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Effective interaction for charge carriers confined in quasi-one-dimensional nanostructures
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A problem of interacting charge carriers confined in quasi-one-dimens{dBalsemiconductor nanostruc-
tures has been studied. We have derived an analytical 1D formula for the effective interaction potential between
the confined charge carriers. We have applied both the 1D model with the effective potential and the full
three-dimensional3D) approach to an electron pair confined in a single and double quantum dot as well as to
an exciton confined in a quantum wire. Comparing the results of the 1D and 3D approaches we have discussed
the applicability of the effective 1D interaction potential to the real 3D nanostructures. We have shown that the
present effective interaction leads to accurate results for weakly coupled multiple quantum dots and wire-like
nanostructures, i.e., the quantum wires and dots with the lateral confinement much stronger than the longitu-
dinal one.
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[. INTRODUCTION asymptotic behavio¥ -~ 1/r at large interparticle distances.
However, instead of the Coulomb singularity at the origin, it
Charge carriers in semiconductor nanostructures with &hould exhibit a cusP’i.e., a nonvanishing value of the first
reduced dimensionality exhibit a variety of novel properties. derivative. So far, this potential was calculated by a time-
In the low-dimensional nanostructures, the confinement poconsuming numerical integratidrt’ which is not suitable
tential, which stems from band offsets and/or external elecfor time-effective calculations in quasi-1D systems. In order
tric fields, leads to a limitation of the motion of charge car-to perform the effective calculations, the Coulomb potential
riers in one, two, or three directions. If the confinement inis often replaced by approximate model potenttaf®>*
two spatial directions andy (called the lateral or transverse The frequently used model potential enéffy*has the fol-
directions is much stronger than the confinement in the thirdlowing form
direction z (longitudinal direction, all the confined charge
carriers occupy the lowest-energy state associated with the K
transverse motion, which is energetically separated from the Vi(z1=25) = ﬁ
. . V(z3—2)°+R
excited states. In this case, the transverse degrees of freedom
are frozen and all physically interesting effects stem from thavherez, andz, are the longitudinal coordinates of the two
quantized motion in the longitudinal direction. Such systemshargesx=e?/4me ¢, ¢ is the dielectric constant, arilis
exhibit quasi-one-dimensionélD) properties. The quasi-1D commonly identified with the radius of the quantum wire.
systems can be realized either in semiconductor quanturmhis approximation correctly reproduces the asymptotic be-
wires} nano-whiskers® or carbon nanotubés® The  havior at large interparticle distances, but does not lead to the
quasi-1D confinement can also be obtained in quantum dotsusp at zero interelectron distance. This cusp is restored by
if the lateral confinement potential is much stronger than thexnother versiolt of the model interaction, which has the
confinement in the growttiongitudina) direction. The prob-  form
lems of charge carriers confined in quasi-1D nanostructures
are of growing experimental and theoretical intefesf.In K
particular, the Luttinger liquid behavior of interacting elec- Va(z1-23) = L=z T R’ 2
trons in 1D medium has been repoftédnd the quantization ey
of conductanckhas been observed in GaAs/AlGaAs quan-wherey is a fitting parameter.
tum wires. The ground-state energy of the 1D exciton, i.e., In the present paper we have derived an analytical real-
1D hydrogenlike system, is divergefitwhich directly re-  space formulgwithout fitting parametejsfor the potential
sults from the singularity of the Coulomb potential at theof the effective interaction between charge carriers confined
origin. However, in the real quantum wires, which possessn a quasi-1D environment. We have discussed the applica-
finite lateral extension, the exciton binding energy is finite,bility of this effective potential as well as the validity of the
but grows with the strength of the lateral confinement andlD approximation for real nanostructures. For this purpose
can be several times larger than in the bulk cryfaFor  we consider a pair of electrons confined in a single and
these reasons the reduction of the original 3D problem to thdouble quantum dot as well as an exciton in a quantum wire.
effective 1D model should be performed with a special careThe organization of the paper is following: in Sec. Il we
The effective interaction potential for the charged par-provide the full derivation of the effective interaction poten-
ticles moving in a quasi-1D medium can be derived by av-ial between the electrons in the ground state in order to
eraging the 3D Coulomb interaction potential over the transallow the reader to follow our approach and to compare it
verse degrees of freedothThe correct effective potential with those given by other authors, Sec. Il contains the re-
should go over into the Coulomb potenti®l- with the  sults for the electron pairs and the excitons with the detailed
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discussion of the applicability of the present effective potenwhere r,=[(x;—X5)%+ (Y1~ Y2)?+(z;—2,)?]*2. For the
tial, and Sec. IV contains the conclusions and the summargystem of two and more charge carriers we can not separate
Appendix contains the derivation of the effective interactionstrictly the transverse and longitudinal coordinates like in Eq.

