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Anomalous Hall effect in paramagnetic two-dimensional systems
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We investigate the possibility of observing the anomalous Hall effect in paramagnetic two-dimensional
systems. We apply the semiclassical equations of motion to carriers in the conduction and valence bands of
wurtzite and zinc-blende quantum wells in the exchange field generated by magnetic impurities and we
calculate the anomalous Hall conductivity based on the Berry phase corrections to the carrier velocity. We
show that under certain circumstances, this conductivity approaches one-half of the conductance quantum. We
consider the effect of an external magnetic field and show that for a small enough field the theory is unaltered.
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[. INTRODUCTION of this scattering-free contribution, in principle, and on its
relative importance, if it exists, in real materials.

When a nonferromagnetic metallic sample is exposed to a Later, a new mechanism, called side jump was introduced
perpendicular external magnetic field, the Lorentz force actby Bergef to explain the observed? dependence, although
ing on the current carriers gives rise to a transverse voltagge scattering-free contribution gives the same dependence.
in the plane of the sample. The transverse component of thi side jump, the electron incident into the area of influence

resistivity p, depends on the magnetic field through of the potential emerges parallel to its original direction but
displaced perpendicular to it. This latter term is supposed to
Pxy=RoB, D dominate in alloys, where is high. It is, nevertheless, not

whereR,=1/ne is known as the Hall coefficient. This phe- ¢l€ar how to relate the side jump mechanism to the system-

nomenon is known as the ordinary Hall effect. at|(|: theory proposedhby Luttlng_er. f buti fL
In many ferromagnets, however, the transverse resistivity " recent years, the scattering-free contribution of Lut-

acquires an additional term which is often seen to be propo linger and Karplus was rederived in a semiclassical analysis

tional to the magnetization of the sample, and becomes cor?—f (\j/vgve—gacket mgtll\cil)igj mdBIoch ba%ds %y Chaé?g anthlu

stant once the sample has reached its saturation magnetiZg; undaram a}n and was attri 'ute. 1o a Berry phase

tion M. Empirically, one writes effect ink space! A more rigorous derivatiotf based on the
S ’

Kubo formula gives the same result. This contribution was
Pry=RoB+RM. (2)  also evaluated for the mean-field bands of semiconductor
ferromagnets, yielding good agreement with experiments
The effect is referred to as the anomalous Hall effect whilewithout any parameter fitting. This thedfyof the AHE is
the constanR; is called the anomalous Hall coefficient. It based on the Stoner description of ferromagnetism, consid-
can be seen from the second term above that ferromagnetsing the charge carriers to be quasiparticles in spontane-
display a spontaneous Hall conductivity in the absence of anusly split Bloch bands. It is to be distinguished from the
external field. The effect was subsequently noted in a largenechanism of Yeet all* based on the Berry phase in real
number of bulk alloys, as well as, in recent experiments, irspace. The motivation behind the current effort is to provide
materials which exhibit colossal magnetoresistaicand a conceptual framework for the theoretical study of the AHE
ferromagnetic semiconductors. Recent studies of ferromagn magnetic quantum wells and heterostructures, which have
netic semiconductors such &a,MnN films have, in fact, been realized in recent years. These structures constitute the
reported ferromagnetic behavior at room temperatdre. simplest systems in which the Berry phase can be evaluated
Although it has been known for close to half a century,analytically from the Hamiltonian including the Rashba spin-
the anomalous Hall effedfAHE) has had a controversial orbit coupling and provide a suitable ground for testing a
history and it remains a somewhat poorly understood phetheory based on fundamental physics. We shall concentrate
nomenon. Karplus and Luttingepioneered the theory of the our attention on the conduction band and the topmost va-
AHE, finding that the spin splitting of bands can give rise tolence band of an inversion asymmetric semiconductor het-
a Hall conductivity in the presence of spin-orbit coupling. erostructure in an exchange field supplied through doping
Smif countered that in a perfectly periodic lattice, the AHE with Mn and calculate the anomalous Hall conductivities for
could not occur without scattering from impurities, and in-the two bands. Although ferromagnetic behavior has not
troduced the skew scattering mechanism to explain it. Thideen observed in lI-VI heterostructures, we shall concentrate
mechanism, in which an electron is scattered at an angle ton 1I-VI semiconductors, as they can be doped with Mn
its original direction, gives a contribution proportionaldp  more heavily than Ill-V.
the diagonal resistivity. In a more complete treatment, The paper is organized as follows. In Sec. I, within the
Luttinger’ found a term corresponding to skew scattering butframework of the effective-mass approximation applied to a
maintained that the scattering-free contribution to the AHEdoubly degenerate band, we calculate the Berry phase of the
still remains. There has been much debate on the possibilitwave function which yields the off-diagonal conductivity
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oy, . We consider an ideal situation wifh=0, where we direction of the Lorentz force. In the absence of an external
follow the method used by Chang and Riiand Sundaram magnetic fieldB, this term is seen to be perpendicular to the
and Niut® for the semiclassical treatment of carrier motion in electric fieldE, giving a transverse component of the veloc-
two dimensions. Under certain circumstances, one can makigy. This velocity adds a transverse term in the current pro-
the approximation that the anomalous Hall conductivity isducing a contribution to the off-diagonal conductivity. There-
quantized, taking the values fore, as long ad},, is nonzero, it is possible to have an
off-diagonal conductivity term which is independent®f
The Berry curvature is related to the Berry pHagele-

