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Coherent-potential-approximation study of excitonic absorption
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We study the dynamics of a single Frenkel exciton in a disordered molecular chain. The coherent-potential
approximation is applied to the situation where the single-molecule excitation energies as well as the transition
dipole moments, both their absolute values and orientations, are random. Such a model is believed to be
relevant for the description of the linear optical properties of one-dimensibagfregates. We calculate the
exciton density of states, the linear absorption spectra, and the exciton coherence length which reveals itself in
the linear optics. A detailed analysis of the low-disorder limit of the theory is presented. In particular, we derive
asymptotic formulas relating the absorption linewidth and the exciton coherence length to the strength of
disorder. Such expressions account simultaneously for all the above types of disorders and reduce to well-
established form when no disorder in the transition dipoles is present. The theory is applied to the case of
purely orientational disorder and is shown to agree well with exact numerical diagonalization.
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[. INTRODUCTION to reproduce well the single-particle characteristics such as
the density of state$DOS). As for the systems in which
The optically active states in organic molecular elementary excitations are Frenkel excitons, the CPA is, in
aggregatés—the spatially regular linear arrangements of addition, capable of providing the complete information on
dye molecules—are one-dimensional Frenkel excifofise  the linear optical response, because the latter is extracted
nature of the excitonic states to be extended over many mobnly from the single-exciton Green’s functi¢6F) averaged
ecules reveals itself in the narrowing of the absorption resoever disorder realizations. The CPA has been successfully
nances and the shortening of the radiative lifetime upon agused to model the optical spectra of periodic molecular ar-
gregate formatiorieffects known as exchange narrowing andrangements with random on-site  energtéé and
“super-radiance’.* The related coherence length coincidescompositior?® However, if the transition dipoles are also af-
with the total number of molecules in the aggregate only iffected by disorder, a proper modification of the theory is
the size of the latter is sufficiently small; otherwise variousrequired. The key observation which allows us to do this is
exciton decoherence mechanisms, among which the stattbat the dipoles enter the off-diagonal part of the Hamil-
disorder is the most essential at low temperature, substatenian in a bilinear form. In this case a single-site approxi-
tially reduce the coherence length that becomes independentation can be constructed according to a vector analog of
of the actual size of the aggregate. Considerable work hathe Shiba ansafZ. The resulting scheme is equivalent to the
been done to analyze the aspects of disorder in the molecularatrix extension of the CPA derived by Blackman, Esterling,
excitation energiés'! and positiong?~1® Much less atten- and Berk® (BEB) for compositionally disordered alloys with
tion has been devoted to the disorder in orientafibmws, random hopping energiefThe analytical properties of the
generally, in the transition dipole moments of individual BEB CPA have been examined in Refs. 26+ 22rsson and
molecules. However, from the limited available information Liebsch® and Rozenbauret al3! constructed a similar ver-
on the actual structure of molecular arrangements one cannsion of the CPA to study, respectively, the susceptibility of
ignore the fact that the transition dipoles are seriously influpolarizable particles and the vibrational modes of coupled
enced by disorder. Moreover, the last type of disorder affectsscillators randomly and isotropically oriented in two or
in a nontrivial way the separate components of the opticathree dimensions. However, their theory is still not appli-
susceptibility tensor and, hence, would be observable imable to the molecular aggregates in which one typically
polarization-resolved  absorption and luminescencaleals with an essentially anisotropic distribution of the tran-
experiments?® The present work has been motivated by thesition dipoles.
need for a detailed theoretical analysis of orientational disor- The paper is organized as follows. In the following sec-
der, as well as clarification of certain aspects concerning thdon we define the model of a disordered molecular aggregate
exciton coherence length in molecular aggregates. and set up the basic formalism for the forthcoming calcula-
In this paper the linear optical properties of a disorderedions. The exciton Green’s tensor is introduced to express the
molecular chain are studied using the single-site coherentelated single-particle quantities: the DOS, the linear polar-
potential approximatiofi?° (CPA). Applied to various disor- izability, and the coherence length. In Sec. IIl, we present the
der problems, such as that of the electronic structure in general formulation of the BEB-CPA scheme and in Sec. IV
random alloy, this self-consistent approximation was showrderive its analytic solution in the low-disorder limit. In Sec.
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V, the theory is applied to a specific case of orientationaktates; andy,(E) is the real-space exciton wave function
disorder and compared to the results of the exact numericalith an eigenenerg¥. The local DOS(LDOS) on thenth

diagonalization. site and the totalnormalized exciton DOS are found as
1
Il BASIC FORMALISM pr(@)= 2 [¢n(E)?8(@—E)=— ~ ImGyy(w), (3
{E} ™
A. Model

An aggregate can be considered as a chaiW adentical 1 1
two-level molecules. The linear optical properties in the plw)= K/{ZE} S(o—E)=— mg IMGpp(w), (4
resonance region are determined by the single-particle states

of the Frenkel Hamiltoniah where the real-space single-exciton GF is given by
+o0 )
H=> €B/By+> JomBBu. (1) Gnm(2)=—i JO dte””{(0[B,(1)B](0)[0)
n n,m
The operatOtB;‘1 (B,,) createqannihilateg an electronic ex- Un(E) i (E)
citation of energye,, on the nth molecule(whose excited - 7—E ®)

. {E}
state is supposed to be nondegengrafbe transfer terms o o
Jnm result from the Coulomb interaction between an excited@nd the symbolE} indicates that summation is performed
molecule and one in the ground state. Accounting only forover all eigenstates. Here and below, the GF for a real-valued
the dipole-dipole contribution one has argumentw is found as the limiz— w+i0". Assuming that
around the single-exciton resonance the light wavelength is
« qapp much larger than the spatial extent of a typical excitonic
Jnm:aEB Pn ¥ amPm @ wave function, the aggregate interacts with the optical field
' as a pointlike dipole. Hence, the linear response to the exter-
where p; are the vector components of tmth molecule nal optical field is completely described by the polarizability
transition dipole. The “coupling kernel’if}ﬁr‘f1 carries infor-  tensor
mation on the dielectric function of the surrounding material e
and the location of the_ molecules, b_ut not on their _d|p0le Xaﬁ(z):ij dteizt<0|[Pa(t),Pﬁ(o)]|0>, (6)
moments. If the dynamics of the exciton subsystem is non- 0
dissipative(and the molecules have no magnetic structure, so . L
o B L in which the operator of total polarization represents the sum
that p; can be chosen realdyy;, has to be symmetric in the L . 2(4) 1 pe(-)
tensorial indices §22=9%%). We shall assume the mol- of local polarizations, P*=2,(Py""+Py"),  both
nm-o onme . ?osmve- and negative-energy components:
ecules to form a one-dimensional regular lattice such tha
0B depends solely' on the !ntermolgcular d|sta|11n§ m| pat)=pegl, pa)=peB,. (7)
(measured in the units of lattice spacdinghe theory will be _ _ S
presented in a general way without specifying a concretd© set up a convenient formalism for the forthcoming discus-
form of this dependence, i.e., for any screening and anisosion let us define the time-ordered two-point correlator of the
ropy of the Coulomb interaction that can occur in a solventocal polarizations as
or on a substrate interface. )
Thg disorder ente_rs in our model both through the on-site Fﬁ,’f](z)= _iJ dteizt<0|pg(*)(t)pﬁ(+)(0)|o>, (8)
energies, and the dipole moments; . We shall assume the 0
families of random parametefs,, ,p;} corresponding to dis-

tinct sites to be mutually independent and to have identical"” equivalently,

probability distribution. At the same time we still allow for T'%8(2)=p°G. (2)p? 9
correlations between the transition energy and the dipole m(2)=PnGan(2)Pm- ©
components of a given molecule. The newly introduced quantity will be referred through the

Finally, we shall neglect everywhere the effects of a finitepaper as the Green'’s tend@T), as opposed to the “scalar”
length of the aggregate considering the limit-c. This  GF considered above. Combining the previous formulas we
approximation is justified for sufficiently strong disorder arrive at the straightforward relation
when the exciton coherence length found for the infinite sys-
tem does not exceed the actual length of the chain. B(2)= _nzr:n [Fﬁﬁ(z)JrFﬁnﬁq*(—Z*)], (10)
B. Exciton Green's tensor which indicates thafup to the sign factgrthe GT coincides

