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Anomalous Hall effect in paramagnetic two-dimensional systems

Dimitrie Culcer, Allan MacDonald, and Qian Niu
University of Texas, Austin Texas 78712, USA

~Received 24 December 2002; published 30 July 2003!

We investigate the possibility of observing the anomalous Hall effect in paramagnetic two-dimensional
systems. We apply the semiclassical equations of motion to carriers in the conduction and valence bands of
wurtzite and zinc-blende quantum wells in the exchange field generated by magnetic impurities and we
calculate the anomalous Hall conductivity based on the Berry phase corrections to the carrier velocity. We
show that under certain circumstances, this conductivity approaches one-half of the conductance quantum. We
consider the effect of an external magnetic field and show that for a small enough field the theory is unaltered.
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I. INTRODUCTION

When a nonferromagnetic metallic sample is exposed
perpendicular external magnetic field, the Lorentz force a
ing on the current carriers gives rise to a transverse volt
in the plane of the sample. The transverse component o
resistivity rxy depends on the magnetic field through

rxy5R0B, ~1!

whereR051/ne is known as the Hall coefficient. This phe
nomenon is known as the ordinary Hall effect.

In many ferromagnets, however, the transverse resisti
acquires an additional term which is often seen to be prop
tional to the magnetization of the sample, and becomes c
stant once the sample has reached its saturation magne
tion Ms . Empirically, one writes

rxy5R0B1RsM . ~2!

The effect is referred to as the anomalous Hall effect wh
the constantRs is called the anomalous Hall coefficient.
can be seen from the second term above that ferromag
display a spontaneous Hall conductivity in the absence o
external field. The effect was subsequently noted in a la
number of bulk alloys, as well as, in recent experiments
materials which exhibit colossal magnetoresistance1,2 and
ferromagnetic semiconductors. Recent studies of ferrom
netic semiconductors such as~Ga,Mn!N films have, in fact,
reported ferromagnetic behavior at room temperature.3,4

Although it has been known for close to half a centu
the anomalous Hall effect~AHE! has had a controversia
history and it remains a somewhat poorly understood p
nomenon. Karplus and Luttinger5 pioneered the theory of th
AHE, finding that the spin splitting of bands can give rise
a Hall conductivity in the presence of spin-orbit couplin
Smit6 countered that in a perfectly periodic lattice, the AH
could not occur without scattering from impurities, and i
troduced the skew scattering mechanism to explain it. T
mechanism, in which an electron is scattered at an angl
its original direction, gives a contribution proportional tor,
the diagonal resistivity. In a more complete treatme
Luttinger7 found a term corresponding to skew scattering
maintained that the scattering-free contribution to the A
still remains. There has been much debate on the possib
0163-1829/2003/68~4!/045327~9!/$20.00 68 0453
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of this scattering-free contribution, in principle, and on
relative importance, if it exists, in real materials.

Later, a new mechanism, called side jump was introdu
by Berger8 to explain the observedr2 dependence, althoug
the scattering-free contribution gives the same depende
In side jump, the electron incident into the area of influen
of the potential emerges parallel to its original direction b
displaced perpendicular to it. This latter term is supposed
dominate in alloys, wherer is high. It is, nevertheless, no
clear how to relate the side jump mechanism to the syst
atic theory proposed by Luttinger.

In recent years, the scattering-free contribution of L
tinger and Karplus was rederived in a semiclassical anal
of wave-packet motion in Bloch bands by Chang and N9

and Sundaram and Niu10 and was attributed to a Berry phas
effect ink space.11 A more rigorous derivation12 based on the
Kubo formula gives the same result. This contribution w
also evaluated for the mean-field bands of semicondu
ferromagnets, yielding good agreement with experime
without any parameter fitting. This theory13 of the AHE is
based on the Stoner description of ferromagnetism, con
ering the charge carriers to be quasiparticles in sponta
ously split Bloch bands. It is to be distinguished from t
mechanism of Yeet al.14 based on the Berry phase in re
space. The motivation behind the current effort is to prov
a conceptual framework for the theoretical study of the AH
in magnetic quantum wells and heterostructures, which h
been realized in recent years. These structures constitut
simplest systems in which the Berry phase can be evalu
analytically from the Hamiltonian including the Rashba sp
orbit coupling and provide a suitable ground for testing
theory based on fundamental physics. We shall concent
our attention on the conduction band and the topmost
lence band of an inversion asymmetric semiconductor h
erostructure in an exchange field supplied through dop
with Mn and calculate the anomalous Hall conductivities
the two bands. Although ferromagnetic behavior has
been observed in II-VI heterostructures, we shall concent
on II-VI semiconductors, as they can be doped with M
more heavily than III-V.

