
PHYSICAL REVIEW B 68, 045328 ~2003!
Effective interaction for charge carriers confined in quasi-one-dimensional nanostructures
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A problem of interacting charge carriers confined in quasi-one-dimensional~1D! semiconductor nanostruc-
tures has been studied. We have derived an analytical 1D formula for the effective interaction potential between
the confined charge carriers. We have applied both the 1D model with the effective potential and the full
three-dimensional~3D! approach to an electron pair confined in a single and double quantum dot as well as to
an exciton confined in a quantum wire. Comparing the results of the 1D and 3D approaches we have discussed
the applicability of the effective 1D interaction potential to the real 3D nanostructures. We have shown that the
present effective interaction leads to accurate results for weakly coupled multiple quantum dots and wire-like
nanostructures, i.e., the quantum wires and dots with the lateral confinement much stronger than the longitu-
dinal one.
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I. INTRODUCTION

Charge carriers in semiconductor nanostructures wit
reduced dimensionality exhibit a variety of novel propertie1

In the low-dimensional nanostructures, the confinement
tential, which stems from band offsets and/or external e
tric fields, leads to a limitation of the motion of charge ca
riers in one, two, or three directions. If the confinement
two spatial directionsx andy ~called the lateral or transvers
directions! is much stronger than the confinement in the th
direction z ~longitudinal direction!, all the confined charge
carriers occupy the lowest-energy state associated with
transverse motion, which is energetically separated from
excited states. In this case, the transverse degrees of free
are frozen and all physically interesting effects stem from
quantized motion in the longitudinal direction. Such syste
exhibit quasi-one-dimensional~1D! properties. The quasi-1D
systems can be realized either in semiconductor quan
wires,1 nano-whiskers2,3 or carbon nanotubes.4,5 The
quasi-1D confinement can also be obtained in quantum
if the lateral confinement potential is much stronger than
confinement in the growth~longitudinal! direction. The prob-
lems of charge carriers confined in quasi-1D nanostructu
are of growing experimental and theoretical interest.1–17 In
particular, the Luttinger liquid behavior of interacting ele
trons in 1D medium has been reported4,6 and the quantization
of conductance7 has been observed in GaAs/AlGaAs qua
tum wires. The ground-state energy of the 1D exciton, i
1D hydrogenlike system, is divergent,18 which directly re-
sults from the singularity of the Coulomb potential at t
origin. However, in the real quantum wires, which poss
finite lateral extension, the exciton binding energy is fini
but grows with the strength of the lateral confinement a
can be several times larger than in the bulk crystal.8,9 For
these reasons the reduction of the original 3D problem to
effective 1D model should be performed with a special ca

The effective interaction potential for the charged p
ticles moving in a quasi-1D medium can be derived by
eraging the 3D Coulomb interaction potential over the tra
verse degrees of freedom.10 The correct effective potentia
should go over into the Coulomb potentialVC with the
0163-1829/2003/68~4!/045328~9!/$20.00 68 0453
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asymptotic behaviorVC;1/r at large interparticle distances
However, instead of the Coulomb singularity at the origin
should exhibit a cusp,10 i.e., a nonvanishing value of the firs
derivative. So far, this potential was calculated by a tim
consuming numerical integration,8,19 which is not suitable
for time-effective calculations in quasi-1D systems. In ord
to perform the effective calculations, the Coulomb poten
is often replaced by approximate model potentials.11,20–24

The frequently used model potential energy20–24 has the fol-
lowing form

V1~z12z2!5
k

A~z12z2!21R2
, ~1!

wherez1 andz2 are the longitudinal coordinates of the tw
charges,k5e2/4p«0«, « is the dielectric constant, andR is
commonly identified with the radius of the quantum wir
This approximation correctly reproduces the asymptotic
havior at large interparticle distances, but does not lead to
cusp at zero interelectron distance. This cusp is restored
another version11 of the model interaction, which has th
form

V2~z12z2!5
k

uz12z2u1gR
, ~2!

whereg is a fitting parameter.
In the present paper we have derived an analytical r

space formula~without fitting parameters! for the potential
of the effective interaction between charge carriers confi
in a quasi-1D environment. We have discussed the appl
bility of this effective potential as well as the validity of th
1D approximation for real nanostructures. For this purpo
we consider a pair of electrons confined in a single a
double quantum dot as well as an exciton in a quantum w
The organization of the paper is following: in Sec. II w
provide the full derivation of the effective interaction pote
tial between the electrons in the ground state in order
allow the reader to follow our approach and to compare
with those given by other authors, Sec. III contains the
sults for the electron pairs and the excitons with the deta
©2003 The American Physical Society28-1
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discussion of the applicability of the present effective pot
tial, and Sec. IV contains the conclusions and the summ
Appendix contains the derivation of the effective interacti
for higher lateral subbands.