For a given random realization, the total information onwith the positive-energy counterpart of the local linear-
the aggregate’s optical dynamics is embedded in the comresponse function.
plete set of single-exciton eigenstatEgzpn(E)BHO); the As usual, one is interested not in the solution of the entire
vacuum|0) is the direct product of the molecular ground dynamical problem for a given disorder realization, but in
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finding the configurational average of some basic observabli order to reduce the double real-space summation we have

parameters. In our case the quantities of interest are thosgeq the translational invarianceﬁm(z) that allows us to
defined in Eqs(4) and(10). The subsequent implementation

of the CPA suggests thatlhe disorder-averaged DQS)
=(p(w)) and polarizabilityy*#(z)={(x*#(z)) are to be ex-
pressed in terms of the conditionally averaged on-site GT

repla&e in both terms, of Eq(18), En,mfﬁﬁ](z) by

NE,I'28(2). The last sum here is already converging and
does not depend on its upper linif. Equivalently,

TeB(2)=(T2B(2)) ai sites excepntn s (12) x“P(2)=—MTo(2) +T(E5 (—2%)], (19
with fixed nth site variableqe,,pg}, and the complete sta- where the momentum-domain disorder-averaged GT is intro-
tistical average duced according to
Tid(2)=(Th(2)), (12 _ . dk
) e T Ty I
the only quantities accessible within a single-site effective —z 2T

theory. To proceed with the DOS it is sufficient to note that,

because theth-site dipolesp? remain fixed, the conditional k being measured in units of the inverse lattice spacing. No-
average of the local GT and GF are siill related to each otheliceably, the above polarizability scales linearly with the

as established in E¢9), fﬁf(2)=pﬁénn(2)pﬁ- As a result, numberN of molepules constituting the' aggregate. Unlike

the scalar GF is obtained via projection the physics coming from the nontrivial dependence of

Fﬁﬁ(z) on the energy variable and the intersite separation

~ n o~ B pﬁ 5 s |[n—m| this elementary aspect is not related to the degree of
Gnn(Z)Z% o |2an(Z)W, Ipal?=2 (P2 exciton coherence. Nevertheless, it guarantees fulfillment of
a, n n a

an important part of the general sum rule according to which
(13 P . : .
the polarizability is an extensive quantity proportional to the
Using this relationship the conditionally averaged LDOS cantotal number of polarizable objects.
be expressed as
1 b pB C. Coherence length
pn(@)=—= ImE nzfﬁﬁ(w)—nz, (14 In the literature dealing with the optics of molecular ag-
T b |py [Pnl gregates, the notion of the exciton coherence lefgt>!’
while the total DOS is found in terms (ﬁﬁf(z) as a trivial 1S usua[ly introduced to characterl_ze the spatial extension of
. ) . the exciton wave functions. The cited works, addressing the
single-site average, given by : . .
problem mainly with numerical methods, employ several

1 w 8 definitions of this parameter to be extracted from the set of
plw)=——1m Pn T8 (w) Pn ) (15  Wwave functions obtained with explicit diagonalization proce-
T @B \pa2 ™ pal? dures. Even though the quantitative estimates provided

within all approaches can be in reasonable agreement with
"bach other, the physical arguments used are somewhat differ-
ent. From the viewpoint of the present work, a natural defi-
ition of the exciton coherence length can be given on the
asis of EqQ.(18). In fact, the disorder-averaged single-
xciton GT contains all the information on the linear optical
response of the excitonic system and depends nontrivially on
the amplitude and phase coherence between the wave func-
tions for different disorder realizations. These coherence

Remarkably, the statistical averaging in the last formula ca
be performed immediately if the probability distribution of
the transition dipoles is of the “purely orientational” form.
The trace over vector indices of the conditionally average
GT depends only on the deterministic, in this case, absolut
value of thenth-site dipole momenip,|. The averaged GT
and GF are related to each other as

> Fﬁ,‘f(z)=|pn|25nn(z) (16)  properties partly reveal themselves in the DOS and the ab-
@ sorption spectra which can be essentially different from those
and, consequently, of the disorder-free system, but it is also the dependence of

Fﬁﬁ(z) on the intersite separation that gets strongly affected
— —a by the disorder within the chain. Excluding some peculiar
p(w)= o 2 M (o). (17 cases® each component of the disorder-averaged GT is
characterized by an exponential behavior

The straightforward application of the averaging proce- o
dure to Eq.(10) gives the disorder-averaged linear polariz- F,‘fﬁ(z)~ex;{i§"5(z)|n—m|], [n—m|—o, (21)
ability in the form
where£*(z) is a complex-valued wave number. Keeping in
Y B(2) = — NS [T2B(2)+ T 2B* (—2%)1. 18 mind this asymptotics while performing the real-space sum-
X2 % [Fom(2)+ Lo ( )] (18 mation in Eq.(18) one concludes that the dominant contri-
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bution to the disorder-averaged polarizabi@iﬁ(z) comes yr‘f[”(z)= Pr9n(2) pﬁ (25
f h i f si ith Ing«? —m|<1. Th -
rg)r;nettere pairs of sites with In§*"(z)|n—m| © pa associated with the bare local GF
zZ)= . 26
NB(2) = . 9n(2)= ;= (26)

Im £4(2)’ . .
At the same time, because the algebraic structure of .

indicating how many molecules contribute to a given com-remains similar to that of Eq(23), the usual CPA self-
ponent of the linear polarizability, provides a natural defini-consistency arguments can be employed to approximate the
tion of the exciton coherence length. ClealN®?(z) is a  statistical averages defined in Eq$1) and (12). The BEB-
straightforward generalization of the conventional quasiparCPA schem® is accomplished via straightforward generali-
ticle phase-coherence length, defined in terms of the largezation of the scalar-CPA equations within the tensorial for-
intersite-separation asymptotics of the GF, to incorporate thenalism as outlined below.

vectorial nature of the excitonic polarization. QuantiB2) The disorder effect on the single-particle quantities is ac-
can be also thought of as the nonlocality range of the lineacounted for in the CPA by replacing the random local GTs
optical response function. yﬁ'g(z) with a deterministic site-independent coherent-
potential GTy*4(z). The disorder-averaged GT in the mo-
IIl. THE BEB-CPA SCHEME mentum representation is found from Eg4) as
A. Main procedure T(z)=[1- y(Z)ﬁk]fly(Z), (27)

As already mentioned, in order to find the statistical av-
erages(11) and (12) we shall employ the single-site self-
consistent approximation known as the BEB CPAThis 1
theory is capable of addressing simultaneously both diagonal ﬁﬁﬁzfo g k(n=m)gaB (28)
and off-diagonal disorders, provided the second enters the n.m
random Hamiltonian in a generalized multiplicative form. is the momentum-space coupling kernel. In turn, the condi-
The last condition is intrinsically fulfilled in the excitonic
problem under consideration because coupli®gis given
by a bilinear combination of random, with 9% being a
translationally invariant deterministic matrix. The BEB ex-

where

tionally averaged on-site G]]',‘ff(z) is approximated by as-
suming that the site, carrying its random parameters, is
placed into the same coherent environment as the one of Eq.
tension of the scalar CPAis based on the so-called BEB (27): Thus, finding this conditional average reduces to solv-
transformatiorf’ The latter represents a vector generalizationIng a S|ngle—|’m|cc)yl;3r|ty problem realized by E@4) Lr}), which

of the multiplicative ansatz, originally implemented by the bare GT'syy, (2) for m#n are replaced by*"(z). A
Shiba2* to construct a single-site self-consistent theory forSImple derivation™=*"leads to

bond-disordered alloys with mean-geometric relationship be- ~

tween hopping integrals. Upon such transformation the prob- Tn(2)=[1-(2)2(2)] *¥n(2), (29

lem of finding the resolvent of a Hamiltonian with both di-

agonal and multiplicative  off-diagonal  disorders is ing of the selected molecule with the coherent-background

equwale_ntly refqrmulated f(.)r an Opefat‘” which ac'ts N @molecules constituting the rest of the chain. Clearly, being a
space with additional tensorial dimensions, but contains °n|¥unctional of only the coherent-potential GF*4(2), this
site-diagonal disorder. With application to Frenkel excitons X