The paper is organized as follows. In Sec. II, within t
framework of the effective-mass approximation applied to
doubly degenerate band, we calculate the Berry phase o
wave function which yields the off-diagonal conductivi
©2003 The American Physical Society27-1
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sxy . We consider an ideal situation withT50, where we
follow the method used by Chang and Niu9 and Sundaram
and Niu10 for the semiclassical treatment of carrier motion
two dimensions. Under certain circumstances, one can m
the approximation that the anomalous Hall conductivity
quantized, taking the values

usxyu5
e2

2h
. ~3!

In Secs. III and IV, we apply the theory to wurtzite an
zinc-blende structures, respectively. We consider finite te
perature corrections and discuss the conditions under w
Eq. ~3! holds. Moreover, we investigate the variation of t
conductivity with temperature, exchange coupling, and sp
orbit constant. In Sec. VII, we examine the effect of placi
the system in an external magnetic field and determine
optimal parameters needed for the observation of the AHE
heterostructures in the laboratory.

II. SYMMETRY CONSIDERATIONS

In a perfect crystal, according to Bloch’s theorem, t
wave function for a band with indexn is decomposed into
two parts:

uCn~k,r !&5eik•ruun~k,r !&, ~4!

where uun(k,r )& is a function with the periodicity of the
lattice. The semiclassical motion of a charge carrier throu
the crystal is described by constructing a wave packet ou
Bloch wave functions. The dynamics of such a wave pac
are given by the following equations of motion:10

ṙ5
1

\

]«n

]k
2 k̇3Vn , ~5!

k̇52
e

\
~E1 ṙ3B!, ~6!

which determine the position vector and wave vector of
center of the wave packet in the presence of external e
tromagnetic fields, withV the Berry curvature. The Berry
curvature of a band is defined by the following expressio

Vn52ImK ]un

]k U3U]un

]k L . ~7!

The term containing the Berry curvature is usually neglect
due to the fact that it frequently vanishes by symmetry, a
crystals which are invariant with respect to both time rev
sal and spatial inversion~e.g., nonmagnetic Bravai
crystals10!.

In the AHE, the additional contribution to the current
perpendicular to the direction of the electric field and ind
pendent of the magnetic field. We now show it to be rela
to the Berry curvatureVn , which appears in the equations
motion as an additional term in the velocity. This is the sa
as the velocity correction derived previously by Lutting
From the two equations, it is apparent that this correct
term is perpendicular tok̇ and therefore perpendicular to th
04532
ke

-
ch

-

e
in

h
of
et

e
c-

:

d,
in
-

-
d

e
.
n

direction of the Lorentz force. In the absence of an exter
magnetic fieldB, this term is seen to be perpendicular to t
electric fieldE, giving a transverse component of the velo
ity. This velocity adds a transverse term in the current p
ducing a contribution to the off-diagonal conductivity. Ther
fore, as long asVn is nonzero, it is possible to have a
off-diagonal conductivity term which is independent ofB.

The Berry curvature is related to the Berry phase15 ~de-
noted bygn), which is the phase acquired by the wave fun
tion upon being transported around a loop ink space. Ac-
cording to Stokes’ theorem,

E
A
dS•Vn5E

]A
dk• K unU ]

]k UunL 5gn . ~8!

In the above, the loop around which the wave function
transported is denoted by]A and the area enclosed by th
loop by A. The Berry curvature can, therefore, be regarded
the Berry phase per unit area ofk space.

In the following, we give an analysis of the main symm
try aspects of the problem. From the requirement that
semiclassical equations be invariant under time reversal,
apparent thatVn must be odd under this transformatio
namely,Vn(2k)52Vn(k). A geometric argument can als
be made by noting that the Berry phase is a path-depen
quantity. Under time reversal, both the path along which
wave function is transported and the orientation of the wa
vector k are reversed. A clockwise path spanning a set
wave vectors$k% becomes a counterclockwise path spann
the set of wave vectors$2k%. This implies that the Berry
phase changes sign uner time reversal and the Berry cu
ture satisfies the above constraint.

