_ng DOS. The symbols n the left
ever, in contrast to the nonpolar graphite, BN is a polar supP2ne! indicate the avoided crossing between the R@bterisks
stance with a long-range dipole-dipole interaction betweer"f‘nOI the longitudinal acoustic modgoxes.
the sheets. This leads to a splitting between the longitudinadending in the graphene sheet, but also more pronounced
and transverse optical modeO-TO splitting) at thel” point  (and with a maximum closer tb) than the corresponding
with the LO mode being higher in energy due to its couplingLO branch of hexagonal BN. Also, the overbending is more
to a self-induced homogeneous electric field. Therefore, thgronounced than in the calculation of the sheet dispersion
dispersion relation of bulk hexagonal BiRig. 3 of Ref. 36 relation by Miyamotoet al>® who used DFT employing a
displays two LO modes; the lower branch shows a strongeriodic supercell.
overbending in the directioM —1I" but is degenerate with In Fig. 3 we compare thab initio phonon dispersion
one of the TO branches &t This is the branch which cor- relation of a(6,6) BN nanotube with the corresponding zone-
responds to an oscillation with a phase differencerdbe-  folding dispersion relation. The zone-folding method works
tween nearest-neighbor planes. The higher LO branch fogqually good as in the case of carbon nanotiBétere and
which neighboring planes oscillate in phase displays a splitthere, the major difference lies in the low-frequency part of
ting of more than 200 cm" with respect to the correspond- the spectrum and is due to the coupling of in-plane and out-
ing TO mode af". of-plane modes of the sheet upon rolling into a tube. This
As pointed out in Refs. 16 and 34, the effect of LO-TO leads to a stiffening of the low-frequency tube modes. An-
splitting should be absent in a two-dimensional single sheebther pronounced difference is the avoided crossings in the
Since we use a plane-wave DFT code, however, we canneib initio dispersion relation. According to the noncrossing
calculate a really isolated sheet of BN, but only a “bulk” rule of von Neumann and Wignét,energy levels of modes
system with enlarged intersheet distance. We have observeghich have the same symmetry do not cross when an adia-
that the corresponding artificial LO-TO splitting decreasespatic parametefin this case the phonon wave vectmy is
with the intersheet distance, but still amounts to 180 &t  changed. A prime example is the longitudinal optical mode
an intersheet distance df=7.3 A which is about twice the (marked by boxeswhich starts from zero frequency at the
equilibrium distance of hexagonal BN and a distance whergoint with the same slope as the LA mode of the slieein-
the “chemical” interaction that would arise from the overlap pare Fig. 2 and displays a clear avoided crossing with the
of wave functions of neighboring sheets has long faded outiadial breathing modpw(k=0)=251 cm !, marked by as-
In order to simulate an isolated sheet, we have thereforeeriskg atk~0.27/T. Both modes havé,; symmetry at the
applied a computational trick for the LO branch: We calcu-T" point (see next section Note that the “diabatic” disper-
late the dispersion usingzacomponent of the phonon wave sion curve of the RBM is nearly planar i over a wide
vectorq,= 7/d, where two neighboring sheets oscillate outrange of the Brillouin zone. This is independent of chirality
of phase and the dipoles created in a unit cell through atomigve observed the same behavior in the dispersion of zigzag
displacement are exactly canceled out through the oppositgbes and can also be seen in the dispersion relations of Ref.
dipole in a neighboring sheet. In this way, the interplane28 for carbon tubes.

