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Single-wall carbon nanotubes phonon spectra: Symmetry-based calculations

E. Dobardzˇić,* I. Milošević, B. Nikolić, T. Vuković, and M. Damnjanovic´
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The phonon dispersions and atomic displacements for single-wall carbon nanotubes of arbitrary chirality are
calculated. The full symmetry is implemented. The approach is based on the force constants of graphene, with
the symmetry imposed modifications providing the twisting acoustic mode exactly. The functional dependence
of frequencies of the Raman and infrared active modes on the wrapping angle and on the diameter are
presented. The armchair tubes are found to be infrared inactive under the light linearly polarized along the tube
axis. Also the overbending absolute value and the wave vector dependence on the tube geometry are found and
the chirality selective method for the sample characterization is proposed. Finally, the specific heat calculations
are carried out.
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I. INTRODUCTION

Elastic and vibrational properties of the single-wall ca
bon nanotubes~SWCNTs!1 have been studied extensively b
many research groups2 and a large variety of the method
have been applied: simple and modified zone folding3,4

nonorthogonal5 and orthogonal tight-binding Hamiltonia
models fitted to the graphite,6 force constant7 and valence
force field8 model, effective potential,9 andab initio10 calcu-
lations. Recently,ab initio calculations~with comparison to
other methods! for some SWCNTs have been reported.11 In
this paper we present the results of the symmetry-ba
method of the SWCNT’s phonon dispersion calculations.
using the full symmetry group of the SWCNT’s~Ref. 12! we
easily carry out numerical evaluations of the phonon spe
for the tubes of any chiralities and diameters. Also,
solved exactly the problem of adjusting the graphene fo
constants to the SWCNT geometry, and get the rotatio
acoustic mode.

Our preliminary results on the SWCNT’s phonon disp
sions have already been highlighted within the Raman s
tering framework.13 In this paper we present detailed d
scription of the method we are applying and pres
complete, thoroughly tested, results on the vibrational pr
erties of the SWCNT’s. This group theoretical concept e
ables also calculation of the dispersions of multiwall carb
nanotubes: the spectra of the double-wall ones we expe
report soon.

We adopt the model of ideally structured infinite and is
lated SWCNT~Ref.12! and apply the line group.14theoretical
approach: the modified Wigner projectors procedure15,16

implemented into the computer program POLSym.17 This
improves both the precision and efficiency of the calcu
tions, enabling us to study the phonon dispersions and
responding eigenvectors for 1280 SWCNT’s~all the tubes
with diameters in the interval@2.8 Å, 50.0 Å#!. It is reliable
statistics for the investigations of the dependence of the v
ous phonon spectra properties on the parameters such a
tube helicity and diameter. Apart from the technical adva
tages, the full symmetry implementation gives many fun
mental results: the phonon bands assignment by the ful
of the conserved quantum numbers, band degeneracy,
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the selection rules for various processes,18 extraction of the
Raman and infrared~IR! active modes.

In what follows we firstly introduce the computation
method and explain briefly its specific symmetry-based co
which is not incorporated in the other force-constant me
ods~Sec. II!. Then we give the results that stem from the li
group symmetry considerations only and the Raman and
active-modes frequencies as functions of the tube parame
~Sec. III!. In Sec. IV we discuss the phonon dispersions, la
excitation energy dependence of the high-frequency Ram
active mode and related to that, the overbending wave ve
and chiral angle dependence, the heat capacity, sound ve
ties, and some other details. The paper ends with the b
summary~Sec. V!.

II. METHOD

A. Computational scheme

The computational code POLSym, which we use in t
study, was originally applied to the DNA molecule and pr
sentedin extensoelsewhere.17 It is based on the modified
Wigner projectors for induced representations15and line
group symmetry.14

We consider an infinitely long, isolated, and perfec
structured SWCNT, impose no periodic boundary conditio
on its geometry and take a benefit of the fact that a SWC
is a single-orbit system~i.e., the cylindrical carbon web ca
be obtained from any atom by action of the symmetry gro
of the tube considered!. This way we maximally reduce the
dimension of the eigenvalue problem to be solved, to at m
12. In principle, this dimension is the product of the follow
ing three factors:~i! number of the orbits of the system~1 for
SWCNT’s!, ~ii ! dimension of the orbit representative interi
space~3 for phonons!, and ~iii ! dimension of the relevan
irreducible representation~1 or 2 for the chiral; 1, 2, or 4 for
the achiral SWCNT’s!. Each irreducible representation, i.e
each set of quantum numbers, defines the so-called tran
operators,15 which pull down the eigen problem to such
low-dimensional space. The dispersions are automatic
obtained as the eigenvalues of the reduced~pulled-down!
operators. To get the displacements, the eigenvector of
pulled-down problem is mapped back to the entire space
©2003 The American Physical Society08-1
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the partial~over the irreducible space only! scalar product
taken. Full mathematical formalism of the tight-bindin
method~being applicable to molecular dynamics calculatio
as well! we use in this work is presented in Ref. 16 a
references therein.