One can also obtain this result by carrying out the expl
transformation of Eq.~7! under time reversal. Ifuun& is
written in terms of the real and imaginary parts of
components,

uun&5S Reuvn&1 i Imuvn&

Reuwn&1 i Imuwn&
D , ~9!

then application of the time-reversal operator will result i

T uun&5S 2 iReuwn&2Imuwn&

iReuvn&1Imuvn&
D , ~10!

producing a change of sign in the Berry curvature.
If time-reversal symmetry is present, Kramers degener

must also be present, imposing«n(k)5«n(2k). Therefore,
if the state at wave vectork is occupied, then so is the sta
at wave vector2k. This, together with the conditionVn
(2k)52Vn(k), implies that the integral ofVn over all
filled states vanishes. Therefore, in general it is always n
essary for the system to lack time-reversal symmetry in or
for the AHE to occur.

To obtain a nonzero anomalous Hall conductivity, t
spin-orbit interaction must also be present in order to cou
the spin-up and spin-down bands. This coupling transfers
time-reversal violation from the spin degree of freedom
the orbital motion, which is responsible for the Berry curv
ture. An example is provided by ferromagnetic16 ~Ga,Mn!As
7-2
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ANOMALOUS HALL EFFECT IN PARAMAGNETIC TWO- . . . PHYSICAL REVIEW B 68, 045327 ~2003!
crystals, in which, without spin orbit, the valence-band wa

functions atk50 are eigenstates ofL̂ , the orbital angular
momentum operator, with eigenvaluel 51 and thus sixfold
degenerate. When spin orbit is included, thek50 band wave
functions are eigenstates of the total angular momentum

erator Ĵ, splitting into a fourfold degeneratej 53/2 level
~containing the heavy holes and the light holes! and a two-
fold degeneratej 51/2 level ~the split-off band!. Away from

k50, there is a correction proportional to (Ĵ•k)2, which
partially lifts the degeneracy of the bands. This term provid
a k-dependent quantization direction for the angular mom
tum, so that as the wave vector is displaced the angular
mentum is rotated and it is possible to obtain a nonz
Berry curvature.

In two dimensions, the quantum confinement lifts the d
generacy of the heavy-hole and light-hole bands, so tha
k50 it is possible to separate the Hamiltonian into indep
dent 232 blocks. For finitek, each block remains degenera
in the presence of both time-reversal and spatial invers
symmetries, based on Kramers’ theorem. With time-reve
symmetry,uk,↑& is equivalent tou2k,↓&, while with space
inversion symmetry,uk,↑& is equivalent tou2k,↑&. There-
fore, with both symmetries,uk,↑& is equivalent touk,↓&. In
the absence of space inversion symmetry, it is possible
break the degeneracy at each finitek. The space inversion
asymmetry gives rise to the Rashba spin-orbit interaction17

Vso5amatf ~k!~s3k!• ẑ, ~11!

whereamat is a constant,s is the vector of Pauli spin ma
trices,k is the two-dimensional wave vector in thexy plane
and f (k) depends only on the magnitude of the wave vec
The asymmetry can originate from either the crystal struct
~bulk inversion asymmetry! or the confinement potentia
~structure inversion asymmetry!. The Rashba interaction ha
been found to be the main mechanism responsible for
zero-field spin splitting in 2DEG’s.18–21

It is apparent from the above that the spin-orbit coupl
provides ak-dependent quantization direction for the charg
carriers’ spins. The spins prefer to lie in thexy plane and be
perpendicular to the wave vector. As a result, when the w
vector sweeps a circle around the origin, the spins are rot
by a solid angle of 2p, and acquire a Berry phase ofp.
Since this phase is independent of the area enclosed, it
lows that the Berry curvature is singular at the origin and
null everywhere else. When an exchange field is applied,
spins are tilted out of thexy plane. The amount of tilting
depends on the competition between the Rashba term an
exchange field. From thek-dependence of the Rashba term
can be seen that the solid angle swept by the spins is di
ent from 2p and depends on the size ofk, tending to zero as
the radius of the circle tends to zero. This implies that
Berry curvature is now spread out and is finite at the orig
As will be shown in more detail in the following section
such a Berry curvature will lead to a finite contributio
to the AHE.
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III. GENERAL TREATMENT OF BERRY CURVATURE
AND HALL CONDUCTIVITY