noted byvy,), which is the phase acquired by the wave func-

In Secs. Il and IV, we apply the theory to wurtzite and tion upon being t'ransported around a loopkirspace. Ac-
cording to Stokes’ theorem,

zinc-blende structures, respectively. We consider finite tem-
perature corrections and discuss the conditions under which
f dS-anf dk-<un
A JA

eZ

|0'xy| = on" (€©))

Eq. (3) holds. Moreover, we investigate the variation of the K
conductivity with temperature, exchange coupling, and spin-

orbit constant. In Sec. VII, we examine the effect of placingm the above, the |00p around which the wave function is
the system in an external magnetic field and determine thgansported is denoted byA and the area enclosed by the
optimal parameters needed for the observation of the AHE ifoop by A. The Berry curvature can, therefore, be regarded as

un> =n- 8

heterostructures in the Iaboratory. the Berry phase per unit area k)gpace_
In the following, we give an analysis of the main symme-
[l. SYMMETRY CONSIDERATIONS try aspects of the problem. From the requirement that the

semiclassical equations be invariant under time reversal, it is
apparent that(2, must be odd under this transformation,
namely,Q,(—k)=—Q,(k). A geometric argument can also
be made by noting that the Berry phase is a path-dependent
W (k,r))=e*"un(k,), (4  Qquantity. Under time reversal, both the path along which the
wave function is transported and the orientation of the wave
where [u,(k,r)) is a function with the periodicity of the vectork are reversed. A clockwise path spanning a set of
lattice. The semiclassical motion of a Charge carrier througmvave VeCtOl’E{k} becomes a counterclockwise path Spanning
the crystal is described by constructing a wave packet out ohe set of wave vectors—k}. This implies that the Berry
Bloch wave functions. The dynamics of such a wave packephase changes sign uner time reversal and the Berry curva-

In a perfect crystal, according to Bloch’s theorem, the
wave function for a band with inder is decomposed into
two parts:

are giVen by the fO"OWing equations Of m0t|6?] ture Satisfies the above Constraint'
10 One can also obtain this result by carrying out the explicit
=2 kxQ,, (5)  transformation of Eq.(7) under time reversal. ifu,) is
i ok written in terms of the real and imaginary parts of its
components,
. e .
k=—%(E+rXB), (6)

Relvn)+i|m|vn)> ©

|up) = ( ;
which determine the position vector and wave vector of the Relwy,) +ilm|w,)

center of the wave packet in the presence of external eleechen application of the time-reversal operator will result in
tromagnetic fields, withQ2 the Berry curvature. The Berry _
curvature of a band is defined by the following expression: TIu >_< —iRgw,) —Im|w,)

g iRdUn>+|m|Un> ’

au,| |au,
ok ok > @) produ_cing a change of sign i_n the Berry curvature.

