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Single-wall carbon nanotubes phonon spectra: Symmetry-based calculations
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The phonon dispersions and atomic displacements for single-wall carbon nanotubes of arbitrary chirality are
calculated. The full symmetry is implemented. The approach is based on the force constants of graphene, with
the symmetry imposed modifications providing the twisting acoustic mode exactly. The functional dependence
of frequencies of the Raman and infrared active modes on the wrapping angle and on the diameter are
presented. The armchair tubes are found to be infrared inactive under the light linearly polarized along the tube
axis. Also the overbending absolute value and the wave vector dependence on the tube geometry are found and
the chirality selective method for the sample characterization is proposed. Finally, the specific heat calculations
are carried out.
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. INTRODUCTION the selection rules for various proces$&sxtraction of the
Raman and infraredR) active modes.

Elastic and vibrational properties of the single-wall car- In what follows we firstly introduce the computational
bon nanotubeéSWCNT9! have been studied extensively by method and explain briefly its specific symmetry-based core,
many research groupsnd a large variety of the methods Which is not incorporated in the other force-constant meth-
have been applied: simple and modified zone foldifg, ods(Sec. l). Then we give the results that stem from the line
nonorthogonal and orthogonal tight-binding Hamiltonian group symmetry considerations only and the Raman and IR
models fitted to the graphifeforce constarftand valence —active-modes frequencies as functions of the tube parameters
force field model, effective potentid andab initio* calcu-  (Sec. ll). In Sec. IV we discuss the phonon dispersions, laser
lations. Recentlyab initio calculations(with comparison to ~ excitation energy dependence of the high-frequency Raman
other methodsfor some SWCNTs have been reporfédn active mode and related to that, the overbending wave vector
this paper we present the results of the symmetry-base@nd chiral angle dependence, the heat capacity, sound veloci-
method of the SWCNT’s phonon dispersion calculations. Byties, and some other details. The paper ends with the brief
using the full symmetry group of the SWCNTRef. 12 we  Summary(Sec. V.
easily carry out numerical evaluations of the phonon spectra
for the tubes of any chiralities and diameters. Also, we Il. METHOD
solved exactly the problem of adjusting the graphene force
constants to the SWCNT geometry, and get the rotational
acoustic mode. The computational code POLSym, which we use in this

Our preliminary results on the SWCNT's phonon disper-study, was originally applied to the DNA molecule and pre-
sions have already been highlighted within the Raman scasentedin extensoelsewheré! It is based on the modified
tering framework® In this paper we present detailed de- Wigner projectors for induced representatitasd line
scription of the method we are applying and presengroup symmetry?
complete, thoroughly tested, results on the vibrational prop- We consider an infinitely long, isolated, and perfectly
erties of the SWCNT's. This group theoretical concept enstructured SWCNT, impose no periodic boundary conditions
ables also calculation of the dispersions of multiwall carboron its geometry and take a benefit of the fact that a SWCNT
nanotubes: the spectra of the double-wall ones we expect is a single-orbit systerfi.e., the cylindrical carbon web can
report soon. be obtained from any atom by action of the symmetry group

We adopt the model of ideally structured infinite and iso-of the tube considergdThis way we maximally reduce the
lated SWCNT(Ref.12 and apply the line groufftheoretical  dimension of the eigenvalue problem to be solved, to at most
approach: the modified Wigner projectors procedft®  12. In principle, this dimension is the product of the follow-
implemented into the computer program POLSYnThis  ing three factors(i) number of the orbits of the systeth for
improves both the precision and efficiency of the calcula-SWCNT’s), (ii) dimension of the orbit representative interior
tions, enabling us to study the phonon dispersions and cospace(3 for phonong and (iii) dimension of the relevant
responding eigenvectors for 1280 SWCNTal the tubes irreducible representatiafi or 2 for the chiral; 1, 2, or 4 for
with diameters in the intervdR.8 A, 50.0 A)). It is reliable  the achiral SWCNT’s Each irreducible representation, i.e.,
statistics for the investigations of the dependence of the varieach set of quantum numbers, defines the so-called transfer
ous phonon spectra properties on the parameters such as thgerators? which pull down the eigen problem to such a
tube helicity and diameter. Apart from the technical advan{ow-dimensional space. The dispersions are automatically
tages, the full symmetry implementation gives many funda-obtained as the eigenvalues of the reduépdlled-down
mental results: the phonon bands assignment by the full setperators. To get the displacements, the eigenvector of this
of the conserved quantum numbers, band degeneracy, apdlled-down problem is mapped back to the entire space and

A. Computational scheme
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the partial(over the irreducible space onlgcalar product " " M’
taken. Full mathematical formalism of the tight-binding Csu®” :Z Dirm(Crsw) €
method(being applicable to molecular dynamics calculations M

as wel) we use in this work is presented in Ref. 16 andgach modee”™ is a collective vibration of the SWCNT at-
references therein. oms, i.e., it consists of the three-dimensio(2i) displace-
mentse“M(tsu) of all the G, atoms. Within the full sym-
B. Symmetry metry implemented tight-binding methdfthe modified