for higher lateral subbands. (4) because of the intrinsic inseparability of the Coulomb

potential. If, however, the lateral confinement is strong, i.e.,

Il. EFFECTIVE TWO-PARTICLE INTERACTION w is large, the Coulomb interaction is a small perturbation
POTENTIAL for the transverse-motion ground stdEs. (5)]. In this case,

. . . . ) the following separated form
First we consider a single electron moving in confinement

potential U, Which can be expressed as a sum of the W(rqy,r)=1,(X1,¥1) ¥, (X2,Y2)®(21,2,) (7)
lateral U, (x,y) and longitudinalU(z) confinement poten- o )
tials, i.e., UconX,y,2)=U, (x,y)+U|(2). We assume that C€an be a good approximation of the exact two-particle wave

the lateral confinement is described by the harmonic oscillafunction. _ _
tor potential, i.e., The electron-electron interaction energy can be expressed

as the integral

U, (X,y) = zMew’(X*+y?), 3
wherem, is the electron effective mass and is the har- le:f d3r1d3r2£|\lf(rl,r2)|2. 8
monic oscillator frequency. The one-particle wave function M2
for potentialU .o can be separated as follows: The Fourier transform of the later&ransversg probability
densityy/? is given b
W)= (X)) (2), (4 ~Gensiyyiis given by
where psi (Ky . ky) =exd — (KE+K3)12/4]. (9)
X2+ 2 We calculate integra(8) as follows. First, we replace the
o (x,y)=(7") " texp — 2 (5)  probability densities and the Coulomb potential by their Fou-
2 rier transforms, i.e.,

with the oscillator length = (%/mew)*. The ground-state

energy of the transverse motion is equahito. 2 _ f P .
Let us consider two electrons confined in potential ¥1%Y)= (2m)2 d%kps. (ki Ky)exp =ikt kyy) ],
thonf(x,y,z). The Hamiltonian of the electron pair is given (10)
y
h? D2(z z)—iffwd dop(9y,9y)
H= = S (VI VD UL (xa,ya) UL (xa.¥2) +Uy(20) SRCaPIY) B B
K xexd —i(01z1+0225)], (11
+Up(z)+ . (6)
12 and

d

12
By v (12

ro 272

1 1 fdgkf“‘ lep[_i[kx(xl_xz)+ky(y1_)’2)+Q(Zl_Zz)]}’

whered?k=dk,d k, . Next, we integrate ovar; andr, using  In Eq.(14) we replacep(q, —q) by the inverse Fourier trans-

the identity form
1 (= o= [ 2 (20—
5(p)zzf dxexq—ipx). (13) P(q, Q) f f_wdzleZq) (ZlyZZ)eXF[Iq(Zl 22)]
The application 0f13) and integration over the Dirac delta and integrate oveq using the identity
functions yields _
» expligqz
, J dq%z%exp(—klzl). (16)
W :Lf dzkfw dqpsl(ka(y)p(Ql_q) ( —= kotq
o2 —o k?+q? ' The integration ovek, andk, in Eq. (14) leads to
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w0 40
LI | |
lezf f_ dzdz,®2(2;,2,)Ver(z1—25),  (17)
where
K exp(—k|z|) =
Ver(2)= 5 J d%kp2, (ke k) 2
>
« 2
=Kf0 dkexp( —k|z|—Kk21%12). (18) g
g
Performing the integral in Eq18) we obtain the real-space &
form of the effective interaction potential energy g
e vz, ||
Vei(2) = 5T erfcx o1 | (19
. . . l ] ] |
Formula(lg) provides the effectlye potenftlal energy of the 0 0 5 10 15 20 25
interaction between charge carriers confined in a quasi-1D z[nm]
nanostructure. In Eq(19), erfcx(x) =expfderfc(x) is the
exponentially scaled complementary error functidmhich FIG. 1. Potential energy of the electron-electron interaction as a

can be calculated using the standard numerical proceduré{lﬁction of interelectron longitudinal distanae The solid curve
(e.g., from the IMSL librar§?). We note that the Fourier Shows the present effective potential energy for the lateral confine-
transform of the effective interaction potentidl) has been ment energyhw=50 meV, the dotted and dashed curves show

obtained by other authd@in the following form: model potential energig€q. (1)] and[Eqg. (2)] both drawn forR
=|=4.76 nm, and the dashed—dotted curve shows the Coulomb
v (k)= KEl(I2k2/2)exp(I2k2/2) (20) potential energ\W = «/z. The dashed—double-dotted curve shows
€ )

the effective interaction potential energy fow=10 meV.