If time-reversal symmetry is present, Kramers degeneracy
The term containing the Berry curvature is usually neglectedmust also be present, imposiag(k) =&,(—k). Therefore,
due to the fact that it frequently vanishes by symmetry, as inf the state at wave vectde is occupied, then so is the state
crystals which are invariant with respect to both time rever4t wave vector—k. This, together with the conditio®,,
sal and spatial inversion(e.g., nonmagnetic Bravais (—k)=—0, (k), implies that the integral of, over all
crystals®). filled states vanishes. Therefore, in general it is always nec-

In the AHE, the additional contribution to the current is essary for the system to lack time-reversal symmetry in order
perpendicular to the direction of the electric field and inde-or the AHE to occur.

pendent of the magnetic field. We now show it to be related To obtain a nonzero anomalous Hall conductivity, the
to the Berry curvaturé,, which appears in the equations of gpin-orbit interaction must also be present in order to couple
motion as an additional term in the VelOCity. This is the sameghe Spin_up and Spin_down bands. This Coup"ng transfers the
as the velocity correction derived previously by Luttinger.time-reversal violation from the spin degree of freedom to
From the two equations, it is apparent that this correctionhe orbital motion, which is responsible for the Berry curva-
term is perpendicular tk and therefore perpendicular to the ture. An example is provided by ferromagnéti¢cGa,MnAs

(10

X

Qn=—lm<
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crystals, in which, without spin orbit, the valence-band wave Ill. GENERAL TREATMENT OF BERRY CURVATURE
functions atk=0 are eigenstates df, the orbital angular AND HALL CONDUCTIVITY

momentum operator, with eigenvallie 1 and thus sixfold  The two-dimensional2D) anomalous Hall conductivity is
degenerate. When spin orbit is included, kve0 band wave  calculated af =0 and shown to be quantized. We consider a
functions are eigenstates of the total angular momentum o x 2 Hamiltonian describing the spin-split conduction/
erator J, splitting into a fourfold degeneratp=3/2 level ~ valence band of a semimagnetic semiconductor in the pres-
(containing the heavy holes and the light holasd a two- ~ ence of an exchange field and spin orbit coupling. Effects of
fold degeneraté=1/2 level(the split-off band. Away from band mixing are neglected, which is a suitable approximation
k=0, there is a correction proportional td-k)2, which for the band structures of the materials we shall consider—
. . . ., the top two valence bands and the conduction band in wurtz-
partially lifts the degeneracy of the bands. This term provides : .
ite structures and the conduction band of zinc-blende

a k-dependent quantization direction for the angular mOomen: - ierials.

tum,tso that a? tthz Wa\ée_;/e_:ctor IS _dt;spl?cedb':h_e angular mo- The exchange field due to the magnetic impurities is taken
mentum 1S rotated and 1t 1S possibie 1o obtain a NoNzerq, ne yniform and directed along ttzeaxis, normal to the

Berry curv:_iture. . . . heterostructure. Based on a mean-field model, we consider
In two dimensions, the quantum confinement lifts the de-,

. the interaction to be described by a vectgy;, which for
generacy of the heavy-hole and light-hole bands, so that %Fi]mplicity has units of energy. The magnitude of the interac-

Ezn(: gx'; %?SSI'(bleFtor?ﬁ]ﬁZEate tuebrarllurltcr):l?g |r(1jto m:erp?n'tion is tuned by controlling the concentration of Mn but
N OCKsS. 0 » €ach blockremains degenerale o offect will be masked by thermal fluctuations once

in the presence of both time-reversal and spatial inversiof _,
symmetries, based on Kramers’ theorem. With time-reversaloIn Eia harrow quantum well in which the subbands are
symmetry, k, 1) is equivalent to —k, | ), while with space widely separated, th&-p Hamiltonian, withm* the band

inversion symmetry|k, 1) is equivalent to|—k,T). There- : — 3 2[om* o4 ;
fore, with both symmetriegk, 1) is equivalent tgk,|). In electron effective masy=A%/2m™, andk..=ktiky, is

the absence of space inversion symmetry, it is possible to h i FKK_
. . . 0 mat ( )
break the degeneracy at each finiteThe space inversion H=vk?l 55 o+ . K h . (12
asymmetry gives rise to the Rashba spin-orbit interaction: Farmad (K)K 0
It is readily seen to have the eigenvalues
A = k2% 2+ a2 K2f (k)2
Vo= amaif (K) (e XK)-Z, (11) E.=yk"EVhgt ap .k f(K)%, (13

yielding two subbands, separated bly,2
AssumingT=0 for the time being, we take the bottom

where a4 IS @ constantg is the vector of Pauli spin ma- bband to b ied and th b hil
trices, k is the two-dimensional wave vector in thg plane ~ S409an to be occupied and the top oqg to be empty, while
the Fermi level corresponds tg = (47n)~~.