Line groupd* (known also as rod or monoperiodic 9roup projectors technique uses the symmetry to transfer the
groups are the maximal subgroups of the Euclidean group€levant information to the three-dimensional configuration
that leave the quasi-one-dimensional crystals invariant. Synspace of initial atom Goo (multiplied by the space of the
metry groups of chiralrf;,n,), zig-zag f,0), and armchair considered irreducible representatiofihe results of the ei-
(n,n) tubes C, Z, and.4, for shor) are nonsymmorphic line genvalue problem are the normal mode frequencies and the
groups*? Le=TiDy=L0,22, L4=T%,Dhp=L2n,/mcm d?splacemente"M(OOO) of this atom. Finally, the same tech-
Here, n is the greatest common divisor of, and n,, nique employs symmetry to dgtermme the dlsplacements of
g=2(n?+n;n,+n3)/nR is the order of the isogonal group otherl atoms frome“"(000) in the generalized Bloch
principle axis, R=3 if (n;—n,)/3n is integer, otherwise form,"which for SWCNT (being a single-orbit systeme-

R=1, while the parameters and p describe the helicity dUCes ©

by more complicated functiofsof n; andn,. The general

Iinse group element.is€tsw=(c';|na/q)‘CﬁU“a(’,, where eM(tsu)=>, D, ,,(£1s0)DP(£1s)€*M (000, (1)

C, (s=0,...n—1) is the rotation through &s/n around M’

the tube axis £ axis), the Koster-Seitz symbolQg|na/q)" pv :
(t=0=1,...:ais the translational period of the tube- whereDPY denotes the vector representation of the symmetry

group.

Working with the space of initial atom £, only, the
modified group projectors technigiié® establishes the gen-
eralized Bloch form of the normal mode: conveniently, as for
eamy single-orbit system, all the atomic displacements are de-
etermined by that of the £, atom.

notes the rotation for 12 7/q around the tube axis followed
by the translation along it fonat/q, while U is the rotation
through 7 (thusu=0,1) around the horizontal axis through
the center of a carbon hexagon perpendicularly to the tub
We fix a tube reference frartfeso thatx andz axes coincide
with theU and the tube axes, respectively. Achiral tubes hav
an extra symmetry: vertical mirror reflectian, in the xz
plane(for C tubes one should take=0). Note that, having C. Force-constant model
both o, and U symmetry, Z and A tubes have horizontal ~ \We start with the graphite force constahtand adjust
(xy) mirror plane symmetryo,=o,U=Uo, as well. By  them(kinematically and dynamicaljyto the nanotube geom-
mapping any carbon atom by the entire set of the transforetry. To clarify this two-step modification, in the dynamical
mations €1s,= €150 [Which are concretely defined by the matrix'® we single out the % 3 submatrix®§ with elements
wrapping indices 1f;,n;)] one builds the corresponding q)g)}:q)ij(a”g)’ referring to the pair &, ) of carbon at-
tube. In other words, SWCNT is a single-orbit system and it ms, For the atoma and3, the stretching direction is along
carbon atoms can be labeled as,C the unit vector|@B,1) from « to B, the out-of-plane unit
The symmetry singles out the complete set of the quangecior|a3,2) is perpendicular both to the tube axis and to
tum numbers of_quasnmomenta and parities. '_I'he pair ofthe la8,1), while the in-plane unit vector i$a/3,3)=|a3,1)
components of linear and total angular quasimomérdad |, 3 2 These three vectors are assumed to be the eigen-
m IS most frequently used,_althougln is not conserved. yoctors of the matrixp 3, with the force constanis™” as the
While k runs over the Brillouin zonéBZ) (— w/a,w/a], m corresponding eigenvalue@:g|a,8,i):ci‘w| aB,i). With the

takes on the Integer Vah.JeS from g/2,0/ 2].(note thatq 'S help of the eigenvectors’ coordinates in the tube’s reference
ever. Besides the quasimomenta, there is a parity with re

spect to the twofold horizontal axis, and for the achiral tubegramewﬁ’w:(sﬂé’ . f S5 ,athe cggrdma}te forrp O.f the

only, in addition, there are vertical and horizontal mirroreXtiraCted sﬁubrgatrﬂlx is founeb z= 3¢ aB,i)(ap.i], i.e.,

parities. Pgi=2pCp"SS)p - _ _ o
Each normal mode is assigned by a geof these quan- As thg first step, we make pure kinematic modlflce}tlon

tum numbersi.e., u is a particular choice ok, m, and the that prov;ges the twisting mode exactly. Recall the rotational

parities values The same set singles out the irreducible rep-Sum rule

resentatiorD* (i.e., | u|-dimensional matricé§ explicating

the law of the mode transformations under the symmetries aj ajy_ .

