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Coherent-potential-approximation study of excitonic absorption
in orientationally disordered molecular aggregates

D. B. Balagurov* and G. C. La Rocca
Scuola Normale Superiore and INFM, Piazza dei Cavalieri 7, 56126 Pisa, Italy
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We study the dynamics of a single Frenkel exciton in a disordered molecular chain. The coherent-potential
approximation is applied to the situation where the single-molecule excitation energies as well as the transition
dipole moments, both their absolute values and orientations, are random. Such a model is believed to be
relevant for the description of the linear optical properties of one-dimensionalJ aggregates. We calculate the
exciton density of states, the linear absorption spectra, and the exciton coherence length which reveals itself in
the linear optics. A detailed analysis of the low-disorder limit of the theory is presented. In particular, we derive
asymptotic formulas relating the absorption linewidth and the exciton coherence length to the strength of
disorder. Such expressions account simultaneously for all the above types of disorders and reduce to well-
established form when no disorder in the transition dipoles is present. The theory is applied to the case of
purely orientational disorder and is shown to agree well with exact numerical diagonalization.
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I. INTRODUCTION

The optically active states in organic molecul
aggregates1,2—the spatially regular linear arrangements
dye molecules—are one-dimensional Frenkel excitons.3 The
nature of the excitonic states to be extended over many m
ecules reveals itself in the narrowing of the absorption re
nances and the shortening of the radiative lifetime upon
gregate formation~effects known as exchange narrowing a
‘‘super-radiance’’!.4 The related coherence length coincid
with the total number of molecules in the aggregate only
the size of the latter is sufficiently small; otherwise vario
exciton decoherence mechanisms, among which the s
disorder is the most essential at low temperature, subs
tially reduce the coherence length that becomes indepen
of the actual size of the aggregate. Considerable work
been done to analyze the aspects of disorder in the molec
excitation energies4–11 and positions.12–16 Much less atten-
tion has been devoted to the disorder in orientations17 or,
generally, in the transition dipole moments of individu
molecules. However, from the limited available informati
on the actual structure of molecular arrangements one ca
ignore the fact that the transition dipoles are seriously in
enced by disorder. Moreover, the last type of disorder affe
in a nontrivial way the separate components of the opt
susceptibility tensor and, hence, would be observable
polarization-resolved absorption and luminescen
experiments.18 The present work has been motivated by t
need for a detailed theoretical analysis of orientational dis
der, as well as clarification of certain aspects concerning
exciton coherence length in molecular aggregates.

In this paper the linear optical properties of a disorde
molecular chain are studied using the single-site coher
potential approximation19,20 ~CPA!. Applied to various disor-
der problems, such as that of the electronic structure i
random alloy, this self-consistent approximation was sho
0163-1829/2003/68~4!/045418~17!/$20.00 68 0454
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to reproduce well the single-particle characteristics such
the density of states~DOS!. As for the systems in which
elementary excitations are Frenkel excitons, the CPA is
addition, capable of providing the complete information
the linear optical response, because the latter is extra
only from the single-exciton Green’s function~GF! averaged
over disorder realizations. The CPA has been success
used to model the optical spectra of periodic molecular
rangements with random on-site energies21,22 and
composition.23 However, if the transition dipoles are also a
fected by disorder, a proper modification of the theory
required. The key observation which allows us to do this
that the dipoles enter the off-diagonal part of the Ham
tonian in a bilinear form. In this case a single-site appro
mation can be constructed according to a vector analog
the Shiba ansatz.24 The resulting scheme is equivalent to th
matrix extension of the CPA derived by Blackman, Esterlin
and Berk25 ~BEB! for compositionally disordered alloys with
random hopping energies.@The analytical properties of the
BEB CPA have been examined in Refs. 26–29#. Persson and
Liebsch,30 and Rozenbaumet al.31 constructed a similar ver
sion of the CPA to study, respectively, the susceptibility
polarizable particles and the vibrational modes of coup
oscillators randomly and isotropically oriented in two
three dimensions. However, their theory is still not app
cable to the molecular aggregates in which one typica
deals with an essentially anisotropic distribution of the tra
sition dipoles.

The paper is organized as follows. In the following se
tion we define the model of a disordered molecular aggreg
and set up the basic formalism for the forthcoming calcu
tions. The exciton Green’s tensor is introduced to express
related single-particle quantities: the DOS, the linear po
izability, and the coherence length. In Sec. III, we present
general formulation of the BEB-CPA scheme and in Sec.
derive its analytic solution in the low-disorder limit. In Se
©2003 The American Physical Society18-1
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V, the theory is applied to a specific case of orientatio
disorder and compared to the results of the exact nume
diagonalization.

II. BASIC FORMALISM

A. Model

An aggregate can be considered as a chain ofN identical
two-level molecules. The linear optical properties in t
resonance region are determined by the single-particle s
of the Frenkel Hamiltonian3

H5(
n

enBn
†Bn1(

n,m
JnmBn

†Bm . ~1!

The operatorBn
† (Bn) creates~annihilates! an electronic ex-

citation of energyen on the nth molecule~whose excited
state is supposed to be nondegenerate!. The transfer terms
Jnm result from the Coulomb interaction between an exci
molecule and one in the ground state. Accounting only
the dipole-dipole contribution one has

Jnm5(
a,b

pn
aqnm

abpm
b , ~2!

where pn
a are the vector components of thenth molecule

transition dipole. The ‘‘coupling kernel’’qnm
ab carries infor-

mation on the dielectric function of the surrounding mater
and the location of the molecules, but not on their dip
moments. If the dynamics of the exciton subsystem is n
dissipative~and the molecules have no magnetic structure
that pn

a can be chosen real!, qnm
ab has to be symmetric in the

tensorial indices (qnm
ab5qnm

ba). We shall assume the mo
ecules to form a one-dimensional regular lattice such
qnm

ab depends solely on the intermolecular distanceun2mu
~measured in the units of lattice spacing!. The theory will be
presented in a general way without specifying a concr
form of this dependence, i.e., for any screening and ani
ropy of the Coulomb interaction that can occur in a solv
or on a substrate interface.

The disorder enters in our model both through the on-
energiesen and the dipole momentspn

a . We shall assume the
families of random parameters$en ,pn

a% corresponding to dis-
tinct sites to be mutually independent and to have ident
probability distribution. At the same time we still allow fo
correlations between the transition energy and the dip
components of a given molecule.

Finally, we shall neglect everywhere the effects of a fin
length of the aggregate considering the limitN→`. This
approximation is justified for sufficiently strong disord
when the exciton coherence length found for the infinite s
tem does not exceed the actual length of the chain.

B. Exciton Green’s tensor

For a given random realization, the total information
the aggregate’s optical dynamics is embedded in the c
plete set of single-exciton eigenstates(ncn(E)Bn

†u0&; the
vacuum u0& is the direct product of the molecular groun
04541
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states; andcn(E) is the real-space exciton wave functio
with an eigenenergyE. The local DOS~LDOS! on thenth
site and the total~normalized! exciton DOS are found as

rn~v!5(
$E%

ucn~E!u2d~v2E!52
1

p
Im Gnn~v!, ~3!

r~v!5
1

N (
$E%

d~v2E!52
1

pN (
n

Im Gnn~v!, ~4!

where the real-space single-exciton GF is given by

Gnm~z!52 i E
0

1`

dteizt^0uBn~ t !Bm
† ~0!u0&

5(
$E%

cn~E!cm* ~E!

z2E
~5!

and the symbol$E% indicates that summation is performe
over all eigenstates. Here and below, the GF for a real-val
argumentv is found as the limitz→v1 i01. Assuming that
around the single-exciton resonance the light wavelengt
much larger than the spatial extent of a typical excito
wave function, the aggregate interacts with the optical fi
as a pointlike dipole. Hence, the linear response to the ex
nal optical field is completely described by the polarizabil
tensor

xab~z!5 i E
0

1`

dteizt^0u@Pa~ t !,Pb~0!#u0&, ~6!

in which the operator of total polarization represents the s
of local polarizations, Pa5(n(Pn

a(1)1Pn
a(2)), both

positive- and negative-energy components:

Pn
a(1)5pn

aBn
† , Pn

a(2)5pn
aBn . ~7!