: ) ) elf-energy is the same as the one entering the complete
the BEB transformation has been already realized in Se Sisorder-gi//elrsage ofsthe Ioczl GT ng P
Il B by considering instead of operatoﬁ (B,,) the polar-
. . a(+) a(*) . . . . R _
izationsP;* "™ (PR'7) eq_wpped Wllth vector indices. As a Ton(2)=[1- ¥22(2)] y(2). (30)
consequence the dynamical equation for the scalar GF,

where the site-diagonal self-ener@y*#(z) describes cou-

Provided bothy*4(z) andfﬁﬁ(z) are represented by nons-
GonlD=0n(D Ot 02X InGin(2), (23 MIUIATMAIces, one gets
3(2)=y Y2~ Ty (2), (31)

where the local GT is found in terms of*4(z) from Eq.
(27) after the momentum-space integration:

is replaced with that for the GT,

T om(2)=Yn(2) Sam+ mz)EI Ilim(2). (24

— (7 odk B
o= ol1-9@9d . @2

-

[Here and below, omitting the indices we assume the usual
rules for multiplication and inversion of tensorial quantities.
Unlike the case of Eq23), the disorder enters E¢R4) only The unknown coherent-potential Gi*#(z) is to be de-
in the site-diagonal form, namely, through the tensor termined in a self-consistent way. In spirit of the original
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CPA, one demands the single-site expectation of the condi- Lyvo=lo, Lxi=li+lodo,

tionally averaged GT to coincide with the completely aver- ' ’

aged local GT: Lio=lo+ 119 o+ 1ol 1+ ol 0Bl o, (36)
Tu = where the corresponding moments entering the high-ener
ThA(2)=(THE(2)). (33 ponciig 0 naneneray

expansion of the local coherent-potential GF#(z) are

The latter guarantees that the conditional and the complet%'ven by
average of the GT found above will provide identical esti- |58 = (pepf)
mates for the single-site quantities such as LDOS or the local 0 PnPn/
(single-moleculg polarizability.

Summarizing, the BEB-CPA procedure amounts to solv- aB_ /a2 B ANV AP\ Y
ing equations which, including auxiliary definitions, are 127= Py G”p”>+% [(PaPAPaPA) —(PnPR)
listed in formulas(25)—(33). For nontrivial disorder models
and realistic forms of the coupling??, this can be done X(p‘spﬁ>]J'ﬂ % > 9rprply 9. (37)
only with the use of numerical methods. An example of such nEnAl ) 2 fm K ATnER Tk
numerical solution is given in Sec. \éee also Appendix A

The analytic treatment of the low-disorder limit of the theory The fact that the number of these moments is high enough
is presented in Sec. IV. guarantees the fulfilment of the sum rules for the DOS and

the polarizability, correctly accounting for redistribution of
the total oscillator strength between components of the po-
larizability tensor in the presence of orientational disorder. It

As is clear from the general discussion of Sec. Il B, thealso follows that using the BEB CPA one gets an exact value
BEB CPA allows us to find configurational averages of theof the absorption linewidthprovided the latter is defined
exciton DOS and linear polarizability of a disordered mo-from the weighted second centered moment of the spectral
lecular aggregate. It is natural to check the validity of suchdensity [ 7*#~ L2y Lifo — (LB, )2ILifool.  This
nonperturbative theory asking, in particular, how close argneans that, even though there exists no unique way to define
the estimates to the actual quantities and whether they megie width of an inhomogeneously broadened absorption line,
certain fundamental physical requirements. This question cathe BEB CPA still gives a reasonable estimate for these char-
be partly answered by analyzing the structure of the BEBacteristics of the spectrum.

157 =(pge.pt),

B. Analyticity and accuracy of the BEB CPA

CPA equations as done in a number of pagefs:-?®For Let us also mention that the theory does not seem to vio-
completeness, let us outline the important facts concerningate the fundamental inequalitid€ — e,|<=,|J,m to be
analyticity and accuracy of the BEB CPA. fulfilled for every eigenvalud. These, in particular, impose

Gonis and Garlarfd proved that*4(z) found within the ~ the lower, ming,—=q|Jdy{), and the upper, max(
BEB CPA possesses the same properties as a function of the=mlJdnrd), bounds of the spectral region, where minimum
complex energy as would have the disorder-averaged GTand maximum are taken over all disorder realizations. Even

calculated exactly. Namely, it is analytic in the whole planethough no rigorous proof of this property is known for the
exc|uding branch cuts on the semiaxis 2m0, Rez>0, case of the BEB CPA, it was shown to hold in the numerical

while the tensor solution of the BEB-CPA equations for some random alloy
models?® As will be demonstrated in Sec. V, these spectral

o 1 _ - bounds are not violated in the case of orientational disorder

AP (2)=— 5T () -T{™ (2)], (34)  either.

il Another important aspect of the theory is the behavior of

: . . ) ___the disorder-averaged GT in the complex-momentum do-
which atz=w+i0™ provides the exciton spectral density, is in. Considerind ®(z) f lexk id qditi |
positively (negatively defined at Inz>0 (Imz<0). As a Main. Considering’,"(z) for complexk provides additiona

consequence the disorder-averaged polarizability will prednderstanding about the exciton coherence length. Since

serve causality, while the DOS and absorption will be nonI"{#(z) remains the same as Rés shifted by the integer of
negative. 21, the integration contour in E420) can be modified as
The authors of Ref. 25 studied the accuracy of the theorghown in Fig. 1. Provided the function is meromorpfiie.,
to reproduce the energy-domain moments of the spectrdias only isolated polesn k, the integration reduces to sum
density, each given by a coefficient in the high-energy ex-over poles in the uppeflower) half-plane forn—m>0 (n
pansion of the GT: —m<0). [Due to the mirror symmetry of the problem, each
pole has a counterpart located symmetrically with respect to
o * LB e the origink=0.] To establish connection with the coherence
ref(z)=> ks , Llf@:f dww’A¥(w). (35 length defined above it is sufficient to note that only a single
=0 z°*1 0 pair of poles will contribute to the asymptoti¢®1), namely,
having a minimal distance from the real axis km 0. Ap-
It was shown that the BEB CPA provides correctly the firstplying these arguments to the disorder-averaged GT in the
three moments of the spectral density, BEB-CPA form (27) one concludes that the complex wave
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X n-m>0 A vth term in the last sum is proportional to theh-order
centered moments of the probability density. The first three
Y oo terms are given explicitly by
£%(2)
X ~ ~
- <an(z)>0:an(z)|en=e,pr‘::pm
- 7
> <rnn(2)>120,
X
~£7(2) . -~
1 | ~ 1| 9T ,,(2) 0T \n(2)
<an(2)>2:— aZ%'i_z bg$
2 g€l a dendps
Xl n-m<0 ~
- . . . & Lnn(2)
FIG. 1. Schematic picture of the integration contour in the + cgﬁa—ﬁ , (40
complex-momentum plane. Each couple of vertical lines with op- ap IPn Py €.=ep?=pe
posite orientations give zero contribution to the integral. The " "
crosses mark poles of the momentum-space GT. where in the last equation
numbersé®?(z) of Eq. (21) are to be selected among the _ 2 a_ o pha
. - i a-,= — , b — _ _ ,
solutionsk of the characteristic equation 2=((en= )% 2={(en=€)(Ph—P"))
def1— ¥(2)9,]=0. (39) c3”=((py—P*)(P—p")) (4D

Here, we assumed that the Fourier-t_ransformed ked(i€lis are the second-order centered moments. The terms not in-
analytic ink to provide meromorphifﬁﬁ(z). This assump- cluded in Eq.(40) will be neglected following our assump-
tion is valid, for instance, if the coupling extends only over ation about the weakness of disorder. Later, it will be demon-
finite number of sites. However, the last equation may nostrated that the information contained in the third- and
lead to a correct coherence length for a more general nonanhigher-order centered moments is indeed not preserved in the
lytic coupling. low-disorder limit of the BEB CPA.
We shall additionally impose some simplifying restric-
IV. LOW-DISORDER LIMIT tions on the forms of the disorder and intermolecular cou-
plings to be considered below. Namely, let the system be
For a dilsorder-.free chain, the GT obtained from the BEBsuch that (|) in some (Orthogona] basis of the three-
CPA coincides with the one known exactly. In order to es-gimensional vector space the Coup”ﬁgﬁ] is diagonal in the
tablis_h a relgtion of our approach. with the. existing scalingupper indices for all pairs of molecules afid) the disorder
theories of disordered one-dimensional excitdlet,us solve  ropapility density is symmetric under reflections of two ba-
the BEB-CPA equations in the limit of weak disorder. A simi- gig yectors. We shall label tensorial components correspond-
lar calculation for the bond-disordered binary alloy has beeri1ng to either these two basis vectors by symbals, "

already done in Ref. 28. However, due to the rather involveqL2 " and those of the remainin¢third) vector by “|.” The
structure of the BEB CPA the general treatment of the |°W'c0L,1pling energies, . and, hence, the scalar GE,.(2) re-

disorder regime is still missing. For the sake of simplicity We yain invariant, while every off-diagonal tensorial component
shall also_ relax the gene_zrallty Imposing certain symmetriegy e GTFﬁ,ﬁ(z) changes its sign under one of the above
under which the theory is formulated in terms of d'agonalreflections[because from+ 3 it follows that eithera or 3
tensors. is different from ||]. Therefore, configurational averaging

with a symmetric probability distribution will result to a di-
A. General ap
agonall'[7(z2).