electrostatic interaction decreases much faster and,at A more detailed analysis of the zone-folding of Raman-
=7.3 A, the phonon frequencies of the LO branch have aland infrared-active modes follows in Sec. VI and in the Ap-
ready converged to an estimated value of 10 ¢rfiom the  pendix. In general, the zone-folding method not only repro-
isolated sheet. The resulting LO branch in Fig. 2 displays anluces quite well the dispersion relation, but also yields a
overbending which is not only much stronger than the overgood estimate of the total phonon density of states, even
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tracted. Out of these modes, 8 modesA3and %) are
also IR active. In the case of chiral tubes, there are 15 Raman
active modes (A, 5E;, and €&,) out of which 9 modes
(4A and 5E,) are also IR active. The small difference in the
number of active modes between zigzag and chiral tubes
stems from the fact that the additional vertical reflection
symmetry of the zigzag tube causes a distinction between
Ramant+IR active A; modes and nonactivA, modes. The
sets of Raman- and IR-active modes for BN armchair tubes
FIG. 4. Comparison of the point-group symmetry of the unit cell are disjoint: 9 modes are Raman act{@ewith A4 Ssymmetry,
with the space-group symmetry of zigzag BN tubes. 2 with E;y symmetry, and 4 withE,; symmetry and 4
modes are IR activ¢l with A, symmetry and 3 withE,,
though some systematic deviation towards higher phonosymmetry.>® In the next section, it will be explained how
frequencies is clearly visible in the right panel of Fig. 3.  these modes can be constructed from the modes at or close to
theI" point in the BN sheet.
V. SYMMETRY ANALYSIS Under certain experimental conditions, if the tubes are
short compared to the wavelength of the scattered laser light,
In Raman and IR spectroscopy, only phonongoaiclose  the tubes are expected to display the spectroscopic properties
to) theI" point of the one-dimensional Brillouin zone can be of very large molecules rather than of infinitely extended
excited (as long as we restrict our discussion to first-ordersystemdfinite-size effect The BN tubes that were recently
processes Furthermore, in Raman spectroscopy, only modesnvestigated by IR and Raman spectroscopy had a typical
that transform under symmetry operations as a quadratiength between 100 nm and 400 ffi,e., of the order of the
form are active, in IR spectroscopy only modes that transwavelength of visible light and definitely shorter than the
form as a vectot® For (infinitely extendedl systems with  wavelength of infrared light. These tubes are indeed long
translational symmetry, the “point group in the space group”enough such that the phonon frequencies correspond to the
determines through the selection rules which modes are aérequencies of infinitely extended systems. However, for the
tive and which are not. In quasi-one-dimensional systemgvaluation of active modes, the point group of the “mol-
with translational symmetry, it is accordingly the “point ecule” should be used. Assuming that the closing caps at the
group in the rod group” that has to be evaluated. This wagube ends are constructed such that they do not further reduce
done recently by Damnjanoviet al>® and by Alort’ for C  the symmetry of the system, the point group of the finite
nanotubes and BN nanotub®sFigure 4 summarizes the zigzag tube isC,,, coinciding with the point group of the
findings for BN tubes: It can be easily seen that the unit celunit cell. The symmetry of the finite armchair tubes can be
of a (n,0) zigzag tube possessesrafold rotation axis(with eitherC,, or S,,. Finite-length chiral tubes have either no
rotation angle¢=2/n). In addition,n (indeed, even &) point group symmetry or a very low-fold rotation axis,
vertical reflection-symmetry planetcontaining the tube depending on the rotation symmetry of the unit cell.
axis) can be found. Thus the unit cell of a zigzag tube trans- Due to the relaxation of symmetry constraints, additional
forms under theC,,, symmetry group. In the infinitely ex- active modes may show up in the spectra. For zigzag tubes,
tended tube, the operations of t@g, point group are valid 16 additional modes (4,, 6E;, and &,) are Raman ac-
as well, but—in addition—a rotation by/2 with subsequent tive, out of which 10 (4/; and €,) correspond to modes
translation byT/2 also maps the system onto itself. This that are also IR active. For armchair tub@ssumingC,
leads to the conclusion that for the infinitely extended syssymmetry, 10 additional modes @&, , 2E,4, and 4£,,) are
tem, theC,,, symmetry group is the relevant one for sym- Raman active and 6 additional modes are IR activ& (and
metry analysis of Raman- and IR-active modes. AnalogouslyE,,).%° In the zone-folding picture, these additional modes
for (n,n) armchair tubes, the symmetry group of the unit cellcorrespond to modes at or close to fiepoint in the BN
is C,n and the symmetry group of the infinitely extended sheet. In chiral tubes, if the unit cell does not have any sym-
tube isC,,,. Finally, for chiral (h,m) tubes, the unit cell has metry, all modes can, in principle, be Raman and IR active.
the low point-group symmetrZ,, whered is the greatest However, the intensity of most of the modes may be very
common divisor oh andm. However, the infinitely extended weak and decreases with increasing tube length. We note that
tube is described by th€y symmetry group, wherbl is the  the reduced symmetry of finite-length tubes does not influ-
number of hexagons={2 times the number of atomper ence the fact that Raman- and IR-active modes are disjoint
unit cell which is, in general, much larger thdn for armchair tubes and for zigzag and chiral tubes the IR-
The number of active modes is found by determining howactive modes are a subset of the Raman-active modes.
often each irreducible representation appears in(teéuc-
ible) representation of the symmetry groupg, , Conn, OF
Cy ., respectively which is given by the 12 vibrational de-
grees of freedom of the unit cell. For zigzag tubes this leads In this section we review the zone-folding method which
to 14 Raman-active mod®s3 with A; symmetry, 5 withE; has been frequently used for the calculation of electronic
symmetry, and 6 withE, symmetry, where thE, and theA,  band structure and phonons in C nanotdeand demon-
modes with vanishing frequency have already been substrate how the different Raman- and infrared-active modes

VI. ZONE-FOLDING METHOD
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b)

FIG. 6. Sketch of the optical phonon moded ain the hexago-
nal BN sheet:(a) out-of-plane mode(b) transverse opticalTO)
mode, andc) longitudinal optical(LO) mode. For the assignment
of “transverse” and “longitudinal,” the phonon wave vector points
in a horizontal direction witlg—0.