B. Symmetry

Line groups14 ~known also as rod or monoperiod
groups! are the maximal subgroups of the Euclidean gro
that leave the quasi-one-dimensional crystals invariant. S
metry groups of chiral (n1 ,n2), zig-zag (n,0), and armchair
(n,n) tubes (C, Z, andA, for short! are nonsymmorphic line
groups:12 LC5Tq

r Dn5Lqp22, LZA5T2n
1 Dnh5L2nn /mcm.

Here, n is the greatest common divisor ofn1 and n2 ,
q52(n1

21n1n21n2
2)/nR is the order of the isogonal grou

principle axis, R53 if (n12n2)/3n is integer, otherwise
R51, while the parametersr and p describe the helicity
by more complicated functions12 of n1 andn2. The general
line group element is, tsuv5(Cq

r una/q) tCn
sUusv

v , where
Cn

s (s50, . . . ,n21) is the rotation through 2ps/n around
the tube axis (z axis!, the Koster-Seitz symbol (Cq

r una/q) t

(t50,61, . . . ; a is the translational period of the tube! de-
notes the rotation for 2rtp/q around the tube axis followed
by the translation along it fornat/q, while U is the rotation
throughp ~thusu50,1) around the horizontal axis throug
the center of a carbon hexagon perpendicularly to the tu
We fix a tube reference frame12 so thatx andz axes coincide
with theU and the tube axes, respectively. Achiral tubes h
an extra symmetry: vertical mirror reflectionsv in the xz
plane~for C tubes one should takev50). Note that, having
both sv and U symmetry,Z and A tubes have horizonta
(xy) mirror plane symmetrysh5svU5Usv as well. By
mapping any carbon atom by the entire set of the trans
mations , tsu5, tsu0 @which are concretely defined by th
wrapping indices (n1 ,n2)] one builds the correspondin
tube. In other words, SWCNT is a single-orbit system and
carbon atoms can be labeled as Ctsu .

The symmetry singles out the complete set of the qu
tum numbers of quasimomenta and parities. The pair of thz
components of linear and total angular quasimomentak and
m is most frequently used, althoughm is not conserved.
While k runs over the Brillouin zone~BZ! (2p/a,p/a#, m
takes on the integer values from (2q/2,q/2# ~note thatq is
even!. Besides the quasimomenta, there is a parity with
spect to the twofold horizontal axis, and for the achiral tub
only, in addition, there are vertical and horizontal mirr
parities.

Each normal mode is assigned by a setm of these quan-
tum numbers~i.e., m is a particular choice ofk, m, and the
parities values!. The same set singles out the irreducible re
resentationDm ~i.e., umu-dimensional matrices16 explicating
the law of the mode transformations under the symmetri!.
Let emM5$ . . . ,emM(a), . . . % denotes such a mode, in a
cordance with the usual notation:19 the atoma is displaced
by the vectoremM(a) with the coordinatesei

mM(a). Note
that M51, . . . ,umu distinguishes between the degener
modes forming the multiplet ofDm. Then the transforma
tions , tsuv mix the modes only within the same multiplet:
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DM8M
m

~, tsuv!emM8.

Each modeemM is a collective vibration of the SWCNT at
oms, i.e., it consists of the three-dimensional~3D! displace-
mentsemM(tsu) of all the Ctsu atoms. Within the full sym-
metry implemented tight-binding method,16the modified
group projectors technique uses the symmetry to transfer
relevant information to the three-dimensional configurat
space of initial atom C000 ~multiplied by the space of the
considered irreducible representation!. The results of the ei-
genvalue problem are the normal mode frequencies and
displacementsemM(000) of this atom. Finally, the same tech
nique employs symmetry to determine the displacement
other atoms fromemM(000) in the generalized Bloch
form,15which for SWCNT ~being a single-orbit system! re-
duces to

emM~ tsu!5(
M8

DM8M
m

~, tsu!D
pv~, tsu!e

mM8~000!, ~1!

whereDpv denotes the vector representation of the symme
group.

Working with the space of initial atom C000 only, the
modified group projectors technique15,16 establishes the gen
eralized Bloch form of the normal mode: conveniently, as
any single-orbit system, all the atomic displacements are
termined by that of the C000 atom.

