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We examine the Liouvillian approach to the quantum Hall plateau transition, as introduced recently by
Sinova, Meden, and GirvifPhys. Rev. B62, 2008(2000] and developed by Moore, Zee, and SindPays.
Rev. Lett.87, 046801(2001)]. We show that, despite appearances to the contrary, the Liouvillian approach is
not specific to the quantum mechanics of particles moving in a single Landau level: we formulate it for a
general disordered single-particle Hamiltonian. We next examine the relationship between Liouvillian pertur-
bation theory and conventional calculations of disorder-averaged products of Green functions and show that
each term in Liouvillian perturbation theory corresponds to a specific contribution to the two-particle Green
function. As a consequence, any Liouvillian approximation scheme may be reexpressed in the language of
Green functions. We illustrate these ideas by applying Liouvillian mettimgsuding their extension tiN,
>1 Liouvillian flavorg to random matrix ensembles, using numerical calculations for small inkggand an
analytical analysis for larghl, . We find that the behavior &, >1 is different in qualitative ways from that
atN_=1. In particular, theN =<0 limit expressed using Green functions generates a pathological approxima-
tion, in which two-particle correlation functions fail to factorize correctly at large separations of their energy,
and exhibit spurious singularities inside the band of random matrix energy levels. We also consider the large-
N, treatment of the quantum Hall plateau transition, showing that the same undesirable features are present
there, too. We suggest that failings of this kind are likely to be generic in Liouvillian approximation schemes.
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[. INTRODUCTION have conjectured that tf@(1/N,) correction, which is loga-
rithmically divergent at smalb, may be used to arrive at an
It has long been appreciated that the quantum Hall effecéstimate for the localization length exponent
depends for its existence on localization by the disorder of Prima faciethere are three reasons to think that this work
quasiparticles in Landau level tails, and that neighboringnay have outflanked the obstructions faced by previous ap-
quantum Hall plateaus are separated by a continuous quaproaches. First, the derivation of the Liouvillian formalism
tum phase transition characterized by a diverging localizaby SMG invokes the algebra of density operators projected
tion length! The scaling ideas which encapsulate thisonto the lowest Landau level, thus appearing to build in the
understanding®> are supported by extensive numerical physics of high magnetic fields at the first step. Second, the
studied and by some of the available experimental data, formalism deals directly with a disorder-averaged two-
although the full experimental situation remains unseftled. particle quantity, avoiding intermediate calculations of a one-
An analytic theory of the transition, however, has provedparticle Green function, and hence, plausibly, goes directly to
elusive, even for the simplest models which include disordethe heart of the matter. Third, the extensio\{oLiouvillian
and magnetic field but omit electron-electron interactions. flavors is distinct from the standard extensio\torbitals in
In this context, two successive recent developments haviecalization problems? which is known to capture weak lo-
attracted interest: Sinova, Meden, and GifiSMG) have  calization physics but not the quantum Hall delocalization
introduced a Liouvillian approach to localization in the low- transition'® This gives grounds for hope that the logarithm
est Landau level, which Moore, Zee, and Sirfov®1ZS)  found by MZS may not simply be due to the weak localiza-
have extended, with the introduction bif Liouvillian fla-  tion effects and might indeed be used to get an estimate for
vors and an expansion in powers oNi/about the largeN, the correlation length exponent.
limit.® In brief, the Liouvillian is the time evolution operator ~ Given the potential importance of these developments, it
for electron probability density, and the information it en- seems useful to investigate the Liouvillian approach in some
codes on localization is integrated over states at all energiegetail and to relate it to established methods. This is our
within the disorder-broadened Landau level. Despite the ensbjective in the present paper. There are four distinct facets
ergy integration, the critical behavior of the localization to our results. First, we show that although the Liouvillian
length at the plateau transition can, in principle, be extractedpproach has appeared in past work to be tailored specifi-
from the dependence of the Liouvillian propagator on fre-cally to the quantum mechanics of particles moving in a
quencyw, provided this is known sufficiently accuratélsee  single Landau level, since it makes use of the algebra
SMG and also Appendix A of this papeiThe original work  of projected density operators, it can in fact be formulated
of SMG reported a calculation of the Liouvillian propagator for any disordered single-particle Hamiltonian. Second, we
using a version of the self-consistent Born approximationcompare the perturbation expansion for the Liouvillian
(SCBA), which is exact for theN =« limit of MZS, and  propagator with conventional calculations of the disorder-
yields diffusive time evolution without localization. MZS averaged two-particle Green function. We demonstrate that
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each term in the perturbation expansion for the Liouvillianquite generally. In combination, these results leave us pessi-
propagator corresponds to a specific combination of terms imistic about the scope for advances in the theory of the
the Green-function expansion. As a consequence, any apuantum Hall plateau transition using Liouvillian methods.
proximation scheme within one approach has an equivalent As we were finishing this work, there appeared a pdper
in the other approach. Moverover, it is possible to translatdy Moore, which studies the evolution of the QH Liouvillian
between the two approaches either direction: to go from as a function ONL . Its most relevant finding, via numerical
the two-particle Green function to the Liouvillian simply in- analysis at smalN_, is that the Liouvillian theory likely
volves an energy integration, while a more elaborate proceEXhibitS metallic diﬁUSion, instead of critical Scaling, at all
dure, which we set out, is required to undo this energy inteNL>1. Evidently, this is consistent with our own conclusion
gration and pass in the opposite direction. Third, we illustratén Sec. IV D 3 that the theory for al_ # 1 is unrepresenta-
these ideas by applying the Liouvillian approach to randonfive of the original problem of interestN_ =1).

matrix theory, discussing the Gaussian unitary and orthogo- In the remaining past of the paper we set out the technical
nal ensembles. We obtain an analytic solution in the limit ofcontent of our assertions. In Sec. Il, we develop the Liouvil-
large flavor numbeN, , for arbitrary matrix sizeN, and we  lian machinery in a general setting and describe, first, how to
supplement this with numerical calculations for finkg, 9o from two-particle Green functions to Liouvillians by en-
finding qualitative differences between resultdat=c (and  €rgy integration, and second, our algorithm for undoing this
all N,>1) and those aN, =1. We also undo the energy €nergy integration within a given Liouvillian approximation.
average aN, =, showing that the Liouvillian SCBA has a In Sec. Ill, we review the N, expansion scheme introduced
character different from the established approximations wheRY MZS, again in a general setting. Sec. 1V, is devoted to a
translated into a calculation for the two-particle Green func-detailed examination of the Liouvillian technique applied to
tion. It constitutes an approximation without the usual structhe test case of random matrix statistics. In Sec. V, we con-
ture based on single-particle self-energies and two-particlgider the quantum Hall problem and describe the pathology
irreducible vertices. Disappointingly, this is not progress aghat is immediately apparent by recourse to the previous re-
the approximation is pathological: the resulting Green funcSults. We end with a summary and three Appendixes that
tions exhibit spurious singularitiésside the bandnd fail to provide a more careful discussion of the critical behavior of
factorize Correcﬂy at |arge energy Separations_ Fina”y, Wéhe quantum Hall Liouvillian than that is available in preVi-
return to the plateau transition. Progress in this case is moreUs work; some details omitted in the main text; and a con-
difficult because even the Liouvillian SCBA of SMG re- Struction that yields an algebra for an arbitrary single-particle
quires a numerical solution. We are nevertheless able tblamiltonian that is identical to the algebra of density opera-
show that the two-particle Green function generated by théors projected onto the lowest Landau level.

