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Deconstructing the Liouvillian approach to the quantum Hall plateau transition
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We examine the Liouvillian approach to the quantum Hall plateau transition, as introduced recently by
Sinova, Meden, and Girvin@Phys. Rev. B62, 2008~2000!# and developed by Moore, Zee, and Sinova@Phys.
Rev. Lett.87, 046801~2001!#. We show that, despite appearances to the contrary, the Liouvillian approach is
not specific to the quantum mechanics of particles moving in a single Landau level: we formulate it for a
general disordered single-particle Hamiltonian. We next examine the relationship between Liouvillian pertur-
bation theory and conventional calculations of disorder-averaged products of Green functions and show that
each term in Liouvillian perturbation theory corresponds to a specific contribution to the two-particle Green
function. As a consequence, any Liouvillian approximation scheme may be reexpressed in the language of
Green functions. We illustrate these ideas by applying Liouvillian methods~including their extension toNL

.1 Liouvillian flavors! to random matrix ensembles, using numerical calculations for small integerNL and an
analytical analysis for largeNL . We find that the behavior atNL.1 is different in qualitative ways from that
at NL51. In particular, theNL5` limit expressed using Green functions generates a pathological approxima-
tion, in which two-particle correlation functions fail to factorize correctly at large separations of their energy,
and exhibit spurious singularities inside the band of random matrix energy levels. We also consider the large-
NL treatment of the quantum Hall plateau transition, showing that the same undesirable features are present
there, too. We suggest that failings of this kind are likely to be generic in Liouvillian approximation schemes.
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I. INTRODUCTION

It has long been appreciated that the quantum Hall ef
depends for its existence on localization by the disorde
quasiparticles in Landau level tails, and that neighbor
quantum Hall plateaus are separated by a continuous q
tum phase transition characterized by a diverging local
tion length.1 The scaling ideas which encapsulate th
understanding.2,3 are supported by extensive numeric
studies1 and by some of the available experimental data4,5

although the full experimental situation remains unsettle6

An analytic theory of the transition, however, has prov
elusive, even for the simplest models which include disor
and magnetic field but omit electron-electron interactions

In this context, two successive recent developments h
attracted interest: Sinova, Meden, and Girvin7 ~SMG! have
introduced a Liouvillian approach to localization in the low
est Landau level, which Moore, Zee, and Sinova8 ~MZS!
have extended, with the introduction ofNL Liouvillian fla-
vors and an expansion in powers of 1/NL about the large-NL
limit.9 In brief, the Liouvillian is the time evolution operato
for electron probability density, and the information it e
codes on localization is integrated over states at all ener
within the disorder-broadened Landau level. Despite the
ergy integration, the critical behavior of the localizatio
length at the plateau transition can, in principle, be extrac
from the dependence of the Liouvillian propagator on f
quencyv, provided this is known sufficiently accurately~see
SMG and also Appendix A of this paper!. The original work
of SMG reported a calculation of the Liouvillian propagat
using a version of the self-consistent Born approximat
~SCBA!, which is exact for theNL5` limit of MZS, and
yields diffusive time evolution without localization. MZS
0163-1829/2003/68~4!/045318~17!/$20.00 68 0453
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have conjectured that theO(1/NL) correction, which is loga-
rithmically divergent at smallv, may be used to arrive at a
estimate for the localization length exponentn.

Prima faciethere are three reasons to think that this wo
may have outflanked the obstructions faced by previous
proaches. First, the derivation of the Liouvillian formalis
by SMG invokes the algebra of density operators projec
onto the lowest Landau level, thus appearing to build in
physics of high magnetic fields at the first step. Second,
formalism deals directly with a disorder-averaged tw
particle quantity, avoiding intermediate calculations of a on
particle Green function, and hence, plausibly, goes directl
the heart of the matter. Third, the extension toNL Liouvillian
flavors is distinct from the standard extension toN orbitals in
localization problems,10 which is known to capture weak lo
calization physics but not the quantum Hall delocalizati
transition.13 This gives grounds for hope that the logarith
found by MZS may not simply be due to the weak localiz
tion effects and might indeed be used to get an estimate
the correlation length exponent.

Given the potential importance of these developments
seems useful to investigate the Liouvillian approach in so
detail and to relate it to established methods. This is
objective in the present paper. There are four distinct fac
to our results. First, we show that although the Liouvillia
approach has appeared in past work to be tailored spe
cally to the quantum mechanics of particles moving in
single Landau level, since it makes use of the alge
of projected density operators, it can in fact be formula
for any disordered single-particle Hamiltonian. Second,
compare the perturbation expansion for the Liouvilli
propagator with conventional calculations of the disord
averaged two-particle Green function. We demonstrate
©2003 The American Physical Society18-1
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each term in the perturbation expansion for the Liouvilli
propagator corresponds to a specific combination of term
the Green-function expansion. As a consequence, any
proximation scheme within one approach has an equiva
in the other approach. Moverover, it is possible to trans
between the two approaches ineither direction: to go from
the two-particle Green function to the Liouvillian simply in
volves an energy integration, while a more elaborate pro
dure, which we set out, is required to undo this energy in
gration and pass in the opposite direction. Third, we illustr
these ideas by applying the Liouvillian approach to rand
matrix theory, discussing the Gaussian unitary and ortho
nal ensembles. We obtain an analytic solution in the limit
large flavor numberNL , for arbitrary matrix sizeN, and we
supplement this with numerical calculations for finiteNL ,
finding qualitative differences between results atNL5` ~and
all NL.1) and those atNL51. We also undo the energ
average atNL5`, showing that the Liouvillian SCBA has
character different from the established approximations w
translated into a calculation for the two-particle Green fu
tion. It constitutes an approximation without the usual str
ture based on single-particle self-energies and two-par
irreducible vertices. Disappointingly, this is not progress
the approximation is pathological: the resulting Green fu
tions exhibit spurious singularitiesinside the bandand fail to
factorize correctly at large energy separations. Finally,
return to the plateau transition. Progress in this case is m
difficult because even the Liouvillian SCBA of SMG re
quires a numerical solution. We are nevertheless able
show that the two-particle Green function generated by
Liouvillian SCBA has undesirable features in this case, t
failing to factorize as it should for large separations betwe
pairs of its spatial arguments, and exhibiting spurious sin
larities as a function of energy in this limit.