II. EFFECTIVE TWO-PARTICLE INTERACTION
POTENTIAL

First we consider a single electron moving in confinem
potential Uconf, which can be expressed as a sum of
lateral U'(x,y) and longitudinalU i(z) confinement poten-
tials, i.e., Uconf(x,y,z)5U'(x,y)1U i(z). We assume tha
the lateral confinement is described by the harmonic osc
tor potential, i.e.,

U'~x,y!5 1
2 mev

2~x21y2!, ~3!

where me is the electron effective mass andv is the har-
monic oscillator frequency. The one-particle wave functi
for potentialUconf can be separated as follows:

c~r !5c'~x,y!c i~z!, ~4!

where

c'~x,y!5~p1/2l !21expS 2
x21y2

2l 2 D ~5!

with the oscillator lengthl 5(\/mev)1/2. The ground-state
energy of the transverse motion is equal to\v.

Let us consider two electrons confined in potent
Uconf(x,y,z). The Hamiltonian of the electron pair is give
by

H52
\2

2me
~¹1

21¹2
2!1U'~x1 ,y1!1U'~x2 ,y2!1U i~z1!

1U i~z2!1
k

r 12
, ~6!
a
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where r 125@(x12x2)21(y12y2)21(z12z2)2#1/2. For the
system of two and more charge carriers we can not sepa
strictly the transverse and longitudinal coordinates like in E
~4! because of the intrinsic inseparability of the Coulom
potential. If, however, the lateral confinement is strong, i
v is large, the Coulomb interaction is a small perturbati
for the transverse-motion ground state@Eq. ~5!#. In this case,
the following separated form

C~r1 ,r2!5c'~x1 ,y1!c'~x2 ,y2!F~z1 ,z2! ~7!

can be a good approximation of the exact two-particle wa
function.

The electron-electron interaction energy can be expres
as the integral

W125E d3r 1d3r 2

k

r 12
uC~r1 ,r2!u2. ~8!

The Fourier transform of the lateral~transverse! probability
densityc'

2 is given by

rs'~kx ,ky!5exp@2~kx
21ky

2!l 2/4#. ~9!

We calculate integral~8! as follows. First, we replace th
probability densities and the Coulomb potential by their Fo
rier transforms, i.e.,

c'
2 ~x,y!5

1

~2p!2E d2krs'~kx ,ky!exp@2 i ~kxx1kyy!#,

~10!

F2~z1 ,z2!5
1

~2p!2E E
2`

`

dq1dq2r~q1 ,q2!

3exp@2 i ~q1z11q2z2!#, ~11!

and
1

r 12
5

1

2p2E d2kE
2`

`

dq
exp$2 i @kx~x12x2!1ky~y12y2!1q~z12z2!#%

k21q2
, ~12!
-
whered2k5dkxdky . Next, we integrate overr1 andr2 using
the identity

d~p!5
1

2pE2`

`

dx exp~2 ipx!. ~13!

The application of~13! and integration over the Dirac delt
functions yields

W125
k

2p2E d2kE
2`

`

dq
rs'

2 ~kx ,ky!r~q,2q!

k21q2
. ~14!
In Eq. ~14! we replacer(q,2q) by the inverse Fourier trans
form

r~q,2q!5E E
2`

`

dz1dz2F2~z1 ,z2!exp@ iq~z12z2!#

~15!

and integrate overq using the identity

E
2`

`

dq
exp~ iqz!

k21q2
5

p

k
exp~2kuzu!. ~16!

The integration overkx andky in Eq. ~14! leads to
8-2
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W125E E
2`

`

dz1dz2F2~z1 ,z2!Veff~z12z2!, ~17!

where

Veff~z!5
k

2pE d2krs'
2 ~kx ,ky!

exp~2kuzu!
k

5kE
0

`

dk exp~2kuzu2k2l 2/2!. ~18!

Performing the integral in Eq.~18! we obtain the real-spac
form of the effective interaction potential energy

Veff~z!5S p

2 D 1/2k

l
erfcxS uzu

21/2l
D . ~19!

Formula ~19! provides the effective potential energy of th
interaction between charge carriers confined in a quasi
nanostructure. In Eq.~19!, erfcx(x)5exp(x2)erfc(x) is the
exponentially scaled complementary error function,25 which
can be calculated using the standard numerical proced
~e.g., from the IMSL library26!. We note that the Fourie
transform of the effective interaction potential~19! has been
obtained by other authors12,27 in the following form:

Ṽeff~k!5kE1~ l 2k2/2!exp~ l 2k2/2!, ~20!

whereE1 is the exponential integral

E1~z!5E
z

`

dx exp~2x!/x. ~21!