at u=1,...n—1 map onto modes of symmetry
E;, ... ,E,_1. Since there are six different phonon branches
in the sheet, there are six different phonon modes in the tube
FIG. 5. Sketch of the zone-folding methéa for (n,0) zigzag  for each of the above symmetries. Each of the six phonon
nanotubes(b) for (n,n) armchair nanotubes, and) for (4n,n) branches leads to+1 different phonon modes in the tube,
chiral nanotubes. Left side: a hexagonal BN sheet is rolled in {n—1) E modes, oné\ mode, and on® mode. Since th&
perpendicular direction to the primitive translation veclorThe ~ Modes are doubly degenerate, this sums up to dfZonon
componentk, of the phonon wave vector in the circumferential modes corresponding to then4atoms in the unit cell of a
direction is quantized. Right side: in the two-dimensional Brillouin Zzigzag tube.
zone of zigzag nanotubes, the quantization corresponds &iehs Figures 6 and 7 demonstrate the mapping of the three
along the linel -K—M—K—T'. In armchair nanotubesr2dis-  optical modes of the sheet &t onto the corresponding
crete steps are taken along the lire>sM —T", while in chiral tubes  modes of the tube. The out-of-plane opti¢2D) modes of
the discretization proceeds along a line connecting more diktant the sheet lead to radid@R) “buckling” modes of the tube
points. The points at and close b give rise to the Raman- and where all boron atoms move inwar¢sutwards at the same
IR-activeA, E;, andE; modes. time and all nitrogen atoms move outwalisvards, giving

can be deduced from it in the case of BN nanotubes. ThudlS€ to an oscillation of the buckling amplitude in the tube.

. . . he transverse opticdTO) mode of the sheet maps onto a
the symmetry analysis of the previous section can be unde[bngitudinal(L) mode of the tube and, accordingly, the lon-
stood in a pictorial way. Figure(8 demonstrates the sce- ' '

nario for (n,0) zigzag nanotubes. The sheet is rolled u suchqitUdinal optical(LO) mode of the sheet maps onto a trans-
’ _g ) 9 ' ) N P verse or tangentidll) mode of the tube. In th& modes, all
that the tube axis is parallel to the translation vedtarhose

lengths corresponds to the lengths of the one-dimensional
unit cell of the tube. The componekt of the phonon wave

vector K which points into the circumferential direction of
the tube is quantized. For zigzag nanotubes this means that in
reciprocal spaceK, can assume 12 discrete values g
=0,...,52—1) along the linel = K—M—K—TI". The
parallel componenkK; is unrestricted. However, the Raman-
and IR-active modes are modes at fhepoint of the one-
dimensional Brillouin zone of the tube and correspond thus
to K;=0. Since the points gt and Zh— u are equivalent in
reciprocal space, all modes of the tube are doubly degener-
ate, except for the mode that correspondsute O (the I

point of the shegtand the mode that correspondsde=n

(the M point of the sheet If one applies the strict selection
rules according to th€,,, symmetry group, the modes of  FIG. 7. Sketch of high-frequenc§ modes in a BN zigzag tube:
the sheet al’ map onto tube modes witA symmetry, the (a) radial buckling(R) mode,(b) bond-stretching or longitudingl )
modes aM map onto modes dB symmetry, and the modes mode, andc) bond-bending or tangenti&l) mode.
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atoms along the circumference move in phasarespond-
ing to K, =0). In the modes oE; symmetry, there arei2
nodes along the circumferencer(odal planes containing the
symmetry axis of the tupeThe B modes contain 2 nodes
along the circumference which means that a rotatiorp/
(with the proper translation along the tube axisaps the
mode onto its negative. In other words, for tBemodes,
neighboring “columns” of atoms oscillate with a phase dif-
ference ofm.

The points in the Brillouin zone of the sheet that give rise
to the Raman- and IR-activ&, E;, andE, modes are de-
noted in Fig. 5. They are the points at and closé ' tdWith
larger tube diametefincreasingn), the points giving rise to
the E; and E, modes converge towards thie point of the

BN sheet. Therefore, as a first check on the frequencies of

K

active modes of large diameter tubes, it is sufficient to loo
at the frequencies at tHe point of the sheet. The frequencies

of modes that correspond to the acoustic branches of the
sheet converge accordingly to zero for large diameters. Not

that not all of theA, E;, and E, modes may be Raman
active, because one still has to distinguish between the di
ferent “subsymmetries.” E.g., the TO mode of the shedf at
[see Fig. )] folds into a tube mode of\; symmetry[see
Fig. 7(b)] and is thus Raman active, whereas the LO mode o
the sheet at” [see Fig. 6c)] folds into a mode ofA, sym-
metry[see Fig. 7c)] which changes sign under reflection at a
plane that contains the symmetry axis of the tube.