andf(k) depends only on the magnitude of the wave vector. .
The asymmetry can originate from either the crystal structure 1 ne form of the Berry curvature for a genefgk) is
(bulk inversion asymmetjyor the confinement potential d
(structure inversion asymmejryThe Rashba interaction has arznathof(k)_[kf(k)]
been found to be the main mechanism responsible for the QT”=IE dk (14)
zero-field spin splitting in 2DEG'$®~21 z 2 [h2+a2 K2f(K)2]%2

It is apparent from the above that the spin-orbit coupling
provides a&-dependent quantization direction for the charge- The geometrical phase factor is the integral of the curva-
carriers’ spins. The spins prefer to lie in thg plane and be  ture over all wave vector€.As the upper band is empty, the
perpendicular to the wave vector. As a result, when the waventegral over it is zero and one only needs to consider the
vector sweeps a circle around the origin, the spins are rotatezlirvature of the lower band) '
by a solid angle of 2, and acquire a Berry phase af.
Since this phase is independent of the area enclosed, it fol- . |2 hg
lows that the Berry curvature is singular at the origin and is I :f fk<k Q' d%k=m 1- [h2+ a2 tsz(k )2]42 :
null everywhere else. When an exchange field is applied, the F 0" Tmattr e
spins are tilted out of thety plane. The amount of tilting
depends on the competition between the Rashba term and tfle@ maximize the conductivity, the interval between 0 and
exchange field. From thedependence of the Rashba term, it k=Kkg should cover the region over which the Berry curva-
can be seen that the solid angle swept by the spins is diffeture is significant, so thatz must be equal to several times
ent from 27 and depends on the size kyftending to zero as K., the wave vector at which the curvature falls to half its
the radius of the circle tends to zero. This implies that themaximum value. A is fixed by the number density, the
Berry curvature is now spread out and is finite at the originway to accomplish this is to have,> a5 K. When this
As will be shown in more detail in the following sections, relation holds, the phase' is very nearly.
such a Berry curvature will lead to a finite contribution At zero temperature, the conductividy for a full band is
to the AHE. equal to the integral over the Brillouin zone of the compo-
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FIG. 1. Band dispersion relation for 2D holes in g valence Wavevector (nm'l)
band of wurtzite structures. The parameters ane=2.9
X 10" cm™2, @, =23 meV nm,hy=1.38 meV, andn* =0.9m,. FIG. 2. Absolute value of the Berry curvatufk, as a function

of wave vector for thd’; valence band of wurtzite structures.
nent of the Berry curvature parallel iand is thus propor-
tional to the Berry phase. The upper limit of the integral canvector is equal to
be taken to infinity:

0.7Mhg
e? d%k Ke=xt——, (21)
Opy=— Ff f 0;5—, (16) w
kg m and its effect becomes negligible once the magnitudé& of
which results in exceeds several times that lqf.

At finite temperatures, one must take into account the fact
a2 hokf(K) i[kf(k)] that the Fermi—Djraq distributiqn deviates' from thg step fgnc—

@2 [w mat''0 dk g2 tion atT=0, which is done by incorporating the distribution

7= 7 2n ], dk [h2+ a2 _k2F(K)2]3 " o%h function into the expression far,, . It is also important to

maintain a carrier number density in the range in which the
17) AHE is not overshadowed by disorder effects. High densities
From the above we see that the conductivity is approxicause interface effects to become important whereas low
mately quantized, regardless of the formf¢k). It is worth ~ densities will cause pockets of electrons to be isolated in
noting thato neither depends on the size of the spin-orbitlocalized states. In addition to the above, one must consider
splitting constanty,,,,; hor on the magnitude of the external the contribution from both the lower and the upper band, as
magnetic field and that exact quantization occurs when théhere exists a finite fraction of carriers excited into the