C. Force-constant model

We start with the graphite force constants,3 and adjust
them~kinematically and dynamically! to the nanotube geom
etry. To clarify this two-step modification, in the dynamic
matrix19 we single out the 333 submatrixFb

a with elements
Fb j

a i 5F i j (a,b), referring to the pair (a,b) of carbon at-
oms. For the atomsa andb, the stretching direction is along
the unit vectoruab,1& from a to b, the out-of-plane unit
vector uab,2& is perpendicular both to the tube axis and
uab,1&, while the in-plane unit vector isuab,3&5uab,1&
3uab,2&. These three vectors are assumed to be the eig
vectors of the matrixFb

a , with the force constantsci
ab as the

corresponding eigenvalues:Fb
auab,i &5ci

abuab,i &. With the
help of the eigenvectors’ coordinates in the tube’s refere
frame uab,i &5(S1i

ab ,S2i
ab ,S3i

ab), the coordinate form of the
extracted submatrix is found:Fb

a5( ici
abuab,i &^ab,i u, i.e.,

Fb j
a i 5(pcp

abSip
abSjp

ab .
As the first step, we make pure kinematic modificati

that provides the twisting mode exactly. Recall the rotatio
sum rule:20

(
b

~Rab1Fb2
a j 2Rab2Fb1

a j !50, ;a, j 51,2,3 ~2!

where the sum runs over the relevant neighborsb of the
atom a (bÞa), Fb i

a j is an element of the matrixFb
a , and

Rab i is the Cartesian component of the vectorRab from a to
b in the equilibrium positions ~note that uab,1&
8-2
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5Rab /Rab). As uab,2& is orthogonal to the tube axis, itsz
componentS32

ab vanishes. Thus, coordinate form of Eq.~2!
reduces to

(
b

Rab~c2
abSj 2

abS33
ab2c3

abSj 3
abS32

ab!50, j 51,2,3,;a,

i.e., to the pair of equations for eacha atom,

(
b

Rabc2
abS12

abS33
ab50, (

b
Rabc2

abS22
abS33

ab50. ~3!

Note that these conditions involve the out-of-plane fo
constants only. As has already been emphasized a SWCN
a single-orbit system, which enables to perform the calcu
tions~within the modified group projector technique! by con-
sidering one carbon atom only, e.g., the orbit representa
a5C000. Thus, Eq.~3! imposes two conditions altogethe
These are included exactly as follows. Up to the fourth le
there are 18 neighbors; collecting all the out-of-plane fo
constants in the vectorc2

a5(c2
a1 , . . . ,c2

a18), Eq. ~3! gives
the orthogonality conditionsc2

a
•Sj

a50, j 51,2, where the
vectors Sk

a5(Ra1Sk2
a1S33

a1 , . . . ,Ra18Sk2
a18S33

a18) comprise the
coordinate factors. Thus, any choice of the force consta
producing the vectorc2

a simultaneously orthogonal to th
vectorsS1

a andS2
a will exactly provide the twisting acoustic

mode. It is, therefore, natural to correct the physically su
able set of the graphene force constants minimally, proj
ing them out onto the orthocomplement of the plane defi
by S1

a andS2
a .

In order to include the dynamical response to the confi
ration changes~due to the rolling up of a graphene plane! we
make Ansatz that is analogous to that presented in the w
of Saito et al.4 In the frame in whichz axis coincides with
the tube axis andx axis runs through the atoma, the eigen-
basis ofFb

a reads

uab,1&5S 2cosc sin
w

2
,cosc cos

w

2
,sinc D ,

uab,2&5S cos
w

2
,sin

w

2
,0D , ~4!

uab,3&5S 2sinc sin
w

2
,sinc cos

w

2
,2cosc D .

Here,w is a cylindrical coordinate of theb atom andc is the
angle between the horizontalxy plane and the straight line
that connectsa and b. On the other hand, the graphen
stretching, out-of-plane and in-plane unit vectorsuagbg ,i &
are in the SWCNT’s geometry obtained by rolling up
graphene sheet:uagbg,1& becomes the tangent to the proje
tion of the line connectinga and b to the tube’s surface
uagbg,2& is perpendicular to the tube ata, while again
uagbg,3&5uagbg,1&3uagbg,2&. Their coordinates, in the
same reference frame as Eq.~4!, are the following:
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uagbg,1&5S 0,

cos
w

2
cosc

A12sin2
w

2
cos2c

,
sinc

A12sin2
w

2
cos2c

D ,

uagbg,2&5~1,0,0!, ~5!

uagbg,3&5S 0,
sinc

A12sin2
w

2
cos2c

,2

cos
w

2
cosc

A12sin2
w

2
cos2c

D .

The Ansatz is to modify the original graphene force co
stantsCi

agbg so to provide that the component of thei th force
( i 51,2,3) alonguagbg ,i & is of the same intensity as in th
graphene plane. Simple geometry shows the required m
fied constantsci

ab to be related to the original onesvia ci
ab

5Ci
agbg/u^agbg ,i uab,i &u. The expansion over sine and co

sine ofw/2 yields

c1
ab5C1

agbgS 22cos
w

2 D ,

c2
ab5C2

agbgF11sin2cS 12cos
w

2 D G , ~6!

c3
ab5C3

agbgF11cos2cS 12cos
w

2 D G .
In our calculations we first find the dynamically correct

graphene force constants by Eqs.~6!, and afterward project
them. It should be noted that the kinematical correction
dominant, in the sense that if it is applied directly to t
graphene constants, avoiding the dynamical correction,
results differ only slightly, except for the very thin tubes.
general, due to the similar dynamical correction introduc
our results are close to that of Ref. 4, with exactly fo
acoustic mode.