However, the analytical real-space form of this potential h
not been found so far. The numerical transformation of
pression~20! into the real space is very cumbersome a
therefore, is not suitable in the real space calculations. On
other hand, formula~19!, derived in the present work, pro
vides the analytical compact form of the effective interact
potential, which can be readily implemented in the real sp
calculations.

In Fig. 1 we show the comparison of effective interacti
potential~19! with the Coulomb potential and model pote
tials ~1! and~2! ~cf. Sec. I!. In the calculations to Fig. 1 an
throughout the present paper we use the material dat
GaAs, i.e.,me50.067me0 and «511. Then, the oscillator
length l 54.76 nm for\v550 meV. When plotting mode
potentials~1! and ~2!, we identifyR in formulas~1! and ~2!
with l. Figure 1 shows that the present effective poten
~19! of the interaction between the confined electrons
weaker than the Coulomb potential of the interaction
tween point charges for all values of the interparticle d
tance. Atz 5 0 effective potential~19! possesses the cus
and for z→` exhibits the Coulomb asymptotics. In fac
effective potential~19! becomes indistinguishable from th
Coulomb potential already forz.25 nm. In Fig. 1, we have
also plotted effective potential~19! calculated for \v
510 meV and the same values of the other parameters
see that for the lower value of the lateral confinement ene
the effective interaction is softer at small interparticle d
04532
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tance. Comparison of effective potential~19! with model po-
tentials ~1! and ~2!, presented in Fig. 1, shows that mod
potential~1! does not reproduce the cusp atz50. However,
at large interparticle distances model potential~1!, present
effective potential~19!, and the Coulomb potential becom
indistinguishable. The second model potential@cf. Eq. ~2!#,
has been drawn forg50.78, for which it reproduces the
value of the effective potential~19! at the origin. Model po-
tential ~2! possesses the cusp at the origin, but in the en
range ofz shown in Fig. 1 considerably underestimates bo
the Coulomb potential and effective potential~19!. Inserting
a smaller value ofg could restore the Coulomb character
model potential~2! at large interparticle distances, but
would lead to an overestimation of the electron-electron
teraction energy near the origin. We conclude that none
the model potentials~1! and~2! reproduces the actual effec
tive interaction potential in the entire range of interpartic
distances.

In this section, we have obtained the real space form
for the effective interaction potentialVeff between the elec-
trons occupying the lowest (s-type! subband of the quantize
transverse~lateral! motion. Similar closed-form expression
can be derived for the higher lateral subbands. In Appen
we present the way one can obtain potentialVeff

sp of the ef-
fective interaction between the one electron in the low
s-type subband and the other one in the excitedp-type
subband.

III. APPLICATIONS

We have applied effective potential~19! to two-particle
systems: a pair of electrons confined in a single and dou

FIG. 1. Potential energy of the electron-electron interaction a
function of interelectron longitudinal distancez. The solid curve
shows the present effective potential energy for the lateral confi
ment energy\v550 meV, the dotted and dashed curves sh
model potential energies@Eq. ~1!# and @Eq. ~2!# both drawn forR
5 l 54.76 nm, and the dashed–dotted curve shows the Coul
potential energyVC5k/z. The dashed–double-dotted curve sho
the effective interaction potential energy for\v510 meV.
8-3
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quantum dot and a bound electron-hole pair~exciton! in a
quantum wire. We have solved the corresponding eigenv
problems using two different approaches. The first appro
@in the following called approach~I!# is based on the exac
treatment of the original 3D problem followed by variation
calculations with sufficiently flexible trial wave functions
When applying approach~I!, we keep the 3D Coulomb in
teraction potential throughout the entire calculation pro
dure. Therefore, method~I! will provide reference results
which will be used to check the quality of the approxima
1D effective potential~19!. The second approach@called ap-
proach~II !# relies on the approximate separation of the lo
gitudinal and transverse coordinates@cf. Eq. ~7!#, which
leads to the 1D two-particle problem with effective intera
tion ~19!. The resulting 1D Schro¨dinger equation for the lon
gitudinal motion is solved numerically by the imaginary-tim
technique.28 The comparison of the results of methods~I!
and ~II ! allows us to study the applicability of effective in
teraction potential~19!. In the present paper, we consid
only the ground states of the two-particle systems.

A. Electron pair in a single quantum dot

First we consider a pair of electrons confined laterally
the harmonic oscillator potential@Eq. ~3!#. The Hamiltonian
of the system is given by Eq.~6!. Due to the parabolic latera
confinement~3!, it is possible to separate out the transve
center-of-mass and relative motions of electrons. The sub
tutions X5x11x2 , Y5y11y2 , x125x12x2, and y125y1
2y2 lead to the following separated form of Hamiltonia
~6!:

H5HX,Y1H12, ~22!

where Hamiltonian

HX,Y52
\2

me
S ]2

]X2
1

]2

]Y2D 1
mev

2

4
~X21Y2! ~23!

has the ground state energy\v, and

H1252
\2

2me
S 2

]2

]x12
2

12
]2

]y12
2

1
]2

]z1
2

1
]2

]z2
2D

1
mev

2

4
~x12

2 1y12
2 !1U i~z1!1U i~z2!1

k

r 12
.