Berry phase isr, i.e., the spin lies in thay plane. band. The two conductivities are
IV. WURTZITE STRUCTURES AT FINITE . eZdek ka&vho 1
TEMPERATURES TIT=2h], (h2+ a2K?)32 elB= (9~ l/keT 4 |
The conduction band and the bottom valence band of (22)

wurtzite transform according to the; representation of the \yith (k) given by Eq.(7). The total conductivityr,, is the
rotation group atk=0, while the top valence band trans- gym of the two:
forms according td’y. The latter, however, is known empiri-

cally not to exhibit a linear spin splitting. Txy= g)[y+ giy_ (23)
The coefficienta 5, introduced above is replaced by, . . )
Then the interaction for thE, band is given by We consider the conduction band and concentrate on CdSe,
where «,, has been measured to be 10 meV nm and the ef-
Vo= ay(oXKk)- 2z (18)  fective massn* is 0.13n,. u is determined by the number

_ _ _ . density and exchange field, which are fixed ax 10"
The energy bands, corresponding to the dispersion relation. -2 3nd 0.8 meV. Our numerical calculations show that

E. = yk2+ \/W, (19 under these conditions, the maximum conductivity is
are plotted in Fig. 1 as a function kf The Berry curvature is || =0 1256‘_2 (24)
pointing along thez axis: A
1 a2h, It is not quantized, but the effect is still observable.
Q;/l: gl w (20 In the case of the valence band, theory gives an estimate

2 2 ' . . ..
2 (agk?+hg)¥? for a,, of 23 meV nm, while experiment sets an upper limit
The absolute value of the Berry curvatug is plotted in ~ of 90 meV nm, and we employ the theoretical value as a
Fig. 2. It falls to half its maximum value when the wave worst case scenario. The effective mass isrg,the number
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FIG. 3. Variation of the conductivity witl,, in the case of the FIG. 4. Variation of the conductivity with,, for theT'; valence
I'; valence band of wurtzite. band of wurtzite.
density is set to 2,810 cm™2, h, is fixed at 1.38 meV, These two plots illustrate the fundamental physics of the
and the temperature at 0.1 K. Repeating the calculatiosystem, namely, the interplay between the Rashba and Zee-
yields man effects giving rise to the anomalous Hall conductivity
through the Berry phase acquired by the wave function. The
5 dynamics can be viewed as a competition between the Zee-
|0'Xy|=0.45€—, (25) man term, which by itself Woulq align the_ spin with tlze
h axis and the Rashba term, which draws it towards xkie

plane. Without the spin-orbit interaction, the Berry phase is

showing that the conductivity approaches the quantizedero yielding zero conductivity whereas without the ex-
value. change field the energy gap vanishes and the bands overlap.

We now investigate the dependence of the integral in EqWVhat is more, ad, tends to infinity the spins align them-
(16) upon the spin-orbit coupling consta(fiig. 3), maintain-  Selves along in such a way that the wave function does not
ing the other parameters at their values for the valence ban@cquire a Berry phase. At this stage, the wave vector pre-
We find that atT=0.1 K, it increases with increasing,, cesses on the Fermi surface at an infinite rate, which is
saturating to 0.45%/h). The shape of the graph can be ex- €quivalent to no precession at all. Finaly,cgstends to zero,
plained by noting that the effect of increasing is to bring  the spins once more align with tizeaxis.
down the chemical potential and flatten the lower band in Finally, we have observed the temperature dependence of
such a way that its Fermi wave vector is unchanged. Théhe integral in Eq(10), with &, chosen as before. As Fig. 5
point where the conductivity reaches its maximum corre-shows, the conductivity declines over the ranige 10 mK
sponds to the point where the chemical potential crosse® T=1 K, which is attributed to the fact that raising the
from the top band into the bottom one so that at very lowtemperature causes more carriers to be excited across the
temperatures only the latter is occupied. Since there are ongap, increasing the size of the negative contribution.
carriers in the lower band, as, increases they acquire ap- These two situations are similar to the linhig—0: the
proximately the same Berry phase until the chemical potenband gap here does not disappear, but it is bridged by facili-
tial touches the band maximum k&0, beyond which our tating the movement of carriers across it.
theory does not apply. The shape of the curve as far as the
plateau follows from the fact that as the chemical potential is
lowered fewer states are available in the upper band. The
plateau itself is understood by noting that increasing
makes the curvature narrower but after a point almost all the Having investigated the underlying physics of the prob-
area over whicH) is appreciable has been covered, so fur-lem for a wurtzite quantum we{lQW), we turn our attention
ther increasingy,, will not make a considerable difference.