To set up a convenient formalism for the forthcoming disc
sion let us define the time-ordered two-point correlator of
local polarizations as

Gnm
ab~z!52 i E

0

1`

dteizt^0uPn
a(2)~ t !Pm

b(1)~0!u0&, ~8!

or, equivalently,

Gnm
ab~z!5pn

aGnm~z!pm
b . ~9!

The newly introduced quantity will be referred through t
paper as the Green’s tensor~GT!, as opposed to the ‘‘scalar
GF considered above. Combining the previous formulas
arrive at the straightforward relation

xab~z!52(
n,m

@Gnm
ab~z!1Gnm

ab* ~2z* !#, ~10!

which indicates that~up to the sign factor! the GT coincides
with the positive-energy counterpart of the local linea
response function.

As usual, one is interested not in the solution of the en
dynamical problem for a given disorder realization, but
8-2



ab
o
n

T

-

iv
at
l
th

a

ca
of
.
e
lu

e
iz-

ave

nd

tro-

o-
e

ke
of

n
of

t of
ich
he

g-

of
the
ral
t of
e-
ded
with
iffer-
fi-

the
e-
al
on

unc-
ce
ab-
ose
e of

ted
iar

is

in
m-

ri-
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finding the configurational average of some basic observ
parameters. In our case the quantities of interest are th
defined in Eqs.~4! and~10!. The subsequent implementatio
of the CPA suggests that the disorder-averaged DOSr̄(v)
[^r(v)& and polarizabilityx̄ab(z)[^xab(z)& are to be ex-
pressed in terms of the conditionally averaged on-site G

G̃nn
ab~z![^Gnn

ab~z!&all sites exceptnth , ~11!

with fixed nth site variables$en ,pn
a%, and the complete sta

tistical average

Ḡnm
ab~z![^Gnm

ab~z!&, ~12!

the only quantities accessible within a single-site effect
theory. To proceed with the DOS it is sufficient to note th
because thenth-site dipolespn

a remain fixed, the conditiona
average of the local GT and GF are still related to each o
as established in Eq.~9!, G̃nn

ab(z)5pn
aG̃nn(z)pn

b . As a result,
the scalar GF is obtained via projection

G̃nn~z!5(
a,b

pn
a

upnu2
G̃nn

ab~z!
pn

b

upnu2
, upnu25(

a
~pn

a!2.

~13!

Using this relationship the conditionally averaged LDOS c
be expressed as

r̃n~v!52
1

p
Im(

a,b

pn
a

upnu2
G̃nn

ab~v!
pn

b

upnu2
, ~14!

while the total DOS is found in terms ofG̃nn
ab(z) as a trivial

single-site average, given by

r̄~v!52
1

p
Im(

a,b
K pn

a

upnu2
G̃nn

ab~v!
pn

b

upnu2L . ~15!

Remarkably, the statistical averaging in the last formula
be performed immediately if the probability distribution
the transition dipoles is of the ‘‘purely orientational’’ form
The trace over vector indices of the conditionally averag
GT depends only on the deterministic, in this case, abso
value of thenth-site dipole momentupnu. The averaged GT
and GF are related to each other as

(
a

Ḡnn
aa~z!5upnu2Ḡnn~z! ~16!

and, consequently,

r̄~v!52
1

pupnu2
(
a

Im Ḡnn
aa~v!. ~17!

The straightforward application of the averaging proc
dure to Eq.~10! gives the disorder-averaged linear polar
ability in the form

x̄ab~z!52N(
m

@Ḡnm
ab~z!1Ḡnm

ab* ~2z* !#. ~18!
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In order to reduce the double real-space summation we h

used the translational invariance ofḠnm
ab(z) that allows us to

replace in both terms, of Eq.~18!, (n,mḠnm
ab(z) by

N(mḠnm
ab(z). The last sum here is already converging a

does not depend on its upper limitN. Equivalently,

x̄ab~z!52N@Ḡk50
ab ~z!1Ḡk50

ab* ~2z* !#, ~19!

where the momentum-domain disorder-averaged GT is in
duced according to

Ḡnm
ab~z!5E

2p

p dk

2p
eik(n2m)Ḡk

ab~z!, ~20!

k being measured in units of the inverse lattice spacing. N
ticeably, the above polarizability scales linearly with th
numberN of molecules constituting the aggregate. Unli
the physics coming from the nontrivial dependence

Ḡnm
ab(z) on the energy variablez and the intersite separatio

un2mu this elementary aspect is not related to the degree
exciton coherence. Nevertheless, it guarantees fulfillmen
an important part of the general sum rule according to wh
the polarizability is an extensive quantity proportional to t
total number of polarizable objects.

C. Coherence length

In the literature dealing with the optics of molecular a
gregates, the notion of the exciton coherence length11,12,15,17

is usually introduced to characterize the spatial extension
the exciton wave functions. The cited works, addressing
problem mainly with numerical methods, employ seve
definitions of this parameter to be extracted from the se
wave functions obtained with explicit diagonalization proc
dures. Even though the quantitative estimates provi
within all approaches can be in reasonable agreement
each other, the physical arguments used are somewhat d
ent. From the viewpoint of the present work, a natural de
nition of the exciton coherence length can be given on
basis of Eq. ~18!. In fact, the disorder-averaged singl
exciton GT contains all the information on the linear optic
response of the excitonic system and depends nontrivially
the amplitude and phase coherence between the wave f
tions for different disorder realizations. These coheren
properties partly reveal themselves in the DOS and the
sorption spectra which can be essentially different from th
of the disorder-free system, but it is also the dependenc

Ḡnm
ab(z) on the intersite separation that gets strongly affec

by the disorder within the chain. Excluding some pecul
cases,33 each component of the disorder-averaged GT
characterized by an exponential behavior

Ḡnm
ab~z!;exp@ i jab~z!un2mu#, un2mu→`, ~21!

wherejab(z) is a complex-valued wave number. Keeping
mind this asymptotics while performing the real-space su
mation in Eq.~18! one concludes that the dominant cont
8-3
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bution to the disorder-averaged polarizabilityx̄ab(z) comes
from the pairs of sites with Imjab(z)un2mu&1. The pa-
rameter

Nab~z!5
1

Im jab~z!
, ~22!

indicating how many molecules contribute to a given co
ponent of the linear polarizability, provides a natural defi
tion of the exciton coherence length. Clearly,Nab(z) is a
straightforward generalization of the conventional quasip
ticle phase-coherence length, defined in terms of the la
intersite-separation asymptotics of the GF, to incorporate
vectorial nature of the excitonic polarization. Quantity~22!
can be also thought of as the nonlocality range of the lin
optical response function.

III. THE BEB-CPA SCHEME

A. Main procedure

As already mentioned, in order to find the statistical a
erages~11! and ~12! we shall employ the single-site sel
consistent approximation known as the BEB CPA.25 This
theory is capable of addressing simultaneously both diag
and off-diagonal disorders, provided the second enters
random Hamiltonian in a generalized multiplicative form
The last condition is intrinsically fulfilled in the excitoni
problem under consideration because coupling~2! is given
by a bilinear combination of randompn

a , with qnm
ab being a

translationally invariant deterministic matrix. The BEB e
tension of the scalar CPA19 is based on the so-called BE
transformation.25 The latter represents a vector generalizat
of the multiplicative ansatz, originally implemented b
Shiba,24 to construct a single-site self-consistent theory
bond-disordered alloys with mean-geometric relationship
tween hopping integrals. Upon such transformation the pr
lem of finding the resolvent of a Hamiltonian with both d
agonal and multiplicative off-diagonal disorders
equivalently reformulated for an operator which acts in
space with additional tensorial dimensions, but contains o
site-diagonal disorder. With application to Frenkel excito
the BEB transformation has been already realized in S
II B by considering instead of operatorsBn

† (Bn) the polar-
izations Pn

a(1) (Pn
a(2)) equipped with vector indices. As

consequence the dynamical equation for the scalar GF,

Gnm~z!5gn~z!dnm1gn~z!(
l

JnlGlm~z!, ~23!

is replaced with that for the GT,

Gnm~z!5gn~z!dnm1gn~z!(
l

qnlG lm~z!. ~24!