To proceed one needs first to specify the “low” disorder  Regarding the BEB-CPA theory, from Eq&7) and (30)
in terms of its probability distribution, entering the BEB CPA it follows consecutively that both the coherent-potential GT
through the self-consistency equati¢83). We do this by  ,28(z) and the self-energ® *?(z) reduce to the diagonal
imposing smallness of the centered moments of the probabiform. As concerning the low-disorder limit to be studied
ity density which characterize deviations of the on-site €Nerhere, with our symmetry requiremen[s the average d|po|e
gies and transition dipoles from their average values momentp® is directed strictly along thg axis, the vectorial
=(€n) andp“=(py). The conditionally averaged local GT parametebs defined in Eq.(41) has a nonzero component
in Eq.(33) can be represented as a power serie,ine and  only along the same axis, while the tensgf’ is diagonal.
Pn—P“ so that itsnth-site expectation can be written as  Using the explicit dependence of the conditionally averaged
GT on thenth-site random parametefsee Eqs(25), (26),
Tap — TaB and (29)], the nontrivial (diagona) components of tensors
(MR (@) =2 (TR @), (39 T con be found as 9 P
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5 The computation of the disorder-free self-energy
(T11(2))0=0, (42  3*A(2) is not straightforward due to the fact that compo-

nentsy(%i(z) and_(o)l'(z) vanish, leading to an undeter-
2 bl minate expression in Eq30). To overcome this difficulty
ld 2bz|p| one can employ the following arguments. Consider the
—3l2)|p|2]?  [z—e-3l(2)|p|?]? disorder-free chain with a single impurity molecule placed
i | ) on thenth site in such a way that its dipole momepft has
cy(z—e)[z—e+321(2)|p|”] no component along theaxis. Since in this case the transfer
[z—e—3l(2)|p|3 energyJ,m= = ,p292Ep# vanishes, thath site, decoupled
N irom the rest chain, will be characterized by the local GT
. ;'S4 (2)|pl? 43 T'(0*f(z) equal to the bare quantity?g,(z)p?. From Eq.
2 [z2—e-3l(2)|p|??’ (29), for any of suchp?, it follows that = ,p2s (D#(z)pf
=0. Therefore, being a diagonal tensor, the self-energy will
Li have nonzero projection only on theaxis, orthogonal to the
S subspace of the considered . Using Eq.(31) for the non-
Z—€— 2”(2)| p|? trivial component of the self-energy we end up with a simple
expression

pl?

F -
< n(Z)>O E—EH(Z)|p|2’

(Th(2)),=
[z

C

(Ton(2)2

Combined with the BEB-CPA self-consistency equafign.

(33)] these formulas provide the starting point for the ana-

lytical treatment of the low-disorder regime. E(O)H(Z): i o
|pl?

As seen from Eq(43), the solution behaves quite differ-
ently in the two distinct spectral regions. Namely,zifis
sufficiently far away from the singularities generated by de-Where
nominatorz—e—3l(z)|p|? one can look for the unknown
y*#(z) in an approximate form, replacing in E¢@3) the 5(0)(2)=JW % 1 48
BEB CPA self-energys “#(z) with its expressior®, *#(0)(z) nn —n27 72— e—9)|p|?
for the disorder-free system. The solution found in this way
will be valid only for energies not very close to the band denotes the on-site scalar GF of the disorder-free chain. The
edges of the disorder-free system. Around these points orfé§st of Egs.(47) represents a natural relationship between the
can no more neglect the disorder-induced corrections to thecalar self-energy— e— 1/G(°)(z) and the main component
self-energy componerﬁ“o)(z) in Eq. (43). Nevertheless, of the tensorial self-energy in the absence of disorder.
the last situation is still addressable analytically because near Having derived the disorder-free self-energy we get the
the band edges an explicit asymptotic relation betweenlesired correction46) to the coherent-potential GT in the

O)Li(z)=
6@?3@)1’ BT

I'#4(z) and y*#(z) can be used. form
2 (0) I
B. Iterative solution yDl(z)= 3| p|*Gy )+ 2b2|p| H G(O)(Z)
2 2t
Away from the band edges of the disorder-free chain we (z—e) (z—e)
can look for the coherent-potential GT in the iterative form (49)
Y*P(2) = yOB(2) + YD (2). (44) YPhH(2)=¢;'G)(2).
The first term with components The final expression for the GT*4(z), valid in the low-
ME disorder regime away from the band edges, is obtained by
yOl(z)= p_, Y OLi(z)=0 (45)  inserting the totaly*?(z) of Eq. (44) into Eq. (27).
Z—¢€ Let us comment on the analytical properties of the ob-

corresponds to the disorder-free system af*4(2) is a f[aine(d1 )sglution. %orrectiom9) obeys the large-asymptot-
small correction to be determined. From E80) linearized ¢S v'~'*"(2)~¢;"/z. Hence, the disorder-averaged GT be-

in parameter$41) one has haves aﬂ“kﬁ(z) (ppP+c5P)lz. Using definition(41) for
_s O o7 B it is easy to see that the coeff|C|qvﬁp3+c 2B coincides
S0l(z)— [z—€ (2)|pl<] (TOlz)),. Wlth that of the first term [ (_pnpﬁ)) in the general
(z—€)? nn high-energy expansion35). That is, even though for the
zero-order solution the asymptotid&?*?(z)~p*p#/z is
yMi(z)= (Fffr?ii(z»z, (46) not accurate, the correct form is restored as the first-order

~ iterative correction is taken into account. Furthermore, the
whereI'(%*#(z) denotes the local GT on a single impurity next two coefficients l(ﬁf, ng) are also reproduced in the
site in the disorder-free chain, related to the disorder-fredound solution, provided one neglects the third- and the
self-energyX (9%A(z) by Eq.(29). higher-order centered moments of the disorder distribution
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function in Egs.(37). Nevertheless, the found GT can have Furthermore, in accordance with E(1), the respective
in general spurious poles outside the real axis around thself-energy can be represented as
band-edge singularities of the disorder-free {&fe. (48)].

Such nonphysical behavior is related to the fact that around 1
the band edge the second term in expangigh is no more sl(z)= W[Z_ e—o(2)—2IV{-z+0a(2)]. (55
small as compared to the first. For the two components P

I','(z) the portion of spectral weight taken up by the spuri-Concerning the two componenf_sﬁri](z), even though they

ou§ poles vanishes upon decreasing thg disorder streﬁ]'gth share the singularity present in the ade\),én(z), one can

Thlst'guarantetes fthetrforre(:t repro((jj.uctlonl of tht? optical abl(ljemonstrate that it is still possible to use the simple relation-

sorption spectra for the corresponding polarizations, as well . =, | . Lify—

as the DOS away from the band edges. The same is true f&lt]'prnn(z) Y i(2) o, equwfalently, 0 seE. (2)=0. .

the componerit](2) for a generic nonzero momentunOn Writing the CPA self-consistency equation one can retain
P k 9 only the most singular terms of E3) near the band edge

the other hand, the spectral density comporiiz) at mo- 7~ where for the vanishing disorder alse(z)~0. The
mentumk=0 is itself strongly concentrated near the energyequation fory“i(z) reads simply

{=e+9]_olpl? (50) | oL
which usually represents an extremum of the bare exciton rHi@)= o(2)+\2Ii—z+a(2) (56)

band. Hence, the iterative solution found in this section does

not describe the most important part of the absorption profiléds for the componenty”(z), the only essential are the first

for polarization directed along the average dipole moment. and the third terms in the right-hand side of E43). By
straightforward algebra we arrive at the self-consistency con-

C. Scaling solution dition
Let us now analyze the BEB-CPA equations near the low- A223V =2+ o(2)
est band edge of the disorder-free system. We shall use the V2I\Z-z+ o(2) =0(2), (57)
standard(for J, but notH aggregatesassumption that this [0(2)+V2IVl—z+0(2)]?