The two-dimensional~2D! anomalous Hall conductivity is
calculated atT50 and shown to be quantized. We conside
232 Hamiltonian describing the spin-split conductio
valence band of a semimagnetic semiconductor in the p
ence of an exchange field and spin orbit coupling. Effects
band mixing are neglected, which is a suitable approximat
for the band structures of the materials we shall conside
the top two valence bands and the conduction band in wu
ite structures and the conduction band of zinc-blen
materials.

The exchange field due to the magnetic impurities is ta
to be uniform and directed along thez axis, normal to the
heterostructure. Based on a mean-field model, we cons
the interaction to be described by a vectorh0, which for
simplicity has units of energy. The magnitude of the intera
tion is tuned by controlling the concentration of Mn b
its effect will be masked by thermal fluctuations on
h0<kBT.

In a narrow quantum well in which the subbands a
widely separated, thek•p Hamiltonian, withm* the band
electron effective mass,g5\2/2m* , andk65kx6 iky , is

H5gk2I 2321S h0 iamatf ~k!k2

2 iamatf ~k!k1 2h0
D . ~12!

It is readily seen to have the eigenvalues

E65gk26Ah0
21amat

2 k2f ~k!2, ~13!

yielding two subbands, separated by 2h0.
AssumingT50 for the time being, we take the bottom

subband to be occupied and the top one to be empty, w
the Fermi level corresponds tokF5(4pn)1/2.

The form of the Berry curvature for a generalf (k) is

Vz
↑/↓57

1

2

amat
2 h0f ~k!

d

dk
@k f~k!#

@h0
21amat

2 k2f ~k!2#3/2
. ~14!

The geometrical phase factor is the integral of the cur
ture over all wave vectors.12 As the upper band is empty, th
integral over it is zero and one only needs to consider
curvature of the lower band,V↓:

G↓5E E
k,kF

V↓
zd

2k5pF12
h0

@h0
21amat

2 kF
2 f ~kF!2#1/2G .

~15!

To maximize the conductivity, the interval betweenk50 and
k5kF should cover the region over which the Berry curv
ture is significant, so thatkF must be equal to several time
kc , the wave vector at which the curvature falls to half
maximum value. AskF is fixed by the number density, th
way to accomplish this is to haveh0@amat kF . When this
relation holds, the phaseG↓ is very nearlyp.

At zero temperature, the conductivitys for a full band is
equal to the integral over the Brillouin zone of the comp
7-3
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nent of the Berry curvature parallel toz and is thus propor-
tional to the Berry phase. The upper limit of the integral c
be taken to infinity:

sxy
↓ 52

e2

h E E
kF→`

Vz
↓ d2k

2p
, ~16!

which results in

sxy52
e2

2hE0

`

dk

amat
2 h0k f~k!

d

dk
@k f~k!#

@h0
21amat

2 k2f ~k!2#3/2
52

e2

2h
.

~17!

From the above we see that the conductivity is appro
mately quantized, regardless of the form off (k). It is worth
noting thats neither depends on the size of the spin-or
splitting constantamat nor on the magnitude of the extern
magnetic field and that exact quantization occurs when
Berry phase isp, i.e., the spin lies in thexy plane.

IV. WURTZITE STRUCTURES AT FINITE
TEMPERATURES

The conduction band and the bottom valence band
wurtzite transform according to theG7 representation of the
rotation group atk50, while the top valence band tran
forms according toG9. The latter, however, is known empir
cally not to exhibit a linear spin splitting.

The coefficientamat introduced above is replaced byaw .
Then the interaction for theG7 band is given by

Vso5aw~s3k!• ẑ. ~18!

The energy bands, corresponding to the dispersion relat

E65gk26Ah0
21aw

2 k2, ~19!

are plotted in Fig. 1 as a function ofk. The Berry curvature is
pointing along thez axis:

Vz
↑/↓57

1

2

aw
2 h0

~aw
2 k21h0

2!3/2
. ~20!