@Here and below, omitting the indices we assume the us
rules for multiplication and inversion of tensorial quantitie#
Unlike the case of Eq.~23!, the disorder enters Eq.~24! only
in the site-diagonal form, namely, through the tensor
04541
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ab~z!5pn

agn~z!pn
b ~25!

associated with the bare local GF

gn~z!5
1

z2en
. ~26!

At the same time, because the algebraic structure of Eq.~24!
remains similar to that of Eq.~23!, the usual CPA self-
consistency arguments can be employed to approximate
statistical averages defined in Eqs.~11! and ~12!. The BEB-
CPA scheme25 is accomplished via straightforward genera
zation of the scalar-CPA equations within the tensorial f
malism as outlined below.

The disorder effect on the single-particle quantities is
counted for in the CPA by replacing the random local G
gn

ab(z) with a deterministic site-independent cohere
potential GTgab(z). The disorder-averaged GT in the mo
mentum representation is found from Eq.~24! as

Ḡk~z!5@12g~z!qk#
21g~z!, ~27!

where

qk
ab5

1

N (
n,m

e2 ik(n2m)qnm
ab ~28!

is the momentum-space coupling kernel. In turn, the con

tionally averaged on-site GTG̃nn
ab(z) is approximated by as

suming that the site, carrying its random parameters
placed into the same coherent environment as the one of
~27!. Thus, finding this conditional average reduces to so
ing a single-impurity problem realized by Eq.~24! in which
the bare GT’sgm

ab(z) for mÞn are replaced bygab(z). A
simple derivation20,25–27leads to

G̃nn~z!5@12gn~z!S~z!#21gn~z!, ~29!

where the site-diagonal self-energySab(z) describes cou-
pling of the selected molecule with the coherent-backgrou
molecules constituting the rest of the chain. Clearly, bein
functional of only the coherent-potential GTgab(z), this
self-energy is the same as the one entering the comp
disorder-average of the local GT

Ḡnn~z!5@12g~z!S~z!#21g~z!. ~30!

Provided bothgab(z) and Ḡnn
ab(z) are represented by nons

ingular matrices, one gets

S~z!5g21~z!2Ḡnn
21~z!, ~31!

where the local GT is found in terms ofgab(z) from Eq.
~27! after the momentum-space integration:

Ḡnn~z!5E
2p

p dk

2p
@12g~z!qk#

21g~z!. ~32!

The unknown coherent-potential GTgab(z) is to be de-
termined in a self-consistent way. In spirit of the origin
8-4
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CPA, one demands the single-site expectation of the co
tionally averaged GT to coincide with the completely av
aged local GT:

Ḡnn
ab~z!5^G̃nn

ab~z!&. ~33!

The latter guarantees that the conditional and the comp
average of the GT found above will provide identical es
mates for the single-site quantities such as LDOS or the lo
~single-molecule! polarizability.

Summarizing, the BEB-CPA procedure amounts to so
ing equations which, including auxiliary definitions, a
listed in formulas~25!–~33!. For nontrivial disorder models
and realistic forms of the couplingqnm

ab , this can be done
only with the use of numerical methods. An example of su
numerical solution is given in Sec. V@see also Appendix A#.
The analytic treatment of the low-disorder limit of the theo
is presented in Sec. IV.

B. Analyticity and accuracy of the BEB CPA

As is clear from the general discussion of Sec. II B, t
BEB CPA allows us to find configurational averages of t
exciton DOS and linear polarizability of a disordered m
lecular aggregate. It is natural to check the validity of su
nonperturbative theory asking, in particular, how close
the estimates to the actual quantities and whether they m
certain fundamental physical requirements. This question
be partly answered by analyzing the structure of the BE
CPA equations as done in a number of papers.20,25–28 For
completeness, let us outline the important facts concern
analyticity and accuracy of the BEB CPA.

Gonis and Garland27 proved thatḠnm
ab(z) found within the

BEB CPA possesses the same properties as a function o
complex energyz as would have the disorder-averaged G
calculated exactly. Namely, it is analytic in the whole pla
excluding branch cuts on the semiaxis Imz50, Rez.0,
while the tensor

Āk
ab~z!52

1

2p i
@Ḡk

ab~z!2Ḡk
ba* ~z!#, ~34!

which atz5v1 i01 provides the exciton spectral density,
positively ~negatively! defined at Imz.0 (Imz,0). As a
consequence the disorder-averaged polarizability will p
serve causality, while the DOS and absorption will be no
negative.

The authors of Ref. 25 studied the accuracy of the the
to reproduce the energy-domain moments of the spec
density, each given by a coefficient in the high-energy
pansion of the GT:

Ḡk
ab~z!5(

s50

` Lk,s
ab

zs11
, Lk,s

ab5E
0

1`

dvvsĀk
ab~v!. ~35!

It was shown that the BEB CPA provides correctly the fi
three moments of the spectral density,
04541
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Lk,05 l 0 , Lk,15 l 11 l 0qkl 0 ,

Lk,25 l 21 l 1qkl 01 l 0qkl 11 l 0qkl 0qkl 0 , ~36!

where the corresponding moments entering the high-ene
expansion of the local coherent-potential GTgab(z) are
given by

l 0
ab5^pn

apn
b&, l 1

ab5^pn
aenpn

b&,

l 2
ab5^pn

aen
2pn

b&1(
g,d

@^pn
apn

gpn
dpn

b&2^pn
apn

g&

3^pn
dpn

b&#E
2p

p dk

2p (
m,n

qk
gm^pn

mpn
n&qk

nd . ~37!

The fact that the number of these moments is high eno
guarantees the fulfillment of the sum rules for the DOS a
the polarizability, correctly accounting for redistribution o
the total oscillator strength between components of the
larizability tensor in the presence of orientational disorder
also follows that using the BEB CPA one gets an exact va
of the absorption linewidth,provided the latter is defined
from the weighted second centered moment of the spec
density @hab;ALk50,2

ab Lk50,0
ab 2(Lk50,1

ab )2/Lk50,0
ab #. This

means that, even though there exists no unique way to de
the width of an inhomogeneously broadened absorption l
the BEB CPA still gives a reasonable estimate for these c
acteristics of the spectrum.

Let us also mention that the theory does not seem to
late the fundamental inequalitiesuE2enu<(muJnmu to be
fulfilled for every eigenvalueE. These, in particular, impose
the lower, min(en2(muJnmu), and the upper, max(en
1(muJnmu), bounds of the spectral region, where minimu
and maximum are taken over all disorder realizations. E
though no rigorous proof of this property is known for th
case of the BEB CPA, it was shown to hold in the numeri
solution of the BEB-CPA equations for some random all
models.28 As will be demonstrated in Sec. V, these spect
bounds are not violated in the case of orientational disor
either.