whereE, is the exponential integral tance. Comparison of effective potent{ab) with model po-

w0 tentials (1) and (2), presented in Fig. 1, shows that model
El(z)=f dxexp(—Xx)/X. (21 potential(1) does not reproduce the cuspzat 0. However,
z at large interparticle distances model potentBl, present

: ) : ; ffective potential(19), and the Coulomb potential become
However, the analytical real-space form of this potential hal%distinguishable. The second model potenil Eq. (2)],

not been found so far. The numerical transformation of Xt as b q fo—0.78. f hich it q h
pression(20) into the real space is very cumbersome and as been drawn Toy=10.7c, Tor which it reproduces the

therefore, is not suitable in the real space calculations. On th\éalu.e of the effective potentigll9) at the.oﬁgi”- M.odel po-
other hand, formul19), derived in the present work, pro- tential (2) possesses the cusp at the origin, but in the entire

vides the analytical compact form of the effective interaction' 2N9€ ofz shown in Fig. 1 considerably underestimates both

potential, which can be readily implemented in the real spacg1e Coulomb potential and effective potenti&®). Inserting
calculations. a smaller value ofy could restore the Coulomb character of

In Fig. 1 we show the comparison of effective interactioandel potential(2) at large interparticle distances, but it

potential(19) with the Coulomb potential and model poten- would lead to an overestimation of the electron-electron in-
tials (1) and(2) (cf. Sec. ). In the calculations to Fig. 1 and teraction energy near the origin. We conclude that none of

throughout the present paper we use the material data 6.'?‘8 r_nodel p_otenUaIél)_an_d(Z) repro_duces the aqtual effe_c-
GaAs, i.e.,m,=0.067n,, and s=11. Then, the oscillator tive interaction potential in the entire range of interparticle

lengthI=4.76 nm forfi =50 meV. When plotting model disltarlﬁgs. i h btained th | f |
potentials(1) and(2), we identify R in formulas(1) and(2) n this section, we have obtaine € real space formula

with |. Figure 1 shows that the present effective potentialfor the eﬁect_we interaction potentialey between the e!ec-
(19) of the interaction between the confined electrons igrons occupying the lowess{type) subband of the quantized

weaker than the Coulomb potential of the interaction be_transverse(laterab motion. Similar closed-form expressions

tween point charges for all values of the interparticle dis-c2" be derived for the higher Iatergl subbands. In Appendix
tance. Atz = 0 effective potential19) possesses the cusp W€ Present the way one can obtain potentigh of the ef-
and for z—x exhibits the Coulomb asymptotics. In fact, fective interaction between the one electron in the lowest
effective potential(19) becomes indistinguishable from the StyPe subband and the other one in the excifet/pe
Coulomb potential already far>25 nm. In Fig. 1, we have SuPband.
also plotted effective potentia(19) calculated for A w

=10 meV and the same values of the other parameters. We

see that for the lower value of the lateral confinement energy We have applied effective potentiél9) to two-particle

the effective interaction is softer at small interparticle dis-systems: a pair of electrons confined in a single and double

Ill. APPLICATIONS
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guantum dot and a bound electron-hole p@ixciton in a  techniques used in the present paper, i.e., the variational
guantum wire. We have solved the corresponding eigenvalumethod with the Gaussian basis and the imaginary time
problems using two different approaches. The first approactechnique.

[in the following called approactl)] is based on the exact Hamiltonian (24) depends on four coordinates: the posi-
treatment of the original 3D problem followed by variational tions of both the electrons in thedirection and the relative
calculations with sufficiently flexible trial wave functions. electron-electron paositions in they plane. The correspond-
When applying approactl), we keep the 3D Coulomb in- ing ground-state wave function is invariant with respect to
teraction potential throughout the entire calculation procethe interchange;,<Yy;,. Accordingly, the trial ground-state
dure. Therefore, method) will provide reference results, wave function has been taken in the form

which will be used to check the quality of the approximate

1D effective potentia(19). The second approadhballed ap-

proach(ll)] rglies on the approximate sggaration of theplon— X(X12'y12'zl'22):i% cijuexr —aizi —a;z;— bz,
gitudinal and transverse coordinatesf. Eqg. (7)], which

leads to the 1D two-particle problem with effective interac- —g,(x§2+ yfz)], (26)