If one uses the lowe€,,, point group for the symmetry
analysis, the modes that haBesymmetry in theC,,,, group
turn into A modes. Similarly, modes df,_; symmetry turn
into modes ofE; symmetry and modes d,_, symmetry
turn into modes ofE, symmetry. Thus, in addition to the
modes at and close 10, some modes at and close to tke
point of the sheet become Raman- and IR-active when t

h
lower point-group symmetry is used which may be requirecf

in the case of finite-length tubes.

The zone folding for armchair tubes works in an analo-
gous way to the zone folding for zigzag tujese Fig. B)].
The only difference is that the active modes of the tube cor
respond to a discrete set of modes along the lire M
—1I" in the reciprocal space of the sheet. As in the case of th
zigzag nanotubes, it is the sheet modes at and closkthat
become active upon using the low@y, point group for the
symmetry analysis.

Finally, Fig. 5c) illustrates the zone folding for a general
chiral nanotube. In the example, we have chosen (%

tube with a relatively short primitive translation vecrAs
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compare with the results obtained by zone folding &ie
initio  dispersion relation of the single sheet. The
Cony» Conn, and Cy symmetry groups have been used to
evaluate the section rules for the zigzag, armchair, and chiral
tubes, respectively. l.e., in structurally perfect and “infi-
nitely” long tubes, only the displayed modes are expected to
be active. Figure 8 displays the frequencies of the Raman-
and IR-active modes of the three types of tubes as a function
of the tube diameteD. The ab initio values are plotted as
symbols, while the zone-folding values are connected by
lines in order to guide the eye and extrapolate to larger tube
diameters. Three frequency regimes are easily distinguish-
able.

(1) The low-frequency modes whose frequencies ap-
roach zero folD —o are the modes that are derived from
the acoustic branches of the sheet.

(2) The three modes that approaeh=818 cm ! for D
« are radiallR) modeqsee Fig. 7a)] which are related to
the optical out-of-planéZO) moded Fig. 6(a)] in the disper-

—

éion relation of the shedFig. 2.

(3) The high-frequency regime above 1200 chtonsists

of longitudinal (L) and transversél) modes[Figs. 1b) and
(c)] which are zone-folded TO and LO modes of the sheet
(Figs. Gb) and Gc)].

We discuss at first the three different frequency regimes
separately in the case of the zigzag tulleft panel of Fig.

8). Afterwards, we extend the discussion to the chiral and
armchair tubes.

Figure 9 is a double-logarithmic plot of the low-frequency
modes in the zigzag nanotubes. For the RBNarked by
asterisky we have also included the values of chiral and
armchair tubes. From phonon calculations in C nanotubes, it
is well known that the RBM is inversely proportional to the
ube diametér: wrgy>1/D. The same holds for BN nano-
ubes. In fact, not only the RBM, but most of the low-

frequency modes display the sam® 1gcaling. This can be

easily understood from the phonon dispersion of the sheet
(Fig. 2) in combination with the zone-folding procedure in

Fig. 5: The LA and TA branches of the sheet have a linear
slope at the™ point. The distance between thepoint and

the points that map onto the; and E, modes in Fig. 5 is

proportional to IN (with N being the number of hexagons in

the tube unit ce)land hence proportional told/ Hence, all
the low-frequency modes in the tubes that are folded from
the LA and TA branches of the sheet exhibit thB Kcaling.

Only the frequency of the lowe&, mode in Fig. 9 displays
a 1D? proportionality?® This is because it is folded from the

in the case of armchair and zigzag tubes, the quantization G mode of the sheet which does not increase linearly but

the circumferential phonon wave vector corresponds in th%]uadratically around th& point?

reciprocal space of the sheet to a discrete set of modes alo
alineI'—=M—T". However, the line does not connect near-
est or next-nearedt points but connect$’ points farther
apart (with the distance depending on the chirality of the
tube.

VIl. DIAMETER DEPENDENCE OF RAMAN- AND
IR-ACTIVE MODES

For small diameter, the

'Eﬁﬁonon modes deviate from the functional forWiD or
A/D?, because the linear-quadratic behavior in the acoustic

branches of the sheet ceases to be valid further away from

theI" point. Only the RBM follows the functional behavior
A/D down to very low radius. In fact, in the case of the

RBM, this radius dependence does not follow from the zone-

folding picture, but can be proven analyticallsee Ref. 25

and the Appendix of this paper

In this section we present the results of @i initio cal-

It is commonly stated that the RBM cannot be obtained

culations of selected zigzag, chiral, and armchair tubes andith the zone-folding procedure because it isfamode and
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(6,0) (10,0) zigzag (n,0) (5,2 chiral (n,m) 3.3 G5 (7.7 armchair (n,n)
4,1 8,2 ; , , ,
1600 (4,0)l (8,0) l (13,0)(16,0) @n| 62 4.4 |6 6)l (8,8)(10,10) 1600
1400 &
1200
— 1000 T ] ---- E, (zone-folding) | [~ 7] — 1000
. E, (zone-folding) L,

tube diameter (A) tube diameter (A) tube diameter (A)