Another important aspect of the theory is the behavior
the disorder-averaged GT in the complex-momentum

main. ConsideringḠk
ab(z) for complexk provides additional

understanding about the exciton coherence length. S

Ḡk
ab(z) remains the same as Rek is shifted by the integer of

2p, the integration contour in Eq.~20! can be modified as
shown in Fig. 1. Provided the function is meromorphic~i.e.,
has only isolated poles! in k, the integration reduces to sum
over poles in the upper~lower! half-plane forn2m.0 (n
2m,0). @Due to the mirror symmetry of the problem, eac
pole has a counterpart located symmetrically with respec
the origink50.# To establish connection with the coheren
length defined above it is sufficient to note that only a sin
pair of poles will contribute to the asymptotics~21!, namely,
having a minimal distance from the real axis Imk50. Ap-
plying these arguments to the disorder-averaged GT in
BEB-CPA form ~27! one concludes that the complex wav
8-5
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numbersjab(z) of Eq. ~21! are to be selected among th
solutionsk of the characteristic equation

det@12g~z!qk#50. ~38!

Here, we assumed that the Fourier-transformed kernelqk
ab is

analytic ink to provide meromorphicḠk
ab(z). This assump-

tion is valid, for instance, if the coupling extends only ove
finite number of sites. However, the last equation may
lead to a correct coherence length for a more general non
lytic coupling.

IV. LOW-DISORDER LIMIT

For a disorder-free chain, the GT obtained from the B
CPA coincides with the one known exactly. In order to e
tablish a relation of our approach with the existing scal
theories of disordered one-dimensional excitons,5 let us solve
the BEB-CPA equations in the limit of weak disorder. A sim
lar calculation for the bond-disordered binary alloy has be
already done in Ref. 28. However, due to the rather involv
structure of the BEB CPA the general treatment of the lo
disorder regime is still missing. For the sake of simplicity w
shall also relax the generality imposing certain symmet
under which the theory is formulated in terms of diagon
tensors.

A. General

To proceed one needs first to specify the ‘‘low’’ disord
in terms of its probability distribution, entering the BEB CP
through the self-consistency equation~33!. We do this by
imposing smallness of the centered moments of the proba
ity density which characterize deviations of the on-site en
gies and transition dipoles from their average valuese
5^en& and pa5^pn

a&. The conditionally averaged local G
in Eq. ~33! can be represented as a power series inen2e and
pn

a2pa, so that itsnth-site expectation can be written as

^G̃nn
ab~z!&5(

n
^G̃nn

ab~z!&n . ~39!

FIG. 1. Schematic picture of the integration contour in t
complex-momentum plane. Each couple of vertical lines with
posite orientations give zero contribution to the integral. T
crosses mark poles of the momentum-space GT.
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A nth term in the last sum is proportional to thenth-order
centered moments of the probability density. The first th
terms are given explicitly by

^G̃nn~z!&05G̃nn~z!uen5e,p
n
a5pa,

^G̃nn~z!&150,

^G̃nn~z!&25
1

2 Fa2

]2G̃nn~z!

]en
2

1(
a

b2
a ]2G̃nn~z!

]en]pn
a

1(
a,b

c2
ab ]2G̃nn~z!

]pn
a]pn

b GU
en5e,p

n
a5pa

, ~40!

where in the last equation

a25^~en2e!2&, b2
a5^~en2e!~pn

a2pa!&,

c2
ab5^~pn

a2pa!~pn
b2pb!& ~41!

are the second-order centered moments. The terms no
cluded in Eq.~40! will be neglected following our assump
tion about the weakness of disorder. Later, it will be demo
strated that the information contained in the third- a
higher-order centered moments is indeed not preserved in
low-disorder limit of the BEB CPA.

We shall additionally impose some simplifying restri
tions on the forms of the disorder and intermolecular co
plings to be considered below. Namely, let the system
such that ~i! in some ~orthogonal! basis of the three-
dimensional vector space the couplingqnm

ab is diagonal in the
upper indices for all pairs of molecules and~ii ! the disorder
probability density is symmetric under reflections of two b
sis vectors. We shall label tensorial components correspo
ing to either these two basis vectors by symbols ‘‘'1,’’ ‘‘
'2,’’ and those of the remaining~third! vector by ‘‘i . ’’ The
coupling energiesJnm and, hence, the scalar GFGnm(z) re-
main invariant, while every off-diagonal tensorial compone
of the GT Gnm

ab(z) changes its sign under one of the abo
reflections@because fromaÞb it follows that eithera or b
is different from i ]. Therefore, configurational averagin
with a symmetric probability distribution will result to a di

agonalḠnm
ab(z).

Regarding the BEB-CPA theory, from Eqs.~27! and ~30!
it follows consecutively that both the coherent-potential G
gab(z) and the self-energySab(z) reduce to the diagona
form. As concerning the low-disorder limit to be studie
here, with our symmetry requirements the average dip
momentpa is directed strictly along thei axis, the vectorial
parameterb2

a defined in Eq.~41! has a nonzero componen
only along the same axis, while the tensorc2

ab is diagonal.
Using the explicit dependence of the conditionally averag
GT on thenth-site random parameters@see Eqs.~25!, ~26!,
and ~29!#, the nontrivial ~diagonal! components of tensor
~40! can be found as

-

8-6
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^G̃nn
i ~z!&05

upu2

z2e2S i~z!upu2
, ^G̃nn

' i ~z!&050, ~42!

^G̃nn
i ~z!&25

a2upu2

@z2e2S i~z!upu2#3
1

2b2
i upu

@z2e2S i~z!upu2#2

1
c2

i ~z2e!@z2e13S i~z!upu2#

@z2e2S i~z!upu2#3

1 (
i 51,2

c2
' iS' i~z!upu2

@z2e2S i~z!upu2#2
, ~43!

^G̃nn
' i ~z!&25

c2
' i

z2e2S i~z!upu2
.

Combined with the BEB-CPA self-consistency equation@Eq.
~33!# these formulas provide the starting point for the an
lytical treatment of the low-disorder regime.

As seen from Eq.~43!, the solution behaves quite diffe
ently in the two distinct spectral regions. Namely, ifz is
sufficiently far away from the singularities generated by d
nominatorz2e2S i(z)upu2 one can look for the unknown
gab(z) in an approximate form, replacing in Eq.~43! the
BEB CPA self-energySab(z) with its expressionSab(0)(z)
for the disorder-free system. The solution found in this w
will be valid only for energies not very close to the ba
edges of the disorder-free system. Around these points
can no more neglect the disorder-induced corrections to
self-energy componentS i(0)(z) in Eq. ~43!. Nevertheless,
the last situation is still addressable analytically because
the band edges an explicit asymptotic relation betw

Ḡnn
ab(z) andgab(z) can be used.

B. Iterative solution

Away from the band edges of the disorder-free chain
can look for the coherent-potential GT in the iterative for

gab~z!5g (0)ab~z!1g (1)ab~z!. ~44!

The first term with components

g (0)i~z!5
upu2

z2e
, g (0)' i~z!50 ~45!

corresponds to the disorder-free system andg (1)ab(z) is a
small correction to be determined. From Eq.~30! linearized
in parameters~41! one has

g (1)i~z!5
@z2e2S (0)i~z!upu2#2

~z2e!2
^G̃nn

(0)i~z!&2 ,

g (1)' i~z!5^G̃nn
(0)' i~z!&2 , ~46!

where G̃nn
(0)ab(z) denotes the local GT on a single impuri

site in the disorder-free chain, related to the disorder-f
self-energyS (0)ab(z) by Eq. ~29!.
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The computation of the disorder-free self-ener
S (0)ab(z) is not straightforward due to the fact that comp

nentsg (0)' i(z) and Ḡnn
(0)' i(z) vanish, leading to an undete

minate expression in Eq.~30!. To overcome this difficulty
one can employ the following arguments. Consider
disorder-free chain with a single impurity molecule plac
on thenth site in such a way that its dipole momentpn

a has
no component along thei axis. Since in this case the transf
energyJnm5(apn

aqnm
abpb vanishes, thenth site, decoupled

from the rest chain, will be characterized by the local G

G̃nn
(0)ab(z) equal to the bare quantitypn

agn(z)pn
b . From Eq.