Liouvillian SCBA has undesirable features in this case, too,

A. From two-particle Green functions to the Liouvillian

w —_
E+ E Gga

failing to factorize as it should for large separations between Il. GENERAL CONSIDERATIONS
pairs of its spatial arguments, and exhibiting spurious singu-
larities as a function of energy in this limit.

In sum, on one hand we have shown generally that any Consider a single-particle Hamiltoniat acting on basis
Liouvillian approximation can be equally well expressed us-states|a) in a spaceV of dimensionalityN. Although all of
ing the better-understood machinery of Green functions, anfis properties are encapsulated in the corresponding one-
on the other hand we have argued that the only existing basisarticle Green functions
for Liouvillian calculations, the M, expansion, is seriously
flawed. It remains the case, of course, that the Liouvillian .
approactper seis free of technical errors, and that an exact Gan(BE)= < al ——=—— b> (1)
treatment of the plateau transition, if it were available by this E-HZxis
route, would be about as good as by any other route. Ongyhere 5 is a positive infinitesimal in most problems of
may then aSk Whether it iS iikeiy that there are i_iOUViiiian interest their more eas”y Computed disorder averd@%>
alternatives to the N, expansion that will be more useful. have little of the interesting information contained @".
We believe not, on the following grounds. We note first thatone is then forced to consider higher-order correlators such
the feature that distinguishes i_iOUViiiia.n approximation as the two_partic|e retarded_advanced Green function
schemes from those that are natural using Green functions is
precisely the absence of a structure based on self-energies . . 1)
and irreducible vertices. Such a structure is generally re- Kaabs(E,0)=Ggp, E_E)’ 2
quired in order to conserve particle number, and its absence
is apparently tolerable within the Liouvillian approach, sincewhose disorder average does contain useful information.
the matrix elements appearing in E@2) are themselves Analogously one can defit¢* ", K™, andK™ . Here and
sufficient to guarantee the conservation law. In our view, onén the following, we usex as superscripts to indicate re-
lesson arising from our analysis of larfg-random matrix ~ tarded and advanced Green functions, and reserve lowercase
theory is that the structure of self-energies and irreducibletate labels, b for the former, and uppercase on&sB for
vertices is desirable for reasons that go beyond particle corihe latter.
servation: in their absence, pathologies such as the ones we The central object in this paper is the energy integral of
report for largeN, random matrix theory should be expected KgAij(E,w),
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o space, we will use the notatida,b) =|a)(b|. A natural in-

HaA;bB(w)EJ Z_ﬂK;A_;bB(Ev‘U)- (3 ner product on this space is defined aB '@ for any opera-
o tors P and Q that belong taA4,,. In terms of the basis, this

We will now show that, quite generally, this can be expressegields

as theone-particleGreen function of a Liouville “super op-

erator” (the Liouvillian) which itself acts on the spac#,, of (a,b|c,d)ETr{[|a)(b|]T|c><d|}=<a|c>(d|b}. (4)

all linear operators on the spate Clearly, this Liouvillian  Finally, pairs of operatorB, Q define a superoperator of,

Green function is to be distinguished from the usual Greewia the actionP-Q|a,b)=P|a)(b|Q from left and right, re-

function of the Hamiltonian, introduced in E(L). The space spectively.

Ay is N2 dimensional and is spanned by the basidagtb|. Now consider rewriting Eq(3) (with tildes denoting in-

To emphasize that these operators themselves form a lineaerse Fourier transforms

|
o) 1)
E+§ Gga E_E

o dE o © - -
=f ﬁf dtlf dtyexi (E+ w/2+i8)t, +i(E— w/2— 1 8)t,]G (1) Baalts)

o

dE .
HaA;bB(w):f =G

27Tl

=—if dte (@I NG (1) Gga(—1)

—

dtei(w+i§)t[ 0(t)]2<a|e—th| b><B|elHt|A>

=—iJm dte @1t Tr{(e"|A)(ale”'"") [b)(BI}

— o0

=—j JO dte (@19 (a,A|b,B),. (5)

The single-particle Hamiltonian induces a time evolution su-which is the promised rewriting dil ;p.ps(w). While Eq.(8)
peroperator, the LiouvilliarC, on Ay: does not appear in the work of SMG and MZS, aliris

simply the generalization for arbitraﬂ§| of the Liouvillian
discussed for the quantum Hall plateau transition in previous
papers. We continue our general discussion below and take
up the plateau transition in Sec. V.

|a,A)=e'“|a,A) (6)

and the matrix elements & can be read off from

d A
GrlaXAI=ilA [a)(All )
B. Exact properties of £

=iz (Hap0sa— SapHpa)|D){(B] A few general and exact properties Bfcan be inferred
bB from the previous formulas. The eigenvaluesg, of L are
simply related to the eigenvalueg of H by

=02 Lanpalb)(Bl. (7)
More abstractly, Nab= €2~ €p - (10
L=Ho1-10H. (8)

This implies that\ ;o= —\,,, SO that the eigenvalues af
In terms of £, we have finally occur in pairs symmetric about=0. In addition, the Liou-
villian has at leasiN zero eigenvalues, since,,=0. Fi-
nally, if the eigenvalues oft occupy a band of widthV, the

bandwidth ofZ is 2W.

1

a,Al———
w—L+i6

HaA;bB(w):

b,B) 9
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C. Perturbation theory

From Eg.(9) we can generate the perturbation expansion o B v
» (a,A|ZZ”|b,B) FIG. 1. Diagrams foll(w) at fourth order inZ.
Mappp(@)= 2 —————== (1)

=0 (o+io)""t of the algorithm, then provide a representative example, and

. . : . finally state the general formula.
It is interesting to see how this arises from energy, integrat- y 9

ing the perturbative expression for the two-particle Green
function. Consider the contribution bB(w) at ordern

in H, which is

1. Basic idea

In going from Eq.(12) to Eq.(13), we have lost the dis-
tinction between advanced and retarded propogdtinse
n [A™] [ A" ™] E+ (w/2)*i8 have been traded fap] but the matrix ele-
ab BA ments still record where the original disorder lines were at-
tached in the two-particle Green function diagram. If we re-
construct this information from the Liouvillian matrix
(12 elements, where it must reside since they are defined by ma-
trix elements of the Hamiltonian, our remaning task is
merely that of undoing the signs and combinatorial factors
" E introduced by the energy integration. This is easier done than
f K (" said

aA;bB(E1w)2_7Ti

n+l1-m-

E+ - +id

K{Rpe(E )= X~y
(E———ié) 5

m=0
2

Integration ovelrk,

n 2. Example

1 (—1)™n!
(w+|5)n+lm0(n mlml

[A™as[H" ™ga, Let us see how this works at the lowest nontrivial order
(fourth, since at second order there is only one Liouvillian
(13 diagram). Of the three diagrams in Fig. 1 we will use the

middle one, denoting its contribution tbl,ape(w) by
produces precisely the corresponding term in the expansmﬂ(ﬁ)bB(w) In terms offl, it is (summation over all repeated

for Tl (). indices is implied

D. Disorder averaging HgﬁA)bB( )

For the Green function perturbation theory with Gaussian
randorrlness i.ri:l, the effect of disorder aver-ag?ng is to re- — 1' 5< anuuLawenB Lot ov Loy (15)
place(H?") with a sum of products of all pairwise contrac- (w+i0)
tions (HH). We can translate this into the language of the
Liouvillian theory by using the definition of to express its B ~ > ~o
matrix elements in terms of those Bf, then using the cor- _m[éamewH ua {H 5wt G HauHwe) (A uw
relators for the matrix elements &f to obtain those foiC,