In sum, on one hand we have shown generally that
Liouvillian approximation can be equally well expressed u
ing the better-understood machinery of Green functions,
on the other hand we have argued that the only existing b
for Liouvillian calculations, the 1/NL expansion, is seriously
flawed. It remains the case, of course, that the Liouvill
approachper seis free of technical errors, and that an exa
treatment of the plateau transition, if it were available by t
route, would be about as good as by any other route.
may then ask whether it is likely that there are Liouvillia
alternatives to the 1/NL expansion that will be more usefu
We believe not, on the following grounds. We note first th
the feature that distinguishes Liouvillian approximati
schemes from those that are natural using Green functio
precisely the absence of a structure based on self-ene
and irreducible vertices. Such a structure is generally
quired in order to conserve particle number, and its abse
is apparently tolerable within the Liouvillian approach, sin
the matrix elements appearing in Eq.~62! are themselves
sufficient to guarantee the conservation law. In our view, o
lesson arising from our analysis of large-NL random matrix
theory is that the structure of self-energies and irreduc
vertices is desirable for reasons that go beyond particle c
servation: in their absence, pathologies such as the one
report for large-NL random matrix theory should be expect
04531
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quite generally. In combination, these results leave us pe
mistic about the scope for advances in the theory of
quantum Hall plateau transition using Liouvillian methods

As we were finishing this work, there appeared a pape14

by Moore, which studies the evolution of the QH Liouvillia
as a function ofNL . Its most relevant finding, via numerica
analysis at smallNL , is that the Liouvillian theory likely
exhibits metallic diffusion, instead of critical scaling, at a
NL.1. Evidently, this is consistent with our own conclusio
in Sec. IV D 3 that the theory for allNLÞ1 is unrepresenta
tive of the original problem of interest (NL51).

In the remaining past of the paper we set out the techn
content of our assertions. In Sec. II, we develop the Liouv
lian machinery in a general setting and describe, first, how
go from two-particle Green functions to Liouvillians by en
ergy integration, and second, our algorithm for undoing t
energy integration within a given Liouvillian approximation
In Sec. III, we review the 1/NL expansion scheme introduce
by MZS, again in a general setting. Sec. IV, is devoted t
detailed examination of the Liouvillian technique applied
the test case of random matrix statistics. In Sec. V, we c
sider the quantum Hall problem and describe the pathol
that is immediately apparent by recourse to the previous
sults. We end with a summary and three Appendixes t
provide a more careful discussion of the critical behavior
the quantum Hall Liouvillian than that is available in prev
ous work; some details omitted in the main text; and a c
struction that yields an algebra for an arbitrary single-parti
Hamiltonian that is identical to the algebra of density ope
tors projected onto the lowest Landau level.

II. GENERAL CONSIDERATIONS

A. From two-particle Green functions to the Liouvillian

Consider a single-particle HamiltonianĤ acting on basis
statesua& in a spaceV of dimensionalityN. Although all of
its properties are encapsulated in the corresponding o
particle Green functions

Gab
6 ~E!5K aU 1

E2Ĥ6 id
UbL ~1!

~where d is a positive infinitesimal!, in most problems of
interest their more easily computed disorder averages^G6&
have little of the interesting information contained inG6.
One is then forced to consider higher-order correlators s
as the two-particle retarded-advanced Green function

KaA;bB
12 ~E,v!5Gab

1 S E1
v

2 DGBA
2 S E2

v

2 D , ~2!

whose disorder average does contain useful informat
Analogously one can defineK11, K21, andK22. Here and
in the following, we use6 as superscripts to indicate re
tarded and advanced Green functions, and reserve lower
state labelsa, b for the former, and uppercase onesA, B for
the latter.

The central object in this paper is the energy integral
KaA;bB

12 (E,v),
8-2
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PaA;bB~v![E
2`

` dE

2p i
KaA;bB

12 ~E,v!. ~3!

We will now show that, quite generally, this can be expres
as theone-particleGreen function of a Liouville ‘‘super op-
erator’’ ~the Liouvillian! which itself acts on the spaceAV of
all linear operators on the spaceV. Clearly, this Liouvillian
Green function is to be distinguished from the usual Gre
function of the Hamiltonian, introduced in Eq.~1!. The space
AV is N2 dimensional and is spanned by the basis setua&^bu.
To emphasize that these operators themselves form a li
su

04531
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space, we will use the notationua,b)5ua&^bu. A natural in-
ner product on this space is defined as TrP†Q for any opera-
tors P and Q that belong toAV . In terms of the basis, this
yields

~a,buc,d![Tr$@ ua&^bu#†uc&^du%5^auc&^dub&. ~4!

Finally, pairs of operatorsP, Q define a superoperator onAV
via the actionP+Qua,b)5Pua&^buQ from left and right, re-
spectively.

Now consider rewriting Eq.~3! ~with tildes denoting in-
verse Fourier transforms!,
PaA;bB~v!5E
2`

` dE

2p i
Gab

1 S E1
v

2 DGBA
2 S E2

v

2 D
5E

2`

` dE

2p i E2`

`

dt1E
2`

`

dt2exp@ i ~E1v/21 id!t11 i ~E2v/22 id!t2#G̃ab
1 ~ t1!G̃BA

2 ~ t2!

52 i E
2`

`

dtei (v1 id)tG̃ab
1 ~ t !G̃BA

2 ~2t !

52 i E
2`

`

dtei (v1 id)t@u~ t !#2^aue2 iHt ub&^BueiHt uA&

52 i E
2`

`

dtei (v1 id)tu~ t !Tr$~eiHt uA&^aue2 iHt !ub&^Bu%

[2 i E
0

`

dtei (v1 id)t
t~a,Aub,B!0. ~5!
ous
take
The single-particle Hamiltonian induces a time evolution
peroperator, the LiouvillianL, on AV :

ua,A) t5eiLtua,A)0 ~6!

and the matrix elements ofL can be read off from

d

dt
ua&^Au5 i @Ĥ,ua&^Au#

5 i(
bB

~HabdBA2dabHBA!ub&^Bu

[ i(
bB

LaA;bBub&^Bu. ~7!

More abstractly,

L̂5Ĥ+1̂21̂+Ĥ. ~8!

In terms ofL, we have finally

PaA;bB~v!5S a,AU 1

v2L̂1 id
Ub,BD ~9!
-which is the promised rewriting ofPaA;bB(v). While Eq.~8!
does not appear in the work of SMG and MZS, ourL is

simply the generalization for arbitraryĤ of the Liouvillian
discussed for the quantum Hall plateau transition in previ
papers. We continue our general discussion below and
up the plateau transition in Sec. V.

B. Exact properties of L̂

A few general and exact properties ofL̂ can be inferred

from the previous formulas. The eigenvalueslab of L̂ are

simply related to the eigenvaluesea of Ĥ by

lab5ea2eb . ~10!

This implies thatlab52lba , so that the eigenvalues ofL̂
occur in pairs symmetric aboutl50. In addition, the Liou-
villian has at leastN zero eigenvalues, sincelmm50. Fi-
nally, if the eigenvalues ofĤ occupy a band of widthW, the
bandwidth ofL̂ is 2W.
8-3
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C. Perturbation theory

From Eq.~9! we can generate the perturbation expans

PaA;bB~v!5 (
n50

`
~a,AuL̂nub,B!