tion (19). The resulting 1D Schdinger equation for the lon- _ o

gitudinal motion is solved numerically by the imaginary-time Wherec;j are the linear variational parameters and a ,
technique?® The comparison of the results of methods b,, andg, are the nonlinear variational parameters. Param-
and (1) allows us to study the applicability of effective in- €tersa; anda; describe the localization of the electrons in
teraction potential19). In the present paper, we consider the Gaussian quantum dot, the term withintroduces the

only the ground states of the two-particle systems. electron-electron correlation in the longitudinal direction,
andg, takes into account the dependence on the interparticle

transverse distance. In the calculations, we apply four differ-
ent parameters;, two parameterd, , and threey, param-
First we consider a pair of electrons confined laterally byeters. This generates ba$6) with 96 elements, which al-
the harmonic oscillator potentifEg. (3)]. The Hamiltonian  |ows us to obtain the estimates of the ground-state energy
of the system is given by E6). Due to the parabolic lateral with the precision of 0.02 meV. The results obtained with
confinement(3), it is possible to separate out the transversemethod(l) with this accuracy can be treated as “exact.” The
center-of-mass and relative motions of electrons. The substsame precision of numerical calculations is maintained in all
tutions X=x;+X5, Y=Y1+Ys, X15=X;—Xp, andy,=Y1  the implementations of methods and(ll) presented in the
—Y, lead to the following separated form of Hamiltonian present paper.
(6): When applying approadiil) with the effective interaction
potential, we adopt the approximate separabilityand as-
H=Hyxy+Hi, (220 sume that both the electrons are in the ground state of the
transverse motion. We define the Hamiltonian for the longi-
tudinal motion as operatdd |, which fulfills the equation

A. Electron pair in a single quantum dot

where Hamiltonian

R2[ 9?2 P muw?

- | - 2 2 e
HX,Y_ Me (?XZ + (?Yz 4 (X +Y ) (23) HHCI)(Zl,Zz)z J'JJJ;deldyldXZdyz
has the ground state energiw, and X (X, YD) ¢ (X2,Y2)Hir (X1,Y1)
52 2 2 2 P X (X2,Y2)P(21,25). (27)
Ho=——| 2—5+2—5+—+— . .
oam\ Tk, Toy?, 92 022 Equation(27) yields
2
Me®” 2 +y2 K WP P
+ (X2t y1) +U)(z1) +Up(z2) + —. Hi=— — | — + — |+ U(z)+U(2)) + Vo z: — 2
4 Mo 1=~ 2m, RS 1(Z1) +U(22) +Vei(z1—2)
(24)
+2hw. (28
For the single quantum dot we use the Gaussian riddél _ -
the |ongitudinal confinement potentia| The e|genvalue problem for Haml|t0n|&(l28) dependS on
only two coordinates. Therefore, it can be treated with any
Uy(2)= —Voexp( — 22172, (25)  efficient finite-difference method on a two-dimensional

mesh. In the present paper, we have applied the imaginary-
whereV, is the depth of the potential well articorresponds  time techniqué? according to which the ground-state wave
to the range of the longitudinal confinement. The Gaussiafunction is calculated using the scheméS™!=(1
potential was applied to a modelling of the confinement of—aH|)®*°, wheres is the number of iteration. This iteration
charge carriers in both the singleand double quantum procedure converges to the exact ground-state wave function
dots®*3! For the Gaussian potential the one-electron eigenif the value of« is not too large. We have used the mesh of
problem can be solved with a high precision by both the400x400 grid points, for which the numerical approach
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1.2

) | Z= 50 100 300 [nm]
f 80 | , = ha[meV]
! ®
\ 10
' €
) A
0.8 — |‘ § — i;“ 7
E ! © 2 50 nm
— \ |
E i
0.4 — 250 500 — FIG. 3. Contours of the two-electron probability density for the
Z[nm] single quantum dot as functions of the longitudinal electron coordi-
natesz, andz, for several values of rangg of the longitudinal
confinement potential and lateral confinement enérgy The bar
corresponds to the length of 50 nm. The darker shade of gray cor-
0.0 - _ _ responds to the larger probability density.
l racy of the energy estimates obtained with effective potential
0 400 800 (19 is high. Moreover, the absolute errdiE is negligibly

Z [nm] small as compared to the range within which the ground-
state energy changes with
FIG. 2. DifferenceAE=E, —E, of the ground-state energies  \We note that parametét in the Gaussian potenti&P5)
obtained with the effective 1D modeE() and by the full 3D  should not be identified with the size of the quantum dot,
approach ) for the electron pair confined in the single quantum which in fact is much smaller. The actual size of the quantum
dot with the lateral confinement energyw=10 meV (dashed  dot is illustrated in the inset of Fig. 2, which shows the

curve and 50 meV(solid curve as a function of rang& of the  ayerage values of the electron-electron distance,
longitudinal confinement potential. Inset, expectation values of the ZZ)2>1/2 and the distance of the single electron from the
interelectron distancg(z3,)*? and electron-dot center distance