III. ACOUSTIC, RAMAN, AND IR ACTIVE MODES

The quantum numbers of the momentum componentpz

~along the tube axis; tensor0A0
2) arek50 andm50. As for

the parities, it changes the sign upon thez reversal transfor-
mations and is invariant under the vertical mirror reflectio
Concerning the transversal momenta components, they
the 2D irreducible subspace of the0E1

(1) tensor; thus,k
50, m561, and for the achiral tubes only~therefore in the
brackets! 1 for the horizontal mirror invariance. Hence, th
polar vectors, such as the linear momentum, transform
cording to the representationDpv decomposing as0A0

2

10E1
(1) . This further means that besidesk50 for all the

acoustic modes, for the longitudinal translationm vanishes as
well, while the two lateral translations are degenerate a
characterized bym561. Naturally, longitudinal translation
8-3
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changes sign upon thez reversal and is not affected by th
vertical mirror, while the lateral ones, due to their dege
eracy, have no defined parity besides the horizontal mi
invariance. The twisting mode is, withm50, odd with re-
spect to thesv and U transformations and, consequent
invariant under the horizontal mirror reflections~tensor0A0

2

for chiral and 0B0
1 for achiral SWCNT’s!. Bearing this in

mind, it is easy to extract the IR and Raman active mo
from the SWCNT’s dynamical representations.12

The linear momentum quantum numbers determine the
active modes as well: in the dipole approximation the in
dent electric field polarized parallel to the tube axis involv
pz ; perpendicular linear polarization relatespx and py ,
while the standard componentsp65(px7 i py)/2 describe
the circular polarization. For the chiral tubes we find six
active modes, out of which only one~of the 0A0

2 type! is
active under the parallel and all the others (0E1) under the
perpendicular~either linear or circular! polarization of the
light. It should be stressed out that in the armchair confi
ration, there are no active modes for the parallel polarizat
unlike the zig-zag case where there is one such mode. U
perpendicularly ~or xy circularly! polarized light, there
are three ~two! active modes in the armchair~zig-zag!
configuration.

The momenta quantum numbers further determine the
lection rules for first-order Raman scattering. The total R
man tensor transforms as the squareDpv

^ Dpv of the vector
representation. Its symmetric and antisymmetric parts co
spond to the symmetrized and antisymmetrized squa
@Dpv#2520A0

110E110E2 and $Dpv%250A0
210E1 for the

chiral SWCNT’s, while in the achiral cases@Dpv#2520A0
1

10E1
210E2

1 and $Dpv%250B0
110E1

2 . The antisymmetric
part of the Raman tensor should be relevant generally for
chiral systems,21 as well as in the resonant scattering pr
cesses, which proved to be important in SWCNT’s.

By the use of the above decomposition, we extract the
and Raman active modes from the SWCNT’s dynami
representations.12 As for the symmetric part of Raman tenso
in accordance with Ref. 22, for the chiral tubes we find
active modes: 30A0

1 , 50E1, and 60E2. The achiral tubes
have eight Raman active modes out of which two are tot
symmetric. The other six phonon modes are of the types0E1

2

and 0E2
1 ~three of each for the zig-zag and two and fo

respectively, for the armchair tubes!.
When both the incoming and outgoing light are polariz

along the tube axis, the electron transitions occur betw
the subbands with the same quantum numbers, and onm
50 phonons accompany such processes. Atk50 these are
totally symmetric modes0A0

1 : besides the low-frequenc
radial-breathing mode~RBM!, for the chiral tubes there ar
two such high-frequency modes~HFM!. Nevertheless, being
odd in the vertical mirror parity, one of the HFM’s~second/
third in Table I! becomes Raman inactive in the case of
zig-zag/armchair tubes; the remaining one is with out-
phase displacements orthogonal/tangential to the tube
cumference. In the case of the crossed polarization, the
non mode required is of the0E1

(2) type ~i.e. with m561),
while when both the incoming and outgoing light are pol
04540
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ized perpendicularly to the tube axis, the phonons in
Raman process should satisfym50 or m562. They are
either totally symmetric~as in the parallel-parallel case! or of
the 0E2

1 type, since the electron can be scattered fromm
21 to m11 subband. As well as the symmetric one, t
antisymmetric scattering with the crossed polarization is
all the tubes enabled by the mode0E1

(2) . The antisymmetric
scattering with both incoming and the scattered light pol
ized perpendicularly is allowed in chiral and armchair tub
only, due to the extra~besides the twisting acoustic! 0A0

2 ,
i.e., 0B0

1 mode; this is related to theDm50 electronic tran-
sitions. The scattering with parallel polarization of the i
coming and scattered light is totally symmetric for all th
tube types; in the zig-zag tubes such is also the scatte
with both polarizations being orthogonal.