~v1 id!n11
. ~11!

It is interesting to see how this arises from energy, integ
ing the perturbative expression for the two-particle Gre
function. Consider the contribution toKaA;bB

12 (v) at ordern

in Ĥ, which is

KaA;bB
(n) ~E,v!5 (

m50

n
@Ĥm#ab@Ĥn2m#BA

S E2
v

2
2 id D m11S E1

v

2
1 id D n112m .

~12!

Integration overE,

E
2`

`

KaA;bB
(n) ~E,v!

dE

2p i

5
1

~v1 id!n11 (
m50

n
~21!mn!

~n2m!!m!
@Ĥm#ab@Ĥn2m#BA ,

~13!

produces precisely the corresponding term in the expan
for P̂(v).

D. Disorder averaging

For the Green function perturbation theory with Gauss
randomness inĤ, the effect of disorder averaging is to re
place^Ĥ2n& with a sum of products of all pairwise contra
tions ^ĤĤ&. We can translate this into the language of t
Liouvillian theory by using the definition ofL̂ to express its
matrix elements in terms of those ofĤ, then using the cor-
relators for the matrix elements ofĤ to obtain those forL̂,

^LaA;bBLcC;dD&5^~dabHBA2HabdBA!~dcdHDC2HcddDC!&

5dabdcd^HBAHDC&2dabdDC^HBAHcd&

2dBAdcd^HabHDC&1dBAdDC^HabHcd&,

~14!

and finally using these to average over the powersL̂2n that
occur in the perturbative expansion.

E. From Liouvillian perturbation theory to Green function
perturbation theory

The purpose of this section is to construct an algorit
for passing from a given~likely approximate! expression for
P̂(v) to the one forK̂(E,v). Specifically, we would like to
associate uniquely each disorder-averaged diagram forP̂(v)
with a corresponding set involving Green functions. To ma
the reader’s task simpler we first summarize the basic i
04531
n
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n
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of the algorithm, then provide a representative example,
finally state the general formula.

1. Basic idea

In going from Eq.~12! to Eq. ~13!, we have lost the dis-
tinction between advanced and retarded propogators@since
E6(v/2)6 id have been traded forv] but the matrix ele-
ments still record where the original disorder lines were
tached in the two-particle Green function diagram. If we
construct this information from the Liouvillian matrix
elements, where it must reside since they are defined by
trix elements of the Hamiltonian, our remaning task
merely that of undoing the signs and combinatorial fact
introduced by the energy integration. This is easier done t
said.11

2. Example

Let us see how this works at the lowest nontrivial ord
~fourth, since at second order there is only one Liouvilli
diagram!. Of the three diagrams in Fig. 1 we will use th
middle one, denoting its contribution toPaA;bB(v) by
PaA;bB

(b) (v). In terms ofĤ, it is ~summation over all repeate
indices is implied!

PaA;bB
(b) ~v!

5
1

~v1 id!5
^LaA;uULwW;bB&^LuU,vVLvV;wW& ~15!

5
1

~v1 id!5
@dab^HBWHUA&^Ĥ2&WU1dBÂ HauHwb&^Ĥ

2&uw

22^HauHvb&^HBAHuv&22^HabHVU&^HBVHUA&

2^HauHBA&^H2&ub2^HabHBU&^H2&UA

2^H2&au^HubHBA&2^HabHUA&^H2&BU

12^Ĥ2&ab^Ĥ
2&BA14^HauHBU&^HubHUA&#, ~16!

which can be represented graphically by drawing the b
Liouvillian propagator as a double line and resolving dis
der vertices using the Hamiltonian as indicated in Fig.

FIG. 1. Diagrams forP̂(v) at fourth order inL.

FIG. 2. Graphical representation ofL̂5Ĥ+1̂21̂+Ĥ.
8-4
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This is done in detail in Fig. 3, in which the first diagra
corresponds to Eq.~15! and the last ten correspond to E
~16!.

The final step is to undo the signs and combinatorial f
tors generated by the energy integration in going from
t,
ra
di
on
in

rie
a
lly
pe

w
t
e

r
o

04531
-
.

~12! to Eq. ~13!. For each term in our example, this may b
done by simply counting how many timesH appears on the
upper or lower lines, representing retarded or advan
Green functions. In this way, writingE6[E6v/26 id, we
find that Eq.~15! generates a contribution toKaA;bB

6 (E,v) of
KaA;bB
(b) ~E,v!5

dab^HBWHUA&^H2&WU

E1
5 E2

1
dBA^HauHwz&^H

2&uw

E1E2
5

223
~21!

4 S ^HauHvb&^HBAHuv&

E1
2 E2

4
1

^HabHVU&^HBVHUA&

E1
4 E2

2 D
2

~21!

4 S ^HauHBA&^H2&ub

E1
2 E2

4
1

^HabHBU&^H2&UA

E1
4 E2

2
1

^H2&au^HubHBA&

E1
2 E2

4
1

^HabHUA&^H2&BU

E1
4 E2

2 D
123

1

6

^H2&ab^H
2&BA

E1
3 E2

3
143

1

6

^HauHBU&^HubHUA&

E1
3 E2

3
. ~17!
:

in
n-
e-

eir
een
e-
the
deal
of

m

on-
This equation is depicted graphically in Fig. 4.
Three aspects of this exercise are worth noting. Firs

given Liouvillian diagram contains a partial sum of seve
Green function diagrams. Second, the Green function
grams are all added with positive weights. Third, one’s c
ventional intuition about the importance of diagrams
Green-function perturbation theory is suspect when car
over to Liouvillian perturbation theory. In this example,
seemingly simple, noncrossing Liouvillian diagram actua
sums some of the crossing diagrams in Green function
turbation theory.

3. The algorithm

To apply the method illustrated above to all diagrams,
need to automate the procedure for keeping track of the
pology of disorder contractions. This can be accomplish
by deforming the problem defined by Eqs.~8! and~9! to the
form

L̂~p,h!5pĤ+1̂2h1̂+Ĥ,

P̂~v,p,h!5@v2L̂~p,h!1 id#21. ~18!

Here,p andh are arbitrary parameters that record whetheH
acts on a retarded or an advanced Green function line. C
sider any particular Liouvillian diagram at order 2n, which
we label below withm. Its contribution toP(v) is

^L̂2n&m

~v1 id!2n11
5(

ma
Ama

(m)p2n2mhm ^ĤmĤ2n2m&am

~v1 id!2n11
, ~19!

whereAma
(m) are combinatorial coefficients and^ &m denotes a

particular subset of Wick contractions of^L̂2n& correspond-
ing to m ~and similarly for^ &am in the case of̂ Ĥ2n&). The
diagram gives rise to a contribution toKaA;bB

6 (E,v) of
a
l
a-
-

d

r-

e
o-
d

n-

(
ma

Ama
(m)~21!m

m! ~2n2m!!