~24!

For the single quantum dot we use the Gaussian model29 of
the longitudinal confinement potential

U i~z!52V0exp~2z2/Z2!, ~25!

whereV0 is the depth of the potential well andZ corresponds
to the range of the longitudinal confinement. The Gauss
potential was applied to a modelling of the confinement
charge carriers in both the single29 and double quantum
dots.30,31 For the Gaussian potential the one-electron eig
problem can be solved with a high precision by both
04532
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techniques used in the present paper, i.e., the variati
method with the Gaussian basis and the imaginary t
technique.

Hamiltonian ~24! depends on four coordinates: the po
tions of both the electrons in thez direction and the relative
electron-electron positions in thex-y plane. The correspond
ing ground-state wave function is invariant with respect
the interchangex12↔y12. Accordingly, the trial ground-state
wave function has been taken in the form

x~x12,y12,z1 ,z2!5(
i jkl

ci jkl exp@2aiz1
22ajz2

22bkz12
2

2gl~x12
2 1y12

2 !#, ~26!

whereci jkl are the linear variational parameters andai , aj ,
bk , andgl are the nonlinear variational parameters. Para
etersai and aj describe the localization of the electrons
the Gaussian quantum dot, the term withbk introduces the
electron-electron correlation in the longitudinal directio
andgl takes into account the dependence on the interpar
transverse distance. In the calculations, we apply four dif
ent parametersai , two parametersbk , and threegl param-
eters. This generates basis~26! with 96 elements, which al-
lows us to obtain the estimates of the ground-state ene
with the precision of 0.02 meV. The results obtained w
method~I! with this accuracy can be treated as ‘‘exact.’’ Th
same precision of numerical calculations is maintained in
the implementations of methods~I! and~II ! presented in the
present paper.

When applying approach~II ! with the effective interaction
potential, we adopt the approximate separability~7! and as-
sume that both the electrons are in the ground state of
transverse motion. We define the Hamiltonian for the lon
tudinal motion as operatorH i , which fulfills the equation

H iF~z1 ,z2!5EEEE
2`

`

dx1dy1dx2dy2

3c'~x1 ,y1!c'~x2 ,y2!Hc'~x1 ,y1!

3c'~x2 ,y2!F~z1 ,z2!. ~27!

Equation~27! yields

H i52
\2

2me
S ]2

]z1
2

1
]2

]z2
2D 1U i~z1!1U i~z2!1Veff~z12z2!

12\v. ~28!

The eigenvalue problem for Hamiltonian~28! depends on
only two coordinates. Therefore, it can be treated with a
efficient finite-difference method on a two-dimension
mesh. In the present paper, we have applied the imagin
time technique,28 according to which the ground-state wav
function is calculated using the schemeFs115(1
2aH i)F

s, wheres is the number of iteration. This iteratio
procedure converges to the exact ground-state wave func
if the value ofa is not too large. We have used the mesh
4003400 grid points, for which the numerical approac
8-4
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works with the precision comparable to that of the var
tional calculations with Gaussian basis~26!.

Figure 2 displays the differenceDE5EII2EI between the
ground-state energies calculated by methods~II ! and ~I! de-
scribed above. The calculations have been performed
V05200 meV in the Gaussian confinement~25! and for the
lateral confinement energy\v510 and 50 meV. Figure 2
shows that—in the weak confinement regime, i.e., for la
values of rangeZ of the longitudinal confinement potential
energy differenceDE becomes equal to zero, which mea
that the Schro¨dinger equation is solved exactly in the 1
model with effective interaction potential~19! in Hamil-
tonian ~28!. In the strong confinement regime, i.e., for th
small values ofZ, the results obtained with Hamiltonian~28!
overestimate the exact ground-state energy. This overest
tion possesses a variational character. The resulting ina
racy is related with the assumption of separability~7! and the
application of the fixed form@Eq. ~5!# of the wave functions,
which take into account neither the electron-electron co
lation nor the increase of the extension of the electron cha
density in the transverse direction induced by the intere
tron repulsion. For the stronger lateral confinement, i.e.,
\v550 meV, DE is smaller and disappears forZ
5100 nm, while for the weak confinement (\v510 meV)
DE becomes negligibly small forZ5300 nm. We note
that—in either case—the inaccuracy of the energy estim
is small in comparison with the ground-state energy of
two-electron system considered, which, e.g., for\v
510 meV is equal to2248.54 meV for Z55 nm and
2376.22 meV forZ5800 nm. Therefore, the relative acc