point corresponds to the centie=0 of the Brilloiun zone,
thus coinciding with the energy defined in Eqg.(50).
Aroundz={ it is convenient to represent tij&component of
the coherent-potential GT as

which represents an equation to be solvedd¢zr). In this
formula we have used the shorthand notation

A=ay+4ch(9]_)?p|? (58)

2
Pl ] (51) for a combination which can be thought of as an effective
z—e—0(2) disorder strength parameter governing the low-disorder limit

Assuming the absolute value of the new unknown functiorP! the BEB CPA near the band edge. _
o(z) to be small compared to the total width of the exciton The algebraic structure of E(57) is still too complicated

band, one can retain only a few significant terms in the exfor one to obtain its solution in a closed form. At the same

pansion of the coupling kerne‘}‘,L aroundk=0, while per- time, the scaling ofr(z) with the disorder strength can be

. . : _ 413
forming the momentum integration in E2). Provided the foun(_j easily. Namely, N th? intervat — ¢[<J(A/9)™ the
constant solution (both real and imaginary parbehaves as

Y(2)=

d29)| J(A)Mg 59
=] Ief (52) S NI 9
k=0

Employing this scaling relation one can find the low-disorder
has a finite(positive) value, which is the case if the real- asymptotic expressions for the absorption linewidth and the
space couplingﬁlm decays faster thatn—m| 2 at large  exciton coherence length in the resonance region. Substitut-
intermolecular separation, we can use the effective-mass aprg Eq. (51) into Eq. (27) the main component of the
proximation for the disorder-free exciton dispersion: disorder-averaged GT around the phase-space peit k

~0 can be written as

J
19‘I‘(|p|2%19‘|‘<:0|p|2+ Ekz- (53 o |p|2
W(2)= 60
k(2) P (60)
This leads to the asymptotic expression for the correspond- z—{—0(2)-JK/2
ing component of the local GT valid around the band edge: o corresponding polarizability
Il(2)= Ls . (54) J(2)= _NL 61)
" V2IJi—z+o(2) X z—{—0a(2)’
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obtained from the basic relatiail9), is characterized by a
resonant behavior near the band edge. The width of the reso-
nance, estimated ag ~ —Im o(¢), scales with the disorder
strengthA as

[}
]
]
]
]
]
! ¢n (in-plane rotation)
;

]

0

A\ 43 /
7,|~J(3) : (62)
) (chain's axis) @
Furthermore, one can make use of the effective-mass ap- eJ_:e2 3

proximation (53) to get a scaling of the exciton coherence
length in the §pectral region around the absorptlon_ resO- FIG. 2. The studied geometry of the orientationally disordered
nance. According to the arguments of Sec. Ill B applied tomolecular chain. The dipoles are distributed in the plane built on
expressior(60), the complex wave numbér= fH(Z) govern-  vectorsef', ef and forming angled with the chain’s directiores .

ing the asymptotic behavior of the disorder-averaged GT at

large intermolecular separation is found from equation results treating both the on-site energy disorder and the dis-

3 order in transition dipoles on an equal footing through the
z—{—o(z2)— E|<2:o_ (63  combined parametek of Eq. (58). The fact that the BEB
CPA is able to reproduce the known scaling relations is not

Taking z~¢ we end up with the following scaling of the Surprising because this self-consistent approximation be-

coherence length in the resonance region: comes exact in the disorder-free limit.
A —2/3
NH~ (j) . (64) V. ILLUSTRATIVE APPLICATIONS

. . . A. Model and simplified parametrization
It should be also mentioned that combining E62) with

(64) leads to the scaling relation In this section, we demonstrate how the general theory
discussed so far can be applied to a specific model of disor-
l~JI(Nh =2, (65)  dered aggregate: a chain with purely orientational disorder in

hich d tinvolve the disorder st hThis d the transition dipoles. In addition to having constant absolute
which does not involve the disorder strengt IS dE€PeN- y/31ues, the random dipoles will be assumed to lie in parallel

dence is universal in the sense that it follows only from thg lanes forming an anglé with the chain’s directiorFig. 2).

shape of the exciton dispersion in the disorder-free system i h : : : :

. ) e random in-plane orientation anglés will be modeled
the V|(;|n|ty Of. the b"?md edge. Indeeq, scali@p) can be by a box probability with density 1/(®) in the interval
established without rigorous computation of the spectral den|-¢ |<d and 0 outside. We shall consider the molecules to

n .

i i i I [ i
sity but_by simply notlng.th.atr; and 1N can he cansidered, interact as dipoles in an isotropic background, so that the
respectively, as uncertainties of the exciton energy and maq-

mentum brought about by the disorder scattering. The reIa—ensorlal kemelih acqires the form
tion between these quantities imposed by disper§i@ is
of the quadratic form(65). G =922 =Vim, 92 =—2Vin,

It can be noted that the terms of expansi{@8) propor-
tional to the higher-order centered moments of the disorder 1 13 -
distribution will bring stronger singularities in the vicinities Fom= Fam=Im=0. (66)
of the band edges compared to the ones of the second-order
centered moments. Nevertheless, the dominant contributioRor the long-rangéLR) dipole-dipole coupling one would
to the solution will come solely from the second-order mo-have V,,,=|n—m| 3. However, since in this case the mo-
ments. Let us illustrate this for the simple situation wherementum integra(32) cannot be reduced to a closed analytic
only diagonal disorder is present. A derivation analogous tdorm, we shall restrict ourselves to the more easily treatable
that leading to Eq(59) shows that the centered moment  nearest-neighbofNN) [V,m= 6jn—m,1] or next-NN (NNN)
of order »>2 alone would produce the scaling,(z)  [V,n=8jn_m 1T 6n—m2/8] couplings. For concreteness we
~J(a,/3)?* ") |f the probability to encounter a random shall always assume that é65-1/3, so that the disorder-free
energye, falls off rapidly enough away from the mean value chain @ =0) represents a aggregate. The singular case
e we have ay~a5’2. Thus, the contribution o,(z) cog#=1/3 is considered separately in Appendix B. From
~J(a,/3%) ") will be always suppressed by that of the now on the energy will be measured in the units of the NN
second-order moment(z) ~J(a,/J?)?3 considered so far. interaction strength, and the dipoles will be chosen to have

When applied to a molecular chain with only diagonalunit absolute values. We also shift the reference point of
disorder the asymptotic expressio(@2 and (64) coincide energy to the position of the bare molecular level.
with those obtained in Ref. 5 using different scaling argu- Since the random dipoles are restricted in a single plane,
ments. Furthermore, for the case of diagonal disorder théhe theory can be conveniently reformulated in terms of ten-
asymptoticg62) has been found in Ref. 22 by means of thesors projected onto the corresponding two-dimensional sub-
scalar CPA. Our theory thus provides an extension of thesspace. We choose the new basis as
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10F

e”1=sin 0, eﬁ=0, ef=cose, 15[

el=0, =1, &*=0, (67) o
10t )
i.e., the first vector is parallel to dipoles of the disorder-free =§_ —k. 6
chain and the second is orthogonal to it and to the chain’s > —
axis. In terms of the projected componepﬂy cosdn, pr, El E 4

=sin ¢,, the three-dimensional dipoles are given by

pe=efpl+elp;. (69)

The advantages of this representation come from the fact that
our disorder distribution density is invariant under the
change of sign op;. . Hence, since upon projection the cou-
pling (66) remains diagonal,

9 =(1-3¢c020)Vym, O =Vim, (69)

Re 14w

the reduced BEB CPA will involve only diagonal tensors. As
a result, we end up with the affordable equations, whose
explicit form for the case of NN and NNN couplings is given
in Appendix A. Moreover, as the additional symmetry re-
qguirements formulated in Sec. IV are fulfilled, the low-
disorder solution derived there can be employed. Since all
the components of a physically measurable tensor can be F|G. 3. The imaginarya,b, and real(c,d) parts of the BEB-
straightforwardly reconstructed using H8) from the two  CPA self-energy for the case of NN coupling. Several values of the
diagonal components of the corresponding projected tensadlisorder parameter are useli=0.6 (solid lineg, ®=0.9 (dashed
the last two will be presented every time to illustrate thelines), ®=1.3 (dotted line$, and ®=3.14 (dash-dotted linés
outcome of the theory. =0.26 for all the curves. The horizontal lines in pan@sand (d)
mark the diagonal elements of the NN coupling matrix at momen-
tumk=0: 9¥}_,=—3.603, 9}_,=2.