—2(HauHub)(HeaHu) — 2(HapHyvu)(HevH
(LanpsLecan)={(SaoHsa—Handon) (BeaHoc— Headoo)) (HauHobi(HaaHu,) = Z(HapHvur(HevHua)
= dapded(HeaHbC) — Sandpc(HeaHca) —(HauHeaA (HDup— (HapHeu)(H?)ua
— dsadca{HapHpe) + 98adoc(HapHca)s ) 5
—(H%au(HupHea) = (HapHua)(H)su
(14
and finally using these to average over the POWERS that +2(A2) (A2 pat 4(HaHeu)(HupHua) 1, (16)
occur in the perturbative expansion.
which can be represented graphically by drawing the bare
E. From Liouvillian perturbation theory to Green function Liouvillian propagator as a double line and resolving disor-
perturbation theory der vertices using the Hamiltonian as indicated in Fig. 2.

The purpose of this section is to construct an algorithm
for passing from a give(likely approximate expression for

[I(w) to the one folk (E,w). Specifically, we would like to — S
associate uniquely each disorder-averaged diagrai far) . - —@—
with a corresponding set involving Green functions. To make

the reader’s task simpler we first summarize the basic idea FIG. 2. Graphical representation 6f=Hel—1cH.
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This is done in detail in Fig. 3, in which the first diagram (12) to Eq. (13). For each term in our example, this may be

corresponds to Eq.15) and the last ten correspond to Eg. done by simply counting how many timésappears on the

(16). upper or lower lines, representing retarded or advanced
The final step is to undo the signs and combinatorial facGreen functions. In this way, writing . =E* w/2*i 5, we

tors generated by the energy integration in going from Eqfind that Eq.(15) generates a contribution to;A;bB(E,w) of

_ 5ab<HBWHUA><H2>WU+ 5BA<HauHWZ><H2>uW

Kgi'i);bB(Elw)

ESE_ E.E®
—ZX(_l) <HaUHUb><HBAHUU> + <HabHVU><HBVHUA>
4 E2E* E1E2
(—1) [ (HasHea(H?up - (HapHeu)(H?ua  (H?)au(HuHea) | (HasHua)(H?)gu
T4 2 -4 + 4 -2 * 2 -4 + 42
E2E* E*E2 E2E* E41E2
1 (H?)a(H?)ga 1 (HauHpu){HupHua)
X +4X— .
+2 6 £33 +4 6 £33 (17)
+E=- +=-
|
This equation is depicted graphically in Fig. 4. m!(2n—m)! <|:|m|:|2n—m>
Three aspects of this exercise are worth noting. First, a > AM(—1)m oY p—) anmi’i. (20
given Liouvillian diagram contains a partial sum of several Ma: (2mt  ETHIEZ

Green function diagrams. Second, the Green function diaz., . . o
grams are all added with positive weights. Third, one’s conatThIS step can be automated by making the subsitutians:

ventional intuition about the importance of diagrams in +ttlais_h>lt£h+Et;ir,1 F;n—i>a)l(5+ /fzﬂ ?nr?[h?_yrﬁa /Zt’ ?;'d itc;rl]er?[’itto
Green-function perturbation theory is suspect when carried ach (e bino Oetlicients, resorting to the identity
over to Liouvillian perturbation theory. In this example, a . . d mon .
seemingly simple, noncrossing Liouvillian diagram actually f dxf dy 35 —?exp(—x—y+z) Xy — m:n:
sums some of the crossing diagrams in Green function per- Jo 0 2miz z 1

turbation theory. (21

where thez integration contour encloses the origin once in

) ) the counterclockwise direction. Thus, the algorithm for en-
To apply the method illustrated above to all diagrams, Wesrgy unintegrating the Liouvillian perturbation theory is re-

need to automate the procedure for keeping track of the toryrmulated as a particular integral transform.

pology of disorder contractions. This can be accomplished T, summarizeK (E, ») can be recovered frofi(w) by

by deforming the problem defined by Eq8) and(9) to the  first generalizingI(w) to TT(w,p,h) for a Liouvillian as in

form Eq. (18) and then carrying out the integrals in

L(p,h)=pHo1—hieH,

3. The algorithm

K(E,w)=fO dxf0 dy 35 mexp(—x—waz)

[I(w,p,h)=[w—L(p,h)+is] L. (18)
Here,p andh are arbitrary parameters that record whetHer XTI E,E_ §E+ _ XE, _ (22)
acts on a retarded or an advanced Green function line. Con- 'z oz

sider any particular Liouvillian diagram at orden2which

we label below withu. Its contribution tolT(aw) is As the objects on both sides are formally defined by their

diagrammatic series, this is an exact relationship between

<|:2n> <|:|m|:|2n7m> them. Given a finite set of Liouvillian diagrams, this proce-
N Af{@p%‘mhm %% (19)  dure can clearly be carried out diagram by diagram. On the
(w+i8)>"1 ma (0+is)>"*? other hand, the procedure may prove too cumbersome to deal

whereA*) are combinatorial coefficients aid, denotes a SQCCG.S.Sfu"y with a.partlcular approximate resummation of
@ m Liouvillian perturbation theory. It turns out that our program

particular subset of Wick contractions 6£2") cAorrespond— can be carried through for té,_ =< limit of MZS, applied
ing to x (and similarly for( ),,, in the case of H?")). The  to random matrix ensembles, as we show in Sec. IV. In con-
diagram gives rise to a contribution Ko, .,g(E, ) of trast, for the quantum Hall problem even thg=c limit
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FIG. 3. Graphical representation of the correspondence betwee

Liouvillian and Green function perturbation series. The first dia-
gram corresponds to E¢L5) and contains two Liouvillian contrac-
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FIG. 4. Green functions for the Liouvillian diagraof Fig. 1,
represented by Eq$16) and(17). This figure should be compared
with the last ten diagrams of Fig. 3.

requires numerical solution of an integral equation to obtain
the Liouvillian. The chore of energy unintegration in this
case is much more involved and we will consider it only in a
special limit. It is conceivable that in still other cases one
may need to resort to numerical resummations of the uninte-
grated series.