FIG. 8. Frequencies of Raman- and IR-active modes in BN nanotubes as a function of tube diameter: compalisoitiofvalues
(symbols with zone-folding methodlines). The shape of the symbols denotes the symmetry of the nisdedegend Black filling marks
modes which are Raman active only. White filling stands for IR active only. Gray filling stands for modes which are both Raman and IR
active. R, L, and T mark the radial, longitudinal, and tangential high-frequency nfedes Fig. 7.

the predicted frequency would be zero. Surprisingly, in Fig.of finite width. This relation—which similarly holds for C
8, the RBM lies exactly on a line obtained by zone folding. nanotubes—is discussed in the Appendix where we use the
However, this is the line of the tangenta] mode whosab  simple analogy of a ring of atoms and a finite linear chain of
initio values(gray triangles are stiffened with respect to the atoms.
zone-folding values. Similarly, thab initio values of the The power-law fit of the RBM scaling in Fig. 9 yields a
tangentialE, mode(black squaresare stiffened with respect scaling constanA=515+2 cm ! A and may be used for the
to the corresponding zone folding line. While it is true thatdiameter determination in Raman characterization of BN
the RBM cannot be obtained from zone folding ofiafinite  tubes. As is the general trend of phonons in BN as compared
sheet, it is related to the in-plane stretching mode of a shedb carbon, this value is considerably lower than the corre-
spondingab initio value Ac=572 cm A for the RBM in
1000 carbon nanotube€:®? Since the other low-frequencies
C ] modes with 1D scaling may be used as well for the radius
determination, we list in Table | the corresponding scaling
constants.
We discuss now the radial phonon modes in the
intermediate-frequency regime around 800 énfisee, e.g.,

g Lok panel(a) of Fig. 8]. According to the zone-folding picture,
< 100¢ E the A mode should be diameter independent and have con-
3 Tw
o ]
o E, . | TABLE I. First-principles determination of scaling constants for
s E “\q\ the A/D dependence of the low-frequency modes as a function of
+ A (RBM) ‘\\:L 7 the tube diameteb.
10 4 3 10 17 14 Mode symmetry A(cm 1 A)
tube diameter (A) E, (L) 304
FIG. 9. Double-logarithmic plot of the low phonon frequencies A (RBM) 515
in the BN zigzag tubes. The dashed lines are least-squares fitstothe ~ E, (L) 640
form A/D? for the lowestE, mode and to the fornA/D for all Eq, (T) 702
other modes. The fit has been performed on the diameter interval E, (T) 1058

between 6 A and 14 A.
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stant frequency 0f818 cm ®. Indeed, theab initio values ~ This leads to a different number of displayed values in the
lie almost exactly on this line. ThE,; branch is the nearest three different panels as outlined in Sec. V. The fact that for
neighbor in frequency of tha mode and th&, branch is the ~ Zi9zag and ch|r_al tubes the IR-active modeg are a subset of
next-nearest neighbor, because in the zone-folding picturf® Raman-active modes while for armchair tubes the two
(Fig. 5), theE; andE, modes derive from the points close to s_ets are dlSjo_mt sh_ould help in _the gxperlmental |d¢nt|f|ca-
the I' point of the sheet. Since in the dispersion relation oftion of the ratlo_of different chiralities in a macroscopic tube
the BN sheetFig. 2) the ZO branch approaches thepoint sample. In particular, the RBM can be detgcted both by_ R‘f’"
from below, the radiaE, and E, modes both have lower man and IR spectroscopy in zigzag and chiral tubes, while in

¢ than th i de. At I di the case of armchair tubes, it should only appear in the Ra-
requency than the correspon kgmode. small dlam- - a4y spectrum. Of course, an exact theoretical calculation of
eters, theab initio values lie below the zone-folding curves

o the chirality dependence of IR and Ramiatensitiesis de-
due to bond weakening introduced by curvature effects.  gjraple for this purpose.
The L and T modes of the high-frequency branch con-
verge towards the asymptotic value=1380 cmi ! for D