B. Numerical results

Due to their explicit forms the equations of Appendix A ends up with no well-defined quasiparticle peak in the corre-
can be efficiently solved using standard numerical methodssponding component of the spectral density.
In order to test the accuracy of the theory we also performed The profiles of the disorder-averaged exciton DOS are
exact diagonalization for an open chain &f=250 mol-  presented in Fig. 4. Except for the well-known band-center
ecules with either NN or LR coupling. The statistical error Dyson singularit in the case of NN coupling and a similar
was reasonably small after averaging over 5000 disorder rdut nonsingular feature for the LR couplifiithe numerical
alizations with the energy domain divided into 400 outputDOS is reproduced well within the BEB CPA. As a confir-
intervals. mation of the analyticity of the theory no unphysical behav-

The tensorial components of the coherent-potential GTor of the DOS has been observed. The theory also captures
are plotted against energy in Fig. 3. This figure can be usegroperly the exact symmetry of the spectrum present in any
to illustrate analyticity of the theory and to predict certain tight-binding system without diagonal disorder and with only
features of the physical quantities to be presented belowNN coupling. The asymmetric DOS in the case of LR inter-
Specifically, the functions Im 3/(w) and Im 14 () obey  actions is satisfactorily approximated already by that of the
the correct sign that guarantees the positivity of DOS andNNN coupling. Furthermore, it can be observed that the up-
optical absorption. From E@27) it follows that the resonant per and lower estimates of the spectrum region mentioned in
denominators of the exciton spectral density components arfgec. Ill B are not violated in the presented solution. For in-
given by[Re 1h(w) — 9 ]?+[Im 1/y(w)]?, where polariza- stance, in the case of NN coupling the spectrum should not
tion label | or 1 is assumed. Hence, provided Im{k)  extend beyond the intervib|<2 maxJ, n.4|. The maximal
<1, the spectral density will be characterized by a shargbsolute value of coupling accessible by varying parameters
resonance located around the frequencto be found from ¢, within the interval|¢,|<® is given differently in the
Re 1~(w)— 9,=0. The solution of this equation for either distinct domains of the parametric space: if ws2/3 it
polarization and momentutacan be found graphically from equals to 3 cd®—1, while in the opposite case it becomes
Figs. 3c,d) (where, in particular, the positions of, andd;. |1~ 3 cosflcos®+sirf® for d=<m/2 or 1 for &> /2.
at k=0 are shown with horizontal lingsActually, the as- The disorder-averaged absorption spectrarmalized by
sumption on smallness of the imaginary part of the inverséhe number of molecules in the chamlong the two essential
coherent-potential GT is valid only in the case of componenpolarizationsgj’ andef, are presented in Fig. 5. The com-
yl(w) and only for moderately weak disorder. As concerningponent Imy!(w), corresponding to the direction of prefer-
y"(®), the above condition is never satisfied, so that oneable orientation of the dipoles, demonstrates a behavior typi-
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_ NNcoupling density asQl~L|_o/L} g0, Q" ~Li_o4/Li_go. Using
(@) o4r s Egs. (36) for these parameters in the simplest case of NN
03 L ] coupling we end up with Ql=(1-3codg)[1
02 L ] +sin 20/(2®)], Q'=1—sin 2b/(2d). These expressions
t 1 one more time confirm that the centra of the absorption spec-
01r ] tra are located at essentially different energies for the two
0.0 |— , polarizations.
03 7 For additional understanding of the features observed in
ozl P the absorption spectra, the complete BEB-CPA spectral den-
: . sity is plotted in Figs. @,b. For the considered disorder
01 . parameter ¢ =0.9) the componenﬂk(w) is characterized
§ P by a well-pronounced quasiparticle structure, with most of
e 8_2 i | the spectral weight located around the disorder-free exciton
L . branchw = ﬂ‘l‘(. As for the partAy (w), similar to the already
02 . considered case of momentua* O (the only directly acces-
i 1 sible in the linear optigs the function has no resonant be-
0.1 I havior in the whole phase space. The spectral density trans-
0.0 formed into the real-space representation is shown in Figs.
03 . 6(c,d). The componenﬂm(w) is essentially nonzero in the
02 i ] interval [n—m|=100, and for fixed exciton energy has os-
“ cillatory behavior as a function of intermolecular distance
01 L i n—m. Starting from zero near the bottom of the band, the
L number of nhodes monotonically increases as one moves to-
0.0 wards the upper band edge. Since absorption is obtained
4 4 from the real-space spectral density after summatits),
the absence of oscillations explains the strong absorbance for
(b) the || polarization near the band bottom. As concerning po-
0l larization, orthogonal to the _preferred orientation of the tran-
sition dipoles, the functiom, () is confined on a few
(Jn—m|=1-2) sites. This implies the absence of the coher-
02 ent optical response of the molecules, resulting to a weak and
very broad absorption for this polarization direction.
01k / i Figure 7 illustrates variation of the exciton coherence
! \ length across the spectrum. The BEB-CPA coherence length
' | has been found extracting the paramet&ryz) of the large-
0.0 - ; . — intersite-separation asymptoti(xl) from Eq.(38). Owing to

the symmetry of the problem, the latter splits into the two
o independent equations -1yl(z) 9=0 and 1-y(2) 9

FIG. 4. The disorder-averaged exciton DOS for several values= 0. Consequently, each of the two compondrits(z) and

of the disorder parametd calculated with the BEB CPAdashed F#m(z) is characterized by its own coherence length, to be
Ii?es) (%r ixaﬁt nggBog?DlZati%I(\Sﬁlid ”“es'd_(a) CaT_e ‘;_&";)NCCOU' denoted ad\l(w) andN*(w), respectively. From the results
pling (both the and the exact diagonaliza}i ase S - I
qf NNN_coupIing (BEB CPA) or LR coupling(exact diagonaliza- 2|r'1eesr33:[ehdal\znzlgé Ymg(?rl:qouv;ﬁ ;ﬁ?ugg)ﬂ?g%r;% izpnlfenrdzr?dn de-
tion). #=0.26 for all the curves. The arrows mark the spectral h .
bound estimates for the case of NN coupling a@ne 0.9, namely, creasing as» approaches the edges, wheréeg(w) is al-
w=+13.60. most constant across the spectrum. Beyond the spectral re-
gion the parameter§*?(w) are imaginary and, hence, the
coherence length is finite, even in the uniform chain. Re-
cal for disordered aggregates: a sharp resonance acquiringnarkably, upon variation of the parameterthe two lengths
inhomogeneous width upon increasing disorder is Iocateml\(w) and N*(w) evolve differently: the first decreases,
near the bOttom Of the eXCi'[OI’IiC band. As fOI’ the polarizawh“e the Second gI‘OWS W|th disorder. Regarding the exact
tion, Orthogonal to the prefe_rrEd orientation of the dip()les,diagonanzation approach, the coherence |ength can be ex-
the absorption component Igt () is generated solely by tracted directly from envelope of the disorder-averaged real-
orientational disorder. In contrast to the previous case ngpace spectral density in accordance with &{). Unlike
narrow resonance is observed, but rather a broad spectrutine case of DOS and absorption, much larger statistical error
shifted to energies higher with respect to the bare moleculas present owing to the fact that the quantity to be averaged
level. The positions of the absorption maxima can be roughlyi.e., a tensorial component of the spectral densigpends
estimated from the zero and first moments of the spectrabn both energy and the real-space variables. Here, one
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FIG. 5. The excitonic absorption spectra for NN coupling and several values of the disorder pachmeteulated with the BEB CPA
(dashed linesor exact diagonalizatioigsolid lineg. #=0.26 for all the curves. The arrows mark estimates of the spectral centdr for
=0.9: Ql=-2.77, 0+ =0.46. For®=0.6 the absorption spectra resulting from the low-disorder limit of the BEB CPA are presented
(dotted lines.

should keep small the width of the energy integration intercated at+¢=+2(1—3 cog6) for NN coupling is negli-

val [ 6w~ 1/400 of the total bandwidth in our simulatidrte  gible compared to the integrated spectral weight. To
ensure that the additional decoherence due to interference gpproximate such wide-bandwidth absorbance one can use
waves separated by energies smaller thandoes not ex- the iterative solution derived in Sec. IV B, which results to

ceed the disorder-induced effect. d{w) is the excitation ihe expression |rﬁi(w)%/\/cl/@2__w2_ In contrast. the
group velocity the last condition can be expressed as 2 '

v(w)/8w>N”(w). This inequality is not easy to fulfl component In;”(w), with most of the oscillator strength