Lete*M={ ... eM(a), ...} denotes such a mode, in ac- % (Rap1 Pz~ Rapo®s) =0, Va, j=123 (2

cordance with the usual notatidhthe atome is displaced

by the vectore*M(«) with the coordinatesM(a). Note ~ where the sum runs over the relevant neighbgref the

that M=1, ... |u| distinguishes between the degenerateatoma (B+#«a), @}l is an element of the matrisb;, and

modes forming the multiplet ob#. Then the transforma- R, is the Cartesian component of the ved®yy; from a to

tions €, Mix the modes only within the same multiplet: B in the equilibrium positions (note that |af3,1)
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=R,p/R.p)- As |a@B,2) is orthogonal to the tube axis, its
componentSs¥ vanishes. Thus, coordinate form of E@) COSECOS'#

reduces to lagBy D= O, | siny |
@ ¢
\/1—sinz—co§¢// \/1—sin2—co§z,0
> Rup(CsPSSH —c5PSsif)=0, =123V, 2 2
B
. . . |agﬁg’2>:(11010)1 (5)
i.e., to the pair of equations for eaghatom,
@
. COS—COSs
2 Rupcs’SSH=0, 3 Rupes’sfsf=0. @3 sing 5

|ag:8g13>: 0; y .
iPecod iPecod
Note that these conditions involve the out-of-plane force 1=sinzcosy 1=sinmocosy

constants only. As has already been emphasized a SWCNT is

a single-orbit system, which enables to perform the calculaThe Ansatz is to modify the original graphene force con-
tions (within the modified group projector technigugy con- stants(:i"ng so to provide that the component of tttk force
sidering one carbon atom only, e.g., the orbit representativgi =1 2 3) along| ayfBy.i) is of the same intensity as in the

a=Cqgo. Thus, Eq.(3) imposes two conditions altogether. graphene plane. Simple geometry shows the required modi-

there are 18 neighbors; collecting all the out-of-plane force_ Cagﬁg/Ka Bq.ilaB.i)|. The expansion over sine and co-
i 9/~g» AN

: a__ (.~ al al :
constants in the vectou;z_—(cg o C2 %, Eq. (3) gives sine of o/2 yields
the orthogonality conditiong5-S'=0, j=1,2, where the
@ alcal a18cal :
vector.ss<=(Ra1 5S35, -+ - Ras k2 38) comprise the wp_ g ¢
coordinate factors. Thus, any choice of the force constants c;"=C 9 2—0085 )

producing the vectocj simultaneously orthogonal to the

vectorsS] and Sy will exactly provide the twisting acoustic

mode. It is, therefore, natural to correct the physically suit- cgﬂzcggﬁg

able set of the graphene force constants minimally, project-

ing them out onto the orthocomplement of the plane defined

by ST andS;. ciP= ngﬁg
In order to include the dynamical response to the configu-

ration changegdue to the rolling up of a graphene plawee

make Ansatz that is analogous to that presented in the work In our calculations we first find the dynamically corr_ected
of Saitoet al* In the frame in whichz axis coincides with graphene force constants by E¢8), and afterward project

the tube axis and axis runs through the atowms, the eigen- the”’.‘- It Sh.OU|d be noted that_ the_ kinem.aticall correction is
basis ofd? reads dominant, in the sense t.h.a'[ if it is appllgd directly to the

B graphene constants, avoiding the dynamical correction, the
results differ only slightly, except for the very thin tubes. In
general, due to the similar dynamical correction introduced,
our results are close to that of Ref. 4, with exactly four
acoustic mode.

5 ®)

1+ sinzw( 1- cos(ﬁ)