~2n!!

^ĤmĤ2n2m&am

E1
m11E2

2n2m11
. ~20!

This step can be automated by making the substitutionsv
1 id→E1E2 , p→xE1 /z, andh→2yE2 /z, and then, to
attach the binomial coefficients, resorting to the identity

E
0

`

dxE
0

`

dy R dz

2p iz
exp~2x2y1z!

xmyn

zl
5

m!n!

l !
,

~21!

where thez integration contour encloses the origin once
the counterclockwise direction. Thus, the algorithm for e
ergy unintegrating the Liouvillian perturbation theory is r
formulated as a particular integral transform.

To summarize,K(E,v) can be recovered fromP(v) by
first generalizingP(v) to P(v,p,h) for a Liouvillian as in
Eq. ~18! and then carrying out the integrals in

K~E,v!5E
0

`

dxE
0

`

dy R dz

2p iz
exp~2x2y1z!

3PS E1E2 ,
x

z
E1 ,2

y

z
E2D . ~22!

As the objects on both sides are formally defined by th
diagrammatic series, this is an exact relationship betw
them. Given a finite set of Liouvillian diagrams, this proc
dure can clearly be carried out diagram by diagram. On
other hand, the procedure may prove too cumbersome to
successfully with a particular approximate resummation
Liouvillian perturbation theory. It turns out that our progra
can be carried through for theNL5` limit of MZS, applied
to random matrix ensembles, as we show in Sec. IV. In c
trast, for the quantum Hall problem even theNL5` limit
8-5
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FIG. 3. Graphical representation of the correspondence betw
Liouvillian and Green function perturbation series. The first d
gram corresponds to Eq.~15! and contains two Liouvillian contrac
tions. Next, three diagrams are obtained by redrawing one of
contractions using Fig. 2, each of which is in turn decomposed
repeating the procedure on the remaining Liouvillian contracti
Finally, the last ten diagrams represent Eq.~16!.
04531
requires numerical solution of an integral equation to obt
the Liouvillian. The chore of energy unintegration in th
case is much more involved and we will consider it only in
special limit. It is conceivable that in still other cases o
may need to resort to numerical resummations of the uni
grated series.

III. 1 ÕNL EXPANSION

No exact solution of a problem using the Liouvillian fo
malism is known at present. It is, therefore, pertinent to a
whether there are useful, natural approximations in the Li
villian, which that are hard to uncover in the standard a
proach. The simplest one, suggested by the interpretatio
the Liouvillian as a random Hamiltonian in its own right,
the SCBA, employed for this purpose by SMG. In the sup
symmetric functional integral approach of MZS, the SCBA
a saddle-point approximation, but we will instead take t
diagrammatic route, in which it is a summation of all no
crossing diagrams. In either case, the procedure is just
formally by deforming the problem to the one withNL Li-
ouvillian flavors and taking theNL5` limit. One can then
examine the stability of the solution by perturbing in 1/NL ,
in the hope that most of the structure in the problem
interest,NL51, survives to largeNL .

The recipe for introducingNL flavors into a general Liou-
villan problem is as follows. One replicates the originalN2

dimensional space of bilinearsNL times and allows for scat

en
-

e
y
.

FIG. 4. Green functions for the Liouvillian diagramb of Fig. 1,
represented by Eqs.~16! and ~17!. This figure should be compare
with the last ten diagrams of Fig. 3.
8-6
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tering between different flavors. Then,

PaA;bB
i j 5S a,A; iU 1

v2L̂1 id
Ub,B; j D ~23!

with

^L̂klL̂mn&5
1

NL
~dknd lm1dkmd ln!^L̂klL̂kl&, ~24!

where in the Liouvillian correlator we have indicated on
the flavor indices. The replicated Liouvillian can be thoug
of as anNL3NL matrix with entries that are themselve
N23N2 blocks. Each such block has the structure of a Lio
villian for the original, single flavor, problem. Differen
blocks are constructed from different realizations of the d
order, apart from the constraintL̂kl5L̂lk. Hence, (NL

2

1NL)/2 independent realizations of disorder are necessar
construct a single realization of the replicated problem. T
entire NLN23NLN2 matrix is Hermitian. The construction
we have described is, in the terminology of MZS, the
thogonal generalization of theNL51 problem and is the one
that, they have argued, is useful in generating a 1/NL expan-
sion for the localization length exponent for the quantu
Hall plateau transition.

To see how the expansion goes, consider asNL→` the
low-order diagrams shown in Fig. 5.

Evidently, diagrams with crossed disorder lines are s
pressed by factors of 1/NL relative to those without crosse
lines. This suppression of crossed diagrams continue
higher orders of the expansion. Thus the leading approxi
tion at large-NL is to sum all noncrossing terms, which are
the order ofNL

0 . As usual, this sum can be carried out
solving the equivalent self-consistency equation

PaA;bB
i j 5

dabdABd i j

v1 id
1

1

v1 id
@^L̂•P̂•L̂&•P̂#aA;bB

i j ~25!

represented graphically in Fig. 6.

FIG. 5. Liouvillian diagrams up to fourth order inL̂. The last
diagram contains a crossing and is smaller by a factor 1/NL than the
others, which are of the orderNL

0 . Only flavor indices are shown
explicitly.

FIG. 6. The Liouvillian SCBA in diagrammatic form. Clea
lines represent bare propagators, and filled ones the full propag

P̂(v).
04531
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At next order (NL
21), one needs to sum the maximal

crossed graphs and rainbow diagrams shown in Fig. 8
any order, the Liouvillian Green function is diagonal in th
flavor index

PaA;bB
i j ~v!5d i j PaA;bB~v!, ~26!

and PaA;bB(v) is taken as an approximation to theNL51
Liouvillian Green function.

IV. RANDOM MATRIX THEORY

We now turn to the problem of random matrix statistics
a test of the Liouvillian large-NL approach. The large numbe
of known exact results on problem and the relative simplic
of calculations make it an ideal test case. While there is
phase transition~all Green functions are analytic inside th
band!, we will see that there is sufficient nontrivial structu
in the statistics of the eigenvalues which can be used d
nostically. Oddly enough, we will find that the Liouvillian
analysis will yield some Green functions thatare singular
inside the band~see Sec. IV E!.

The program is as follows: forN3N random matrices, we
introduce an enlarged Liouvillian withNL flavors. Now we
have~at least! two different limits to consider. The standar
one takesN@1 at NL51, and leads to a familiar set o
simplifications such as the Wigner semicircle law for t
density of eigenvalues which are summarized below. It a
leads to a perturbation theory in 1/N, which is the zero-
dimensional version of the impurity-averaged perturbat
theory for single-particle Green functions in disordered co
ductors. The new limit, we will consider, isNL@1 at fixedN.
As in all large-n expansions, this will prove useful if the
large-NL problem is sufficiently smoothly connected to th
NL51 problem of interest. While we will find it useful to
then takeN@1 ~but keepingN!NL) as well, the possibility
of finding nontrivial information on finite matrices is a po
tential asset of this limit. Similarly, in the application to th
quantum Hall plateau transition, the infinite volume limit
taken afterNL→`.