FIG. 2. DifferenceDE5EII2EI of the ground-state energie
obtained with the effective 1D model (EII) and by the full 3D
approach (EI) for the electron pair confined in the single quantu
dot with the lateral confinement energy\v510 meV ~dashed
curve! and 50 meV~solid curve! as a function of rangeZ of the
longitudinal confinement potential. Inset, expectation values of
interelectron distancê z12

2 &1/2 and electron-dot center distanc
^z1

2&1/2 as functions ofZ for \v510 meV.
04532
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racy of the energy estimates obtained with effective poten
~19! is high. Moreover, the absolute errorDE is negligibly
small as compared to the range within which the grou
state energy changes withZ.

We note that parameterZ in the Gaussian potential~25!
should not be identified with the size of the quantum d
which in fact is much smaller. The actual size of the quant
dot is illustrated in the inset of Fig. 2, which shows th
average values of the electron-electron distance^(z1
2z2)2&1/2 and the distance of the single electron from t
center of of the quantum dot^z1

2&1/2 as functions ofZ calcu-
lated for \v510 meV. These average distances prov
measures for the actual size of the quantum dot. FoZ
5300 nm, for which the calculations with potential~19! are
almost exact,̂ (z12z2)2&1/2.40 nm and̂ z1

2&1/2.20 nm.
In Fig. 3 we have plotted the contours of the two-electr

probability densityF2(z1 ,z2) calculated by the imaginary
time technique for different values ofZ and\v. All the plots
have been drawn in the same scale~a 50 nm bar is marked in
Fig. 3!. In the weak confinement regime, i.e., forZ
5300 nm, the electrons are localized in separate region
the quantum dot. Then, the electron density distribution
the island-like form, which means that a Wigner molecule
formed.21,32–35For the larger confining frequency the Wign
molecule is created at smallerZ ~cf. the plot for \v
550 meV andZ5100 nm). This effect results from the fac
that effective potential~19! possesses a sharper cusp az
50 for larger value ofv ~cf. Fig. 1!, i.e., the electron-
electron repulsion, which is responsible for the formation
the Wigner molecule, is more effective. We note that t
electron density for\v510 meV andZ5300 nm is very
similar to that for\v550 meV andZ5100 nm. These two
plots show the same shape of the two-electron probab
density, i.e., one of them can be obtained from the other b
scaling. In these two cases the results obtained with the
fective 1D interaction potential become indistinguishab
from the 3D results for the ground-state energy~cf. Fig. 2!.
Both these plots correspond to the pronounced Wigner lo
ization of the electrons. This means that the effective in
action potential, obtained in the present work, works with
high precision for the quasi-1D electron systems form
Wigner molecules.

e

FIG. 3. Contours of the two-electron probability density for t
single quantum dot as functions of the longitudinal electron coo
natesz1 and z2 for several values of rangeZ of the longitudinal
confinement potential and lateral confinement energy\v. The bar
corresponds to the length of 50 nm. The darker shade of gray
responds to the larger probability density.
8-5
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B. Electron pair in coupled quantum dots

We have applied the effective interaction potential~19! to
the problem of the electron pair confined in the coup
quantum dots.30,31,36–38This system is described by Hami
tonian ~6! with the longitudinal confinement potential a
sumed to be the double Gaussian quantum well30

U i~z!52V0$exp@2~z2d/2!2/Z2#1exp@2~z1d/2!2/Z2#%,
~29!

whered is the distance between the centers of the quan
wells.

The variational solution to the two-electron eigenproble
has been found with the use of the trial wave function
panded in the multicenter Gaussian basis

x~x12,y12,z1 ,z2!5(
i jkl

ci jklmnexp@2ai~z12Cm!2

2aj~z22Cn!22bkz12
2 2gl~x12

2 1y12
2 !#,

~30!

which is a generalization of wave function~26!. In Eq. ~30!,
parametersCm and Cn stand for thez coordinates of the
centers of the Gaussian functions. We have used the foll
ing four centers:C152d/22Z/2, C252d/2, C35d/2, and
C45d/21Z/2. This choice of centers takes into account t
coupling between the dots as well as the tendency of e
trons to avoid one another. The introduction of the two c
ters per dot enables us to reduce the number of nonlin
variational parametersai from four in Eq.~26! to two in Eq.
~30! without a significant loss of the precision. The numbe
of other nonlinear parameters (bk andgl) are the same as in
wave function~26!, which generates the basis composed
384 elements.

The results forZ510 nm are depicted as functions
interdot distanced in Fig. 4, which shows the differenc
DE5EII2EI between the ground-state energyEII calculated
for Hamiltonian ~28! with effective potential~19! by the
imaginary time technique andEI calculated for Hamiltonian
~24! with wave function~30!. We see that both the energ
estimatesEII calculated by method~II ! become nearly exac
for d520425 nm. Energy differenceDE reaches zero
more quickly for the stronger lateral confinement, i.e.,
larger\v.