2\ 1/2 ;
YA ) - center of of the quantum ddg7)~'“ as functions ofZ calcu-
(z2)"" s functions of for f.w=10 meV. lated for #w=10 meV. These average distances provide
works with the precision comparable to that of the varia-measures for the actual size of the quantum dot. Eor

tional calculations with Gaussian ba$#b). =300 nm, for which the calculations with potent{dl9) are
Figure 2 displays the differenceE=E, — E, between the almost exact{(z;, — z,)%)*?=40 nm and(z3)?=20 nm.
ground-state energies calculated by meth@dsand (1) de- In Fig. 3 we have plotted the contours of the two-electron

scribed above. The calculations have been performed fqurobability density®?(z,,z,) calculated by the imaginary
V=200 meV in the Gaussian confinemé@b) and for the time technique for different values dfandz w. All the plots
lateral confinement energyw=10 and 50 meV. Figure 2 have been drawn in the same sc@é0 nm bar is marked in
shows that—in the weak confinement regime, i.e., for largeéig. 3). In the weak confinement regime, i.e., f&
values of rang& of the longitudinal confinement potential — =300 nm, the electrons are localized in separate regions of
energy differenceAE becomes equal to zero, which meansthe quantum dot. Then, the electron density distribution has
that the Schidinger equation is solved exactly in the 1D the island-like form, which means that a Wigner molecule is

model with effective interaction potentidl9) in Hamil-  formed?'*>=3For the larger confining frequency the Wigner
tonian (28). In the strong confinement regime, i.e., for the molecule is created at smallef (cf. the plot for Aw
small values o, the results obtained with Hamiltonid28) =50 meV andZ=100 nm). This effect results from the fact

overestimate the exact ground-state energy. This overestimgiat effective potential19) possesses a sharper cuspzat
tion possesses a variational character. The resulting inaccu=0 for larger value ofw (cf. Fig. 1), i.e., the electron-
racy is related with the assumption of separabilityand the  electron repulsion, which is responsible for the formation of
application of the fixed fornpEqg. (5)] of the wave functions, the Wigner molecule, is more effective. We note that the
which take into account neither the electron-electron correelectron density foriw=10 meV andZ=300 nm is very
lation nor the increase of the extension of the electron chargsimilar to that fori w=50 meV andZ=100 nm. These two
density in the transverse direction induced by the interelecplots show the same shape of the two-electron probability
tron repulsion. For the stronger lateral confinement, i.e., fotensity, i.e., one of them can be obtained from the other by a
ho=50 meV, AE is smaller and disappears foZ  scaling. In these two cases the results obtained with the ef-
=100 nm, while for the weak confinemeni¢=10 meV) fective 1D interaction potential become indistinguishable
AE becomes negligibly small foZz=300 nm. We note from the 3D results for the ground-state enefgf; Fig. 2.
that—in either case—the inaccuracy of the energy estimateBoth these plots correspond to the pronounced Wigner local-
is small in comparison with the ground-state energy of thezation of the electrons. This means that the effective inter-
two-electron system considered, which, e.g., fBw  action potential, obtained in the present work, works with a
=10 meV is equal to—248.54 meV forZ=5 nm and high precision for the quasi-1D electron systems forming
—376.22 meV forZ=800 nm. Therefore, the relative accu- Wigner molecules.
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B. Electron pair in coupled quantum dots 2.0

We have applied the effective interaction potentid) to -310 T
the problem of the electron pair confined in the coupled .
quantum dot$%3136-38Thjs system is described by Hamil- 15 k ]
tonian (6) with the longitudinal confinement potential as- ' )

sumed to be the double Gaussian quantum3Yell \ -320 —

E [meV]

U|(2)= —Volexd — (z—d/2)%Z?]+exd — (z+d/2)%/Z?]}, %
29 E
L
<

0 200 400

whered is the distance between the centers of the quantum d [om]

wells.

The variational solution to the two-electron eigenproblem
has been found with the use of the trial wave function ex-
panded in the multicenter Gaussian basis

| |
0 20 40 60
d [nm]

X(X12,Y12,21,22) = % CijimneXH — ai(z;— Cppn)?