The absolute value of the Berry curvatureVz is plotted in
Fig. 2. It falls to half its maximum value when the wav

FIG. 1. Band dispersion relation for 2D holes in theG7 valence
band of wurtzite structures. The parameters aren52.9
31012 cm22, aw523 meV nm,h051.38 meV, andm* 50.9m0.
04532
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vector is equal to

kc56
0.77h0

aw
, ~21!

and its effect becomes negligible once the magnitude ok
exceeds several times that ofkc .

At finite temperatures, one must take into account the f
that the Fermi-Dirac distribution deviates from the step fun
tion atT50, which is done by incorporating the distributio
function into the expression forsxy . It is also important to
maintain a carrier number density in the range in which
AHE is not overshadowed by disorder effects. High densit
cause interface effects to become important whereas
densities will cause pockets of electrons to be isolated
localized states. In addition to the above, one must cons
the contribution from both the lower and the upper band,
there exists a finite fraction of carriers excited into theE1

band. The two conductivities are

s↑/↓56
e2

2hE0

`

dk
kaw

2 h0

~h0
21aw

2 k2!3/2

1

e[E6(k)2m]/kBT11
~22!

with E(k) given by Eq.~7!. The total conductivitysxy is the
sum of the two:

sxy5sxy
↑ 1sxy

↓ . ~23!

We consider the conduction band and concentrate on C
whereaw has been measured to be 10 meV nm and the
fective massm* is 0.13m0 . m is determined by the numbe
density and exchange field, which are fixed at 131011

cm22 and 0.8 meV. Our numerical calculations show th
under these conditions, the maximum conductivity is

usxyu50.125
e2

h
. ~24!

It is not quantized, but the effect is still observable.
In the case of the valence band, theory gives an estim

for aw of 23 meV nm, while experiment sets an upper lim
of 90 meV nm, and we employ the theoretical value as
worst case scenario. The effective mass is 0.9m0, the number

FIG. 2. Absolute value of the Berry curvatureVz as a function
of wave vector for theG7 valence band of wurtzite structures.
7-4
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ANOMALOUS HALL EFFECT IN PARAMAGNETIC TWO- . . . PHYSICAL REVIEW B 68, 045327 ~2003!
density is set to 2.931012 cm22, h0 is fixed at 1.38 meV,
and the temperature at 0.1 K. Repeating the calcula
yields

usxyu50.45
e2

h
, ~25!

showing that the conductivity approaches the quanti
value.

We now investigate the dependence of the integral in
~16! upon the spin-orbit coupling constant~Fig. 3!, maintain-
ing the other parameters at their values for the valence b
We find that atT50.1 K, it increases with increasingaw ,
saturating to 0.45(e2/h). The shape of the graph can be e
plained by noting that the effect of increasingaw is to bring
down the chemical potential and flatten the lower band
such a way that its Fermi wave vector is unchanged. T
point where the conductivity reaches its maximum cor
sponds to the point where the chemical potential cros
from the top band into the bottom one so that at very l
temperatures only the latter is occupied. Since there are
carriers in the lower band, asaw increases they acquire ap
proximately the same Berry phase until the chemical pot
tial touches the band maximum atk50, beyond which our
theory does not apply. The shape of the curve as far as
plateau follows from the fact that as the chemical potentia
lowered fewer states are available in the upper band.
plateau itself is understood by noting that increasingaw
makes the curvature narrower but after a point almost all
area over whichV is appreciable has been covered, so f
ther increasingaw will not make a considerable difference

The dependence upon the exchange coupling is stu
next ~Fig. 4!. It can be seen thatsxy reaches a maximum
whenh0 is '1.38 meV, after which it drops. At first, whe
there is no magnetic interaction, the spin lies in thexy plane.
As h0 increases, the spin is tilted out of the plane by larg
amounts, increasing the phase acquired by the wave f
tion, until it reaches a maximum. Ash0→` the spin be-
comes parallel toh0 and the phase gradually falls to zer
Increasingh0 makesV wider so that less of the curvature
covered in the rangek50 to kF . The sudden fall in the
conductivity beyond the maximum is, therefore, a combin
effect—the magnitude of the curvature is smaller and les
the curvature is covered in the integral.