The inset of Fig. 4 displays the dependence of the grou
state energy on the distance between the dot centers fo\v
510 meV and fordP@20,400# nm. The ground-state energ
first grows rapidly with the interdot distance, reaches a ma
mum for d530 nm, and next decreases slowly. The ra
increase of the ground-state energy for small values ofd is
related with the decreasing overlap of the two Gaussian
tential wells~29!. The tunnel coupling between the dots va
ishes ford530 nm. Ford.30 nm the electrons are loca
ized in the different quantum dots and the electron-elect
interaction energy contribution starts to decrease with
increasing interdot distance, which leads to the decrea
ground-state energy. We have found the asymptotic 1/d be-
havior of the ground-state energy~cf. inset of Fig. 4!, which
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results from the Coulomb interdot repulsion, when both
electrons are localized in the different dots. Comparing
values of the total ground-state energy~inset of Fig. 4! with
DE ~Fig. 4! we see that the relative errors of method~II !,
which uses effective potential~19!, are negligibly small. The
ground-state energy is equal to2677.93, 2483.12, and
2328.46 meV ford50, 12, and 20 nm, respectively. Als
the range of changes of the ground-state energy with vary
d is by two orders of magnitude larger thanDE.

In Fig. 5 we have displayed the two-electron probabil
densityF2(z1 ,z2) calculated for the coupled quantum do
by the imaginary time technique. Ford510 nm confinement

FIG. 4. Energy differenceDE for the electron pair confined in
the double quantum dot as a function of interdot distanced for the
lateral confinement energy\v510 meV ~dashed curve! and 50
meV ~solid curve!. Inset, ground-state energyE, calculated by the
full 3D approach, for the electron pair confined in the double qu
tum dot fordP@20,400# nm and for\v510 meV.

FIG. 5. Contours of the two-electron probability density for t
coupled quantum dots as functions of the longitudinal electron
ordinatesz1 and z2 for several values of interdot distanced and
lateral confinement energy\v. The bar corresponds to the length
60 nm. The darker shade of gray corresponds to the larger prob
ity density.
8-6
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EFFECTIVE INTERACTION FOR CHARGE CARRIERS . . . PHYSICAL REVIEW B 68, 045328 ~2003!
potential (29) possesses a single minimum and the elect
are not separated spatially. The separation of the elect
becomes visible ford520 nm, for which the confinemen
potential possesses two separated minima. The separa
calization of the electrons is more pronounced for the str
ger lateral confinement, i.e., for\v550 meV, than for the
weaker lateral confinement, i.e., for\v510 meV, which is
related to the fact that the effective interelectron repuls
~19! is stronger for the system, which is more strongly loc
ized laterally~cf. Fig. 1!. Ford530 nm the plots for both the
lateral confinements are identical. In this case, the interac
between the electrons localized in the different dots can
identified with the electrostatic interaction between the t
point charges.

C. Exciton in a quantum wire

We have also studied the applicability of the effecti
potential to the problem of a bound electron-hole pair in
quantum wire. In this problem the particles are free to mo
in the z direction. We assume the same confinement of
charge carriers in the transverse directions as in the pre
ing sections, i.e., parabolic lateral confinement. The sys
is described by the Hamiltonian

H52
\2

2me
¹e

22
\2

2mh
¹h

21
meve

2

2
~xe

21ye
2!1

mhvh
2

2
~xh

21yh
2!

2
k

r eh
, ~31!

wheremh is the hole effective mass~in the calculations for
the exciton we adoptmh50.5me0 and «512.9) and r eh
5ure2rhu is the electron-hole distance. Since the partic
are not confined in the longitudinal~z! direction, we can
separate in Hamiltonian~31! the center-of-mass and relativ
motions in this direction, which yields

H52
\2

2me
S ]2

]xe
2

1
]2

]ye
2D 2

\2

2mh
S ]2

]xh
2

1
]2

]yh
2D 2

\2

2M

]2

]Z2

2
\2

2m

]2

]zeh
2

1
meve

2

2
~xe

21ye
2!1

mhvh
2

2
~xh

21yh
2!2

k

r eh
,

~32!

where m5memh /(me1mh), M5me1mh , Z5(meze
1mhzh)/M , andzeh5ze2zh . In the following, we assume
that the lateral confinement for the electron and the hol
the same, i.e.,ve5vh5v. This assumption enables us
separate the center-of-mass and relative transverse mot
We introduce the transverse coordinates for the exc
center-of-mass~c.m.! position (X andY) and for the relative
electron-hole position (xeh and yeh). In these coordinates
Hamiltonian~32! takes the form

H5Hc.m.1Heh , ~33!

where Hc.m. is the center-of-mass Hamiltonian with th
ground-state energy\v and Heh is the relative transverse
motion Hamiltonian of the form
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Heh52
\2

2m
¹eh

2 1
mv2

2
~xeh

2 1yeh
2 !2

k

r eh
. ~34!