—o. In the zone-folding picture, th&, and E, L modes VIII. BUNDLING OF TUBES

approach this value from below since in the dispersion rela- So far, we have assumed that the tubes are isolated. l.e.,
tion of the sheetFig. 2), the corresponding TO branch from \ e have chosen a large intertube distance in a periodic array
which these modes are derived approachlthpoint from o types in order to minimize the effects of intertube interac-
below. The LO branch, in contrast, displays a strong overtion on the phonon frequencies. In the produced samples of
bending which leads to the nonmonotonic diameter scalingjngle-walled BN tube&*?* some tubes are indeed isolated,
of the E; (T) and E, (T) modes in Fig. 8. Theab initio  but many tubes appear in bundles containing on average six
values follow the general trend of the zone-folding curvesto ten tubes. The nonuniform deformation of tubes and the
However, all high-frequency T and L modes, even the close intertube distance may lead to a modification of some
modes which should be diameter independent, experiencedf the phonon frequencies. For carbon nanotubes, the effect
strong downshift for small diameter. This general trend isof bundling was calculated by a tight-binding method includ-
also observed for the C nanotub®and can be attributed to ing a Lennard-Jones potential to properly describe the inter-
curvature effects. Th&; (T) mode displays the nonmono- atomic forces beyond the cutoff radius which is inherent in
tonic behavior which is predicted by zone folding, but due tothe tight-binding parametrizatidh=®3In the calculations of
the curvature-induced softening at small radius, it reaches thiéahn and L&' the effect of bundling does not exceed
maximum at a higher diameter than the zone-folding curvel0 cmi ! except for the very-low-energi, and E, modes.
It is expected that th&, (T) mode displays a similar behav- Interestingly, in their calculations, the low-frequency modes
ior, but since theb initio calculations are restricted in diam- are stiffened while the high-frequency modes are slightly
eter (due to computational feasibilitywe can only assume softened. The RBM is stiffened by 108%In Ref. 63, it was
that theE, (T) branch will bend down for larger diameter pointed out that due to the intertube interaction, the RBM
and ultimately converge towards the asymptotic value ohybridizes with anE, mode, leading to a splitting into two
1380 cmL. modes. The lower of these two modes is stiffer than the
The scaling of the phonon frequencies with tube diameteRBM of the isolated tube for small and medium tube radii
is very similar for zigzag, chiral, and armchair tubes as carand is slightly softer for large tube radii.
be seen from comparing the three panels of Fig. 8. In the We investigate the effect of bundling in BN nanotubes by
case of the chiral tubes, the zone-folding lines of the low-calculating a close-packeghexagonal lattice of nanotubes
frequency L modes and—to a lesser extent—the ones of thaith an intertube distance of 3.7 A. As in the case of “iso-
low-frequency T modes display a zigzag pattern. We havéated” tubes, the geometry is optimized. Due to the packing,
calculated all chiral nanotubes in the diameter range betweetihe tubes acquire a slightly oval form. For 88) tube with
3 and 20 A and connected the discrete points by lines im diameter of 11.1 A, the difference between the long and
order to guide the eye. For large diameter, the frequencies ahort axes is 0.04 A which is about the same magnitude as
the low-frequency modes follow the same scaling as given inthe buckling distance between B and N atoms for this tube.
Table | for the zigzag tubes. This is because the slope of th€his slight deviation from the ideal cylindrical symmetry
acoustic branches of the sheetlatis independent of the prevents the symmetrization of the dynamical matrix and
direction in the Brillouin zonécorresponding to an isotropic requires the displacement of all atoms in the unit cell for the
sound velocity in all directions Only at smaller diameter, calculation of phonon frequencies.
corresponding to a larger distance from thepoint in the In Table Il we compare théRaman- and IR-actiyepho-
dispersion relation of the sheet where the LA and TA modesion frequencies of a close-pack&]d) tube with a(quasiy
deviate from the linear behavior, does the frequency clearlysolated(8,8) tube. The general effect of bundling is a split-
depend on the chiral angle. The slopes of the zigzag anting of the doubly degenerate modes of the isolated tube
armchair curves are the limiting cases. E.g., the zone-foldininto two modes with slightly different frequencies. Most
curve of theE, (T) mode reaches a value of 1000 ¢chnat  phonon modegexcept for the lowesE,; modg are soft-
D=3 A for the zigzag tubes and a value of 1150 Ccnfor  ened. The effect, however, is weak and does not exceed
the armchair tubes. 10 cm ! in most cases. Surprisingly, also the radial breath-
In Fig. 8, only Raman- or IR-active modes are shown.ing A; mode and thé\;(R) buckling mode are slightly soft-
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TABLE II. Change of phonon modes due to close packing ofcircumference. The sheet dispersion relation is very similar
BN tubes in a periodic array: Raman- and IR-active modes for ano that of bulk hexagonal BRf However, the splitting be-
“isolated” BN(8,8) tube (with an intertube distance of 7.4)An  tween the longitudinal and transverse optical branches is
comparison with the modes in a “solid of tube@itertube distance missing. Instead, the LO branch displays a strong overbend-
3.7 A. R, L,_ and T denote radial, longitudinal, and tangential ing which is much more pronounced than in the phonon
modes(see Fig. 7. dispersion of the single graphene sheet. This strong over-
bending is responsible for the strongly nonmonotonic diam-
eter scaling of the transverse high-frequency modes in the