Ill. 1/N. EXPANSION

No exact solution of a problem using the Liouvillian for-
malism is known at present. It is, therefore, pertinent to ask
whether there are useful, natural approximations in the Liou-
villian, which that are hard to uncover in the standard ap-
proach. The simplest one, suggested by the interpretation of
the Liouvillian as a random Hamiltonian in its own right, is
the SCBA, employed for this purpose by SMG. In the super-
symmetric functional integral approach of MZS, the SCBA is
a saddle-point approximation, but we will instead take the
diagrammatic route, in which it is a summation of all non-
crossing diagrams. In either case, the procedure is justified
formally by deforming the problem to the one wil Li-
guvillian flavors and taking th&l =< limit. One can then
examine the stability of the solution by perturbing ilNL/,

in the hope that most of the structure in the problem of

tions. Next, three diagrams are obtained by redrawing one of théterest,N =1, survives to largeN, .

contractions using Fig. 2, each of which is in turn decomposed by

The recipe for introducingl, flavors into a general Liou-

repeating the procedure on the remaining Liouvillian contraction\villan problem is as follows. One replicates the origind

Finally, the last ten diagrams represent ELf).

dimensional space of bilineal times and allows for scat-
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At next order N[l), one needs to sum the maximally

: | : . i Ca | crossed graphs and rainbow diagrams shown in Fig. 8. At
any order, the Liouvillian Green function is diagonal in the
- Y . o flavor index
1 i 1 j 1 1 ij i 1
N HQA;bB(w) = 5ij 1_[aA;bB( ), (26)

andII,app(w) is taken as an approximation to thg =1

FIG. 5. Liouvillian diagrams up to fourth order i. The last | jouvillian Green function.

diagram contains a crossing and is smaller by a factgr tthan the
others, which are of the ordét?. Only flavor indices are shown
explicitly. IV. RANDOM MATRIX THEORY

We now turn to the problem of random matrix statistics as
a test of the Liouvillian largeéN, approach. The large number
of known exact results on problem and the relative simplicity
,B;j )

tering between different flavors. Then,

(23) of calculations make it an ideal test case. While there is no
phase transitiorfall Green functions are analytic inside the
band, we will see that there is sufficient nontrivial structure

with in the statistics of the eigenvalues which can be used diag-

nostically. Oddly enough, we will find that the Liouvillian
Akl amm L Al SKI analysis will yield some Green functions thate singular
(LL™M)y= ,\l_l_(5kn5lm+51<rn5ln)<£ L%, (24 inside the bandsee Sec. IV E
The program is as follows: fdd X N random matrices, we
where in the Liouvillian correlator we have indicated only introduce an enlarged Liouvillian withl, flavors. Now we

the flavor indices. The replicated Liouvillian can be thoughthave(at least two different limits to consider. The standard

of as anN_ XN, matrix with entries that are themselves one takesN>1 at N, =1, and leads to a familiar set of

N2x N2 blocks. Each such block has the structure of a Liou-simplifications such as the Wigner semicircle law for the

villian for the original, single flavor, problem. Different density of eigenvalues which are summarized below. It also

blocks are constructed from different realizations of the disieads to a perturbation theory inN,/ which is the zero-
order, apart from the constraint“'=72'. Hence, (N>  dimensional version of the impurity-averaged perturbation

+N_)/2 independent realizations of disorder are necessary t&1€0ry for single-particle Green functions in disordered con-
construct a single realization of the replicated problem. Théluctors. The new limit, we will consider, i, >1 at fixedN.
entire N_N?>X N_N? matrix is Hermitian. The construction AS in all largen expansions, this will prove useful if the
we have described is, in the terminology of MZS, the or-largeN, problem is sufficiently smoothly connected to the
thogonal generalization of tHé, =1 problem and is the one N.=1 problem of interest. While we will find it useful to
that, they have argued, is useful in generatinghy Jxpan-  then takeN>1 (but keepingN<N,) as well, the possibility
sion for the localization length exponent for the quantumof finding nontrivial information on finite matrices is a po-

HgA;bB: a.,A,'

w—L+16

Hall plateau transition. tential asset of this limit. Similarly, in the application to the
To see how the expansion goes, consideNas>» the  duantum Hall plateau transition, the infinite volume limit is
low-order diagrams shown in Fig. 5. taken afteN; —o.

Evidently, diagrams with crossed disorder lines are sup- Before proceeding, we collect some standard definitions
pressed by factors of Nf relative to those without crossed and results on the random matrix theory for the ease of com-
lines. This suppression of crossed diagrams continues iRarison with the following Liouvillian analysis.
higher orders of the expansion. Thus the leading approxima-

tion at largeN, is to sum all noncrossing terms, which are of A. Ensembles
the order ofNE. As usual, this sum can be carried out by ) ] ) - R
solving the equivalent self-consistency equation We will be interested in random Hermitian matrickls

drawn from the Gaussian unitary ensemb&UE) if H is
complex, and the Gaussian orthogonal enser(®@E) if H
is required to be purely real. For these ensembles it is suffi-
cient to specifiy the correlators of the matrix elements,

ij _ Sandaij 1
aAbB™ 1S w+id

[(Z-11-2)- Tl ps (25

represented graphically in Fig. 6.
2

[
<HabHcd>: W(ﬁadébc+a5ac5bd)r (27)

= +

FIG. 6. The Liouvilian SCBA in diagrammatic form. Clear wherea=0 for GUE anda=1 for GOE. The variance has
lines represent bare propagators, and filled ones the full propagatdneen normalized by the matrix siZ¢ to produce a band-
(o). width which remains finite abl— .
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B. Correlators —2)*2%3]. Higher-order correlators of the DOS, including

In addition to the fundamental one- and two-particle R(E,w), can be discussed in eaph of two Iimits.. First, taking
Green functions defined in Sec. II, we will be interested inN— With energy arguments fixed and all different, they

the density of state€dOS) of M, factorize. For example, withh# 0,

1 R(Ew)=< E+3>< E-2 (35)
E)=> S(E—ey)=——ImTr|—————| (28 =\ P\ =2 I\ P\ =T 2) )
p(E)=2 S(E~—ey=—_ImTl| ———| (28
and its disorder-averaged correlation function Second, by scaling the separation of energy arguments with
the mean level spacing, universal correlation functions are
) ) obtained, which are dominated at small energy separations
R(E,0)=\p|E+5|p|E=5]). (290 by level repulsion. Thus, foNw<1,

R(E,w) is related to the two-particle Green functioksby

1 _ _ __
R(E,w)=— > 2 [K;A;aA+ KaAJ;raA_ K;ATaA_ KaA:aA]-
477 aA
(30

The Liouvillian Green function allows us to extract the Li-
ouvillian DOS(LDOYS)

Q(w)=2 S(w—Nyn)=— %ImTr

mn

;] -
w—2+i5

and it follows from Eq.(10) that Q(w)=fdER(E,w).
Disorder averagingat anyN) simplifies the structure of
various correlators

<Gmn(E)>: omnG(E),

(Kaabe(E,©)) = 8ap0aeK1(E, ) + 8,40p8K2(E, w)
+ 8ag0apK3(E, 0),

(ITaap8(@)) = Sapdaplli(®) + Saadppll(w)
+ Sagnplls(w), (32

with the constraint¥,=Kj andIl,=1I5 for GOE andK,
=II;=0 for GUE. Finally, the Liouvillian density of states
has the form

2 II II
Q(w):—N? My () Z(w)Jerm slw))

(33

where the powers oN arise from taking a trace over the
index structure in Eq(32).

C. Standard results: LargeN at N, =1

At N=o, the SCBA for the single-particle Green function

G;;n(E):amnzi(l— J1—40?/E?) (34)

1)2

is exact, and hence the DOS is the Wigner semicircle:

limy_...{p(E))/N= (1/7v)J1— (E/2v)?. For large but finite

R(E,®)(wN)?p(E)?, (36)

with 8=1 for GOE andB=2 for GUE.