~29!, for any of suchpn
a , it follows that (apn

aS (0)ab(z)pn
b

50. Therefore, being a diagonal tensor, the self-energy
have nonzero projection only on thei-axis, orthogonal to the
subspace of the consideredpn

a . Using Eq.~31! for the non-
trivial component of the self-energy we end up with a simp
expression

S (0)i~z!5
1

upu2 F z2e2
1

Ḡnn
(0)~z!

G , S (0)' i~z!50, ~47!

where

Ḡnn
(0)~z!5E

2p

p dk

2p

1

z2e2qk
i upu2

~48!

denotes the on-site scalar GF of the disorder-free chain.
first of Eqs.~47! represents a natural relationship between
scalar self-energyz2e21/Ḡnn

(0)(z) and the main componen
of the tensorial self-energy in the absence of disorder.

Having derived the disorder-free self-energy we get
desired correction~46! to the coherent-potential GT in th
form

g (1)i~z!5
a2upu2Ḡnn

(0)~z!

~z2e!2
1

2b2
i upu

~z2e!2
1c2

i F4Ḡnn
(0)~z!2

3

z2eG ,
~49!

g (1)' i~z!5c2
' i Ḡnn

(0)~z!.

The final expression for the GTḠk
ab(z), valid in the low-

disorder regime away from the band edges, is obtained
inserting the totalgab(z) of Eq. ~44! into Eq. ~27!.

Let us comment on the analytical properties of the o
tained solution. Correction~49! obeys the large-z asymptot-
ics g (1)ab(z);c2

ab/z. Hence, the disorder-averaged GT b

haves asḠk
ab(z);(papb1c2

ab)/z. Using definition~41! for
c2

ab it is easy to see that the coefficientpapb1c2
ab coincides

with that of the first term (Lk,0
ab5^pn

apn
b&) in the general

high-energy expansion~35!. That is, even though for the

zero-order solution the asymptoticsḠk
(0)ab(z);papb/z is

not accurate, the correct form is restored as the first-or
iterative correction is taken into account. Furthermore,
next two coefficients (Lk,1

ab , Lk,2
ab) are also reproduced in th

found solution, provided one neglects the third- and
higher-order centered moments of the disorder distribut
8-7
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function in Eqs.~37!. Nevertheless, the found GT can ha
in general spurious poles outside the real axis around
band-edge singularities of the disorder-free GF@Eq. ~48!#.
Such nonphysical behavior is related to the fact that aro
the band edge the second term in expansion~44! is no more
small as compared to the first. For the two compone

Ḡk
' i(z) the portion of spectral weight taken up by the spu

ous poles vanishes upon decreasing the disorder strengthc2
' i.

This guarantees the correct reproduction of the optical
sorption spectra for the corresponding polarizations, as w
as the DOS away from the band edges. The same is tru
the componentḠk

i (z) for a generic nonzero momentumk. On

the other hand, the spectral density componentĀk
i (z) at mo-

mentumk50 is itself strongly concentrated near the ener

z5e1qk50
i upu2, ~50!

which usually represents an extremum of the bare exc
band. Hence, the iterative solution found in this section d
not describe the most important part of the absorption pro
for polarization directed along the average dipole momen

C. Scaling solution

Let us now analyze the BEB-CPA equations near the lo
est band edge of the disorder-free system. We shall use
standard~for J, but not H aggregates! assumption that this
point corresponds to the centerk50 of the Brilloiun zone,
thus coinciding with the energyz defined in Eq. ~50!.
Aroundz5z it is convenient to represent thei component of
the coherent-potential GT as

g i~z!5
upu2

z2e2s~z!
. ~51!

Assuming the absolute value of the new unknown funct
s(z) to be small compared to the total width of the excit
band, one can retain only a few significant terms in the
pansion of the coupling kernelqk

i aroundk50, while per-
forming the momentum integration in Eq.~32!. Provided the
constant

J5
d2qk

i

dk2 U
k50

upu2 ~52!

has a finite~positive! value, which is the case if the rea
space couplingqnm

i decays faster thanun2mu23 at large
intermolecular separation, we can use the effective-mass
proximation for the disorder-free exciton dispersion:

qk
i upu2'qk50

i upu21
J

2
k2. ~53!

This leads to the asymptotic expression for the correspo
ing component of the local GT valid around the band ed

Ḡnn
i ~z!5

upu2

A2JAz2z1s~z!
. ~54!
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Furthermore, in accordance with Eq.~31!, the respective
self-energy can be represented as

S i~z!5
1

upu2
@z2e2s~z!2A2JAz2z1s~z!#. ~55!

Concerning the two componentsḠnn
' i (z), even though they

share the singularity present in the aboveḠnn
i (z), one can

demonstrate that it is still possible to use the simple relati

ship Ḡnn
' i (z)5g' i(z) or, equivalently, to setS' i(z)50.

Writing the CPA self-consistency equation one can ret
only the most singular terms of Eq.~43! near the band edge
z'z where for the vanishing disorder alsos(z)'0. The
equation forg' i(z) reads simply

g' i~z!5
c2

' i

s~z!1A2JAz2z1s~z!
. ~56!

As for the componentg i(z), the only essential are the firs
and the third terms in the right-hand side of Eq.~43!. By
straightforward algebra we arrive at the self-consistency c
dition

D2A2JAz2z1s~z!

@s~z!1A2JAz2z1s~z!#2
5s~z!, ~57!

which represents an equation to be solved fors(z). In this
formula we have used the shorthand notation

D5Aa214c2
i ~qk50

i !2upu2 ~58!

for a combination which can be thought of as an effect
disorder strength parameter governing the low-disorder li
of the BEB CPA near the band edge.

The algebraic structure of Eq.~57! is still too complicated
for one to obtain its solution in a closed form. At the sam
time, the scaling ofs(z) with the disorder strengthD can be
found easily. Namely, in the intervaluz2zu&J(D/J)4/3 the
solution ~both real and imaginary part! behaves as

s~z!;JS D

J D 4/3

. ~59!

Employing this scaling relation one can find the low-disord
asymptotic expressions for the absorption linewidth and
exciton coherence length in the resonance region. Subst
ing Eq. ~51! into Eq. ~27! the main component of the
disorder-averaged GT around the phase-space pointz'z, k
'0 can be written as

Ḡk
i ~z!5

upu2

z2z2s~z!2Jk2/2
. ~60!

The corresponding polarizability

x̄ i~z!52N upu2

z2z2s~z!
, ~61!
8-8
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obtained from the basic relation~19!, is characterized by a
resonant behavior near the band edge. The width of the r
nance, estimated ash i;2Im s(z), scales with the disorde
strengthD as

h i;JS D

J D 4/3

. ~62!

Furthermore, one can make use of the effective-mass
proximation ~53! to get a scaling of the exciton coheren
length in the spectral region around the absorption re
nance. According to the arguments of Sec. III B applied
expression~60!, the complex wave numberk5j i(z) govern-
ing the asymptotic behavior of the disorder-averaged GT
large intermolecular separation is found from equation

z2z2s~z!2
J

2
k250. ~63!

Taking z'z we end up with the following scaling of th
coherence length in the resonance region:

Ni;S D

J D 22/3

. ~64!

It should be also mentioned that combining Eq.~62! with
~64! leads to the scaling relation

h i;J~Ni!22, ~65!

which does not involve the disorder strengthD. This depen-
dence is universal in the sense that it follows only from
shape of the exciton dispersion in the disorder-free system
the vicinity of the band edge. Indeed, scaling~65! can be
established without rigorous computation of the spectral d
sity but by simply noting thath i and 1/Ni can be considered
respectively, as uncertainties of the exciton energy and
mentum brought about by the disorder scattering. The r
tion between these quantities imposed by dispersion~53! is
of the quadratic form~65!.