FIG. 3. Variation of the conductivity withaw in the case of the
G7 valence band of wurtzite.
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These two plots illustrate the fundamental physics of
system, namely, the interplay between the Rashba and
man effects giving rise to the anomalous Hall conductiv
through the Berry phase acquired by the wave function. T
dynamics can be viewed as a competition between the Z
man term, which by itself would align the spin with thez
axis and the Rashba term, which draws it towards thexy
plane. Without the spin-orbit interaction, the Berry phase
zero yielding zero conductivity whereas without the e
change field the energy gap vanishes and the bands ove
What is more, ash0 tends to infinity the spins align them
selves alongz in such a way that the wave function does n
acquire a Berry phase. At this stage, the wave vector p
cesses on the Fermi surface at an infinite rate, which
equivalent to no precession at all. Finaly, asaw tends to zero,
the spins once more align with thez axis.

Finally, we have observed the temperature dependenc
the integral in Eq.~10!, with aw chosen as before. As Fig.
shows, the conductivity declines over the rangeT510 mK
to T51 K, which is attributed to the fact that raising th
temperature causes more carriers to be excited across
gap, increasing the size of the negative contribution.

These two situations are similar to the limith0→0: the
band gap here does not disappear, but it is bridged by fa
tating the movement of carriers across it.

V. ZINC-BLENDE STRUCTURES AT FINITE
TEMPERATURES

Having investigated the underlying physics of the pro
lem for a wurtzite quantum well~QW!, we turn our attention

FIG. 4. Variation of the conductivity withh0 for theG7 valence
band of wurtzite.

FIG. 5. Variation of the conductivity with temperature for theG7

valence band of wurtzite.
7-5
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DIMITRIE CULCER, ALLAN MacDONALD, AND QIAN NIU PHYSICAL REVIEW B 68, 045327 ~2003!
to a case which promises immediate experimental real
tion. We shall restrict our discussion of zinc-blende mater
to the conduction band of Hg12xMnxTe, in which the linear
term in k is not allowed by symmetry. Instead, the first ter
in the expansion is cubic ink and the spin-orbit term take
the form

Vso5azbk
2~s3k!• ẑ, ~26!

where azb replacesamat . This expression is valid neark
50, but is not accurate ask approacheskF . In order to
improve the accuracy, we have chosen the polynomial c
ficientsb1 andb2 so as to match the dispersion relation w
that shown in Fig. 7 of Ref. 22, namely,

Vso5
azbk

2~s3k!• ẑ

11b1k21b2k4
, ~27!

yielding the energy bands~Fig. 6!:

E65gk26Ah0
21

azb
2 k6

~11b1k21b2k4!2
~28!

and the absolute value of thez component of the Berry cur
vature~Fig. 7!,

Vz
↑/↓57

azb
2 h0k2

2~h0
21azb

2 k6!3/2

~3k21b1k42b2k6!

~11b1k21b2k4!3
. ~29!

FIG. 6. Band dispersion relation for 2D electrons in a zin
blende lattice. The parameters aren52.831011 cm22, azb

510 000 meV nm3, h053.38 meV, andm* 50.034m0.

FIG. 7. Absolute value of the Berry curvature for the conduct
band of zinc-blende structures.
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We consider the optimum achievable conditions for the
servation of the anomalous Hall conductivity. The dopi
density isn52.831011 cm22, the spin-orbit constant from
Ref. 22 is approximatelyazb510 000 meV nm3, and we set
the exchange field to be equal to 3.38 meV andm*
50.034m0. Under these conditions, the conductivity is

usxyu50.34
e2

h
. ~30!

In Figs, 7–9, we have plotted the conductivity as a funct
of the spin-orbit constant, exchange field, and temperat
The graphs will be seen to have very similar features to
corresponding ones for wurtzite. These common featu
have identical explanations in terms of the modification
the shape of the bands and the movement of the chem
potential relative to them, as discussed above.