1+c0521p(1—cos(2£

|aB,1)= ( —cosys sin%,cos:p cos(Z£ ,sin zp) ,

lap.2)=

¢ ¢
003515”1510)- (4) lll. ACOUSTIC, RAMAN, AND IR ACTIVE MODES

The quantum numbers of the momentum comporggnt
] e @ (along the tube axis; tensgA, ) arek=0 andm=0. As for
|“B*3>:( —smzpsmz,smzpcosf,—cosw). the parities, it changes the sign upon theeversal transfor-
mations and is invariant under the vertical mirror reflections.
Here, ¢ is a cylindrical coordinate of thg atom andy is the ~ Concerning the transversal momenta components, they span
angle between the horizontaly plane and the straight line the 2D irreducible subspace of thgg$") tensor; thusk
that connectsee and 8. On the other hand, the graphene =0, m==*1, and for the achiral tubes on{therefore in the
stretching, out-of-plane and in-plane unit vectpagy,i)  brackets + for the horizontal mirror invariance. Hence, the
are in the SWCNT’s geometry obtained by rolling up apolar vectors, such as the linear momentum, transform ac-
graphene sheefay34,1) becomes the tangent to the projec- cording to the representatioD’ decomposing asyA,
tion of the line connectingr and B8 to the tube’s surface, +0E(1+). This further means that besid&s=0 for all the
|agﬁg,2) is perpendicular to the tube at, while again acoustic modes, for the longitudinal translatimvanishes as
lagBq:3)=|agBq1)X|ayBq,2). Their coordinates, in the well, while the two lateral translations are degenerate and
same reference frame as Hd), are the following: characterized byn==*=1. Naturally, longitudinal translation
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changes sign upon thereversal and is not affected by the ized perpendicularly to the tube axis, the phonons in the
vertical mirror, while the lateral ones, due to their degen-Raman process should satisiy=0 or m==*=2. They are
eracy, have no defined parity besides the horizontal mirroeither totally symmetri¢as in the parallel-parallel caser of
invariance. The twisting mode is, witm=0, odd with re- the oE, type, since the electron can be scattered frmm
spect to theo, and U transformations and, consequently, —1 to m+1 subband. As well as the symmetric one, the
invariant under the horizontal mirror reflectioftensor,A,  antisymmetric scattering with the crossed polarization is in
for chiral and (B¢ for achiral SWCNT?. Bearing this in @l the tubes enabled by the mogE} . The antisymmetric
mind, it is easy to extract the IR and Raman active mode§cattering with both incoming and the scattered light polar-
from the SWCNT’s dynamical representatidfis. ized perpendicularly is allowed in chiral and armchair tubes

The linear momentum quantum numbers determine the IRNlY, due to the extrabesides the twisting acoustigA, ,
active modes as well: in the dipole approximation the inci-i-€., 0By mode; this is related to them=0 electronic tran-
dent electric field polarized parallel to the tube axis involvessitions. The scattering with parallel polarization of the in-
p.,; perpendicular linear polarization relatgs, and p,, coming and scattered light is totally symmetric for all the
while the standard componenfs. =(p+ip,)/2 describe tube types; in the zig-zag tubes such is also the scattering
the circular polarization. For the chiral tubes we find six IR with both polarizations being orthogonal.
active modes, out of which only on@f the (A, type is The diameter dependence of the Raman active-mode fre-
active under the parallel and all the otheg&{) under the duencies we give in Table I. The fit is made over 1280
perpendicular(either linear or circular polarization of the SWCNT's in the diameter range2.8 A, 50.0 A], which
light. It should be stressed out that in the armchair configuincorporates all the tubes betweé&h?) and (53,18, in par-
ration, there are no active modes for the parallel polarizationticular, the zig-zag tubes from (4,0) to (63,0) and the arm-
unlike the zig-zag case where there is one such mode. Undéhair from (2,2) to (36,36). In Fig. Iright pane] we give,
perpendicu|ar|y (Or Xy Circu|ar|y) po|arized ||ght, there for the tUbE(15,4), the diSperSionS of the branches that, at
are three(two) active modes in the armchaifzig-zag k=0, end up by the Raman and IR active modes.
configuration. The first entry in Table | is the RBM. However, it has

The momenta quantum numbers further determine the s&omponent except in the armchair case. Otherwise, it shows
lection rules for first-order Raman scattering. The total Ra2 nonvanishing component along the tube axis that depends
man tensor transforms as the squBR¥® DP' of the vector ~ ©n the chiral angle and decreases with the diamelerFor
representation. Its symmetric and antisymmetric parts correhe unit outward displacement, the longitudinal component
spond to the symmetrized and antisymmetrized square®f the RBM is well fitted by
[DPV]2=2,Ag +oE1+oE, and {DP}2=(A, +,E, for the
chiral SWCNT’s, while in the achiral cas¢®P']>=2,A; 0.197 0.16 » ;
+oE; +0E; and {DP'}?=,Bs +.E; . The antisymmetric D p& |°® ™
part of the Raman tensor should be relevant generally for the
chiral system&! as well as in the resonant scattering pro-(D should be inserted in angstromindeed, in the armchair
cesses, which proved to be important in SWCNT's. tubes, as all the atoms lay in ofef infinitely many) hori-

By the use of the above decomposition, we extract the IRzontal mirror plane, the symmetric modekenoted by super-
and Raman active modes from the SWCNT'’s dynamicakcript +) must have vanishing longitudinal component. In
representation¥’ As for the symmetric part of Raman tensor, contrast, for thes-odd modes ¢) the horizontal compo-
in accordance with Ref. 22, for the chiral tubes we find 14nent necessarily disappears. As all kxe0 modes are either
active modes: @A, , 5,E;, and §E,. The achiral tubes even or odd inry,, they are either perpendicular or parallel to
have eight Raman active modes out of which two are totallythe tube axis. Analogously, the atoms in the zig-zag tubes lay
symmetric. The other six phonon modes are of the tyigs ~ in the vertical mirror planes and the symmet(#) atomic
and (E; (three of each for the zig-zag and two and four, displacements are necessarily within these planes, while the
respectively, for the armchair tubes oy-antisymmetric oneéB) are tangential to the tube circum-