I . concentrated around the lower band edge, should be calcu-
around the b_and cente (o) is largd a_nd around the ba}nd lated using the approach of Sec. IV C. In particular, taking
edgeq v(w) is small. Apart from mentioned the numerical

procedure suffers from the finite-size quantization takingIrlto account that the disorder paramet&8) is given byA

~®2, scalings (62) and (64) read 5l~®®® and NI
{)rlzc((:ahg?nthe coherence length approaches the total length of ®-43 respectively. The linewi dth7H and the exciton co-

For the model under consideration, we have also verified'c ¢ 'c€ Ie_ngth” at _the absorption maximum _extracted from
the accuracy of the low-disorder analytic solutions found in he numerical solution of the BEB-CPA equations are plotted

Sec. IV. Since no diagonal disorder is present, the centere?ﬂ%ilrrft(ﬁtm fF:ﬁs.gar}\t;).Jhe Fl’irﬁseln\tsd pl)\;lofrilesvcnr)nfirrr;”the
momentsa, andby of the distribution vanish, and the only t:J ent orthe dernved scaling 1aws. VIOreover, as 1fius-

parameters which control the strength of disorder e&e ated in Fig. &), the universal scalinge) is observed in

! e the whole range of;| andN! accessible by varying from
~®"/45 andc; ~ @ /3,' To evaluate thesfe constan_ts we ha‘_’eo to 7r, even though the two above dependencies hold only
used Eq(41) and retained only the leading terms in the limit ¢, ¢ sufficiently close to zero.

of small . In the magnitude of the averaged dipole mo-
ment, one has to keep also the next-to-the-leading term,
which results in the estimat@|~1—®2/6. In Fig. 5(panels
with ®=0.6) the analytic low-disorder absorption spectra In a typical experiment one deals not with a single mo-
are confronted with those calculated via the direct solution ofecular chain but rather with a macroscopic ensemble of such
the BEB-CPA equations and by exact diagonalization. Foobjects. The treatment reported here is applicable only if the
polarization perpendicular to the preferred orientation of di-coupling between molecules of distinct aggregates is weaker
poles the spectral weight of the band-edge singularities than the disorder-induced broadening in a single chain. The

C. Experimental relevance
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FIG. 6. (a,b The tensorial components of the BEB-CPA exciton spectral density for the case of NN coupling. Only positive nflomenta
are shown{(c,d) The disorder-averaged spectral density in the real-space representation for a few fixed enefgiesBEB-CPA results
(dashed linesare confronted with the ones of the exact diagonalizatsmiid lines. The parameters ad@ =0.9, #=0.26. [The strong
discrepancy ato=0 is the effect of the Dyson singularity not reproduced by the BEB CPA.

broadening mechanisms not related to the considered typestational disorder within a single aggregate. In particular, a
of disorders can be accounted for via a phenomenologicahaterial obtained by stacking the chains described in Fig. 2,
on-site dephasing ratg, e.g., due to exciton-phonon scatter- preserving perfectly parallel alignment of the axes and
ing. The results of the BEB-CPA theory can be straightfor-planes, represents a biaxial medium. The optical axes are
wardly extended to include this case by adding imaginarygiven by the directiong|’ ande?, with the corresponding
contributioni » to the complex-energy variablein all rel- polarizabilities proportional t(ﬂ(w) and ;(w), and the

evant functions. o _ one orthogonal to them, along which the optical response
In most of the samples accessible in experiment, such agnishes.

frozen solutions containing molecular aggregates, because of
the randomness in the chain’s orientations one is not able to
measure the individual spatial components of the micro-
scopic(single-chain polarizability tensor. Nevertheless, the
available types of surface-deposited fiffhwith strictly in- In summary, using the BEB CPA we have investigated the
plane alignment or recently synthesized bulk materials witHinear optical properties of a disordered molecular aggregate
smecticliké® alignment of aggregates still allow for the in- with random single-molecule excitation energies and transi-
dependent observation of certain spatial components of théon dipoles. The advantages of the used self-consistent ap-
single-chain polarizability. With a polarization-resolved proximation are its analyticity, exactness in the low-disorder
spectroscopic study of such systéfrsne can probe the ori- limit, and the capability to provide not only the DOS and

VI. CONCLUSIONS
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o/ et BERN APPENDIX A: THE BEB-CPA EQUATIONS
FOR ORIENTATIONAL DISORDER WITH NN
5 ' AND NNN COUPLINGS
T 00 ' - -
_'z 10l ®=13 In the case of box probability distribution the configura-
o8l 77T TN tional averaging in the self-consistency equati®8) can be
o6 1~ T performed analytically, leading to
04f p
02} 1 - _316
0.0 . - ' (EH—EL)FUm:q -1, (Ala)
15l ®=3.14] z-3l
//—-‘\\
1.0} L SO i
osp-’ (st-3hrt =q -1, (Alb)
z—34
0'0-4 2 0 2 4 . .
where functionq(z) is to be found from
0]
. z—3t
(b) 0 NNN and DD coupling tanqd) = lwtanq)' (A2)
no©=09 | 0.8} =09, 1 Z
5 08} __ /,’ ‘\\. From Eq.(31) the projected components of the self-energy
R can be expressed as
Z 04p E
0.2 1 1 1 1
EHZ—”——T, ELZ————L- (A3)
A R N 7 Tho Y Th
0 Performing momentum integration in E(@2) one relates

, the nontrivial components of the disorder-averaged on-site
FIG. 7. Energy dependence of the exciton coherence length fo

several values of the disorder parameter The BEB-CPA results ET to the coherent-potential GT as
are presented in the case of bothand N* (dashed lingsand the = —
ones of the exact diagonalizatiofsolid lineg only for NI. Il =7f(1-3cog0)yl), Th,=r"f(y"). (A4
6#=0.26 for all the curves. . . .
The functionf(x) entering these formulas is given by

absorption spectra but also the coherence length. To the best
of our knowledge, the last quantity has never been addressed 1
in excitonic systems with the coherent-potential approxima- 1—4x2
tion. Whereas the DOS is on-site characteristic while the
absorption spectrum is related to the spectral density at ma@nd
mentumk=0, the calculation of coherence length requires
knowledge of the spectral density at a gen&ri¢hat is, the 2
last quantity carries essentially new information on the m{[(\/S—X+ V4+9x)2—2x] 12
single-particle properties of the system with respect to that
contained in the first two. + — At 9x)2—2x]" V

The interesting feature of the considered problem is the [(VBx= At 9x)7=2x] 4
tensorial structure of equations brought about by orientafor the cases of NN and NNN couplings, respectively.
tional disorder in the transition dipoles. Such type of disorder For every disorder parametdr and tilt # the equation
leads to redistribution of absorbance between different polapresented in this appendix can be solved numerically for
ization components with quite distinct behavior of the corre-yl(z) andy"(z). The example of such a solution is shown in
sponding coherence lengths. Fig. 3.
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0.1F

0.01}

FIG. 8. Dependencies of the absorption linewitihand the exciton coherence length at the resonénjcen the disorder parametdr.
(c) The same data is plotted in the coordinates “absorption linewidth — coherence length.” The par@ieé&e6(solid line), 0.52(dashed
line), 0.65(dotted ling, and 0.78(dash-dotted line

APPENDIX B: FLAT-BAND SINGULAR SPECTRA ir  [2i
Th(2= 1@~ ~5\ 5

19 (B3)

In this appendix we study the single-particle properties of
the system described in Sec. V A when the anglformed

by the plane of the transition dipoles with the chain’s direc- . . .
tion is such that cd®=1/3 (i.e., #=0.9%...). The It turns out that, irrespective of the strength of orienta-

disorder-free situation for this value @fcan be considered tional disorder, the componerit)(z) of the disorder-

as an intermediate case between thaf @eihd H aggregate, averaged on-site GT is singularas:0, i.e., at the energy of
because the transfer ener@ generated by the dipolar cou- the bare molecular transition. Strictly speaking, upon intro-
pling (66) vanishes. Neglecting higher multipole contribu- ducing some degree of diagonal disorder or a finite inelastic
tions to the transfer energy as well as all other broadeninglephasing raten, such singularity would be suppressed.
mechanisms which go beyond the present model, let us colNevertheless, one can still apply the derived asymptotic for-
centrate on the effect of orientational disorder to produce a
finite excitonic bandwidth.Considering instead the diagonal

disorder alone results to a trivial physics: the off-diagonal 20+
part of the Hamiltonian is always zero and the molecules
remain uncoupled.Our aim is to find, using the BEB CPA, 15

the asymptotic form of the GT arourrd= 0, where the DOS 3 1.0
and certain components of polarizability tensor have a sin- &

gularity. [Such singularity due to specific arrangements of 051
coupling and disorder should not to be confused with the /|
Dyson singularity’? not accessible within the BEB CRA