It can be noted that the terms of expansion~39! propor-
tional to the higher-order centered moments of the disor
distribution will bring stronger singularities in the vicinitie
of the band edges compared to the ones of the second-o
centered moments. Nevertheless, the dominant contribu
to the solution will come solely from the second-order m
ments. Let us illustrate this for the simple situation whe
only diagonal disorder is present. A derivation analogous
that leading to Eq.~59! shows that the centered momentan

of order n.2 alone would produce the scalingsn(z)
;J(an /Jn)2/(11n). If the probability to encounter a random
energyen falls off rapidly enough away from the mean valu
e we have an;a2

n/2 . Thus, the contribution sn(z)
;J(a2 /J2)n/(11n) will be always suppressed by that of th
second-order moments(z);J(a2 /J2)2/3 considered so far.

When applied to a molecular chain with only diagon
disorder the asymptotic expressions~62! and ~64! coincide
with those obtained in Ref. 5 using different scaling arg
ments. Furthermore, for the case of diagonal disorder
asymptotics~62! has been found in Ref. 22 by means of t
scalar CPA. Our theory thus provides an extension of th
04541
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results treating both the on-site energy disorder and the
order in transition dipoles on an equal footing through t
combined parameterD of Eq. ~58!. The fact that the BEB
CPA is able to reproduce the known scaling relations is
surprising because this self-consistent approximation
comes exact in the disorder-free limit.

V. ILLUSTRATIVE APPLICATIONS

A. Model and simplified parametrization

In this section, we demonstrate how the general the
discussed so far can be applied to a specific model of di
dered aggregate: a chain with purely orientational disorde
the transition dipoles. In addition to having constant absol
values, the random dipoles will be assumed to lie in para
planes forming an angleu with the chain’s direction~Fig. 2!.
The random in-plane orientation anglesfn will be modeled
by a box probability with density 1/(2F) in the interval
ufnu,F and 0 outside. We shall consider the molecules
interact as dipoles in an isotropic background, so that
tensorial kernelqnm

ab acquires the form

qnm
11 5qnm

22 5Vnm , qnm
33 522Vnm ,

qnm
12 5qnm

13 5qnm
23 50. ~66!

For the long-range~LR! dipole-dipole coupling one would
haveVnm5un2mu23. However, since in this case the mo
mentum integral~32! cannot be reduced to a closed analy
form, we shall restrict ourselves to the more easily treata
nearest-neighbor~NN! @Vnm5d un2mu,1# or next-NN ~NNN!
@Vnm5d un2mu,11d un2mu,2/8# couplings. For concreteness w
shall always assume that cos2u.1/3, so that the disorder-fre
chain (F50) represents aJ aggregate. The singular cas
cos2u51/3 is considered separately in Appendix B. Fro
now on the energy will be measured in the units of the N
interaction strength, and the dipoles will be chosen to h
unit absolute values. We also shift the reference point
energy to the position of the bare molecular level.

Since the random dipoles are restricted in a single pla
the theory can be conveniently reformulated in terms of t
sors projected onto the corresponding two-dimensional s
space. We choose the new basis as

FIG. 2. The studied geometry of the orientationally disorde
molecular chain. The dipoles are distributed in the plane built
vectorsei

a , e'
a and forming angleu with the chain’s directione3

a .
8-9
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ei
15sinu, ei

250, ei
35cosu,

e'
1 50, e'

2 51, e'
3 50, ~67!

i.e., the first vector is parallel to dipoles of the disorder-fr
chain and the second is orthogonal to it and to the cha
axis. In terms of the projected componentspn

i 5cosfn , pn
'

5sinfn , the three-dimensional dipoles are given by

pn
a5ei

apn
i 1e'

a pn
' . ~68!

The advantages of this representation come from the fact
our disorder distribution density is invariant under t
change of sign ofpn

' . Hence, since upon projection the co
pling ~66! remains diagonal,

qnm
i 5~123 cos2u!Vnm , qnm

' 5Vnm , ~69!

the reduced BEB CPA will involve only diagonal tensors. A
a result, we end up with the affordable equations, wh
explicit form for the case of NN and NNN couplings is give
in Appendix A. Moreover, as the additional symmetry r
quirements formulated in Sec. IV are fulfilled, the low
disorder solution derived there can be employed. Since
the components of a physically measurable tensor can
straightforwardly reconstructed using Eq.~68! from the two
diagonal components of the corresponding projected ten
the last two will be presented every time to illustrate t
outcome of the theory.

B. Numerical results

Due to their explicit forms the equations of Appendix
can be efficiently solved using standard numerical metho
In order to test the accuracy of the theory we also perform
exact diagonalization for an open chain ofN5250 mol-
ecules with either NN or LR coupling. The statistical err
was reasonably small after averaging over 5000 disorde
alizations with the energy domain divided into 400 outp
intervals.

The tensorial components of the coherent-potential
are plotted against energy in Fig. 3. This figure can be u
to illustrate analyticity of the theory and to predict certa
features of the physical quantities to be presented be
Specifically, the functions Im 1/g i(v) and Im 1/g'(v) obey
the correct sign that guarantees the positivity of DOS a
optical absorption. From Eq.~27! it follows that the resonan
denominators of the exciton spectral density components
given by@Re 1/g(v)2qk#

21@ Im 1/g(v)#2, where polariza-
tion label i or ' is assumed. Hence, provided Im 1/g(v)
!1, the spectral density will be characterized by a sh
resonance located around the frequencyv to be found from
Re 1/g(v)2qk50. The solution of this equation for eithe
polarization and momentumk can be found graphically from
Figs. 3~c,d! ~where, in particular, the positions ofqk

i andqk
'

at k50 are shown with horizontal lines!. Actually, the as-
sumption on smallness of the imaginary part of the inve
coherent-potential GT is valid only in the case of compon
g i(v) and only for moderately weak disorder. As concerni
g'(v), the above condition is never satisfied, so that o
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ends up with no well-defined quasiparticle peak in the cor
sponding component of the spectral density.

The profiles of the disorder-averaged exciton DOS
presented in Fig. 4. Except for the well-known band-cen
Dyson singularity32 in the case of NN coupling and a simila
but nonsingular feature for the LR coupling,34 the numerical
DOS is reproduced well within the BEB CPA. As a confi
mation of the analyticity of the theory no unphysical beha
ior of the DOS has been observed. The theory also capt
properly the exact symmetry of the spectrum present in
tight-binding system without diagonal disorder and with on
NN coupling. The asymmetric DOS in the case of LR inte
actions is satisfactorily approximated already by that of
NNN coupling. Furthermore, it can be observed that the
per and lower estimates of the spectrum region mentione
Sec. III B are not violated in the presented solution. For
stance, in the case of NN coupling the spectrum should
extend beyond the intervaluvu,2 maxuJn n11u. The maximal
absolute value of coupling accessible by varying parame
fn within the interval ufnu,F is given differently in the
distinct domains of the parametric space: if cos2u.2/3 it
equals to 3 cos2u21, while in the opposite case it become
u123 cos2uucos2F1sin2F for F<p/2 or 1 for F.p/2.