It will be noticed that the zinc-blende graphs are smoot
and the plateau in the spin-orbit constant graph is miss
The qualitative differences in the behavior of the conduct
ity come about due to the difference in the shape of the b
structure and Berry curvature in the two structures. In wur
ite, V peaks at the origin and is appreciable within a d
centered atk50. In zinc blende, on the other hand, the cu
vature is zero at the origin and is concentrated within a r
on either side of the values ofk at which it peaks. If the
magnitude of the wave vector at whichV has its maximum
is denoted bykV , it emerges that in order to maximize th
anomalous conductivity the parameters must be adju
such thatkF is large enough to contain the ring on the ou
side ofkV but small enough for the number of states ava

- FIG. 8. Variation of the conductivity with the spin-orbit consta
for zinc-blende structures.

FIG. 9. Variation of the conductivity with the exchange field f
zinc-blende structures.
7-6



t t
in
u

th
th
a
it
re
e
n
ic

he
is
on
th
t
f
ea

n
of
by
e
r

n
,

e

ted
g
-
nt
r
e
nt
-

of
ate.
e

in

ial,
-
not
to
the

ter-
ich
ne
the
mi-
to

dis-
the
ag-
m-

t the
a-
ar.

ugh

but
ill

m

ect,

ot
re-

ANOMALOUS HALL EFFECT IN PARAMAGNETIC TWO- . . . PHYSICAL REVIEW B 68, 045327 ~2003!
able in the upper band not to cause the contribution from i
cancel out the curvature from the lower band. In the sp
orbit constant graph, after reaching a maximum, the cond
tivity quickly declines, since increasingazb has the effect of
lowering the chemical potential, so that fewer states in
bottom band are integrated over. Due to the shape of
curvature, lowering the chemical potential causes those w
vectors at which the Berry curvature is significant to be om
ted, resulting in a sharp decrease in the conductivity. Mo
over, the fact that in zinc blende the lower band do
not have a maximum atk50 means that our theory ca
be applied regardless of where in the band the chem
potential lies.

VI. OTHER MATERIALS

In general, the expression foramat is amat̂ E&. Here^E&
is the expectation value of the total electric field felt by t
carriers andamat a material specific parameter which
straightforwardly calculated using third-order perturbati
theory. It is customary to assume that the gradient of
confining potential has only az component, with the resul
that amat is given byamat̂ Ez&. In the literature, the size o
the spin-orbit coupling is parametrized either by direct m
surements ofamat ~Table I!, calculated values ofamat ~Table
II !, or the magnitude of the energy splitting atk50 or k
5kF . This disguises the fact that the character ofEz is poorly
understood and little literature is available on the topic. I
recent experiment, the electric field in the valence band
GaAs/Ga12xAl xAs heterostructure was determined
Jusserandet al.32 to be 17 mV nm21. Ez is assumed to scal
with the band offset and can be increased by up to a facto
'3.5 by applying a gate potential.33 In addition, it was
pointed out by Lassnig34 that the conduction-band spi
splitting is due to the electric field in the valence band35

TABLE I. Spin centered-orbit constant~meV nm!.

GaAs ~Ref. 20! 0.69
HgMnTe ~Ref. 23! 100
InAs ~Refs. 24 and 25! 30–45
HgTe gated QW~Ref. 26! 40
CdTe/HgTe/CdTe~Ref. 27! 40
In0.75Ga0.25As/In0.75Al0.25As ~Ref. 28! 29.2
In0.75Ga0.25As/InP ~Refs. 29 and 30! 4.71–15
CdSe~holes! @Ref. 31# ,10 ~expt.!
CdSe~holes! @Ref. 31# 6 ~theory!
CdSe~electrons! @Ref. 31# ,90 ~expt.!
CdSe~electrons! @Ref. 31# 23 ~theory!

TABLE II. The coefficientamat (e nm2).

GaAs ~Ref. 20! 0.055
Hg0.8Cd0.2Te ~Ref. 20! 19.3
InAs ~Ref. 36! 1.17
InSb ~Ref. 36! 4–5.23
ZnSe~Ref. 36! 0.01
04532
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the two fields differing through the contributions of th
interfaces.34,36

We present in Table I the maximum observed/calcula
values ofamat in the bulk for semiconductors with a stron
spin-orbit interaction~Table I! due to bulk inversion asym
metry. The small bulk GaAs spin-orbit coupling consta
renders the effect of Vso negligible in GaAs, but in the othe
materials the size ofamat is several orders of magnitud
larger. In Table II, we list calculated values for the coefficie
a46 for different materials. By comparing with the corre
sponding values ofamat , one can obtain a rough estimate
the electric field in the valence band in the absence of a g
In the case of InAs, this field would lie in the rang
25–40 meV nm21.