We have calculated the ground state energy of Hamilton
~34! using the variational wave function

x~xeh ,yeh ,zeh!5(
i j

ci j exp@2aizeh
2 2bj~xeh

2 1yeh
2 !#.

~35!

We have applied 10 nonlinear variational parametersai and
10 parametersbj , i.e., the basis set in Eq.~35! is composed
of 100 elements, which leads to the sufficiently high pre
sion of the ground-state energy estimates.

Let us introduce the effective electron-hole interaction
the problem considered. If the lateral confinement is stro
the ground-state wave function can be approximated b
product

C~xe ,ye ,xh ,yh ,zeh!5c'
e ~xe ,ye!c'

h ~xh ,yh!x i~zeh!,
~36!

where

c'
e(h)~xe(h) ,ye(h)!5~p1/2l e~h!

* !21expF2
xe(h)

2 1ye(h)
2

2l e(h)* 2 G .

~37!

Quantitiesl e* and l h* are now treated as variational param
eters. Similarly as in Sec. III A, we calculate the expectat
value of Hamiltonian~32! by integrating over the electron
and hole transverse coordinates, which yields the follow
one-dimensional Hamiltonian:

H i52
\2

2m

d2

dzeh
2

2Veff* ~zeh!1
\2

2mel e*
2

1
\2

2mhl h*
2

1
v2

2
~mel e*

21mhl h*
2!, ~38!

where2Veff* is the potential energy of the effective electro
hole interaction, which has been obtained in a similar way
the effective potential energy for the two electrons~cf. Sec.
II ! and has the form given by Eq.~19! with l replaced by
A( l e*

21 l h*
2)/2. We evaluate the ground-state of the excit

described by Hamiltonian~38! by a finite-difference method
with a one-dimensional mesh.

In order to check the quality of the 1D approximatio
~38!, we have calculated the ground-state energy of the
citon described by the 3D Hamiltonian~34! using trial wave
function ~35! and compared the results. The differenceDE
between the ground-state energy calculated by the 1D
3D methods is displayed in Fig. 6 as a function of late
confinement energy\v.

In Fig. 6, the dashed curve has been obtained with
values of parametersl e* and l h* fixed at those for the nonin
teracting particles, i.e.,l e* 5 l e and l h* 5 l h , where l e(h)

5@\/me(h)v#1/2, and the solid curve has been obtained fro
the minimization performed overl e* and l h* , which signifi-
cantly improved the results. We also see that the ene
8-7
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S. BEDNAREKet al. PHYSICAL REVIEW B 68, 045328 ~2003!
difference slowly decreases with the lateral confinement
ergy. The increasing lateral confinement energy lowers
minimal value of the effective attraction potential energ
2Veff* ~cf. Fig. 1!. As a consequence, the exciton wave fun
tion becomes more and more localized and finally resem
the Dirac delta at large\v. The inset in Fig. 6 shows th
binding energyEB of the exciton, which is calculated a
follows: EB52\v2E, whereE is the exciton ground-stat
energy. We see that the exciton binding energy increases
increasing\v, i.e., increasing confinement. The inset of F
6 displays the binding energy calculated with wave funct
~35! and in the framework of the 1D model with and witho
the optimization of parametersl e* and l h* . The binding ener-
gies calculated by all the three methods become identica
the strong lateral confinement. Figure 6 also shows thatDE,
which is a measure of the accuracy of the results obtai
with the effective interaction potential, becomes negligib
small for large\v. The relative errors of the 1D approac
with effective potentialVeff* , determined with respect to th
binding energy obtained with the optimized parametersl e*
and l h* , have been estimated to be 22%, 7%, and 2%
\v51, 10, and 100 meV, respectively.

IV. CONCLUSIONS AND SUMMARY

We have derived the effective potential of the interact
between the charged particles confined in the quasi-1D s
conductor nanostructure. We have considered the elec
pair confined in the single and double quantum dot and

FIG. 6. Energy differenceDE calculated for the exciton con
fined in the quantum wire as a function of lateral confinement
ergy \v. The solid~dashed! curve shows the results obtained wi
~without! the optimization over parametersl e* and l h* in trial wave
function ~37!. Inset, binding energyEB of the exciton calculated
with wave function~35! ~dotted curve! and in the framework of the
1D model with~solid curve! and without~dashed curve! the opti-
mization of wave function~37! as a function of lateral confinemen
energy\v.
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exciton confined in the quantum wire. In order to solve t
corresponding eigenvalue problems we have applied both
full 3D approach and the 1D model with the present effect
interaction potential. The comparison of the results obtain
by the 3D and 1D approaches enabled us to discuss the
curacy of the effective 1D model. We have shown that for
electron systems considered the present 1D model w
with a reasonable precision in the entire range of the na
structure parameters. For the single quantum dot the res
of both the 3D and 1D methods become identical in
strong lateral confinement regime. For the coupled quan
dots the 1D model leads to the same results as the 3D
proach at large interdot distances, i.e., if the electrons
localized in the different dots. We have also shown that
effective 1D model is suitable for a description of the excit
confined in the quantum wire.