The diameter dependence of the Raman active-mode
quencies we give in Table I. The fit is made over 12
SWCNT’s in the diameter range@2.8 Å , 50.0 Å #, which
incorporates all the tubes between~2,2! and ~53,18!, in par-
ticular, the zig-zag tubes from (4,0) to (63,0) and the ar
chair from (2,2) to (36,36). In Fig. 1~right panel! we give,
for the tube~15,4!, the dispersions of the branches that,
k50, end up by the Raman and IR active modes.

The first entry in Table I is the RBM. However, it hasz
component except in the armchair case. Otherwise, it sh
a nonvanishing component along the tube axis that depe
on the chiral angleu and decreases with the diameterD. For
the unit outward displacement, the longitudinal compon
of the RBM is well fitted by

zRBM~D,u!5S 0.197

D
2

0.167

D3 D cos 3u ~7!

(D should be inserted in angstroms!. Indeed, in the armchai
tubes, as all the atoms lay in one~of infinitely many! hori-
zontal mirror plane, the symmetric modes~denoted by super-
script 1) must have vanishing longitudinal component.
contrast, for thesh-odd modes (2) the horizontal compo-
nent necessarily disappears. As all thek50 modes are eithe
even or odd insh , they are either perpendicular or parallel
the tube axis. Analogously, the atoms in the zig-zag tubes
in the vertical mirror planes and the symmetric~A! atomic
displacements are necessarily within these planes, while
sv-antisymmetric ones~B! are tangential to the tube circum
ference. This refers to the entire subbands withm50,n,
since unlike thesh which characterizes onlyk50 states for
all m, the vertical mirror parity is defined for allk but for
m50,n only.

IV. PHONON DISPERSION CURVES

A. General characteristics

The number of the carbon atoms per unit cell of the na
tube isN52q, giving for the chiral tubes 6q double degen-
erate phonon branches overkP@0,p/a#. Four of them are
acoustic. In the achiral casesq52n and there are 12 doubl
and 6(n21) four-fold degenerate branches. The angular m
mentum quantum numbers of the former arem50,n, while
8-4
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TABLE I. Frequencies of the Raman and IR active modes as functions of the tube diameterD and the chiral angleu. The classification
is based on the irreducible representations of the chiral tubes~first column!. In the second and third column the corresponding representa
of the zig-zag and armchair tubes are given. For each type of SWCNT’s, all the processes in which the mode is active are indicaI and
R stand for IR and Raman activity, respectively, with the polarization of incident and scattered light indicated in the superscript;@R# and$R%
emphasize that the mode contributes to the symmetric and antisymmetric part only of the Raman tensor. In the last column we give
functional dependencev(D,u) (v in cm21 for D in Å!. Obviously, the first term in the expansion is the limiting graphene value. Apart f
this, for the tubes~12,8!, ~17,0!, and~10,10! the concrete values of the IR and Raman active-mode frequencies are listed in the firs
columns, respectively.

Chiral ~12,8! Zig-zag ~17,0! Armchair ~10,10! v(D,u)

0A0
1 @R# ii,@R#'' 164 0A0

1 @R# ii,@R#'' 168 0A0
1 @R# ii,@R#'' 165

01
2243

D
2

665

D3

1584 0B0
2 — 1584 0A0

1 @R# ii,@R#'' 1584
15882

757.6 cosu

D2
2

1069.9 cosu

D4

1587 0A0
1 @R# ii,@R#'' 1588 0B0

2 — 1588
15881

59.8 cos 6u

D2

0A0
2 $R%' ',I i 873 0A0

2 I i 873 0B0
1 $R%' ' 873

8681
1450

D2
2

3899.4

D4

0E1 Ri',R'i,I' 116 0E1
2 Ri',R'i 119 0E1

2 Ri',R'i 117
01

1588.6

D
2

5180.8 cos 2u

D4

232 0E1
1 I' 238 0E1

1 I' 233

01
3157.7

D
2

139426sinSp3 12uD
D6

871 0E1
2 Ri',R'i 871 0E1

1 I' 871

8651

1510.7 cos
u

2

D2
2

5073.1 cosS p

12
1u D

D3

1583 0E1
2 Ri',R'i 1585 0E1

1 I' 1586

15882

1037.6 cosSp3 2uD
D2

2

3311.6 cos2Sp19u

6 D
D3

1586 0E1
1 I' 1584 0E1

2 Ri',R'i 1583

15881

48.8 cos2Sp6 2uD
D

2

967.3 cos2Sp26u

12 D
D2

0E2 @R#' ' 21 0E2
1 @R#'' 21 0E2

1 @R#'' 21
01

4254.7

D2
2

5556.4

D3

231 0E2
2 — 236 0E2

2 — 233
01

3190.9

D
2

12121.5 cosSp6 1uDD3

365 0E2
1 @R#' ' 376 0E2

1 @R#' ' 367

01
5012.8

D
2

74799.2 cosSp3 2uD
D4

865 0E2
2 — 865 0E2

1 @R#' ' 866
8651

860.3

D2
2

10196.6 cosu

D3

1570 0E2
1 @R#' ' 1570 0E2

2 — 1569

15882
3891.2

D2
1

8395.2 cosSp6 1uD
D3

1589 0E2
2 — 1587 0E2

1 @R#' ' 1589

15881

753.3 cos2Sp16u

12 D
D2

2

14731.2 cosSp6 1uD
D3
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the latter are characterized bym51, . . . ,n21. In k50,
only the chiral tubes branches assigned bymÞ0,q/2 remain
double degenerate, while degeneracy is halved in o
cases.16,18