VII. EFFECT OF MAGNETIC FIELD AND DISORDER

The AHE was first observed in ferromagnetic materials
the absence of an external magnetic field~in this case one
would only need to apply a field to magnetize the mater
lowering it to zero afterwards!. As ferromagnetic heterostruc
tures are yet to be realized and as ferromagnetism has
been observed in II-VI semiconductors, it is more sensible
consider the case of a paramagnetic system, in which
exchange field can be maintained only by applying an ex
nal magnetic field. In order to determine the regime in wh
the AHE can be observed in a weak magnetic field, o
needs to consider the fact that a magnetic field will cause
system to be quantized into Landau levels, where the se
classical approximation is not valid, as well as give rise
the ordinary Hall effect.

The first obstacle is circumvented by the presence of
order in the sample, as the impurity scattering causes
Landau levels to broaden so that for a small enough m
netic field they overlap. The effect of disorder is para
etrized by an impurity scattering timet, which in II-VI het-
erostructures is of the order of 0.1 ps.37 To get round the
second problem, the parameters must be matched so tha
ordinary Hall conductivity does not overwhelm the anom
lous one, making observation of the latter contribution cle
If the magnetic field and the scattering time are small eno
to make the Landau levels overlap,vct,1 must hold, where
vc is the cyclotron frequency. The condition thatvct,1
ensures that the semiclassical approximation is valid,
does not guarantee that the ordinary Hall conductivity w
not greatly exceed the anomalous one. For smallvct the
ordinary Hall contribution, which, in the absence of quantu
oscillations, is given by the Drude formula

sxy
OHE5

ne2t

m*

vct

11vc
2t2

, ~31!

tends to zero. To ensure that the AHE is the dominant eff
we set

sxy
OHE,sxy

AHE . ~32!

These two equations yield (nh/m* )vct
2,1.

It is also imperative to ensure that the AHE itself is n
completely overshadowed by disorder. To satisfy this
7-7
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quirement, the exchange splittingh0 must exceed the energ
fluctuation due to disorder,\/t. It follows that the condition
for the observation of the AHE is

2pn\2

m*
vct,

\

t
,h0 . ~33!

For t50.1 ps, the fluctuation\/t represents an energy o
6.5 meV.

As it is desired to work with a narrow well, so as to ke
the subbands as far from each other as possible, we sha
the well width at 10 nm, close to the smallest that can
manufactured. Furthermore, the laboratory temperature
be fixed at 0.1 K. We use the exchange constantsN0a and
N0b in Table V of Ref. 38 to determine the optimal M
concentration and external magnetic field for the observa
of the AHE in Cd12xMnxSe and Hg12xMnxTe quantum
wells.

For wurtzite (Cd12xMnxSe), with the value ofaw fixed,
we have chosen the carrier density n and exchange fieldh0 in
such a way as to have an observable conductivity in
valence band:n52.931012 cm22 andh057 meV. The Mn
doping density will have to be 2.2%. At 0.1 K, in order fo
the Brillouin function to saturate, the magnetic field must
'1 T. At this field, the ordinary Hall conductivity is les
than 0.05 of the conductivity quantum, while the anomalo
one is'0.27.

In the case of zinc blende (Hg12xMnxTe), the act of bal-
ancing the ordinary and anomalous conductivities is m
difficult ~Fig. 10!. The magnetic field cannot be as high as
nd

or

.

.
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T, for that will produce a large ordinary contribution, but th
is compensated by the fact that the exchange constantN0b is
larger. In order to maintain the exchange splitting above
disorder broadening, i.e.,h057 meV, it is sufficient to apply
B5130 mT and keep the Mn density unchanged at 2.
~corresponding to 3.331026 m23, which is well within the
experimentally achievable range38!. At a carrier density of
131011 cm22, the ordinary and anomalous conductivitie
will be equal to just over 0.14 of the conductivity quantum
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FIG. 10. Variation of the conductivity with temperature for zin
blende structures.
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