The effective interaction potential derived in the prese
paper has been compared with the model interaction po
tials introduced by other authors. Contrary to model pot
tials, the present effective potential contains no fitting para
eters. At large interparticle distances both the effective a
the model potentials exhibit the same coulombic asymp
ics. Therefore, for the electron systems of low density
effective and model potentials should yield similar resu
The differences between the effective and model potent
appear for finite interelectron distances, especially, for
very small electron-electron distance. Therefore, for the e
tron systems of large density, i.e., for the strong confinem
the solutions obtained with the effective and model potent
can be different. We have pointed out that the error of
energy estimates obtained with the present effective pote
has a variational character and—in most cases—is neglig
small. On the contrary, the results obtained with the mo
potentials are non-variational, which may lead to the unc
trollable errors. These errors occur when the wave funct
takes on appreciable values at small interparticle distan
This problem is particularly important for the exciton co
fined in a quantum wire, since the electron and hole grou
state wave functions strongly overlap. In this case, the ap
cation of the model potential can yield quite arbitrary valu
of the binding energy. However, the application of t
present effective potential leads to the reasonable value
the binding energy. If the lateral confinement potential
sufficiently strong, the ground-state energy obtained with
effective potential can be very close to the exact value, wh
the results obtained with the model potentials may differ s
nificantly from the exact solutions.

In summary, we have presented the efficient method
the solution to the Schro¨dinger equation for the charge ca
riers confined in quasi-1D nanostructures. This method
based on the introduction of the effective 1D interaction p
tential for the charge carriers. We have derived the analyt
real-space formula for the effective interaction potenti
which can be readily applied to a number of problems
volving quantum wires, single, and multiple quantum do
with the strong lateral confinement.
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APPENDIX

The Fourier transform of probability densityrp'(x,y)
5C(x21y2)exp@2(x21y2)/l2# of the electron in thep-type
lateral subband reads

rp'~kx ,ky!5expF2
~kx

21ky
2!l 2

4 GF12
l 2~kx

21ky
2!

4 G
5rs'~kx ,ky!F12

l 2~kx
21ky

2!

4 G . ~A1!

We insert this Fourier transform under the integral in t
effective interaction potential@Eq. ~18!#

Veff
sp~z!5

k

2pE d2k rp'~kx ,ky!rs'~kx ,ky!
exp~2kuzu!

k
,

~A2!

and obtain

*Email address: bszafran@agh.edu.pl
1Nanotechnology, edited by G. Timp~Springer-Verlag, New York,

1999!.
2B.J. Ohlsson, M.T. Bjo¨rk, A.I. Persson, C. Thelander, L.R. Wa

lenberg, M.H. Magnusson, K. Deppert, and L. Samuels
Physica E~Amsterdam! 13, 1126~2002!.

3M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Theland
M.H. Magnusson, K. Deppert, L.R. Wallenberg, and L. Samu
son, Appl. Phys. Lett.80, 1058~2002!.

4A. Bachtold, C. Strunk, J-P. Salvetat, J-M. Bonard, L. Forro,
Nussbaumer, and C. Schonenberger, Nature~London! 397, 673
~1999!.

5V. Derycke, R. Martel, J. Appenzellet, and P. Avouris, Nano Le
1, 453 ~2001!.

6S. Tarucha, T. Honda, and T. Saku, Solid State Commun.94, 413
~1995!.

7A. Yacoby, H.L. Stormer, N.S. Wingreen, L.N. Pfeiffer, K.W
Baldwin, and K.W. West, Phys. Rev. Lett.77, 4612~1996!.

8M.H. Szymanska, P.B. Littlewood, and R.J. Needs, Phys. Re
63, 205317~2001!.

9F. Tassone and C. Piermarocchi, Phys. Rev. Lett.82, 843 ~1999!.
10H. Haug and S.W. Koch,Quantum Theory of the Optical an

Electronic Properties of Semiconductors~World Scientific, Sin-
gapore, 1994!.

11C. Fuchs and R.v. Baltz, Phys. Rev. B63, 085318~2001!.
12L. Calmels and A. Gold, Physica E~Amsterdam! 2, 242 ~1998!.
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