Combining these with our earlier listing of the general
properties of Liouvillians, we conclude that the exact LDOS
will have almost all its weight within the range
—4dv<w<4v for N>1. ForN=oo, it is exactly zero out-
side and vanishes with zero slogguadratically ~(4v
+ ®)?] near the edges. Finally, at finité, there should be a
pseudogap of widtlw/N nearw=0 with details depending
on the symmetry of the ensemble.

D. Random Matrix Theory Liouvillian
1. N, =<, N arbitrary
For the GUE, Eq(25) becomes

1 202114 (w)?

Hl(w)zw-i—iﬁ w+id
_ U2 2_1
Hz(w)——mﬂl(w) N m—nl(w)),
II5(w)=0. (37)

\Q/ N?
\

FIG. 7. LDOS scaled byN? at N, =« with disorder strength

N, the deviations from this limiting form are small. For ex- y=1. Solid line is GOHEq. (41)] atN=6 while the broken one is
ample, the leading behavior of the DOS at energies above th@OE[Eq. (41)] at N=o and GUE[Eq. (38)] at arbitraryN. The §

largeN upper band edge=2v, is p(E)~exd —4N(E/v

function at zero frequency has been suppressed.
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The solution is similar to that fo=c RMT [cf. Eq. (34)]. 1 20%(N+1) ) )
Using Eq.(33), the LDOS s i(0)= 5 " Niwtia) Hal@)"~ Ha(@)7],
~ N2-1 [ P 202

)= dw)+ 202 1_8_112 (38) Hg(w):Hz(w):m[ng(w)z—nl(w)z]
for |w|<22v and zero otherwise. Notice that the support of 1 1
the spectrum alN, == is completely independent o. “NT1 w+i5_Hl(w)) (39

Turning to GOE, the self-consistency condition reduces to

the quadratic equations with solution

— 40+ (1+N)(N(w+i8)°— V1602 —8N(1+N)v%(w+i8) >+ N2(w+i )%

IIi(w)= , (40
i) AN(2+N)v2(w+i5)
|
leading to the LDOS +E)~Y4 In fact, we shall see tha® does not factorize at
N_ =<, which turns out to be the central pathology of this
limit.
1 2N 2N 1 (3) Although there is & function at zero frequency, aris-
- _ 2_ _ 1 . . ~ . . .
Qw)= W<N N+1) ImIT;(w) AN+ M oris ing from zero eigenvalues of [see Eq.(10)], its weight is

(41) 1, and notN as it should be. o _
(4) Finally, the two solutions are qualitatively wrong in
the small frequency limit|@|=1/N) in opposite ways. The
As N—oo, the leadingO(N?), piece of this result is identi- GUE LDOS is nonzero with no indication of level repulsion,
cal to the corresponding piece 6f(w) for the GUE. For While the GOE develops a@lean gap over a region of
finite N, however, the LDOS is zero in the windojw|  O(1/N). _
<\20?/N, in stark contrast with the GUE resulor any- The N = result above is clearly not an adequate ap-
thing else one might expect of a disordered system: accordoximation toN, =1, even for the purposes of computing
ing to this approximation the spectrum of the disorderedProperties of the Liouvillian. In the following section, we
problem iscompletely gapped These results are illustrated Will see that matters get worse when we energy unintegrate
in Fig. 7. the N =< result. Before turning to this, we first ask whether
There are at least four important differences betweerPn€ may construct a smooth interpolation between the two
these exaclN, = results and the corresponding, correct, limits by perturbing in 1N, . We offer evidence that this is
N_=1 solutions. These differences are given as follows: unlikely, both by considering the Ni{ expansion analytically
(1) At N, =<, results for both GUE and GOE imply a and by studying the problem numerically for a rangeNof
bandwidth of 2/2v for the underlying random matrices. Values.
This is a factor ofy2 less than that of the correct solution.
(2) The infinite gradient of theN, = expression for
QO (w) at the Liouvillian band edges is at odds with the exact
result, which has vanishing slope. Contributions to the
LDOS at the Liouvillian band edges come from pairs of
random matrix eigenvalues which are near opposite random
matrix band edges. If one assumes tRawill factorize in
such cases, which is certainly true of the exact result and
should be expected anyway for such widely separated eigen-
values, the form found for LDOS implies a DQfivergent
near the random matrix band edges, WiliE)~ (v+2

0

FIG. 8. All diagrams forfI(w) at O(1/N,). FIG. 9. 1N, correction to the LDOS for GUE.
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T0.4

N, =1

Q

0.8

0.4

N =2 |Q
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FIG. 10. Evolution of()(w) from N =1 to N, =8 for N=2 GUE of random matrices. Solid line is the exact solutionNgr= 1 (Ref.
19). A functions at zero frequency have been suppressed.

2. Leading /N, corrections relevance of analytic results above and also to search for new

As discussed in Sec. Ill, the leading correction for large-féatures, especially in the interesting regime of snall
N, to theN, =< Liouvillian Green function is given by the Representative plots éi(w) are shown for the GUE in Fig.
maximally crossed diagrams. These are resummed by twb0 @nd for the GOE in Fig. 11, both covering a rang&in

consecutive geometric series, represented graphically in Figt N=2. We have searched for, but found no significant
8. qualitative differences at largeN. Our conclusions from

Denoting theN, == solution byTI,, the result of this these figures are as follows. First, the gross features of the
calculation for the GUE is N_ =<« limit (see Fig. 7 are already observable & as
small asN, =8. Second, Liouvillian theories &, >1 are
sufficiently different from the theory aN, =1, even for

60 (w)= N Im > 5 5 > |- N_=2 and 3, that the quantitative utility of anyNy/ correc-

LT [1—v5(I) I[1—207(11y)] tions seems questionable. Readers should note especially the
As is the case with N corrections to the RMT DOS, the rapid change in the distribution of small eigenvalueslass
1/N, correction to the LDOS is finite neas=0 and devel- increa_sc_ad. Third, V\{hile one clearly cannot hope to investigate
ops a singularity at band edges, as illustrated in Fig. 9. In th@nalyticity conclusively by these means, there are two fea-
case of the GOE, the M| correction, which for brevity we tures to the numerical results which suggest a behavior
do not display, is divergent at all four band edges. nonanalytic in 1IN, atN, =c. One of these is the number of

These divergences show that any attempt to fix the bancftates outside th&l, = band, which appears to decrease
width problems of theN =c¢ limit, if feasible, must involve ~ €xponentially inN, , as in the band tails of the RMT DOS.
an analysis including contributions at all orders i/ We ~ The other is the presence of oscillations in the LDOS for the
have not pursued this analysis further. Instead, we offer eviGUE at small energies, as a functionff : 0(0) vanishes
dence from numerical studies that an expansion abgut for 0dd N, and is nonzero for even ones.
=0 js unlikely to yield useful information on behavior at
NL: 1 .