Before proceeding, we collect some standard definitio
and results on the random matrix theory for the ease of c
parison with the following Liouvillian analysis.

A. Ensembles

We will be interested in random Hermitian matricesĤ

drawn from the Gaussian unitary ensemble~GUE! if Ĥ is
complex, and the Gaussian orthogonal ensemble~GOE! if Ĥ
is required to be purely real. For these ensembles it is su
cient to specifiy the correlators of the matrix elements,

^HabHcd&5
v2

N
~daddbc1adacdbd!, ~27!

wherea50 for GUE anda51 for GOE. The variance ha
been normalized by the matrix sizeN to produce a band-
width which remains finite asN→`.

or,
8-7
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B. Correlators

In addition to the fundamental one- and two-partic
Green functions defined in Sec. II, we will be interested
the density of states~DOS! of Ĥ,

r~E!5(
n

d~E2en!52
1

p
ImTrF 1

E2Ĥ1 id
G ~28!

and its disorder-averaged correlation function

R~E,v!5 K rS E1
v

2 D rS E2
v

2 D L . ~29!

R(E,v) is related to the two-particle Green functionsK by

R~E,v!5
1

4p2 (
aA

@KaA;aA
12 1KaA;aA

21 2KaA;aA
11 2KaA;aA

22 #.

~30!

The Liouvillian Green function allows us to extract the L
ouvillian DOS ~LDOS!

V~v!5(
mn

d~v2lmn!52
1

p
ImTrF 1

v2L̂1 id
G ~31!

and it follows from Eq.~10! that V(v)5*dER(E,v).
Disorder averaging~at anyN) simplifies the structure o

various correlators

^Gmn~E!&5dmnG~E!,

^KaA;bB~E,v!&5dabdABK1~E,v!1daAdbBK2~E,v!

1daBdAbK3~E,v!,

^PaA;bB~v!&5dabdABP1~v!1daAdbBP2~v!

1daBdAbP3~v!, ~32!

with the constraintsK25K3 and P25P3 for GOE andK3
5P350 for GUE. Finally, the Liouvillian density of state
has the form

V~v!52
N2

p S ImP1~v!1
ImP2~v!1ImP3~v!

N D ,

~33!

where the powers ofN arise from taking a trace over th
index structure in Eq.~32!.

C. Standard results: Large-N at NLÄ1

At N5`, the SCBA for the single-particle Green functio

Gmn
` ~E!5dmn

E

2v2
~12A124v2/E2! ~34!

is exact, and hence the DOS is the Wigner semicirc
limN→`^r(E)&/N5(1/pv)A12(E/2v)2. For large but finite
N, the deviations from this limiting form are small. For e
ample, the leading behavior of the DOS at energies above
large-N upper band edge,E52v, is r(E);exp@24N(E/v
04531
:

he

22)3/2/3#. Higher-order correlators of the DOS, includin
R(E,v), can be discussed in each of two limits. First, taki
N→` with energy arguments fixed and all different, the
factorize. For example, withvÞ0,

R`~E,v!5 K r`S E1
v

2 D L K r`S E2
v

2 D L . ~35!

Second, by scaling the separation of energy arguments
the mean level spacing, universal correlation functions
obtained, which are dominated at small energy separat
by level repulsion. Thus, forNv!1,

R~E,v!}~vN!br~E!2, ~36!

with b51 for GOE andb52 for GUE.
Combining these with our earlier listing of the gener

properties of Liouvillians, we conclude that the exact LDO
will have almost all its weight within the rang
24v,v,4v for N@1. For N5`, it is exactly zero out-
side and vanishes with zero slope@quadratically ;(4v
6v)2] near the edges. Finally, at finiteN, there should be a
pseudogap of widthv/N nearv50 with details depending
on the symmetry of the ensemble.

D. Random Matrix Theory Liouvillian

1. NLÄ`, N arbitrary

For the GUE, Eq.~25! becomes

P1~v!5
1

v1 id
1

2v2P1~v!2

v1 id
,

P2~v!52
2v2

N~v1 id!
P1~v!25

1

N S 1

v1 id
2P1~v! D ,

P3~v!50. ~37!

FIG. 7. LDOS scaled byN2 at NL5` with disorder strength
v51. Solid line is GOE@Eq. ~41!# at N56 while the broken one is
GOE @Eq. ~41!# at N5` and GUE@Eq. ~38!# at arbitraryN. Thed
function at zero frequency has been suppressed.
8-8
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The solution is similar to that forN5` RMT @cf. Eq. ~34!#.
Using Eq.~33!, the LDOS is

V~v!5d~v!1
N221

pA2v2
A12

v2

8v2
~38!

for uvu,2A2v and zero otherwise. Notice that the support
the spectrum atNL5` is completely independent ofN.

Turning to GOE, the self-consistency condition reduces
the quadratic equations
or
re
d

e
ct

a
.
.

ac
th
o
o

an
ge

04531
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o

P1~v!5
1

v1 id
1

2v2~N11!

N~v1 id!
@P1~v!22P3~v!2#,

P3~v!5P2~v!5
2v2

N~v1 id!
@P3~v!22P1~v!2#

5
1

N11 S 1

v1 id
2P1~v! D ~39!

with solution
P1~v!5
24v21~11N!~N~v1 id!22A16v228N~11N!v2~v1 id!21N2~v1 id!4!

4N~21N!v2~v1 id!
, ~40!
t
is

-

n

n,

p-
g
e
rate
er
two
leading to the LDOS

V~v!52
1

p S N22
2N

N11D ImP1~v!2
2N

p~N11!
Im

1

v1 id
.

~41!

As N→`, the leading,O(N2), piece of this result is identi-
cal to the corresponding piece ofV(v) for the GUE. For
finite N, however, the LDOS is zero in the windowuvu
,A2v2/N, in stark contrast with the GUE result~or any-
thing else one might expect of a disordered system: acc
ing to this approximation the spectrum of the disorde
problem iscompletely gapped!. These results are illustrate
in Fig. 7.