Sincem is related to the isogonal group~not a subgroup in
the nonsymmorphic SWCNT’s symmetry group!, it is not
conserved quantum number.12,18 Particularly, it is not con-
served in the Umklapp processes. Therefore, when
branches~and not onlyk50 modes! are studied, it is advan
tageous to switch to the conserved, so-called helical quan
numbersk̃ and m̃ of the helical and the angular moment
The range (2qp/na,qp/na# of k̃, i.e., the helical BZ
includesq/n Brillouin zones; on the contrary, the range
m̃P~2n/2,n/2# is q/n times smaller than that ofm. Hence,
a single band assigned by the helical (m̃k̃) quantum numbers
splits into q/n bands in the linear (km) quantum numbers
assignation. The orderq of the principle axis of the isogona
group is usually very high, and the reduction of the num
of branches by a factorq/n in the helical assignation a
the cost of use of theq/n Brillouin zones may facilitate
the visualization and interpretation of the branch structur13

Nevertheless, the two sets of quantum numbers are
uniquely related:

k̃5k1m
2rp

na
1k̃

2qp

na
, m̃5m modn, ~8!

k5 k̃2m̃
2rp

na
1k

2p

a
, m5~m̃2kp!modq. ~9!

FIG. 1. Phonon dispersion curves for the~15,4! tube. Left panel:
Bands assigned by the helical quantum numbers. Sinceq5602, n
51, and a574 Å, the positive half of the helical BZ is

@0,25.6 Å21#, while m̃50 for all bands; TA modes show up atk̃

513.6 Å21, and LA and TW ones show up atk̃50, in accordance
with Eq. ~8!. Folding left panel to one 602th, one gets bands
signed by linear quantum numbers:kP@0,0.04 Å21# and m
52300, . . .,301. Right panel: In the linear BZ scheme th
branches that ink50 end up with the states listed in Table I to
gether with the acoustic ones are presented. Note very small di
sion of all the bands. Also, the acoustic dispersion curves are g
in the inset.
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Here the integersk̃ and k are introduced to providek̃P
(2qp/na,qp/na# and k P (2p/a,p/a#, respectively. In
Fig. 1 ~left panel! we give the phonon dispersions for th
~15,4! tube in the helical BZ scheme. Asn51, all the bands
are labeled by zero helical angular momentum quant
number~no pure rotations!!. Also, according to the relation
~8! LA and TW modes carry zero helical momentum qua
tum number, while TA modes are characterized by nonv
ishing k̃.

Concerning the obtained results, we stress out that
calculations are performed on the same 1280 tubes as be
The acoustic branches are obtained exactly: in the ch
tubes the transversal acoustic~TA! branches~beginning at
k50 with the double degenerate TA mode! are assigned by
kE1 and kE21 representations, the longitudinal acous
~LA ! and twisting acoustic~TW! branches bykE0, both of
them being double degenerate over the positive half of B
in the achiral tubes, mirror planes cause additional deg
eracy of the single fourfold TA branch assigned by the re
resentationkG1, while the double degenerate LA and TW
branches are assigned bykE0

A and kE0
B ~differing by the ver-

tical mirror parity!, respectively. All the acoustic branche
near theG point are linear ink, with the slopes, i.e., the
sound velocities, being basically tube independent:vTA
59.41 km/s,vLA520.37 km/s,vTW514.98 km/s. These re
sults agree with the previously reported ones,3,4despite some
arguments on the quadratick dependence of TA branch.23,24

Acoustic dispersions of the~15,4! tube we give in the inse
of the right panel of Fig. 1.

B. Specific heat

Theoretical predictions of the specific heat of some p
ticular isolated SWCNT~Refs. 23,25! are in a reasonably
good agreement with the heat capacity measurement
bundles of SWCNT’s.26–28 On the other side, up to ou
knowledge, the fine dependence of this quantity on the na
tube parameters has not been systematically studied. In
work we also calculate the specific heat for 225 isola
SWCNT’s of all the chiralities and a wide range o
diameters.

Close tok50 the SWCNT acoustic branch we find to b
linear in k. As this point is relevant in the specific heat co
text, we interrelate the graphene and SWCNT’s acou
branches. As it can easily be seen, the graphene TA m
turns into the tube’s RBM upon rolling up the sheet into t
cylinder. Similarly, the degenerated in-plane translations c
respond to the TW and LA acoustic modes of a SWCNT
the translational directions are taken so to be parallel
orthogonal relative to the chiral vector. Finally, note that t
~degenerate! SWCNT’s TA modes are not related even to t
graphene BZG point, but to the certain edge point along th
KM direction.