Isolated BN8,8) Close-packed BI8,9

Eaq R 20.8 7.7/22.7 tubes. The low-frequency modes scale inversely proportion-
E, L 115.7 115.0/115.6 ally to the diameter squared as predicted by the zone-folding
A ’ R 189.3 186.9 method. This may serve as an accurate tool for the spectro-
Ej T 264.7 262.7/263.7 scopic determination of tube radii. The frequency of the ra-
E ! T 4120 409 6/410.5 dial breathing mode cannot be deduced from the conven-
Ezg R 795'2 791'2/791'5 tional zone-folding method. However, its frequency can be
E29 R 805'0 798'5/798'8 understood by rolling up a sheet of finite width.
Alu R 815.8 8.12 8 ' A combined study of BN tubes by Raman and IR spec-
Ag T 1364' ) 1356 8 troscopy can serve to distinguish armchair tubes, where IR-
9 ' : and Raman-active modes are disjoint, from chiral and zigzag
Eig L 1368.3 1356.0/1356.6 tubes, where the IR-active modes are a subset of the Raman-
Ay L 1372.0 1360.6 active modes. In particular, the radial breathing mode is both
E1y T 1472.1 1424.8/1425.6 Raman and IR active for chiral and zigzag tubes but only
Ezg T 1530.7 1528.9/1529.1 Raman active for armchair nanotubes. We have shown that

the effect of bundling on the phonon frequency is low. This

ened. Apparently, the electrostatic intertube interaction act justifies the use of the phonon frequencies of isolated tubes
- APP Y, db_r a spectroscopic assignment of macroscopic samples

caused by the beginning intertube overlap of the wave func- The present study prow_des reference _data on v!brat|on_al
tions would modify the frequency. A notable exception to thepropertles for future experimental analysis. In particular, it

. equency. X would be very much desirable to perform UV resonant Ra-
weak influence of bundling is the; modes[especially the

. . man scattering in BN samples in order to obtain higher in-
h|gh-frequencﬁ1u(T) modd which are more strongly soft- tensities of the modes and to asses how the resonant and
ened than their related and E, modes of like frequency.

N nonresonant Raman spectra are related. This could have also
The reason for this is the polar nature of BN. In the P

. : implications for the present understanding of the Raman
modes, at the distance of closest approach between nelghb%r—p P g

: . . . pectra in C tubes which are always resonant.
ing tubes, equivalent atoms are locally moving as in two

parallel planes. This softens the mode and makes it suscep-

tible to LO-TO splitting. Accordingly, in C nanotubes, where
the electrostatic interaction is absent, e modes do not
experience a different shift by bundling than theand E,
modes.
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The lattice dynamics of BN tubes is similar to that of
carbon nanotubes. The most important difference is the po-
larity of the system which leads to softer bonds and lower
phonon frequencies. Furthermore, the lower symmetry of BN
tubes gives rise to a higher number of Raman- and IR-active The frequency of the radial breathing mode cannot be
modes than in C tube@rovided that in both cases the non- obtained from the ordinary zone-folding procedure, because
symmorphic rod groups are used for the selection Pif¥s it would be given by the frequency of the acoustic modes of

As for carbon nanotubes, the lattice dynamics of BNthe sheet at thE point yielding zero frequency. However, as
nanotubes can be explained to a large extent by the zonshown in Fig. 8 theb initio values of the RBM of BN tubes
folding method, i.e., the rolling of a single sheet of BN into lie exactly on the zone-folding line for the tangential
a tube with quantization of the vibrations along the tubemode. This behavior is not accidental but can also be ob-

IX. CONCLUSION

APPENDIX: ZONE FOLDING OF THE RADIAL
BREATHING MODE
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k=271 A4
“a N (A9
with m=0,1,... N—1. The corresponding eigenvalues
yield the well-known dispersion relation

\/?
w(k) =217

%The mode withm=1, which in the zone-folding picture
should fold onto thé=; mode whose frequency is “taken” by

. . . the RBM, has the frequenc
served in the case of carbon nanotubes. In this appendix we d y

1
sin=kal.