The dependence upon the exchange coupling is studied
next (Fig. 4). It can be seen that,, reaches a maximum
whenhg is ~1.38 meV, after which it drops. At first, when
there is no magnetic interaction, the spin lies inxlyeplane.
As hg increases, the spin is tilted out of the plane by larger
amounts, increasing the phase acquired by the wave func-
tion, until it reaches a maximum. Als,—c the spin be-
comes parallel tdy and the phase gradually falls to zero. 036
Increasinghy makes() wider so that less of the curvature is ’ s
covered in the rang&=0 to kg. The sudden fall in the 0 Temperitm(K) 10
conductivity beyond the maximum is, therefore, a combined
effect—the magnitude of the curvature is smaller and less of FIG. 5. Variation of the conductivity with temperature for fig
the curvature is covered in the integral. valence band of wurtzite.

V. ZINC-BLENDE STRUCTURES AT FINITE
TEMPERATURES

o

46 " T

Conductivity(ezlh)

045327-5



DIMITRIE CULCER, ALLAN MacDONALD, AND QIAN NIU PHYSICAL REVIEW B 68, 045327 (2003

T T T T T T T 0.4 T T

S0P\ o/ R

S r N e W 4 N£0.3 F E
Y N\ 2
U /T g

% / 202} 1
=}

“ 10 N d ] So.1f 1

1055, ' 5 0. % 5000 10000
015 005 005 0.15

‘Wavevector (m-n'l) Spin orbit constant (meV nm'a)

FIG. 8. Variation of the conductivity with the spin-orbit constant
for zinc-blende structures.

FIG. 6. Band dispersion relation for 2D electrons in a zinc-
blende lattice. The parameters am=2.8<10"cm 2, ay,
=10000 meV nm, hy=3.38 meV, andn* =0.034n,.

We consider the optimum achievable conditions for the ob-
to a case which promises immediate experimental realizaservation of the anomalous Hall conductivity. The doping
tion. We shall restrict our discussion of zinc-blende materialglensity isn=2.8< 10" cm?, the spin-orbit constant from
to the conduction band of Hg,Mn,Te, in which the linear ~Ref. 22 is approximatelyr,,= 10000 meV nm, and we set
term ink is not allowed by symmetry. Instead, the first term the exchange field to be equal to 3.38 meV amd
in the expansion is cubic ik and the spin-orbit term takes =0.034m,. Under these conditions, the conductivity is

the form ’

[S}
|y =0.34—.

h (30

Vso= a’zbkz(o'>< k) z, (26)

: PR . In Figs, 7-9, we have plotted the conductivity as a function
where azp replacesamg,. This expression is valid nedt of the spin-orbit constant, exchange field, and temperature.

=0, but is not accurate as approaches . In order to The graphs will be seen to have very similar features to the
improve the accuracy, we have chosen the polynomial coef- grap y

ficientsb, andb, so as to match the dispersion relation with corres_pono_lmg ones fo_r wurtzite. These common fe_atures
L have identical explanations in terms of the modification of
that shown in Fig. 7 of Ref. 22, namely,

the shape of the bands and the movement of the chemical
potential relative to them, as discussed above.