For simplicity, we shall consider only the case of NN cou- e.-
pling. |

From Eq. (A4) with cog6=1/3 it follows thatT! (z) :i 4r
=4l(2). According to Egs(A3), the corresponding compo- £ Ll

nent of the BEB-CPA self-energy is zedl(z)=0. On the
other handX*(z) is nonzero at any finite. Taking this into
account it is easy to conclude that the auxiliary function 15}
defined by formula A2) behaves as|(z) — 7/(2®) uponz

—0. Applying the same limit to EqgA1b), we get 2 10l
B

P2 e
Z ~—_———————— e~ — —
nn N 2

(@)
id [2i ®
Y (2)~— 7 V7 (B2) FIG. 9. (a) Exciton DOS andb,c) absorption spectra in the case

cog6=1/3. The BEB-CPA result§dashed linesare confronted

with the ones of the exact diagonalizatisolid line and the de-
Combining formula(B1) with Eq. (Ala) we obtain the as- rived asymptotic expressioridotted lines. The disorder parameter
ymptotics of the remaining unknown functionszat:0: ® is equal to 0.9 for all the curves.
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mulas if the absolute value afis much larger tharmy, but  ric with respect to the central energy=0 (still only the NN
smaller than the total bandwidth generated by orientationatoupling is assumed

disorder. Regarding the exciton coherence length, Silﬂdie:o, it
The exciton DOS, related to the on-site GT found abovefollows thatNl(z)=0 for everyz. In other words, for polar-

by formula (17), shows an analogous singularity aroundization along the preferred orientation of the dipoles, the
w=0: disorder-averaged spectral density depends on the intermo-

lecular separation as Iﬁ’&m(z)~5nm, i.e., we encounter

plw)~ 1 L (B4)  completely incoherent optical response of the molecules. For
40 || the orthogonal polarization in the vicinity a=0, we have
As concerning the absorption spectra, for the two essential )
polarization directions these are characterized by a com- gL(Z)NZJr'_W z (B6)
pletely distinct behavior: 2 2® V2i’
N 1 — N7 40 1
o)~ — —— L ~— N+ ~— B7
Im ()~ 75 Tl Imx* (o) scp‘”“"' (B5) (w)~— o (B7)

The DOS and the absorption profiles calculated via numeriAs a result, the coherence length (w) is finite within the

cal solution of the BEB-CPA equations and the ones of théand but diverges at its center. In the vicinity =0, the
exact diagonalization are confronted with the derivedcorresponding real-space spectral density behaves as
asymptotic formulas in Fig. 9. All approaches agree wellimTI. (0)~cos@rn—m|/2), i.e., coincides with the center-
close to the band center. Noticeably, unlike the usual casgf-the-band spectral density of a finite-bandwidth uniform
cog6+1/3, the absorption component () is symmet-  chain.

*Electronic address: d.balagurov@sns.it 17D, Markovitsi, L.K. Gallos, J.P. Lemaistre, and P. Argyrakis,
1E.E. Jelley, NaturéLondor) 138 1009(1936; G. Scheibe, An- Chem. Phys269 147 (2001).
gew. Chem49, 563(1936. 18K, saito et al, J. Appl. Phys.69, 8291 (1991); K. Saito, S.

2J. Knoester irDrganic Nanostructures: Science and Applications Honda, M. Watanabe, and H. Yokoyama, Jpn. J. Appl. PB$s.

Proceedings of the International School of Physics “Enrico 6218 (1994; D.N. Krizhanovskiiet al,, J. Appl. Phys., Part 1
Fermi,” Course CXLIX edited by V.M. Agranovich and G.C. La 93, 5003(2003.

Rocca(SIF, Bologna, 200R 19p. Soven, Phys. Rew56 809 (1967); D.V. Taylor, ibid. 156,
3A.S. Davydov, Theory of Molecular ExcitongPlenum, New 1017 (1967.
York, 1979. 20R.J. Elliott, J.A. Krumhansl, and P.L. Leath, Rev. Mod. PHg;.

4E.W. Knapp, Chem. Phy85, 73 (1984.

SV.A. Malyshev, Opt. Spectros@1, 505 (1997).

6H. Fidder and D.A. Wiersma, Phys. Rev. Lett6, 1501
(1991).

465 (1974).
21D.L. Huber and W.Y. Ching, Phys. Rev. 9, 8652(1989.
22 Boukahil and D.L. Huber, J. Lumim5, 13(1990; 4§49, 255

7 (1991).
J. Knoester, Phys. Rev. &7, 2083(1993. 23 .
5F. Dominguez-Adame, Phys. Rev. B, 12 801 (1995; F. L'SDgéstsza(')';’ . Rubtsov, and J. Knoester, J. Chem. PHjS,

Dominguez-Adame, B. Madez, A. Sachez, and E. Macjabid.
49, 3839(1994; F. Domnguez-Adameipid. 51, 12 801(1995;
V.A. Malyshev, A. Rodiguez, and F. Domguez-Adameibid.

24H. Shiba, Prog. Theor. Phy46, 77 (1971).
253.A. Blackman, D.M. Esterling, and N.F. Berk, Phys. Rev4,B

60, 14 140(1999. e 2412197
V. Malyshev and P. Moreno, Phys. Rev. 3, 14 587(1995. 27D'M' E§terllng, Phys. Rev. B2, 1596(1975.
10p.v. Makhov, V.V. Egorov, A.A. Bagaturyants, and M.V. Alfi- ~ A- Gonis and J.W. Garland, Phys. Rev.1B, 1495(1977.
mov, Chem. Phys. Let@46 371 (1995. 28K, Koepernik, B. Velicky R. Hayn, and H. Eschrig, Phys. Rev. B
1AV, Malyshev and V.A. Malyshev, Phys. Rev. 83, 195111 58, 6944(1998.
(2000. 29D.A. Papaconstantopoulos, A. Gonis, and P.M. Laufer, Phys. Rev.
2H. Fidder, J. Knoester, and D.A. Wiersma, J. Chem. PB¥s. B 40, 12 196(1989; K. Koepernik, B. Velicky R. Hayn, and H.
7880(1991). Eschrig, ibid. 55, 5717 (1997; P.E.A. Turchi, D. Mayou, and
BByA. Malyshev and F. Dormguez-Adame, Chem. Phys. Lett. J.P. Julienjbid. 56, 1726(1997; J.P. Julien, P.E.A. Turchi, and
313 255(1999. D. Mayou, ibid. 64, 195119(2002.
Th. Wagersreiter and H.F. Kauffmann, Phys. RevA® 8655  °B.N.J. Persson and A. Liebsch, Phys. Rev2® 4247 (1983;
(19949. B.N.J. Perssonibid. 34, 8941(1986.
M. Shimizu, S. Suto, T. Goto, A. Watanabe, and M. Matsuda,**V.M. Rozenbaum, Yu.V. Skripnik, and V.M. Ogenko, Opt. Spec-
Phys. Rev. B58, 5032(1998. trosc.64, 453(1988.
161 Avgin and D.L. Huber, Phys. Rev. BO, 7646(1999. 32F J. Dyson, Phys. Re®2, 1331(1953; G. Theodorou and M.H.

045418-16



COHERENT-POTENTIAL-APPROXIMATION STUDY @ . .. PHYSICAL REVIEW B68, 045418 (2003

Cohen, Phys. Rev. B3, 4597 (1976; T.P. Eggarter and R. 34G.G. Kozlov, V.A. Malyshev, F. Donmguez-Adame, and A. Ro-
Riedinger,ibid. 18, 569 (1978. driguez, Phys. Rev. B8, 5367(1998.

33As an example of the opposite behavior we can mention the nort®Langmuir-Blodgett Filmsedited by G. RobertgPlenum, New
exponential localization of the band-center wave function in a  York, 1990.
nearest-neighbor chain with off-diagonal disor¢eze Ref. 34 36A. Marlettaet al, Macromolecules0, 5729(1997.

045418-17