. (AS)

FIG. 10. Schematic model system for the construction of the
radial breathing mode: RBM in a ring of atoms and linear stretchin
mode in a finite linear chain of atoms connected by springs.

explain this coincidence with a simple analytical model. K o K
The important point to note is that the RBM cannot be (inh— o \ﬁ sin—|~2 \ﬁ__ (AB)
explained from the zone folding of anfinite sheet but can M N M N

be constructed from the in-plane stretching mode of a sheet For the finite chain, the matrix in EGA2) has the form
of finite width. Reducing the problem by one dimension, we

compare the RBM of a ring of atoms with the linear stretch- 1 -1 0 -~ 0 O

ing mode in a finite one-dimensional chain containi@t- -1 2 -1 . 0

oms(see Fig. 1@ We assume that the atoms of madsare

connected by springs of strengthwhich only act between 0 -1 ;

nearest neighbors. We follow closely the derivation of the : o . =1 0 |- (A7)
phonon dispersion relation in the infinite monatomic chain of 0 1 2 -1

Ref. 64 where Born—von Karman boundary conditions are

used; i.e., the aton\+n coincides with atorm. If u,, de- c o0 =~ 0 -1 1

notes the deviation of theth atom from its equilibrium po-

sition, the total harmonic potential can be written as i.e., the Coup"ng of atom 1 to atomis Suppressed_ How-

ever, if the chain is very long, the influence of the open end
1 ) is not very strong and matrigA7) can be approximated by
=5 2 (Upy1—Up)* (A1) the one of Eq(A2). With this approximation, we obtain the
same eigenvectors as for the infinite chiiu. (A3)]; how-
Assuming a time dependence of ] for all the atoms, ~©Ver, the open ends lead to the condition
this leads to the secular equation "
a

k=——, A8

2 -1 0 --- 0 -1 aN (A8)

-1 2 -1 " 0 with m=0,1,... N—1, as opposed to EqA4). For the

. 0 -1 - e : linear stretching mode which we suggest as a candidate for
Mo2l | =k . . . 21 0 folding onto the RBM of the ringm=1, and

0 -1 2 -1 (fm)_z\/i o \/Rw A0
1 0 - 0 -1 2 01 =2\ gisinog =~ VN (A9)

u; For the ring of atoms connected by nearest-neighbor
springs, it is considerably more complex to write down the
secular equation, because the system is intrinsically two-

: dimensional, corresponding to tangential and radial displace-

<t . |- (A2)  ments of the atoms. However, for the case of the RBM,

) where all the atoms are moving in radial direction, the prob-
lem reduces to one dimension. When all the atoms are dis-

u, placed by ér, the displacement difference between two
neighboring atoms in EqA1) equals the elongation of the

For the infinite chain, the eigenvectors are given by circumference divided by the number of atorh,

u,(k)=exdikna], A3 2w
n(K) ] ] (A3) Un+1—Un=Wdf, (AL0)

wherea denotes the distance between neighboring atoms and
the Born—von Karman boundary conditions require that  and the harmonic potential is
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1 207\ 2 mode should fold onto the tangenti@l mode of the ring,
U(ér)= EKN(W> o2, (A1l)  which also contains two nodes along the circumference. The
calculations of the tubésee Fig. 8 and also a numerical
Newton’s equation of motion yields then immediately the spjution of the frequencies of tHé-atom ring show that the
frequency E, mode is stiffened considerably with respect to the zone-
folding value. Similarly, the tangentid, mode with four
K2 Ka . S .
WRBM= \/:_ - \/:__ (A12)  nodes along the circumference is stiffened with respect to the
M N Mr zone-folding value which is the frequency of the second
An analogous equation was originally derived by Jishi(fourth) longitudinal mode infinite(finite) chain, respec-
et al?® in order to prove the i/scaling of the RBM fre- tively. It is important to note that this stiffening is not a
guency in C nanotubes. This was done within a forcecurvature effect, i.e., not due to the modification of the bond
constant model that takes up to fourth-nearest-neighbor irstrength due to an admixture sp® hybridization to thesp?
teraction into account. EquatiofA12) corresponds to the bonds of the sheet. This possibility can be ruled out because
nearest-neighbor interaction term of E@) in Ref. 25. The the stiffening persists for large tube radii and the stiffening is
1/r scaling does not depend on the range of atom-atom inalso present in the ring model where the interaction of near-
teractions to be includedab initio calculations yield the est neighbors is described by a simple spring irrespectively
same scaling For this reason we use the simple nearestof the curvature of the system. While we could not find a
neighbor-interaction-only model in order to highlight the simple analytical formula for the amount of stiffening we
connection of RBM and line-stretching modes. deduce that it is due to the coupling of tangential and radial
Note the equalitywrgy=w{""=20{"™ . The second motion when the in-lingin-plane modes of the chaitshee}
equality states that while the linear stretching mode of theare mapped into the corresponding modes of a (tinlge). In
open chain folds onto the RBM of the ring, its frequency iscontrast, the frequency of the out-of-plane modes of the sheet
doubled. Instead, the frequency of the RBM coincides withmatch almost perfectly the frequencies of the corresponding
the frequency of the first longitudinal mode in thdfinite  modes in the tubes. In this case, the out-of-plane motion
chain (which has two nodes peM atom unit cell and coin- translates directly into a radial motion. The remaining dis-
cides with the second longitudinal mode in the finite chain crepancies in the frequencies for small tubes can safely be
However, in the usual zone-folding procedure, the latteassigned to curvature effects.
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