Close to theG point TA graphene acoustic branch is qu
dratical, while the other two~degenerate! subbands are linea
in the wave vector. The van Hove singularity at the RB
frequency for all the SWCNT types and diameters me
that the corresponding band is quadratic ink in k50 vicinity.
Further, in the zone folding method, the graphene bands

-

er-
en
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FIG. 2. The heat capacityCph dependence on
temperature~upper panel! for 225 tubes, where
diametersD range from 2.8 Å to 20.5 Å, i.e.,
starting with ~2,2! and ending up at~24,4!. The
thickness of the curve we interpret by means
the upper inset, which illustrates, at various fixe
temperatures, rather slow variation of the speci
heat Cph with the tube diameter. High-
temperature limit can be seen from the lower i
set.
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are sliced in the direction described by chiral vector d
cretely, in the steps corresponding to the quantum numbem.
Thus, for sufficiently dense set ofm values, the ‘‘branches
along-m’’ with fixed k50 can be considered. Naturally, fo
TA branch~i.e., the one that matches the RBM! suchm bands
should be quadratic. We verified this on the chiral tu
~53,18! having 49 044 bands: the series of0Em bands that for
m50 gives RBM is quadratic inm nearm50. Among the
acoustic modes, only the twisting modem branch is qua-
dratic in m50.

Further it is relevant to determine precisely the tempe
ture region in which only the acoustic modes contribute
the SWCNT specific heat. The phonon branch which co
sponds to the minimal optical frequency is assigned askE2

for chiral, andkG2 for achiral tubes, starting atk50 with the
Raman active0E2 and 0E2

1 modes~see Table I!. If vmin
o is

the frequency of the lowest-energy optical mode, then for
temperatures belowTo'\vmin

o /6kB the specific heat is deter
mined by the acoustic phonon branches only.23,26We find its
dependence on the tube diameter:To5(7.210.05D
11.045D2)21103 K (D in Å!. The minimumvmin

o is at ko ,
which besides being chirality dependent~e.g., for achiral
tubesko50) rapidly decreases with the tube diameter. T
gether with the above discussion on the RBM mode, t
shows that the different regimes of the specific heatCph be-
havior are diameter dependent and that the crossover to
grapheneT2 dependence is continuously reached by the
ear regime narrowing with the tube diameter.

In Fig. 2 the calculated specific heat temperature dep
dence up to 300 K is presented. It matches nicely the m
sured values.27 The increase of the curve width with the tem
perature indicates that slight differences ofCph between the
tubes at higher temperatures are to be expected. The sp
heatCph of a SWCNT shows the diameter dependence. Y
as it is enlightened in the upper inset, the dependence on
diameter is saturated for considerably large tubes. In
lower inset of Fig. 2 we give the high-temperature limit th
agrees reasonably well with the expected value 3kB /m for
the carbon systems.
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The chirality shows no signature in the tubes specific he
This is illustrated in Fig. 3 where the specific heat tempe
ture dependence coincide for the tubes~10,10!, ~12,8!, ~15,4!
and ~11,9! with the same diameterD513.6 Å but different
wrapping angle. Besides, the log-log plot up to 100 K, t
specific heat low- and high- temperature dependence, u
To(13.6 Å)55 K and 300 K are depicted in the inserte
panels.

C. Overbending

As it is well known, in contrast to almost all covalen
solids, graphite phonon branch that corresponds to the lo
tudinal high-energy optic mode has a local minimum at theG
point. The feature is usually referred as ‘‘overbending,’’ sin
the local maxima thus appear at some general points of
BZ around theG point. According to our calculations th
overbending pertains to the SWCNT’s as well. As the ov
bending seems to be essential for exact theoretical inter
tation of the laser excitation energy dependence and dou
peak structure of the high-energy mode ('1600 cm21) in
first-order Raman spectra,29 we analyze its characteristic

FIG. 3. The heat capacityCph for the four SWCNT’s of the
same diameterD513.6 Å. In all the temperature regions their c
pacities coincide. NearT50 ~upper panel! capacity is linear inT.
8-7



be
om

-
e
th
a
id
t

fr
tu

-

T’

as
r-

m

e
ve

e-
the
en-

ll
tion

for

all

l

rt

l.
ises
f
Pre-
uan-
rgy

mic
e

ions
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thoroughly, namely, these Raman spectra features have
quite recently attributed to the double-resonant process c
ing from the phonon modes close to theG point. Since the
dispersion aroundk50 is generally quite weak, the excita
tion energy dependence is expected to be very sensitiv
the vibrational spectra details. In particular, the accurate
oretical investigation when related to the experiment m
help the SWCNT’s sample characterization. On the one s
from the Raman scattering measurements the slope of
excitation energy dependence of the high-energy mode
quency can be obtained. On the other side, the quan
theory of the double resonant Raman processes~which is,
however, beyond the scope of this paper! relates this depen
dence to the overbending positionk0, its absolute valueDE,
its slope and the phonon eigenvectors~all of which can be
easily calculated for any required spectrum of the SWCN
diameters and chiralities!.