—aj(2,— Cp) 2= bzl 91(X52+ V3o 1,
(30) FIG. 4. Energy differenc@E for the electron pair confined in
the double quantum dot as a function of interdot distathéer the
which is a generalization of wave functié26). In Eq.(30), lateral confinement energ§w=10 meV (dashed curjeand 50
parametersC,, and C, stand for thez coordinates of the meV (solid curve. Inset, ground-state enerdy calculated by the
centers of the Gaussian functions. We have used the followfull 3D approach, for the electron pair confined in the double quan-
ing four centersC, = —d/2—Z/2, C,= —d/2, C3=d/2, and tum dot ford €[20,40Q nm and foriw=10 meV.
C,=d/2+Z/2. This choice of centers takes into account the
coupling between the dots as well as the tendency of eleaesults from the Coulomb interdot repulsion, when both the
trons to avoid one another. The introduction of the two cenelectrons are localized in the different dots. Comparing the
ters per dot enables us to reduce the number of nonlinearalues of the total ground-state ener@yset of Fig. 4 with
variational parameters; from four in Eq.(26) to two in Eq.  AE (Fig. 4 we see that the relative errors of meth@b),
(30) without a significant loss of the precision. The numberswhich uses effective potentiél9), are negligibly small. The
of other nonlinear parameterb(andg,) are the same as in ground-state energy is equal t6677.93, —483.12, and
wave function(26), which generates the basis composed of—328.46 meV ford=0, 12, and 20 nm, respectively. Also
384 elements. the range of changes of the ground-state energy with varying

The results forZ=10 nm are depicted as functions of d is by two orders of magnitude larger tharE.
interdot distanced in Fig. 4, which shows the difference In Fig. 5 we have displayed the two-electron probability
AE=E, —E, between the ground-state eneify calculated  density®?(z,,z,) calculated for the coupled quantum dots
for Hamiltonian (28) with effective potential(19) by the by the imaginary time technique. Fdr=10 nm confinement
imaginary time technique and, calculated for Hamiltonian
(24) with wave function(30). We see that both the energy
estimatesE,, calculated by methodl) become nearly exact
for d=20+25 nm. Energy differenceAE reaches zero
more quickly for the stronger lateral confinement, i.e., for @
largerfiw.

The inset of Fig. 4 displays the dependence of the ground-
state energy on the distance between the dot centersdfor
=10 meV and fod €[ 20,400 nm. The ground-state energy ®
first grows rapidly with the interdot distance, reaches a maxi- 2
mum for d=30 nm, and next decreases slowly. The rapid
increase of the ground-state energy for small valued isf
related with the decreasing overlap of the two Gaussian po-
tential wells(29). The tunnel coupling between the dots van- 1
ishes ford=30 nm. Ford>30 nm the electrons are local- g 5. Contours of the two-electron probability density for the
ized in the different quantum dots and the electron-electroRqypled quantum dots as functions of the longitudinal electron co-
interaction energy contribution starts to decrease with th@rdinatesz, and z, for several values of interdot distandeand
increasing interdot distance, which leads to the decreasingteral confinement energyw. The bar corresponds to the length of
ground-state energy. We have found the asymptotich- 60 nm. The darker shade of gray corresponds to the larger probabil-
havior of the ground-state energgf. inset of Fig. 4, which ity density.

d = 10 20 30 [nm]
hw[meV]

® 10

® lso
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potential (29) possesses a single minimum and the electrons #2 ) nw? ) 5 K

are not separated spatially. The separation of the electrons Hen=— 5 Vent 5 (XentVYen) = — (34)
becomes visible fod=20 nm, for which the confinement H eh

potential possesses two separated minima. The separate Me have calculated the ground state energy of Hamiltonian
calization of the electrons is more pronounced for the stront34) using the variational wave function

ger lateral confinement, i.e., fdro =50 meV, than for the
weaker lateral confinement, i.e., fbw=10 meV, which is — -~ — a2 _p.(x2 2
related to the fact that the effective interelectron repulsion X(Xen:Yen:Zen) ; Ci €XPL~aiZen— by (Xent Yen) 1
(19) is stronger for the system, which is more strongly local- (35

ized laterally(cf. Fig. 1). Ford=30 nm the plots for both the We have applied 10 nonlinear variational parameterand
lateral confinements are identical. In this case, the interactiorl10 parameter;, i.e., the basis set in E35) is composed
Jor e

between the electrons localized in the different dots can bg: 175 elements. which leads to the sufficiently high preci-
identified with the electrostatic interaction between the twog;o ¢ the grour;d-state energy estimates
point charges. Let us introduce the effective electron-hole interaction to
the problem considered. If the lateral confinement is strong,