There are at least four important differences betwe
these exactNL5` results and the corresponding, corre
NL51 solutions. These differences are given as follows:

~1! At NL5`, results for both GUE and GOE imply
bandwidth of 2A2v for the underlying random matrices
This is a factor ofA2 less than that of the correct solution

~2! The infinite gradient of theNL5` expression for
V(v) at the Liouvillian band edges is at odds with the ex
result, which has vanishing slope. Contributions to
LDOS at the Liouvillian band edges come from pairs
random matrix eigenvalues which are near opposite rand
matrix band edges. If one assumes thatR will factorize in
such cases, which is certainly true of the exact result
should be expected anyway for such widely separated ei
values, the form found for LDOS implies a DOSdivergent
near the random matrix band edges, withr(E);(vA2

FIG. 8. All diagrams forP̂(v) at O(1/NL).
d-
d

n
,

t
e
f
m

d
n-

6E)21/4. In fact, we shall see thatR does not factorize a
NL5`, which turns out to be the central pathology of th
limit.

~3! Although there is ad function at zero frequency, aris
ing from zero eigenvalues ofL̂ @see Eq.~10!#, its weight is
1, and notN as it should be.

~4! Finally, the two solutions are qualitatively wrong i
the small frequency limit (uvu&1/N) in opposite ways. The
GUE LDOS is nonzero with no indication of level repulsio
while the GOE develops aclean gap over a region of
O(1/N).

The NL5` result above is clearly not an adequate a
proximation toNL51, even for the purposes of computin
properties of the Liouvillian. In the following section, w
will see that matters get worse when we energy uninteg
theNL5` result. Before turning to this, we first ask wheth
one may construct a smooth interpolation between the
limits by perturbing in 1/NL . We offer evidence that this is
unlikely, both by considering the 1/NL expansion analytically
and by studying the problem numerically for a range ofNL
values.

FIG. 9. 1/NL correction to the LDOS for GUE.
8-9
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FIG. 10. Evolution ofV(v) from NL51 to NL58 for N52 GUE of random matrices. Solid line is the exact solution forNL51 ~Ref.
19!. D functions at zero frequency have been suppressed.
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2. Leading1ÕNL corrections

As discussed in Sec. III, the leading correction for larg
NL to theNL5` Liouvillian Green function is given by the
maximally crossed diagrams. These are resummed by
consecutive geometric series, represented graphically in
8.

Denoting theNL5` solution by P1, the result of this
calculation for the GUE is

dV~v!5
12N2

NLp
ImS 2~P1!5v4

@12v2~P1!2#@122v2~P1!2#
D .

As is the case with 1/N corrections to the RMT DOS, the
1/NL correction to the LDOS is finite nearv50 and devel-
ops a singularity at band edges, as illustrated in Fig. 9. In
case of the GOE, the 1/NL correction, which for brevity we
do not display, is divergent at all four band edges.

These divergences show that any attempt to fix the ba
width problems of theNL5` limit, if feasible, must involve
an analysis including contributions at all orders in 1/NL . We
have not pursued this analysis further. Instead, we offer
dence from numerical studies that an expansion aboutNL
5` is unlikely to yield useful information on behavior a
NL51.

3. Numerics at small NL

The simplicity of the random matrix problem provides
with a different, more direct line of attack via exact diag
nalization. Specifically, we have diagonalized numerica
the Liouvillian RMT for a range ofNL andN, both to test the
04531
-

o
ig.

e

d-

i-

relevance of analytic results above and also to search for
features, especially in the interesting regime of smallNL .
Representative plots ofV(v) are shown for the GUE in Fig
10 and for the GOE in Fig. 11, both covering a range inNL
at N52. We have searched for, but found no significa
qualitative differences at largerN. Our conclusions from
these figures are as follows. First, the gross features of
NL5` limit ~see Fig. 7! are already observable atNL as
small asNL58. Second, Liouvillian theories atNL.1 are
sufficiently different from the theory atNL51, even for
NL52 and 3, that the quantitative utility of any 1/NL correc-
tions seems questionable. Readers should note especiall
rapid change in the distribution of small eigenvalues asNL is
increased. Third, while one clearly cannot hope to investig
analyticity conclusively by these means, there are two f
tures to the numerical results which suggest a beha
nonanalytic in 1/NL at NL5`. One of these is the number o
states outside theNL5` band, which appears to decrea
exponentially inNL , as in the band tails of the RMT DOS
The other is the presence of oscillations in the LDOS for
GUE at small energies, as a function ofNL : V(0) vanishes
for odd NL and is nonzero for even ones.

E. Undoing the energy integration

In this section, we apply the formalism developed in S
II E to translate theNL5` RMT calculation into Green func-
tion language. We start from Eq.~18!, applied to RMT. Sum-
ming the noncrossed diagrams withL̂(p,h) leads for the
GUE, to the self-consistency equations, modified from E
~37! to
FIG. 11. Evolution ofV(v) from NL51 to NL58 for N52 GOE of random matrices. Solid line is the exact solution forNL51 ~Ref.
19!. d functions at zero frequency have been suppressed.
8-10
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P1~v!5
1

v1 id
1

P1~v!v2

v1 id F ~p21h2!P1~v!

1
~p2h!2

N
P2~v!G ,

P2~v!52
2phv2P1~v!2

N~v1 id!
1

v2~p2h!2P2~v!

v1 id

3FP1~v!1
P2~v!

N G ,
P3~v!50. ~42!

We now take the further limitN→` whereon the solution is

P1~v!5
v

2v2~p21h2!
S 12A12

4~p21h2!v2

~v1 id!2 D .

In this limit, the solution for the GOE is identical.
Using Eq. ~22! we obtain KaA;bB

12 (E,v)
5dabdABK1(E,v), where

K1~E,v!5E
0

`

dxE
0

`

dyexp~2x2y!

3 R dzezE1
21E2

21

2p i2v2@~xE2
21!21~yE1

21!2#

3†z2Az224v2@~xE1
21!21~yE2

21!2#‡.

~43!

We carry out the integral for large positiveE6 ~see Appendix
B for details! and obtain results for generalE6 by analytic
continuation. We find

K1~E1 ,E2!

5
1

2v2 F sin21S E1AE1
2 24v21E2AE2

2 24v2

E1
2 1E2

2 24v2 D 2
p

2 G ,

~44!

where the signs of the square roots are positive for realE6

.2v, and branch cuts in the complexE1 andE2 planes run
on the real axes fromE6522v to E652v.

The very first thing to note about this result is that unli
the exact answer

KaA;bB
12 5G1~E1!G2~E2 !

5dabdAB

E1E2

4v4 S 12A12
4v2

E1
2 D S 12A12

4v2

E2
2 D ,

~45!

it does not factor in its dependence uponE6 . At N5`,
where the energiesE6 involve eigenvalues that are at infinit
separation on the scale of the level spacing, this is manife
wrong.
04531
tly

To proceed further with this discussion, we need to exa
ine the analytic structure of Eq.~44!. Observe that the resul
is an analytic function of realE1 and E2 when bothE1

.2 andE2.2. In this region, it is the sum of the conve
gent perturbative expansion in inverse powers ofE6 , which
is generated by unintegrating theNL5` series term by term.
Also, in this regionK12 is purely real and the choice of th
sign of the imaginary infinitesimals inE6 is immaterial: it
equally well describes an approximation toK11.