, .
_apk(oxk)-z It will be noticed that the zinc-blende graphs are smoother

% 14 byk2+ bok? @ and the plateau in the spin-orbit constant graph is missing.
The qualitative differences in the behavior of the conductiv-
yielding the energy band$-ig. 6): ity come about due to the difference in the shape of the band
structure and Berry curvature in the two structures. In wurtz-
o2 K6 ite, () peaks at the origin and is appreciable within a disc
E.=yk?+ \/h3+ 20 (28)  centered ak=0. In zinc blende, on the other hand, the cur-
(1+b,k?+byk*)?2

vature is zero at the origin and is concentrated within a ring
on either side of the values & at which it peaks. If the
magnitude of the wave vector at whi€h has its maximum

is denoted byk,, it emerges that in order to maximize the
anomalous conductivity the parameters must be adjusted

and the absolute value of tlrkecomponent of the Berry cur-
vature(Fig. 7),

2 . . .
Qlll— = azphok?  (3k2+bik?—Db,k®) 29 such thatkg is large enough to contain the ring on the outer
z +2(h§+a§bk6)3’2 (14Db;k2+bok%)3 side ofk but small enough for the number of states avail-
0'4 T T T T
100 T T T T T T T
«=gol . 0.3
g e
& 60r 1 g
g 202
= 400 — g
50.1
§ 20t . ©
0% 005 005 0l % 2 4 6 g 10
Wavevector (mn'l) Exchange constant (meV)

FIG. 7. Absolute value of the Berry curvature for the conduction

FIG. 9. Variation of the conductivity with the exchange field for
band of zinc-blende structures.

zinc-blende structures.
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TABLE I. Spin centered-orbit constafmeV nm. the two fields differing through the contributions of the
interfaces:*3°

GaAs (Ref. 20 0.69 We present in Table | the maximum observed/calculated
HgMnTe (Ref. 23 100 values ofa,4; in the bulk for semiconductors with a strong
InAs (Refs. 24 and 2b 30-45 spin-orbit interactionTable ) due to bulk inversion asym-
HgTe gated QWRef. 26 40 metry. The small bulk GaAs spin-orbit coupling constant
CdTe/HgTe/CdTeRef. 27) 40 renders the effect of ; negligible in GaAs, but in the other
INg 76G & 25AS/INg 7Al g 25AS (Ref. 28 29.2 materials the size oty ,; is several orders of magnitude
INg.75Gay »5AS/INP (Refs. 29 and 30 4.71-15 larger. In Table 11, we list calculated values for the coefficient
CdSe(holes [Ref. 31] <10 (expt) aye for different materials. By comparing with the corre-
CdSe(holes [Ref. 31] 6 (theory) sponding values of,,,:, one can obtain a rough estimate of
CdSe(electrons [Ref. 3] <90 (expt) the electric field in the valence band in the absence of a gate.
CdSe(electrons [Ref. 31] 23 (theory) In the case of InAs, this field would lie in the range

25-40 meV nm™.

able in the upper band not to cause the contribution from itto VIl. EFFECT OF MAGNETIC FIELD AND DISORDER

cancel out the curvature from the lower band. In the spin- i ) ) .
orbit constant graph, after reaching a maximum, the conduc- The AHE was first observed in ferromagnetic materials in
tivity quickly declines, since increasing,, has the effect of (1€ absence of an external magnetic figh this case one
lowering the chemical potential, so that fewer states in theVould only need to apply a field to magnetize the material,
bottom band are integrated over. Due to the shape of th wering it to zero afterwgrdsAs ferromagnetic hetgrostruc—
curvature, lowering the chemical potential causes those waJdre€s are yet to be realized and as ferromagnetism has not

vectors at which the Berry curvature is significant to be omit-"€€n obserrlved n ”'\? semiconductors, it is more senﬁ'lbrI]e tr?
ted, resulting in a sharp decrease in the conductivity. MoreonSider the case of a paramagnetic system, in which the

over, the fact that in zinc blende the lower band doe*Cchange field can be maintained only by applying an exter-
not have a maximum a=0 means that our theory can nal magnetic field. In order to determine the regime in which

be applied regardless of where in the band the chemica{r‘e AHE can_be observed in a weak ma_gnetiq field, one
potential lies. needs to consider the fact that a magnetic field will cause the

system to be quantized into Landau levels, where the semi-
classical approximation is not valid, as well as give rise to
VI. OTHER MATERIALS the ordinary Hall effect.
The first obstacle is circumvented by the presence of dis-
order in the sample, as the impurity scattering causes the
Landau levels to broaden so that for a small enough mag-

straightforwardly calculated using third-order perturbationne?IC field ther °V‘?”ap- Thg effgct of o_hsorder IS param-
theory. It is customary to assume that the gradient of thgtnzed by an Impurity scattering time which in 1I-V1 het-
confining potential has only a component, with the result erostructures is of the order of 0.1 #sTo get round the

that @y, iS given bya,.(E,). In the literature, the size of second problem, the parameters must be matched so that the

the spin-orbit coupling is parametrized either by direct mea2rdinary Hall conductivity does not overwhelm the anoma-
surements ofy,... (Table ), calculated values d, ., (Table lous one, making observation of the latter contribution clear.
mat ' mat