1—-N? 2(11,)5v%

E. Undoing the energy integration

In this section, we apply the formalism developed in Sec.
Il E to translate théN, = RMT calculation into Green func-

The simplicity of the random matrix problem provides us tion language. We start from E(L8), applied to RMT. Sum-
with a different, more direct line of attack via exact diago- ming the noncrossed diagrams witt(p,h) leads for the
nalization. Specifically, we have diagonalized numericallyGUE, to the self-consistency equations, modified from Eg.
the Liouvillian RMT for a range oN, andN, both to testthe (37) to

3. Numerics at small N

Q N =1 |© o N=2 | N, = Q N, =8

0.6
0.4

[0.2

FIG. 11. Evolution of}(w) from N, =1 to N =8 for N=2 GOE of random matrices. Solid line is the exact solutionNpr1 (Ref.
19). § functions at zero frequency have been suppressed.
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_ Hl(w)vz 2 2 i E+ i / ’
@)= 055" ~oria |(PHM)hle) | i
: ! 0=
(p—h)? | 7
R | 7)) P | WY

_________ N —

_ 2phv?Ily(w)® vA(p—h)?Il(w) fx
Ma(0)==—N0Fis) T w+is -2v\<—j2v E.
M| IS | —

>< Hl(w)+ N 1 | -2V :
/ e
e | |
IT3(w)=0. (42 P ! |
We now take the further limiN— o whereon the solution is 4 : :
FIG. 12. Analytic structure oK(E, ,E_). R(E,w) is finite
_ w - _ 4(p*+h?)v? inside the circle.
My(w)=—F—7—>11 1-—— .
2v%(p?+h?) (w+i6)?
In this limit, the solution for the GOE is identical. To proceed further with this discussion, we need to exam-
Using Eq. (22 we obtain Kjaps(E,®)  ine the analytic structure of E¢44). Observe that the result
= daponsK1(E,w), where is an analytic function of reaE, and E_ when bothE,
. . >2 andE_>2. In this region, it is the sum of the conver-
Kl(Eyw):f dxf dyexp(—x—y) gent perturbative gxpansio_n in inverse pqwerng, which
0 0 is generated by unintegrating thig = series term by term.
T Also, in this regionK ™~ is purely real and the choice of the
dz€E,"E” sign of the imaginary infinitesimals iE. is immaterial: it
2mi 202 (XE~ )2+ (yE; H)?] equally well describes an approximationKd .
The series diverges on approaching the boundary of this
X [z—\Z2— 40 (xE; )2+ (YyE-H2]]. region. In the two-dimensional plane of re@l, ,E_, this
43 takes place at the outer boundary of the cross shape formed

by the four linesk, =*2v andE_= *2v, shown in Fig.
We carry out the integral for large positi#e. (see Appendix 12. Inside this cross shap_e, the cho@ce of _infinif[esimal imagi-
B for detail§ and obtain results for genergl, by analytic ~ nary parts tcE.. is essential to specify which side these are

continuation. We find of the branch cuts in Eq44). Depending on how this is
done, we obtain inside the cross béth ~ andK™* ™, which
Ki(Ey,ED) are no longer equal but are both generically complex. The

development of imaginary parts to the Green functions oc-
curs when one of their arguments enter the band. Indeed, in
' the exact expression, E¢5), this is trivially true.
Random matrices do not exhibit a phase transition and so
(44 we should expect tha€ "~ andK** are analytic functions
of E, andE_, except at the band edd&: =4v?. This is
true of the exact result, E¢45). Surprisingly, it isnottrue of

1

202

—1

sin 2

E,VEZ —4v2+ E\/E2—4vz) m

E2 +E2 — 402 2

where the signs of the square roots are positive for Eeal
>2v, and branch cuts in the compl&. andE _ planes run ; Y o
on the real axes frorf.. = — 2v toﬁ)EEX; 20 P the correlators derived from E(44). Specifically, inside the
* * . G t— . hi . . i,

The very first thing to note about this result is that unlike f0SS: Wh'lezK LS anglytm,K exhibits singularities on

the exact answer the circleE{ +EZ=4v*“. For example, along the IinE
=E_, i.e. w=0, we find

Kanbe=G"(E+)G™(E-)

o
E.E_ 42 49?2 K'(E,0=0)= 7, (46)
=badne o | 1~ \1- 2 || 1- V1- &= ). v
4y EZ EZ
while
(45)
it does not factor in its dependence upBn . At N=oo, . T E
where the energies. involve eigenvalues that are at infinite ReK (E’w_o)_WSg v \/E (47)
separation on the scale of the level spacing, this is manifestly
wrong. for 0<E/v<2 and
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L ot 2 when 2<E/v<2
—CO0S —_ v
v? V2(Elv)?—4
ImMK*™ " (E,0=0)= (48)
inh~* Elv when 0<E/v<.2
— —sin _— v ,
v? V4—2(E/v)?
where the negative branch is picked for the c¢dsiThese F. Summary of random matrix analysis

results are plotted in Figs. 13 and 14 along with the exact Briefly,

Green functions for comparison. method we find that the largd; limit is unrepresentative of

Finally, one can extract from the knowledge of béth ~ . _ . i
andK ™" the correlator of the density of states, which has thethe behavior of thé, =1 problem. Upon energy unintegrat
ing the LiouvillianN = calculation, we find a pathological

in our direct examination of the Liouvillian

simple form approximation that fails to factor correctly and even pro-
duces singularities inside the band. Together, these facts in-
w2 dicate that the Liouvillian M expansion is not a useful way
R(E,w)= . 2(9(402—2E2— 7) (490 of approaching the random matrix problem.
mo

In this analysis, we have utilized two complementary per-
spectives on the largd; method and a comment on those is
It is constant inside the circlE? +E2 =4v? and zero out- perhaps useful. The first perspective is that we generate a
side. This solves one remaining puzzle. While thefamily of problems with enlarged symmetry groups indexed
Liouvillian-derived two-particle Green functions imply the by an integer each one of which can be studied directly—
same RMT band as the the exact ones, in the sense that boMpich is what we have done in the numerical analysis. The
are analytic outside the cross, we noted previously that thenlarged problems are defined by multiflavor Liouvillians
Liouvillian bandwidth was wrong by a factor af2. We can  that do not themselves arise from from single-particle Hamil-

now recover the LDOS, Eq(38), by integratingR(E, ) tonians. The second perspective treats the lakgédimit as
over energy: formalizing perturbation theory about a saddle point that is

believed to capture the relevant physics. In this fashion, we
generate a series in powers ofNL/whose first term comes
1 dE w? solely from the saddle point. The utility of the method is, of
e

2E%+ 7—402 course, that settingl, =1 in the perturbation theory yields
the answer for the case of interest. In using Me=~ an-
1 w2 swer as input for the energy unintegration algorithm, we
—— = \[/1- — (500  have followed standard practice and simply truncated the se-
2 8v ries at its first term and sé&t, = 1. If the largeN, method is
useful in describing theéN, =1 problem, this should be a

which serves also to verify that our analysis is imema”ysensi_ble approximation. Since we find that this is not so, the
consistent. premise must be flawed.