When both the incoming and outgoing light are polarizedférence. This refers to the entire subbands wiik-0n,
along the tube axis, the electron transitions occur betweefince unlike thes, which characterizes only=0 states for
the subbands with the same quantum numbers, andranly &l m, the vertical mirror parity is defined for ak but for
=0 phonons accompany such processeskAD these are  M=0, only.
totally symmetric modegA, : besides the low-frequency
radial-breathing mod€RBM), for the chiral tubes there are IV. PHONON DISPERSION CURVES
two such high-frequency modéslFM). Nevertheless, being
odd in the vertical mirror parity, one of the HFM(second/
third in Table ) becomes Raman inactive in the case of the The number of the carbon atoms per unit cell of the nano-
zig-zag/armchair tubes; the remaining one is with out-of-tube isN=2q, giving for the chiral tubes § double degen-
phase displacements orthogonal/tangential to the tube cierate phonon branches ovke[0,7/a]. Four of them are
cumference. In the case of the crossed polarization, the phacoustic. In the achiral casgs=2n and there are 12 double
non mode required is of th@E(l_) type (i.e. withm==*1), and 6(— 1) four-fold degenerate branches. The angular mo-
while when both the incoming and outgoing light are polar-mentum guantum numbers of the former are-0,n, while

Zrem(D,0)=

A. General characteristics
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TABLE I. Frequencies of the Raman and IR active modes as functions of the tube di@retdrthe chiral angl®. The classification
is based on the irreducible representations of the chiral tifinsscolumn). In the second and third column the corresponding representations
of the zig-zag and armchair tubes are given. For each type of SWCNT’s, all the processes in which the mode is active arelirdidated:
R stand for IR and Raman activity, respectively, with the polarization of incident and scattered light indicated in the sud€&tsangfR}
emphasize that the mode contributes to the symmetric and antisymmetric part only of the Raman tensor. In the last column we give the fitted
functional dependence(D, #) (» in cm™ for D in A). Obviously, the first term in the expansion is the limiting graphene value. Apart from
this, for the tubeg12,8, (17,0, and (10,10 the concrete values of the IR and Raman active-mode frequencies are listed in the first three
columns, respectively.

Chiral (12,8 Zig-zag (17,0 Armchair (10,10 w(D,6)
oA [RILIRT 164 oA; [RII[RI™ 168 oA; [RIV[R]** 165 2243 665
‘D p3
1584 B,  — 1584 (AJ [R]I[R] 1584 757.6co9 1069.9 cog
1588~ -
D? D*
1587 oAs [R]I,[R]** 1588 (B,  — 1588 50.8 cos @
1588+ —————
D2
oAs {RMLIN 873 Ay Il 873 B, {R}* 873 1450 3899.4
868+ -
D? D*
oEx RHRHE 116 E; RERY 119 B RERY 117 1588.6 5180.8 cos
D D*
232 E; It 238 E; It 233 A
. 3157 7 1394263|<ﬂ§+20
D D¢
871 £; R R 871 (ES It 871 P -
1510.7 coa 5073.1 co%l—z+ 0
865+ = =3
1583 (E; RIH,RY 1585 (Ef It 1586 - 490
1037.600%—0) 3311.600%( 3 )
1588 =2 o
1586 (E; I+ 1584 ,; RMRY 1583 - m—60
48.8cod—=—0| 967.3co
1588+ ° 2
D D?
oE2  [RI"* 21 (E; [RI*" 21 (E; [R]** 21 4254.7 5556.4
"7 s
231 oE; — 236 oE, — 233 3190.9
- o
D 12121.5 co%gw D3
365 (E5 [RI'* 376 (E; [R]** 367 -
o 5012.8 74799.2 co% 70>
D D4
865 oE, = — 865 oE, [R]** 866 860.3 10196.6 co8
865+ -
D2 D3
1570 (E; [R]** 1570 (E, — 1569 -
3891 2 8395.2c0%6+0
1588 +
D2 D3
1589 E, — 1587 (E; [R]** 1589 T+60 .
753.3c04———| 14731.2cos +6
12 6
1588+ =2 - =5
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1600 4 | —— Here the integersc and « are introduced to providée
N\M (—qgm/na,qm/na] and k e (—a/a,w/a], respectively. In
““"‘ L 1™ Fig. 1 (left pane) we give the phonon dispersions for the
1200 ‘ - - (15,9 tube in the helical BZ scheme. As=1, all the bands
are labeled by zero helical angular momentum quantum
- A number(no pure rotationg! Also, according to the relation
'E‘ T (8) LA and TW modes carry zero helical momentum quan-
O 80 : | tum number, while TA modes are characterized by nonvan-
== ‘ m=-22 L~
— r - ishing k.
& o - — =0 Concerning the obtained results, we stress out that the
[ | T calculations are performed on the same 1280 tubes as before.
4“"'| 'i = - The acoustic branches are obtained exactly: in the chiral
- tubes the transversal acoustitA) branches(beginning at
2004 | ) k=0 with the double degenerate TA modee assigned by
. . : | ] kE1FA] f: «E, and (E_; representations, the longitudinal acoustic