C. Exciton in a quantum wire the ground-state wave function can be approximated by a
We have also studied the applicability of the effective product
potential to the problem of a bound electron-hole pair in a R h
quantum wire. In this problem the particles are free to move ¥ (Xe:Ye:Xn:Yn:Zen) = ¥/ (Xe,Ye) 1 (Xn, Yn) X|(Zen),
in the z direction. We assume the same confinement of the
charge carriers in the transverse directions as in the precegrere
ing sections, i.e., parabolic lateral confinement. The system

. . o ) )
is described by the Hamiltonian - e 1 Xyt Y
5 5 ) ) T (Xeghy »Ye(ny) = (T gn)) ~ ex oz
h 2 h 2 Mewe 2 2 Mpowp 2 2 e(h)
H=——2meVe— —thVth 5 (Xg+ye)+ 5 (XhtYn) (37)

Quantitiesly andl} are now treated as variational param-

-, (31) eters. Similarly as in Sec. Il A, we calculate the expectation
len value of Hamiltonian(32) by integrating over the electron

and hole transverse coordinates, which yields the following

wherem,, is the hole effective masién the calculations for . . oY
one-dimensional Hamiltonian:

the exciton we adoptm,=0.5m, and e=12.9) andrg,
=[re=rpl is the electron-hole distance. Since the particles 52 g2 52 52
are not confined in the longitudindk) direction, we can =5 —VE(Zop) + +

separate in Hamiltonia(81) the center-of-mass and relative 2udZ, T 2mJE? 2myl?
motions in this direction, which yields

w2 * 2 * 2
52 52 +7(mele +mplh ), (38

2M 72

w9 92 w52
H=— — || —=+—
2me | gx2 ayg) 2mn\ gx2 gy}

where— V% is the potential energy of the effective electron-

P 2 2 hole interaction, which has been obtained in a similar way as
A7 ‘9_+ %(x2+y2)+ mh“’h(xz+y2)_ < the effective potential energy for the two electrdog Sec.
2p gz2, 2 % 7° 2 Iy 1) and has the form given by Eq19) with | replaced by

(32) JOEZ+1%?)/2. We evaluate the ground-state of the exciton
described by Hamiltoniat38) by a finite-difference method
where u=mgm,/(Mm+m,), M=mg+m,, Z=(mgz, with a one-dimensional mesh.
+mpz,)/M, andzgp=2,—2z,. In the following, we assume In order to check the quality of the 1D approximation
that the lateral confinement for the electron and the hole i$38), we have calculated the ground-state energy of the ex-
the same, i.e.w.=w,=w. This assumption enables us to citon described by the 3D HamiltonidB4) using trial wave
separate the center-of-mass and relative transverse motiorfanction (35) and compared the results. The difference
We introduce the transverse coordinates for the excitometween the ground-state energy calculated by the 1D and
center-of-masgc.m,) position (X andY) and for the relative 3D methods is displayed in Fig. 6 as a function of lateral
electron-hole positionX.,, andyep). In these coordinates, confinement energj w.
Hamiltonian(32) takes the form In Fig. 6, the dashed curve has been obtained with the
values of parametel§ andl} fixed at those for the nonin-
teracting particles, i.e.Ji=I, and Iy =I,, where gy,
where H.,, is the center-of-mass Hamiltonian with the =[#/mgnw]*? and the solid curve has been obtained from
ground-state energfiw and Hgy, is the relative transverse- the minimization performed ove§ andl} , which signifi-
motion Hamiltonian of the form cantly improved the results. We also see that the energy

H=Hcmn+Hen, (33
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4 exciton confined in the quantum wire. In order to solve the
50 corresponding eigenvalue problems we have applied both the

! ! full 3D approach and the 1D model with the present effective
interaction potential. The comparison of the results obtained
by the 3D and 1D approaches enabled us to discuss the ac-
curacy of the effective 1D model. We have shown that for the
electron systems considered the present 1D model works
with a reasonable precision in the entire range of the nano-
structure parameters. For the single quantum dot the results
of both the 3D and 1D methods become identical in the
strong lateral confinement regime. For the coupled quantum
dots the 1D model leads to the same results as the 3D ap-
proach at large interdot distances, i.e., if the electrons are
localized in the different dots. We have also shown that the
effective 1D model is suitable for a description of the exciton
confined in the quantum wire.