4arv

Re K

0.5

0.9 /

-1’ TImK **

FIG. 13. Real part oK**(E,E) corresponding to the energy FIG. 14. Imaginary part ok ™ *(E,E) corresponding to the en-
resolved Liouvillian solution(solid line) vs exact resulidashed ergy resolved Liouvillian solution(solid line) vs exact result
line). (dashed ling
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V. THE QUANTUM HALL TRANSITION K+_(E,w;q)
Our Liouvillian analysis of the random matrix problem 1
suggests to us that the method is unreliable and hence notto — f f K+~ (E,w;rq,r,)e 9 2="dr dr,,
be trusted in its application to the quantum Hall problem. 272N
This is a disincentive to pursue a similarly detailed study of
the quantum Hall case, especially as it would be a substantial 1 _
undertaking: even the LiouvilliaiN, = analysis of this H(w;0)= 5 IZNJ fH(w;rl,rz)e'q‘(rzfrl)drldrz,
problem requires a numerical solution, and a full energy un- . (54)

integration would require much more intensive numerical
work. We therefore confine ourselves to three sets of obsemnd the states
vations. First, we confirm that our general Liouvillian for-
malism reduces to the one used by SMG and MZS for the f ; 2

S . . = | (r,r)exp(—iqg-r)der, 55
guantum Hall case. Second, we exhibit the unintegration al- |pq) (r.rexp(—ig-r) (59
gomhm spec_lallzed to this case. Third, we apply the unlnte-WhiCh represent the projected density operatBexp(—iq
gration algorithm to a special sector of thig =co problgm, -r)P in the space of operator$ on the lowest Landau level.
that of very large momenta, where it reduces to precisely th?n terms of these, we can rewrite EG3) as
Liouvillian random matrix problem studied in the preceding '

section. This then embeds the pathologies of that problem « dE
into the quantum Hall case. H(q,w)zf ﬁK+*(E,w;q)
A. Liouvillian formulation 1 1
We consider a charged particle moving in a magnetic field T 2AhI?N < Pa(wtio—L) pq) > - (59

on a torus of area 21°N, wherel=(#c/eB)*?is the mag-

netic length andN is the integer degeneracy of each Landauln place of the density operators, it is slightly more conve-

level. We denote the projection operator onto the lowest Lannient to use(a52 a basis ford) the magnetic translation op-

dau level byP. As the kinetic energy is constant within each eratorSTq:eJrI q /4pq, which are closed under the algebra

Landau level, the Hamiltonian projected to the lowest Lan- _

dau level is simplyH="PV(r)P whereV(r) is the impurity Tq7q =exp(i1?q0q'/2) 7. o , (57)

potential. ) ; n
It is convenient to work initially with the state§P|r)} }[/iv:r?req/\q €;Gid; » and are orthogonal with normaliza

which form an overcomplete basis for the lowest Landau

level; to lighten notation we will Wri_te{|r)} for {PIr)}. In (7q1l 7q2) =Ngq1q2- (58)
terms of these, we can define the single-particle Green func- ) o
tions in real space With the identification
1242
G*(E;ry,ry) < 1 > (50 lp)=e"" " ry), (59
T(Erg,rp)=1\r - r K
e Y(E-H=io)| 2 one can show that in this basis the matrix elements of
and the two-particle retarded-advanced Green function inm HO1—10OH are
real space la—q'[212
Loq=Vq q€ —z—[ei(q/\q’|2/2)_e—i(qu’|2/2)]
K+7(E,w;r1,r2)=Gf(E—a)/2;l’1,r2)G+(E+ w/2;r2,r1), (60)
(52)
. y _ _ la—q'122 _[qOq'l?
where we have chosen a pairing of position coordinates ap- =2iVy g€ 2 sin > . (61
propriate for a diffusion propagator. These are evidently the
analogs of Eqgs(1) and(2) in Sec. II. From these, we derive With these we arrive finally at the form
the analog of Eq(3),
exp(—q2l2%/2) 1
* dE - o)== ezl | ®
II(rqy,r,w)= J,mz_wiK (E,0;r1,1) m ol qq
which is the one introduced by SM@p to a constant due to
oy 1 o 53) difference in definitons
Pl w+is—L)| 2 2) From known facts about the two-particle Green function,

it can be deducetsee Appendix A for detaijshat the exact
As disorder averaging restores translational invariance, Wejouvillian self-energy varies for smati, » as
take Fourier transforms and defitdenoting the disorder-
averaged quantities by the same sympols w—T1"Y(q,0)=ig’D(w)~ig?w’?. (63)
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rules are familiar to workers in the field and have enabled
considerable progress in the series analysis of probtéfn.
Here, they illustrate the connection between the Liouvillian
and Green function perturbation series.

In order to apply this procedure in full to the Liouvillian
N_ =< limit, we must computdI(q,w,p,h), which in turn
requires numerical solution of an integral equation and is
therefore a substantial undertaking. We turn now to the large-

FIG. 15. One of the ten diagrams of Fig. 3 redrawn and rela-d limit, for which the energy unintegration can be carried out
beled using momentum coordinates. more easily.

This is a subdiffusive behavior and is controlled by the cor- C. Energy unintegration at N, =, as ¢
relation length exponent as—0 at fixedw. The combined
work of SMG and MZS has yielded a self-energy, in the
1/N, expansion, of this form with

Inw

N

suggestive of an expansion of a critical power law. In the 1 ﬁ(q,w) d%q’
following section, we note that the general algorithm of Sec. TI(q,w)=
[l could be used to examine this result at different energies in

the disorder broadened Landau level.

The key observatidhthat allows us to execute the energy
unintegration procedure in this limit is that the self-

consistency equation simplifies drastically. Definligq,w)

(64) by T1(q,w)=e""“9*2[1(q,»), asq—x the self-consistency

1+0 :
equation

D((,!))""DO

w+i5+ w+id 472 <£q!Q+q’[’Q+qu>

Xﬁ(q+q’,w) (66)
B. Energy unintegration reduces tt/

Formally, the procedure for recovering(q,E,w) from 2T
I1(g,w) is a straightforward specialization of Sec. Il. One ﬁ(oo w)= 1 20°711%(=, w)

N — + : ,
starts by deformingC to o+id 0+id

am g 1220 (@G 212 e i (@A 12012 which isidenticalto the corresponding RMT equatideither
Laqr(p,h)=Vq_ e 97T pelanaar —he 19710, GUE or GOB at N=cx. It follows then that the energy un-

This generates a deformation of any given Liouvillian dia-Nt€grated —solution —of this equation, the quantity

gram or of some partial summation that leads to an approxik(®,E+ ,E_)=Iimq_,we+q2'2’2K(q,E+ ,E_), is given by
mate form forll(q,w). In either case, carrying out the re- the expression already exhibited in Ed4):
placements in Eq.18) and the integrals in Eq22) gives the —
corresponding energy resolved expressions. K(,E4,E-)

As for the general example of Sec. Il the algorithm relies > 5 5 5
on disorder contractions to keep track of the topology of :i Sin—1E+\/E+_4U TE_VEI-4 _r
individual diagrams wittp andh used to assign appropriate 202 E? + E? — 40?2 2|
weights via Eq.22). Since the first step of the procedure is
particularly transparent in the LL setting, we briefly consider (68)
the analog of Fig. 3. In particular, for each of the ten “un- As before, the two particle Green function fails to factorize
folded” diagrams we can immdediately write down its value in energy. This has, however, a more serious consequence in
by drawing momentum carrying linéboth disorder and ex- the quantum Hall problem. Large momenta also correspond
terna) inside the “particle-hole circle” and integrating corr- to large spatial separations in magnetic fields. More pre-
elators of the disorder potential with an exponential/phaseisely, one ha$
factor chosen according to the diagram’s topology. For ex-