0 5 10 s oW % ka 3 (LA) and twisting acousti€TW) branches byE,, both of
them being double degenerate over the positive half of BZ;
FIG. 1. Phonon dispersion curves for ifi®,4) tube. Left panel: iy the achiral tubes, mirror planes cause additional degen-
Bands assigned by the helical quantum numbers. Sire802, 0 eracy of the single fourfold TA branch assigned by the rep-
=1, and a=74 A, the positive half of the helical BZ is regsentation,G,, while the double degenerate LA and TW
[0,25.6 A1, while m=0 for all bands; TA modes show up Bt pranches are assigned REG and (Eg (differing by the ver-
=13.6 A"*, and LA and TW ones show up &t=0, in accordance tical mirror parity, respectively. All the acoustic branches
With Eq. (8). _Folding left panel to one 602th, one gets bands asnear thel’ point are linear ink, with the slopes, i.e., the
signed by linear quantum numberke[0,0.04 A% and m  gound velocities, being basically tube independent;
=-300,...,301. Right panel: In the linear BZ scheme the _g 44 km/s,v = 20.37 km/spry=14.98 km/s. These re-

branches that irk=0 end up with the states listed in Table 1 10- o s 55ree with the previously reported ofédespite some
gether with the acoustic ones are presented. Note very small dlSpEé—

\ = : >Perguments on the quadraticdependence of TA brancfi®*
sion of all the bands. Also, the acoustic dispersion curves are given -0 ustic dispersions of thél5,4 tube we give in the inset

in the inset. of the right panel of Fig. 1.

the latter are characterized bp=1,... n—1. In k=0, B

only the chiral tubes branches assignednipy 0,q/2 remain B. Specific heat

double6 1gegenerate, while degeneracy is halved in other Theoretical predictions of the specific heat of some par-
cases® ticular isolated SWCNT(Refs. 23,25 are in a reasonably

Sincemis related to the isogonal grouipot a subgroup in - good agreement with the heat capacity measurements of
the nonsymmorphic SWCNT's symmetry groufit is not  pundles of SWCNT'$%-2% On the other side, up to our
conserved quantum numbéri® Particularly, it is not con-  knowledge, the fine dependence of this quantity on the nano-
served in the Umklapp processes. Therefore, when thgpe parameters has not been systematically studied. In this

branchegand not onlyk=0 mode$ are studied, it is advan- work we also calculate the specific heat for 225 isolated
tageous to switch to the conserved, so-called helical quantu\wWCNT’s of all the chiralites and a wide range of

numbersk and m of the helical agd the angular momenta. diameters.

The range ¢qm/na,qm/na] of k, i.e., the helical BZ Close tok=0 the SWCNT acoustic branch we find to be
includesq/n Brillouin zones; on the contrary, the range of |inear ink. As this point is relevant in the specific heat con-
me(—n/2v2] is g/n times smaller than that ah. Hence, text we interrelate the graphene and SWCNT's acoustic
a single band assigned by the helicalk) quantum numbers ) -5ches. As it can easily be seen, the graphene TA mode
splits into g/n bands in the linearm) quantum numbers y,ns into the tube’s RBM upon rolling up the sheet into the
assignation. The ordey of the principle axis of the isogonal cyjinger. Similarly, the degenerated in-plane translations cor-
group is usually very high, and the reduction of the numbefegpond to the TW and LA acoustic modes of a SWCNT if
of branches by a factog/n in the helical assignation at the translational directions are taken so to be parallel and
the cost of use of the/n Brillouin zones may facilitate  orthogonal relative to the chiral vector. Finally, note that the
the visualization and interpretation of the branch structtire. (degenerateSWCNT’s TA modes are not related even to the
Nevertheless, the two sets of quantum numbers are bbraphene BZ" point, but to the certain edge point along the

uniquely related: KM direction.
orm _2qm Close to thd” point TA graphene acoustic branch is qua-
k=k+m—0i +7<i, m=mmodn, (8)  dratical, while the other twédegeneratesubbands are linear
na na in the wave vector. The van Hove singularity at the RBM
) ) frequency for all the SWCNT types and diameters means
o ~efm o am o that the corresponding band is quadrati&in k=0 vicinity.
k=k-m na T a’ m=(m=«p)moda. © Further, in the zone folding method, the graphene bands TA
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700 ¥ T ¥ T ¥ T T T L T
600 so0] 300K
280K
500
s00d 400! 200K FIG. 2. The heat capacit§, dependence on
| . W”’“P’—I temperature(upper panel for 225 tubes, where
wod ] ee—————— dlametersp range from 2:8 A to 205 A, ie,
% U . starting with(2,2) and ending up at24,4). The
S | e thickness of the curve we interpret by means of
B304 o P 2000 . the upper inset, which illustrates, at various fixed
& T D [4] — 1 temperatures, rather slow variation of the specific
200 . heat C,, with the tube diameter. High-
] 108 temperature limit can be seen from the lower in-
100 - 500 - set.
3lZI 2000 4000
0 T T v T T T u T v T T
0 50 100 150 200 250 300