I1), or the magnitude of the energy splitting let=0 or k If the magnetic field and the scattering time are small enough

=k . This disguises the fact that the characteEgfs poorly to make the Landau levels overlap,7<1 must hold, where

understood and little literature is available on the topic. In g 1S the cyclotron freguenpy. The cor)dlthn thatf7<.1
nsures that the semiclassical approximation is valid, but

recent experiment, the electric field in the valence band of %oes not quarantee that the ordinary Hall conductivity wil
GaAs/Ga_,Al,As heterostructure was determined by 9 y y
not greatly exceed the anomalous one. For smal the

Jusserandt al. to be 17 mv nm'™. E, is assumed to scale rdinary Hall contribution, which, in the absence of quantum
with the band offset and can be increased by up to a factor grramary L ' ’ q
oscillations, is given by the Drude formula

~3.5 by applying a gate potentidl.In addition, it was
pointed out by Lassnij that the conduction-band spin netr

splitting is due to the electric field in the valence band, oQHE=

In general, the expression far,,; is ana{E). Here(E)
is the expectation value of the total electric field felt by the
carriers anda,,,; a material specific parameter which is

We.T (31)
m* 1+ ngz’
TABLE Il. The coefficientana (€ nn). tends to zero. To ensure that the AHE is the dominant effect,

GaAs (Ref. 20 0.055 we set

Hgo sCd, »Te (Ref. 20 19.3 (r)?yHE< Uf‘;'E. (32
InAs (Ref. 36 1.17

InSh (Ref. 36 4-5.23 These two equations yielthp/m* ) w m><1.

ZnSe(Ref. 36 0.01 It is also imperative to ensure that the AHE itself is not

completely overshadowed by disorder. To satisfy this re-
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quirement, the exchange splittilg must exceed the energy
fluctuation due to disordefi/ 7. It follows that the condition
for the observation of the AHE is

—<h
0. 7<—<Ng.
c o

2mn#h?

m*

(33

For 7=0.1 ps, the fluctuatiok/+ represents an energy of
6.5 meV.
As it is desired to work with a narrow well, so as to keep

the subbands as far from each other as possible, we shall set
the well width at 10 nm, close to the smallest that can be
manufactured. Furthermore, the laboratory temperature wil

be fixed at 0.1 K. We use the exchange constahs and
NoB in Table V of Ref. 38 to determine the optimal Mn
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| FIG. 10. Variation of the conductivity with temperature for zinc-

blende structures.

concentration and external magnetic field for the observatior]- fOr that will produce a large ordinary contribution, but that

of the AHE in Cd_,Mn,Se and Hg_,Mn,Te quantum
wells.

For wurtzite (Cd_,Mn,Se), with the value ot,, fixed,
we have chosen the carrier density n and exchangetfigial
such a way as to have an observable conductivity in th
valence bandn=2.9x 10'> cm 2 andhy=7 meV. The Mn
doping density will have to be 2.2%. At 0.1 K, in order for

is compensated by the fact that the exchange conkligbitis

larger. In order to maintain the exchange splitting above the

disorder broadening, i.ehg=7 meV, it is sufficient to apply

B=130 mT and keep the Mn density unchanged at 2.2%

corresponding to 3:310°° m~3, which is well within the
experimentally achievable ranfe At a carrier density of

1x 10" cm 2, the ordinary and anomalous conductivities

the Brillouin function to saturate, the magnetic field must beWill be equal to just over 0.14 of the conductivity quantum.

~1 T. At this field, the ordinary Hall conductivity is less

than 0.05 of the conductivity quantum, while the anomalous

one is~0.27.
In the case of zinc blende (Hg,Mn,Te), the act of bal-
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