The disorder-averaged absorption spectra~normalized by
the number of molecules in the chain! along the two essentia
polarizations,ei

a ande'
a , are presented in Fig. 5. The com

ponent Imx̄ i(v), corresponding to the direction of prefe
able orientation of the dipoles, demonstrates a behavior t

FIG. 3. The imaginary~a,b!, and real~c,d! parts of the BEB-
CPA self-energy for the case of NN coupling. Several values of
disorder parameter are used:F50.6 ~solid lines!, F50.9 ~dashed
lines!, F51.3 ~dotted lines!, and F53.14 ~dash-dotted lines!. u
50.26 for all the curves. The horizontal lines in panels~c! and ~d!
mark the diagonal elements of the NN coupling matrix at mom
tum k50: qk50

i 523.603,qk50
' 52.
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COHERENT-POTENTIAL-APPROXIMATION STUDY OF . . . PHYSICAL REVIEW B68, 045418 ~2003!
cal for disorderedJ aggregates: a sharp resonance acquir
inhomogeneous width upon increasing disorder is loca
near the bottom of the excitonic band. As for the polariz
tion, orthogonal to the preferred orientation of the dipol
the absorption component Imx̄'(v) is generated solely by
orientational disorder. In contrast to the previous case
narrow resonance is observed, but rather a broad spec
shifted to energies higher with respect to the bare molec
level. The positions of the absorption maxima can be roug
estimated from the zero and first moments of the spec

FIG. 4. The disorder-averaged exciton DOS for several val
of the disorder parameterF calculated with the BEB CPA~dashed
lines! or exact diagonalization~solid lines!. ~a! Case of NN cou-
pling ~both the BEB CPA and the exact diagonalization!. ~b! Case
of NNN coupling ~BEB CPA! or LR coupling~exact diagonaliza-
tion!. u50.26 for all the curves. The arrows mark the spect
bound estimates for the case of NN coupling andF50.9, namely,
v563.60.
04541
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density asV i;Lk50,1
i /Lk50,0

i , V';Lk50,1
' /Lk50,0

' . Using
Eqs. ~36! for these parameters in the simplest case of N
coupling we end up with V i5(123 cos2u)@1
1sin 2F/(2F)#, V'512sin 2F/(2F). These expression
one more time confirm that the centra of the absorption sp
tra are located at essentially different energies for the
polarizations.

For additional understanding of the features observed
the absorption spectra, the complete BEB-CPA spectral d
sity is plotted in Figs. 6~a,b!. For the considered disorde
parameter (F50.9) the componentĀk

i (v) is characterized
by a well-pronounced quasiparticle structure, with most
the spectral weight located around the disorder-free exc
branchv5qk

i . As for the partĀk
'(v), similar to the already

considered case of momentumk50 ~the only directly acces-
sible in the linear optics!, the function has no resonant be
havior in the whole phase space. The spectral density tr
formed into the real-space representation is shown in F
6~c,d!. The componentĀnm

i (v) is essentially nonzero in the
interval un2mu&100, and for fixed exciton energy has o
cillatory behavior as a function of intermolecular distan
n2m. Starting from zero near the bottom of the band, t
number of nodes monotonically increases as one moves
wards the upper band edge. Since absorption is obta
from the real-space spectral density after summation~18!,
the absence of oscillations explains the strong absorbanc
the uu polarization near the band bottom. As concerning p
larization, orthogonal to the preferred orientation of the tra
sition dipoles, the functionĀnm

' (v) is confined on a few
(un2mu&1 –2) sites. This implies the absence of the coh
ent optical response of the molecules, resulting to a weak
very broad absorption for this polarization direction.

Figure 7 illustrates variation of the exciton coheren
length across the spectrum. The BEB-CPA coherence len
has been found extracting the parametersjab(z) of the large-
intersite-separation asymptotics~21! from Eq.~38!. Owing to
the symmetry of the problem, the latter splits into the tw
independent equations 12g i(z)qk

i 50 and 12g'(z)qk
'

50. Consequently, each of the two componentsḠnm
i (z) and

Ḡnm
' (z) is characterized by its own coherence length, to

denoted asNi(v) andN'(v), respectively. From the result
presented in Fig. 7 it follows thatNi(v) strongly depends on
energy, having a maximum around the band center and
creasing asv approaches the edges, whereasN'(v) is al-
most constant across the spectrum. Beyond the spectra
gion the parametersjab(v) are imaginary and, hence, th
coherence length is finite, even in the uniform chain. R
markably, upon variation of the parameterF the two lengths
Ni(v) and N'(v) evolve differently: the first decrease
while the second grows with disorder. Regarding the ex
diagonalization approach, the coherence length can be
tracted directly from envelope of the disorder-averaged re
space spectral density in accordance with Eq.~21!. Unlike
the case of DOS and absorption, much larger statistical e
is present owing to the fact that the quantity to be avera
~i.e., a tensorial component of the spectral density! depends
on both energy and the real-space variables. Here,

s

l
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FIG. 5. The excitonic absorption spectra for NN coupling and several values of the disorder parameterF calculated with the BEB CPA
~dashed lines! or exact diagonalization~solid lines!. u50.26 for all the curves. The arrows mark estimates of the spectral center fF
50.9: V i522.77, V'50.46. ForF50.6 the absorption spectra resulting from the low-disorder limit of the BEB CPA are prese
~dotted lines!.
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should keep small the width of the energy integration int
val @dv'1/400 of the total bandwidth in our simulations# to
ensure that the additional decoherence due to interferenc
waves separated by energies smaller thandv does not ex-
ceed the disorder-induced effect. Ifv(v) is the excitation
group velocity the last condition can be expressed
v(v)/dv@Ni(v). This inequality is not easy to fulfill
around the band center@Ni(v) is large# and around the band
edges@v(v) is small#. Apart from mentioned the numerica
procedure suffers from the finite-size quantization tak
place as the coherence length approaches the total leng
the chain.

For the model under consideration, we have also veri
the accuracy of the low-disorder analytic solutions found
Sec. IV. Since no diagonal disorder is present, the cente
momentsa2 andb2

a of the distribution vanish, and the onl
parameters which control the strength of disorder arec2

i

'F4/45 andc2
''F2/3. To evaluate these constants we ha

used Eq.~41! and retained only the leading terms in the lim
of small F. In the magnitude of the averaged dipole m
ment, one has to keep also the next-to-the-leading te
which results in the estimateupu'12F2/6. In Fig. 5~panels
with F50.6) the analytic low-disorder absorption spec
are confronted with those calculated via the direct solution
the BEB-CPA equations and by exact diagonalization.
polarization perpendicular to the preferred orientation of
poles the spectral weight of the band-edge singularities~lo-
04541
-

of

s

g
of

d
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e

-
,

f
r
-

cated at6z562(123 cos2u) for NN coupling! is negli-
gible compared to the integrated spectral weight.
approximate such wide-bandwidth absorbance one can
the iterative solution derived in Sec. IV B, which results
the expression Imx̄'(v)'Nc2

'/Az22v2. In contrast, the

component Imx̄ i(v), with most of the oscillator strength
concentrated around the lower band edge, should be ca
lated using the approach of Sec. IV C. In particular, taki
into account that the disorder parameter~58! is given byD
;F2, scalings ~62! and ~64! read h i;F8/3 and Ni

;F24/3, respectively. The linewidthh i and the exciton co-
herence lengthNi at the absorption maximum extracted fro
the numerical solution of the BEB-CPA equations are plot
againstF in Figs. 8~a,b!. The presented profiles confirm th
fulfillment of the derived scaling laws. Moreover, as illu
trated in Fig. 8~c!, the universal scaling~65! is observed in
the whole range ofh i andNi accessible by varyingF from
0 to p, even though the two above dependencies hold o
for F sufficiently close to zero.

C. Experimental relevance

In a typical experiment one deals not with a single m
lecular chain but rather with a macroscopic ensemble of s
objects. The treatment reported here is applicable only if
coupling between molecules of distinct aggregates is wea
than the disorder-induced broadening in a single chain.
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FIG. 6. ~a,b! The tensorial components of the BEB-CPA exciton spectral density for the case of NN coupling. Only positive momk
are shown.~c,d! The disorder-averaged spectral density in the real-space representation for a few fixed energiesv. The BEB-CPA results
~dashed lines! are confronted with the ones of the exact diagonalization~solid lines!. The parameters areF50.9, u50.26. @The strong
discrepancy atv50 is the effect of the Dyson singularity not reproduced by the BEB CPA.#
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broadening mechanisms not related to the considered t
of disorders can be accounted for via a phenomenolog
on-site dephasing rateh, e.g., due to exciton-phonon scatte
ing. The results of the BEB-CPA theory can be straightf
wardly extended to include this case by adding imagin
contribution ih to the complex-energy variablez in all rel-
evant functions.