TIK]

are sliced in the direction described by chiral vector dis- The chirality shows no signature in the tubes specific heat.
cretely, in the steps corresponding to the quantum number This is illustrated in Fig. 3 where the specific heat tempera-
Thus, for sufficiently dense set of values, the “branches- ture dependence coincide for the tult#8,10, (12,8, (15,4
alongm” with fixed k=0 can be considered. Naturally, for and (11,9 with the same diameted=13.6 A but different

TA branch(i.e., the one that matches the RBSuchmbands ~ Wrapping angle. Besides, the log-log plot up to 100 K, the
should be quadratic. We verified this on the chiral tubesPecific heat low- and high- temperature dependence, up to
(53,18 having 49 044 bands: the series4i,, bands that for To(13.6 A)=5 K and 300 K are depicted in the inserted
m=0 gives RBM is quadratic im nearm=0. Among the ~ Panels.

acoustic modes, only the twisting mode branch is qua-

dratic inm=0. C. Overbending

Further it is relevant to determine precisely the tempera- ag it is well known, in contrast to almost all covalent
ture region in which only the acoustic modes contribute tosplids, graphite phonon branch that corresponds to the longi-
the SWCNT SpeCiﬁC heat. The phonon branch which corretydinal high_energy optic mode has a local minimum atlthe
sponds to the minimal optical frequency is assigneqBs  point. The feature is usually referred as “overbending,” since
for chiral, and,G,, for achiral tubes, starting &t=0 with the  the local maxima thus appear at some general points of the
Raman active,E, and (E; modes(see Table)l If wl,is  BZ around thel' point. According to our calculations the
the frequency of the lowest-energy optical mode, then for th@verbending pertains to the SWCNT'’s as well. As the over-
temperatures beloW,~7 w°, /6kg the specific heat is deter- bending seems to be essential for exact theoretical interpre-
mined by the acoustic phonon branches 8AffWe find its  tation of the laser excitation energy dependence and double-

dependence on the tube diamete,=(7.2+0.0> Peak structure of the high-energy mode 1600 cm*) in
+1.0432) 110K (D in A). The minimuma?,. is atk, first-order Raman spectfd,we analyze its characteristics
) b min '

which besides being chirality dependef®.g., for achiral
tubesk,=0) rapidly decreases with the tube diameter. To-
gether with the above discussion on the RBM mode, this 3 ((1101’19(;)
shows that the different regimes of the specific Hégf be- ] 12.8)
havior are diameter dependent and that the crossover to th 15,4)
graphenel? dependence is continuously reached by the lin-
ear regime narrowing with the tube diameter. 10 <
In Fig. 2 the calculated specific heat temperature depen?
dence up to 300 K is presented. It matches nicely the mea=
sured valueé! The increase of the curve width with the tem-
perature indicates that slight differences@f, between the
tubes at higher temperatures are to be expected. The specif
heatC,, of a SWCNT shows the diameter dependence. Yet,
as it is enlightened in the upper inset, the dependence on th — T K] o
diameter is saturated for considerably large tubes. In the 10 100
lower inset of Fig. 2 we give the high-temperature limit that F|G. 3. The heat capacitg,, for the four SWCNT’s of the
agrees reasonably well with the expected vallg/8n for  same diameteD=13.6 A. In all the temperature regions their ca-
the carbon systems. pacities coincide. Neaf=0 (upper panelcapacity is linear irf.

(1]
] 100 200 300
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We find the overbendind E=E(ky) —E(0) (the energy
11 difference of the phonon branch local minimumkat0 and
AE [liem] maximum at a nonvanishinky) to be strongly helicity de-
pendent. On the other side, for a fixed chiral angle, it de-
creases with the diameter but rapidly saturates yet for the