The series diverges on approaching the boundary of
region. In the two-dimensional plane of realE1 ,E2 , this
takes place at the outer boundary of the cross shape for
by the four linesE1562v and E2562v, shown in Fig.
12. Inside this cross shape, the choice of infinitesimal ima
nary parts toE6 is essential to specify which side these a
of the branch cuts in Eq.~44!. Depending on how this is
done, we obtain inside the cross bothK12 andK11, which
are no longer equal but are both generically complex. T
development of imaginary parts to the Green functions
curs when one of their arguments enter the band. Indeed
the exact expression, Eq.~45!, this is trivially true.

Random matrices do not exhibit a phase transition and
we should expect thatK12 andK11 are analytic functions
of E1 and E2 , except at the band edgeE6

2 54v2. This is
true of the exact result, Eq.~45!. Surprisingly, it isnot true of
the correlators derived from Eq.~44!. Specifically, inside the
cross, whileK12 is analytic,K11 exhibits singularities on
the circle E1

2 1E2
2 54v2. For example, along the lineE1

5E2 , i.e. v50, we find

K12~E,v50!5
p

4v2 , ~46!

while

ReK11~E,v50!5
p

4v2sgnS E

v
2A2D ~47!

for 0,E/v,2 and

FIG. 12. Analytic structure ofK(E1 ,E2). R(E,v) is finite
inside the circle.
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ImK11~E,v50!55
1

v2
cosh21S E/v

A2~E/v !224
D when A2,E/v,2

2
1

v2
sinh21S E/v

A422~E/v !2D when 0,E/v,A2,

~48!
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where the negative branch is picked for the cosh21. These
results are plotted in Figs. 13 and 14 along with the ex
Green functions for comparison.

Finally, one can extract from the knowledge of bothK12

andK11 the correlator of the density of states, which has
simple form

R~E,v!5
1

4pv2
QS 4v222E22

v2

2 D . ~49!

It is constant inside the circleE1
2 1E2

2 54v2 and zero out-
side. This solves one remaining puzzle. While t
Liouvillian-derived two-particle Green functions imply th
same RMT band as the the exact ones, in the sense that
are analytic outside the cross, we noted previously that
Liouvillian bandwidth was wrong by a factor ofA2. We can
now recover the LDOS, Eq.~38!, by integratingR(E,v)
over energy:

1

N2
V~v!5E dE

4pv2
QS 2E21

v2

2
24v2D

5
1

pA2v2
A12

v2

8v2
, ~50!

which serves also to verify that our analysis is interna
consistent.

FIG. 13. Real part ofK11(E,E) corresponding to the energ
resolved Liouvillian solution~solid line! vs exact result~dashed
line!.
04531
ct

e

oth
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F. Summary of random matrix analysis

Briefly, in our direct examination of the Liouvillian
method we find that the large-NL limit is unrepresentative of
the behavior of theNL51 problem. Upon energy unintegra
ing the LiouvillianNL5` calculation, we find a pathologica
approximation that fails to factor correctly and even pr
duces singularities inside the band. Together, these facts
dicate that the Liouvillian 1/NL expansion is not a useful wa
of approaching the random matrix problem.

In this analysis, we have utilized two complementary p
spectives on the large-NL method and a comment on those
perhaps useful. The first perspective is that we genera
family of problems with enlarged symmetry groups index
by an integer each one of which can be studied directly
which is what we have done in the numerical analysis. T
enlarged problems are defined by multiflavor Liouvillia
that do not themselves arise from from single-particle Ham
tonians. The second perspective treats the large-NL limit as
formalizing perturbation theory about a saddle point tha
believed to capture the relevant physics. In this fashion,
generate a series in powers of 1/NL whose first term comes
solely from the saddle point. The utility of the method is,
course, that settingNL51 in the perturbation theory yield
the answer for the case of interest. In using theNL5` an-
swer as input for the energy unintegration algorithm,
have followed standard practice and simply truncated the
ries at its first term and setNL51. If the large-NL method is
useful in describing theNL51 problem, this should be a
sensible approximation. Since we find that this is not so,
premise must be flawed.

FIG. 14. Imaginary part ofK11(E,E) corresponding to the en
ergy resolved Liouvillian solution~solid line! vs exact result
~dashed line!.
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V. THE QUANTUM HALL TRANSITION

Our Liouvillian analysis of the random matrix proble
suggests to us that the method is unreliable and hence n
be trusted in its application to the quantum Hall proble
This is a disincentive to pursue a similarly detailed study
the quantum Hall case, especially as it would be a substa
undertaking: even the LiouvillianNL5` analysis of this
problem requires a numerical solution, and a full energy
integration would require much more intensive numeri
work. We therefore confine ourselves to three sets of ob
vations. First, we confirm that our general Liouvillian fo
malism reduces to the one used by SMG and MZS for
quantum Hall case. Second, we exhibit the unintegration
gorithm specialized to this case. Third, we apply the unin
gration algorithm to a special sector of theNL5` problem,
that of very large momenta, where it reduces to precisely
Liouvillian random matrix problem studied in the precedi
section. This then embeds the pathologies of that prob
into the quantum Hall case.

A. Liouvillian formulation

We consider a charged particle moving in a magnetic fi
on a torus of area 2p l 2N, wherel[(\c/eB)1/2 is the mag-
netic length andN is the integer degeneracy of each Land
level. We denote the projection operator onto the lowest L
dau level byP. As the kinetic energy is constant within eac
Landau level, the Hamiltonian projected to the lowest La
dau level is simplyH5PV(r )P whereV(r ) is the impurity
potential.

It is convenient to work initially with the states$Pur &%
which form an overcomplete basis for the lowest Land
level; to lighten notation we will write$ur &% for $Pur &%. In
terms of these, we can define the single-particle Green fu
tions in real space

G6~E;r1 ,r2!5 K r1U 1

~E2H6 id!
Ur2L ~51!

and the two-particle retarded-advanced Green function
real space

K12~E,v;r1,r2!5G2~E2v/2;r1,r2!G1~E1v/2;r2,r1!,
~52!

where we have chosen a pairing of position coordinates
propriate for a diffusion propagator. These are evidently
analogs of Eqs.~1! and~2! in Sec. II. From these, we deriv
the analog of Eq.~3!,

P~r1,r2,v!5E
2`

` dE

2p i
K12~E,v;r1,r2!

5S r1,r1U 1

~v1 id2L!
Ur2,r2D . ~53!

As disorder averaging restores translational invariance,
take Fourier transforms and define~denoting the disorder
averaged quantities by the same symbols!
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K12~E,v;q!