In most of the samples accessible in experiment, suc
frozen solutions containing molecular aggregates, becaus
the randomness in the chain’s orientations one is not abl
measure the individual spatial components of the mic
scopic~single-chain! polarizability tensor. Nevertheless, th
available types of surface-deposited films35 with strictly in-
plane alignment or recently synthesized bulk materials w
smecticlike36 alignment of aggregates still allow for the in
dependent observation of certain spatial components of
single-chain polarizability. With a polarization-resolve
spectroscopic study of such systems18 one can probe the ori
04541
es
al

-
y

as
of
to
-

h

he

entational disorder within a single aggregate. In particula
material obtained by stacking the chains described in Fig
preserving perfectly parallel alignment of the axes a
planes, represents a biaxial medium. The optical axes
given by the directionsei

a and e'
a , with the corresponding

polarizabilities proportional tox̄ i(v) and x̄'(v), and the
one orthogonal to them, along which the optical respo
vanishes.

VI. CONCLUSIONS

In summary, using the BEB CPA we have investigated
linear optical properties of a disordered molecular aggreg
with random single-molecule excitation energies and tran
tion dipoles. The advantages of the used self-consistent
proximation are its analyticity, exactness in the low-disord
limit, and the capability to provide not only the DOS an
8-13
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D. B. BALAGUROV, G. C. La ROCCA, AND V. M. AGRANOVICH PHYSICAL REVIEW B68, 045418 ~2003!
absorption spectra but also the coherence length. To the
of our knowledge, the last quantity has never been addre
in excitonic systems with the coherent-potential approxim
tion. Whereas the DOS is on-site characteristic while
absorption spectrum is related to the spectral density at
mentumk50, the calculation of coherence length requir
knowledge of the spectral density at a generick. That is, the
last quantity carries essentially new information on t
single-particle properties of the system with respect to t
contained in the first two.

The interesting feature of the considered problem is
tensorial structure of equations brought about by orien
tional disorder in the transition dipoles. Such type of disor
leads to redistribution of absorbance between different po
ization components with quite distinct behavior of the cor
sponding coherence lengths.

FIG. 7. Energy dependence of the exciton coherence length
several values of the disorder parameterF. The BEB-CPA results
are presented in the case of bothNi andN' ~dashed lines! and the
ones of the exact diagonalization~solid lines! only for Ni.
u50.26 for all the curves.
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APPENDIX A: THE BEB-CPA EQUATIONS
FOR ORIENTATIONAL DISORDER WITH NN

AND NNN COUPLINGS

In the case of box probability distribution the configur
tional averaging in the self-consistency equation~33! can be
performed analytically, leading to

~S i2S'!Ḡnn
i 5qAz2S'

z2S i
21, ~A1a!

~S'2S i!Ḡnn
' 5qAz2S i

z2S'
21, ~A1b!

where functionq(z) is to be found from

tan~qF!5Az2S'

z2S i
tanF. ~A2!

From Eq.~31! the projected components of the self-ener
can be expressed as

S i5
1

g i
2

1

Ḡnn
i

, S'5
1

g'
2

1

Ḡnn
'

. ~A3!

Performing momentum integration in Eq.~32! one relates
the nontrivial components of the disorder-averaged on-
GT to the coherent-potential GT as

Ḡnn
i 5g i f ~~123 cos2u!g i!, Ḡnn

' 5g' f ~g'!. ~A4!

The functionf (x) entering these formulas is given by

1

A124x2

and

2

A419x
$@~A8x1A419x!222x#21/2

1@~A8x2A419x!222x#21/2%

for the cases of NN and NNN couplings, respectively.
For every disorder parameterF and tilt u the equation

presented in this appendix can be solved numerically
g i(z) andg'(z). The example of such a solution is shown
Fig. 3.

or
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FIG. 8. Dependencies of the absorption linewidth~a! and the exciton coherence length at the resonance~b! on the disorder parameterF.
~c! The same data is plotted in the coordinates ‘‘absorption linewidth — coherence length.’’ The parameteru is 0.26~solid line!, 0.52~dashed
line!, 0.65 ~dotted line!, and 0.78~dash-dotted line!.
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APPENDIX B: FLAT-BAND SINGULAR SPECTRA

In this appendix we study the single-particle properties
the system described in Sec. V A when the angleu formed
by the plane of the transition dipoles with the chain’s dire
tion is such that cos2u51/3 ~i.e., u50.955 . . . ). The
disorder-free situation for this value ofu can be considered
as an intermediate case between that ofJ and H aggregate,
because the transfer energy~2! generated by the dipolar cou
pling ~66! vanishes. Neglecting higher multipole contrib
tions to the transfer energy as well as all other broaden
mechanisms which go beyond the present model, let us
centrate on the effect of orientational disorder to produc
finite excitonic bandwidth.@Considering instead the diagon
disorder alone results to a trivial physics: the off-diago
part of the Hamiltonian is always zero and the molecu
remain uncoupled.# Our aim is to find, using the BEB CPA
the asymptotic form of the GT aroundz50, where the DOS
and certain components of polarizability tensor have a
gularity. @Such singularity due to specific arrangements
coupling and disorder should not to be confused with
Dyson singularity,32 not accessible within the BEB CPA#.
For simplicity, we shall consider only the case of NN co
pling.

From Eq. ~A4! with cos2u51/3 it follows that Ḡnn
i (z)

5g i(z). According to Eqs.~A3!, the corresponding compo
nent of the BEB-CPA self-energy is zero,S i(z)50. On the
other hand,S'(z) is nonzero at any finitez. Taking this into
account it is easy to conclude that the auxiliary functi
defined by formula~A2! behaves asq(z)→p/(2F) uponz
→0. Applying the same limit to Eqs.~A1b!, we get

Ḡnn
' ~z!;2

1

S'~z!
;2

i

2
, ~B1!

g'~z!;2
iF

p
A2i

z
. ~B2!

Combining formula~B1! with Eq. ~A1a! we obtain the as-
ymptotics of the remaining unknown functions atz→0:
04541
f
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Ḡnn
i ~z!5g i~z!;2

ip

4F
A2i

z
. ~B3!

It turns out that, irrespective of the strengthF of orienta-

tional disorder, the componentḠnn
i (z) of the disorder-

averaged on-site GT is singular asz→0, i.e., at the energy o
the bare molecular transition. Strictly speaking, upon int
ducing some degree of diagonal disorder or a finite inela
dephasing rateh, such singularity would be suppresse
Nevertheless, one can still apply the derived asymptotic

FIG. 9. ~a! Exciton DOS and~b,c! absorption spectra in the cas
cos2u51/3. The BEB-CPA results~dashed lines! are confronted
with the ones of the exact diagonalization~solid lines! and the de-
rived asymptotic expressions~dotted lines!. The disorder paramete
F is equal to 0.9 for all the curves.
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mulas if the absolute value ofz is much larger thanh, but
smaller than the total bandwidth generated by orientatio
disorder.

The exciton DOS, related to the on-site GT found abo
by formula ~17!, shows an analogous singularity arou
v50:

r̄~v!;
1

4F

1

Auvu
. ~B4!

As concerning the absorption spectra, for the two essen
polarization directions these are characterized by a c
pletely distinct behavior:

Im x̄ i~v!;
Np

4F

1

Auvu
, Im x̄'~v!;

Np

8F
Auvu. ~B5!

The DOS and the absorption profiles calculated via num
cal solution of the BEB-CPA equations and the ones of
exact diagonalization are confronted with the deriv
asymptotic formulas in Fig. 9. All approaches agree w
close to the band center. Noticeably, unlike the usual c
cos2uÞ1/3, the absorption component Imx̄ i(v) is symmet-
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