(67)

ample, the diagram in Fig. 15 is giveaside from energy (G™(r,r,E;)G (0,0E.))
- _J = p( " Joxrg 2)? E, E
efQZIZ/Zf AT o (Vo et~ (p2+ G212 T RS D b
(2t VeV tVeVop .
—i(q0p+p0Q)I?], (65  and hence

and boils down to evaluating a determinant. The wedge fac-

tors (qp=z-qX p) appear whenever two momentum lines lim (G(r,r,E,)G(0,0,E_))= lim K(Q,E. ,E_).
cross (one also selects a sign convenjicend effectively r oo g2l ?
serve as a fingerprint of each diagram. These diagrammatic (70
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So we discover that the lack of energy factorization trans<utoff for diffusion. Considering the energy integrated propa-
lates into a lack of factorization at infinite spatial separationgator, one might worry that, as the critical wave functions are
which is clearly unphysical. In addition, we again find thata set of measure zero in the spectrum, any information on
the retarded-retarded Green function is singular inside théhem will be lost upon integrating over the band and the
impurity band in a limit where the exact answer is neccessabehavior at smally andq will be that of an insulator. This is
rily analytic. not the case: the Liouvillian Green function exhibits critical
asymptotics intermediate between those of the metal and in-
VI. SUMMARY AND OUTLOOK sulator in the transport limij<w, with the diffusion con-

_ _ _ _ _stantD(w,q=0)~ »*?, wherev is the correlation length
As this has been a largely technical discussion of the '-"exponenlz.o

ouvillian formalism, it is perhaps useful to summarize the Near the critical energ, , the two-particle Green func-

main argument again. The work of MZS, building on that of 5 for the quantum Hall problem can be parametrized as
SMG, has suggested that the critical divergence of the local-

ization length for the(noninteracting quantum Hall transi- 27p(E)
tion can be computed within the Liouvillian formalism by K(E,w;q)=- 5" (A1)
the 1N, expansion in the number of Liouvillian flavors. We io—D(E,w;q)q

find, based on testing the Liouvillian approach on randomp, ihe transport limitDg2<w, we can expand the denomi-
martrix theory and energy unintegrating it at large momenta,ior to obtain '

in the quantum Hall problem, that this program has serious

problems already atl, =< which do not appear to be reme-

diable within the 1N, expansion. Accordingly, we conclude K(E,w;q)~2mp(E)

that the calculation of MZS does not represent a computation

of the quantum Hall correlation length exponent. As there isThese forms also hold for a metal, wi(E,w;q=0) non-

no other approximation scheme that readily suggests itself inero, and for an insulator wit® (E,w;g=0) vanishing for

the Liouvillian formalism, and as we have argued in the In-w—0 roughly as w?. For the quantum Hall problem,

troduction that alternatives are likely anyway to suffer fromD(E,w,q) has a nontrivial dependence & », andq.

similar deficiencies, we are pessimistic about the utility of To quantify this dependence, consider the two important

Liouvillians for making progress on the problem of the quan-length scales in the transport limit. These are the localization

tum Hall transition. length é~1|E./(E—E.)|” and L,=(p(€)w) Y? which is
There are a couple of loose ends in our analysis thathe size of a box with level spacing of the order of the fre-

would be nice to tie up. First, we have not carried out thequency. Then, whemh ,<£(E), localization is unimportant

energy unintegration of the LiouvilliaftN, =<« answer for and we may tak® (E,w,q)~D., a nonzero constant. In the

the quantum Hall problem neay=0, and it would be of opposite limit,L ,>&(E), we have the insulating behavior,

some technical interest to see if this has an analytic structu® (E,w,q) =D, @)~ w?. In the following, we will assume

different from large momenta as well as a technical challengea sharp crossover between these two limiting forms, which is

to see how this might be performed. Second, it may be possufficient for our purposes.

sible to use our ideas on energy unintegration to see if the Armed with these facts we can now carry out the energy

logarithm found by MZS has any interpretation in the Green-integration to deduce the form dl(qg,) in the transport

function perturbation theory. Perhaps an intrepid reader willimit. Specifically,

be inspired to sort these out.

2
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APPENDIX A: CRITICAL BEHAVIOR OF THE w :
QUANTUM HALL LIOUVILLIAN XD (Eo+E (116)Y,0,q=0)
For completeness, but also because some of the original 2 g |

discussioh was incorrect’ we discuss here how it is the I p(Eo)
energy integrated Liouvillian propagator can be used to ex- w? v
tract the localization length exponent. Most of the argument . .
we p.re.sent follows the steps of SMG, but in E,q.4) we find % f deg 1D, (w)+ f deg 1-Vp,
that it is w, rather tharmg as used by SMG, which acts as a [ L,
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o APPENDIX C: MAGNETIC ALGEBRA

~ —Ecp(Eo)[Ding( @) +D(1%p(Ec) )] AND RANDOM MATRICES
w

In this appendix, we demonstrate that an algebra like that
of density operators in the lowest Landau level may be set up
for an arbitrary Hamiltonian. We consider an orthonormal
basis{|a)} for V and the corresponding bagis,b)} on A,

where the last simplifcation follows upon noting that wherea andb range from 1 td\]) We define
Dins(®)~ w? is much smaller tham'?” for »>1/4, which is

true, in general, for a random critical point in two dimen-
sions on the grounds of the Harris criterion, and holds for the
reasonably precise estimatesioévailable in this case. As a
statement about Liouvillian theory, this result implies that the
self-energy of the exact Liouviliian Green function has the

2
~ %—f(l 20(Ee) ), (A4)

1 .
lg)= N_llzequQyw/Nzn: In+ ay n) gidxn2m/N (&)

behavior, (»,q—0)=w— 111 (w,q) ~ig?w*?.

APPENDIX B: DETAILS OF ENERGY UNINTEGRATION

We start from Eq.(43). After a change of variables, it

reads

K(E, ,E_)

/2 » rdrexd —r(E_cosf+E,sing)]
- [ "ao| oS
0 0 2v°r

dzé&
X fﬁ%[z— \/zz—(ZUr)z]

:JW/Zdajwdrexp[—r(E_cosavL E. sind)] (201)
0 0 v
1 (=2 Rcog 6+ ¢)
=— -1/, B1
2v2Jo JR?coS(6+ ¢)—1 (B1)

where we have defined

R=

and

tang= —. (B3)
Proceeding further,
K(E, ,E_)
1| _Rcos¢  Rsing =
—| SIn +sin - =
2v? JR?—1 JR?-1 2
i E.
=——7| SINn ==
202 VEZ+E%—4v
E_ T
E2+E%2—4v2 2
_1E+\/Ei—4vz+E_\/E%—4v2 -
E2 +E2 —4p? 2

+sin?t

1

a 202

which is Eq.(44).

sin (B4)

for integerg, andqy (ranging from 1—N) which also form
an orthonormal basis. We can rewrite

H=2 Hpndmn)=> V_gla), (C2)
mn q
where
Hn+q n
_ y ! iy 12)2mIN
V=S e e, (cy

Switching to operator notation, with,=|q), one can check
that

.. mqlp
[Tq,Tp]:2|S|nT7q+p (C9

so that

d

1 . _mqlp
i&th)_N_llzg 2|V_psmT|p+q). (CH

These expressions are in parallel to those for the Liouvillian
in the lowest Landau level. Strikingly, we have recast a ge-
neric problem in the notation of the magnetic translation op-
erators. Of course, the definition of thdiscret¢ momenta is

ad hog and so, while this rewriting appears suggestive, it is
not generally useful. Nevertheless, the GUE retains its sim-
plicity in this approach: Eq(27) implies that

2

(VoVo) =10 Bp-a- (Co)

Disorder correlators are thus diagonaldn continuing the
analogy with spatially extended systems.
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