The effective interaction potential derived in the present
paper has been compared with the model interaction poten-
10 100 1000 tials introduced by other authors. Contrary to model poten-

ho [meV] tials, the present effective potential contains no fitting param-
) ) eters. At large interparticle distances both the effective and

FIG. 6. Energy differencE calculated for the exciton con-  the model potentials exhibit the same coulombic asymptot-
fined in the quantum wire as a function of lateral confinement enjcs Therefore, for the electron systems of low density the
ergyfiw. The solid(dashedi curve shows the resuits obtained with effective and model potentials should yield similar results.
(without) the optimization over parametels andl} in trial wave  The differences between the effective and model potentials
function (37). Inset, binding energfg of the exciton calculated appear for finite interelectron distances, especially, for the
with wave function(35) (dotted curvgand in the framework of the - yery small electron-electron distance. Therefore, for the elec-
1D model with(solid curve and without(dashed curvethe opti- 4 systems of large density, i.e., for the strong confinement,
mization of wave functio{37) as a function of lateral confinement the solutions obtained with the effective and model potentials
energyho. can be different. We have pointed out that the error of the

_ . _ energy estimates obtained with the present effective potential
difference slowly decreases with the lateral confinement enp55 3 variational character and—in most cases—is negligibly
ergy. The increasing lateral confinement energy lowers thgmga|. On the contrary, the results obtained with the model
minimal value of the effective attraction potential energy potentials are non-variational, which may lead to the uncon-
— Ve (cf. Fig. 1). As a consequence, the exciton wave func-tro|jable errors. These errors occur when the wave function
tion becomes more and more localized and finally resemblegkes on appreciable values at small interparticle distances.
the Dirac delta at largéw. The inset in Fig. 6 shows the This problem is particularly important for the exciton con-
binding energyEg of the exciton, which is calculated as fined in a quantum wire, since the electron and hole ground-
follows: Eg=2fiw—E, whereE is the exciton ground-state state wave functions strongly overlap. In this case, the appli-
energy. We see that the exciton binding energy increases wifgation of the model potential can yield quite arbitrary values
increasingi o, i.e., increasing confinement. The inset of Fig. of the binding energy. However, the application of the
6 displays the binding energy calculated with wave functionpresent effective potential leads to the reasonable values of
(35 and in the framework of the 1D model with and without the binding energy. If the lateral confinement potential is
the optimization of parameteltd andl}, . The binding ener-  sufficiently strong, the ground-state energy obtained with the
gies calculated by all the three methods become identical fosffective potential can be very close to the exact value, while
the strong lateral confinement. Figure 6 also showsAtat  the results obtained with the model potentials may differ sig-
which is a measure of the accuracy of the results obtainedificantly from the exact solutions.
with the effective interaction potential, becomes negligibly In summary, we have presented the efficient method of
small for largefiw. The relative errors of the 1D approach the solution to the Schdinger equation for the charge car-
with effective potentiaVZ;, determined with respect to the riers confined in quasi-1D nanostructures. This method is
binding energy obtained with the optimized parametdrs based on the introduction of the effective 1D interaction po-
and ¥, have been estimated to be 22%, 7%, and 2% fof€ntial for the charge carriers. We h'ave'derived_ the analy‘gical
fiw=1, 10, and 100 meV, respectively. real-space formula for the effective interaction potential,
which can be readily applied to a number of problems in-

volving quantum wires, single, and multiple quantum dots
IV. CONCLUSIONS AND SUMMARY with the strong lateral confinement.

~ 1 10 100 1000

We have derived the e_ffectlve p(_)tent!al of the interaction ACKNOWLEDGMENTS
between the charged particles confined in the quasi-1D semi-
conductor nanostructure. We have considered the electron This work has been supported in part by the Polish Gov-
pair confined in the single and double quantum dot and thernment Scientific Research CommitigeBN ).
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APPENDIX

12 g
- . - . V()= —|1-—— fdzk
e Fourier transform of probability density,, (x,y) e 2 4 572
=C(x2+y?)exgd —(x®+y?)/I?] of the electron in thep-type

lateral subband reads (K2+Kk2)12Texp —k|z|)
Xexp{— X4y qk 12 , (A3)
(K+kd)1? 12(KZ+K?)
ppL (K ky) =expg ——— 1=—= which yields
12(k2+k2) K 12 62\ [ 7\ Y2 |
_ y P = — | 1— — || A
_psl(kkay) 1- 4 (Al) Veff(z) I 1 4 (?22 2 erfcx| 21/2
We insert this Fourier transform under the integral in the 2
S . . 3 z K|z|
effective interaction potentidEq. (18)] =Ven(2) 17 a2 +—. (A4)
4] 4]
K exp(—k|z _ . -
Vel(2)= ﬂf d?k pp, (Ky,ky)psy (Ky ,ky)p(Tll), This potential is softer thalWe(z) atz=0 but exhibits the
A2 same 1Z asymptotic behavior in the limit of large The
(A2) corresponding formulas for the electrons occupying the other
and obtain subbands can be obtained in a similar way.
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