10+

91 very thin tubes, hence showing no further diameter depen-
dence whatsoever. In Fig. 4 the overbendixig as a func-
81 tion of the chiral angle is presented for the tubes that fall
-] into the diameter dependence saturation region. The function
is well fitted by
T T e
— . —1
FIG. 4. The overbendind E as a function of the chiral angie AE(0)=—1.158+ 1—0.245 cos @[cm I
for the 754 SWCNT’s(among those with 2.8 AD<50.0 A, the
tubes with maximaD for given ¢ are chosen Hence, the maximal overbending (11.5 ¢hh is exhibited

by the zig-zag and the minimal (6.50 c¢Y) by the armchair

thoroughly, namely, these Raman spectra features have beg‘fpes; FurtheNr, we find that the local maximum appielars for
quite recently attributed to the double-resonant process con@ndm=0 atko=—0.018+0.518/(1-0.143 cos 6) [A™"];

ing from the phonon modes close to thepoint. Since the theD depe_nd_ence rapidly saturates, and only for very small
dispersion arount=0 is generally quite weak, the excita- tuboes deV|at|0r_15 from the abqve result appélms_s t_han
tion energy dependence is expected to be very sensitive ;5% of the helical BZ By applying Eq.(8) one easily finds

oS . . he correspondind, and m, values. Only for the achiral
the vibrational spectra details. In particular, the accurate th?}ubes the overbending occurs in the= 0 band, while for the

oretical investigation when related to the experiment ma ther tubesn increases with the diameter in stepsnadlon
help the SWCNT’s sample characterization. On the one sidei P 9

from the Raman scattering measurements the slope of thQe rayn(ny,ny). In the zig-zag 0,0) tubes these bands start

_ . + . .
excitation energy dependence of the high-energy mode frefl k=0 by the mode assigned af#, without tangential

quency can be obtained. On the other side, the quantufPMmpPonent. In the armchair tubes, tke-0 mode of the
theory of the double resonant Raman procegagsch is, band is assigned byB, , and must be purely longitudinal.
however, beyond the scope of this papetates this depen- Then, the horizontal component of the displacements arises
dence to the overbending positi&g, its absolute valuaE, ~ @long the BZ, as presented in Fig. 5; the minimumzof

its slope and the phonon eigenvectéai of which can be displacement corresponds to the maximum of the band. Pre-

easily calculated for any required spectrum of the SWCNT'Cise data on these quantities are needed for thorough quan-
diameters and chiraliti¢s tum theoretical modeling of the double resonant high-energy

The phonon branch exhibiting the overbending is asRaman modé? which might be useful for SWCNT's
signed bym=0 quantum number for all the tubes. The cor- characterization.
responding irreducible representatitfase ;E, for C, pEé
for Z, and pEg for A tubes. The displacement of the atom
Cooo @s the function ok is presented in Fig. 5. Again, the ~ We have calculated the phonon dispersions and atomic

Bloch-like mode displacements of the other sites are givemisplacements for achiral and chiral SWCNT’s within the
by Eq. (2). symmetry-based force-constant approach. The calculations

V. SUMMARY

=
=

1.00

2.2y [(36,36) +0) | (63,0)

.99 v —o—
}—o—

[,

|/ —&—

] FIG. 5. The overbending displacement coor-
T T T dinates of the atom g for the allowed values
32 1 0 1 2f,43 .

o ka [0,m/a] of k. Displacements for all the other at-

W&W oms may easily be found by use of H@). Left
@0 (51,17)

and right: two degenerate modes.

Y —0o—
y—o—
7 ——

—

0 1 2 gl
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are of high precision, but still extremely efficient due to theresonant scattering. Finally, it is stressed out that under the
complete incorporation of the symmetry. Besides the autolight polarized linearly along the tube axis the armchair tubes
matic assignment by the symmetry-based quantum numbersre IR inactive.
the symmetry enables to express the normal mode displace- The calculated phonon dispersions data we have also used
ments of the atoms along the tube, in the form of a Blochto address the laser excitation energy dependence of the
like wave (1), determined by the normal mode transforma'high_energy Raman active mode and have found the func-
tion law (irreducible representatiorand the displacement of tional dependence of the overbending and of the wave vector
a single atom. In particular, this approach gives the exacht which the slope of the frequency shift changes the sign. If
solution to the twisting mode. the proposed double resonant model for the high-energy Ra-
Extensive calculations have included sample of 1280nan mode proves to be true, our results can be useful for the
tubes, i.e., all SWCNT's with the diameters between 2.8 AqwCNT's sample characterization. Finally, we have found
and 50.0 A. The exhaustive data enabled to find the functhe SWCNT’s specific heat temperature to 4000 K and
tional dependence of the frequencies of the Raman and IBiameter(at fixed temperatur¢siependence and have deter-
active modes on the chiral angle and diameter, as well agined the temperaturE, (as a function of the tube diameter
determining the corresponding eigenvectors for all of thempelow which the population of the optical branches can be

As the IR and Raman active phonons are characterized byeglected when estimating the SWCNT specific heat.
k=0, their classification is performed according to the iso-

gonal symmetry group, i.eDq in the chiral andD,,, in the
achiral cases. As only the later contains the space inversion,
for the chiral tubes there are simultaneously the IR and Ra-
man active modes. Also, the antisymmetric Raman tensor We appreciate discussions with C. Thomsen, S. Reich,
components are found, for their expected significance in thand J. Maultzsch.
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