The phonon branch exhibiting the overbending is
signed bym̃50 quantum number for all the tubes. The co
responding irreducible representations16are k̃E0 for C, k̃E0

A

for Z, and k̃E0
B for A tubes. The displacement of the ato

C000 as the function ofk̃ is presented in Fig. 5. Again, th
Bloch-like mode displacements of the other sites are gi
by Eq. ~1!.

FIG. 4. The overbendingDE as a function of the chiral angleu
for the 754 SWCNT’s~among those with 2.8 Å<D<50.0 Å, the
tubes with maximalD for given u are chosen!.
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We find the overbendingDE5E(k0)2E(0) ~the energy
difference of the phonon branch local minimum atk50 and
maximum at a nonvanishingk0) to be strongly helicity de-
pendent. On the other side, for a fixed chiral angle, it d
creases with the diameter but rapidly saturates yet for
very thin tubes, hence showing no further diameter dep
dence whatsoever. In Fig. 4 the overbendingDE as a func-
tion of the chiral angleu is presented for the tubes that fa
into the diameter dependence saturation region. The func
is well fitted by

DE~u!521.1581
9.57

120.245 cos 6u
@cm21#.

Hence, the maximal overbending (11.5 cm21) is exhibited
by the zig-zag and the minimal (6.50 cm21) by the armchair
tubes. Further, we find that the local maximum appears
bandm̃50 at k̃0520.01810.518/(120.143 cos 6u) @Å21#;
the D dependence rapidly saturates, and only for very sm
tubes’ deviations from the above result appear~less than
1.5% of the helical BZ!. By applying Eq.~8! one easily finds
the correspondingk0 and m0 values. Only for the achira
tubes the overbending occurs in them50 band, while for the
other tubesm increases with the diameter in steps ofn along
the rayn(n1 ,n2). In the zig-zag (n,0) tubes these bands sta
at k50 by the mode assigned as0A0

1 without tangential
component. In the armchair tubes, thek50 mode of the
band is assigned by0B0

2 , and must be purely longitudina
Then, the horizontal component of the displacements ar
along the BZ, as presented in Fig. 5; the minimum oz
displacement corresponds to the maximum of the band.
cise data on these quantities are needed for thorough q
tum theoretical modeling of the double resonant high-ene
Raman mode,29 which might be useful for SWCNT’s
characterization.

V. SUMMARY

We have calculated the phonon dispersions and ato
displacements for achiral and chiral SWCNT’s within th
symmetry-based force-constant approach. The calculat
r-

-

FIG. 5. The overbending displacement coo
dinates of the atom C000 for the allowed values
@0,p/a# of k. Displacements for all the other at
oms may easily be found by use of Eq.~1!. Left
and right: two degenerate modes.
8-8
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are of high precision, but still extremely efficient due to t
complete incorporation of the symmetry. Besides the au
matic assignment by the symmetry-based quantum numb
the symmetry enables to express the normal mode displ
ments of the atoms along the tube, in the form of a Blo
like wave ~1!, determined by the normal mode transform
tion law ~irreducible representation! and the displacement o
a single atom. In particular, this approach gives the ex
solution to the twisting mode.

Extensive calculations have included sample of 12
tubes, i.e., all SWCNT’s with the diameters between 2.8
and 50.0 Å. The exhaustive data enabled to find the fu
tional dependence of the frequencies of the Raman and
active modes on the chiral angle and diameter, as wel
determining the corresponding eigenvectors for all of the
As the IR and Raman active phonons are characterized
k50, their classification is performed according to the is
gonal symmetry group, i.e.,Dq in the chiral andD2nh in the
achiral cases. As only the later contains the space invers
for the chiral tubes there are simultaneously the IR and
man active modes. Also, the antisymmetric Raman ten
components are found, for their expected significance in

*Electronic address: edib@ff.bg.ac.yu; http://www.ff.co.y
nanoscience
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resonant scattering. Finally, it is stressed out that under
light polarized linearly along the tube axis the armchair tub
are IR inactive.

The calculated phonon dispersions data we have also
to address the laser excitation energy dependence of
high-energy Raman active mode and have found the fu
tional dependence of the overbending and of the wave ve
at which the slope of the frequency shift changes the sign
the proposed double resonant model for the high-energy
man mode proves to be true, our results can be useful for
SWCNT’s sample characterization. Finally, we have fou
the SWCNT’s specific heat temperature~up to 4000 K! and
diameter~at fixed temperatures! dependence and have dete
mined the temperatureTo ~as a function of the tube diamete!
below which the population of the optical branches can
neglected when estimating the SWCNT specific heat.
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