5
1

2p l 2N
E E K12~E,v;r1 ,r2!eiq•(r22r1)dr1dr2 ,

P~v;q!5
1

2p l 2N
E E P~v;r1 ,r2!eiq•(r22r1)dr1dr2 ,

~54!

and the states

urq)5E ~r ,r !exp~2 iq•r !d2r , ~55!

which represent the projected density operatorsPexp(2iq
•r )P in the space of operatorsA on the lowest Landau level
In terms of these, we can rewrite Eq.~53! as

P~q,v!5E
2`

` dE

2p i
K12~E,v;q!

5
1

2p\ l 2N
K S rqU 1

~v1 id2L!
UrqD L . ~56!

In place of the density operators, it is slightly more conv
nient to use~as a basis forA) the magnetic translation op
eratorstq5e1 l 2q2/4rq , which are closed under the algebra

tqtq85exp~ i l 2q∧q8/2!tq1q8 , ~57!

whereq`q85e i j qiqj8 , and are orthogonal with normaliza
tion

~tq1utq2!5Ndq1,q2 . ~58!

With the identification

urq)5e2 l 2q2/4utq), ~59!

one can show that in this basis the matrix elements oL̂
5Ĥs1̂21̂sĤ are

Lqq85Vq2q8e
2

uq2q8u2l 2

2 @ei (q`q8 l 2/2)2e2 i (q`q8 l 2/2)#
~60!

52iVq2q8e
2

uq2q8u2l 2

2 sinS q∧q8l 2

2 D . ~61!

With these we arrive finally at the form

P~q,v!5
exp~2q2l 2/2!

2p l 2 K F 1

v1 id2L̂G
qq
L , ~62!

which is the one introduced by SMG~up to a constant due to
difference in definitons!.

From known facts about the two-particle Green functio
it can be deduced~see Appendix A for details! that the exact
Liouvillian self-energy varies for smallq,v as

v2P21~q,v![ iq2D~v!; iq2v1/2n. ~63!
8-13
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This is a subdiffusive behavior and is controlled by the c
relation length exponent asq→0 at fixedv. The combined
work of SMG and MZS has yielded a self-energy, in t
1/NL expansion, of this form with

D~v!;D0F11OS ln v

NL
D G , ~64!

suggestive of an expansion of a critical power law. In t
following section, we note that the general algorithm of S
II could be used to examine this result at different energie
the disorder broadened Landau level.

B. Energy unintegration

Formally, the procedure for recoveringK(q,E,v) from
P(q,v) is a straightforward specialization of Sec. II. On
starts by deformingL̂ to

Lqq8~p,h!5Vq2q8e
2uq2q8u2l 2/2@pei (q`q8/2)l 22he2 i (q`q8/2)l 2#.

This generates a deformation of any given Liouvillian d
gram or of some partial summation that leads to an appr
mate form forP(q,v). In either case, carrying out the re
placements in Eq.~18! and the integrals in Eq.~22! gives the
corresponding energy resolved expressions.

As for the general example of Sec. II the algorithm rel
on disorder contractions to keep track of the topology
individual diagrams withp andh used to assign appropriat
weights via Eq.~22!. Since the first step of the procedure
particularly transparent in the LL setting, we briefly consid
the analog of Fig. 3. In particular, for each of the ten ‘‘u
folded’’ diagrams we can immdediately write down its val
by drawing momentum carrying lines~both disorder and ex
ternal! inside the ‘‘particle-hole circle’’ and integrating corr
elators of the disorder potential with an exponential/ph
factor chosen according to the diagram’s topology. For
ample, the diagram in Fig. 15 is given~aside from energy
dependence! by

e2Q2l 2/2E d2qd2p

~2p!4
^VqV2q&^VpV2p&exp@2~p21q2!l 2/2

2 i ~q∧p1p∧Q!l 2#, ~65!

and boils down to evaluating a determinant. The wedge
tors (q∧p[ ẑ•q3p) appear whenever two momentum lin
cross ~one also selects a sign convention! and effectively
serve as a fingerprint of each diagram. These diagramm

FIG. 15. One of the ten diagrams of Fig. 3 redrawn and re
beled using momentum coordinates.
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rules are familiar to workers in the field and have enab
considerable progress in the series analysis of problem.15,16

Here, they illustrate the connection between the Liouvilli
and Green function perturbation series.

In order to apply this procedure in full to the Liouvillia
NL5` limit, we must computeP(q,v,p,h), which in turn
requires numerical solution of an integral equation and
therefore a substantial undertaking. We turn now to the lar
q limit, for which the energy unintegration can be carried o
more easily.

C. Energy unintegration at NLÄ`, as q\`

The key observation8 that allows us to execute the energ
unintegration procedure in this limit is that the se

consistency equation simplifies drastically. DefiningP̄(q,v)

by P(q,v)5e2 l 2q2/2P̄(q,v), asq→` the self-consistency
equation

P̄~q,v!5
1

v1 id
1

P̄~q,v!

v1 id E d2q8

4p2
^L̂q,q1q8L̂q1q8,q&

3P̄~q1q8,v! ~66!

reduces to17

P̄~`,v!5
1

v1 id
1

2v2P̄2~`,v!

v1 id
, ~67!

which is identical to the corresponding RMT equation~either
GUE or GOE! at N5`. It follows then that the energy un
integrated solution of this equation, the quant
K̄(`,E1 ,E2)5 limq→`e1q2l 2/2K(q,E1 ,E2), is given by
the expression already exhibited in Eq.~44!:

K̄~`,E1 ,E2!

5
1

2v2 F sin21
E1AE1

2 24v21E2AE2
2 24v2

E1
2 1E2

2 24v2
2

p

2 G .

~68!

As before, the two particle Green function fails to factori
in energy. This has, however, a more serious consequen
the quantum Hall problem. Large momenta also corresp
to large spatial separations in magnetic fields. More p
cisely, one has18

^G1~r ,r ,E1!G2~0,0,E2!&

5E d2q

4p2
expS 2

1

2l 2
uz3r1ql u2D K̄~q,E1 ,E2!,

~69!

and hence

lim
r→`

^G~r ,r ,E1!G~0,0,E2!&5 lim
q→`

1

2p l 2
K̄~q,E1 ,E2!.

~70!

-

8-14
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So we discover that the lack of energy factorization tra
lates into a lack of factorization at infinite spatial separati
which is clearly unphysical. In addition, we again find th
the retarded-retarded Green function is singular inside
impurity band in a limit where the exact answer is necces
rily analytic.

VI. SUMMARY AND OUTLOOK

As this has been a largely technical discussion of the
ouvillian formalism, it is perhaps useful to summarize t
main argument again. The work of MZS, building on that
SMG, has suggested that the critical divergence of the lo
ization length for the~noninteracting! quantum Hall transi-
tion can be computed within the Liouvillian formalism b
the 1/NL expansion in the number of Liouvillian flavors. W
find, based on testing the Liouvillian approach on rand
martrix theory and energy unintegrating it at large mome
in the quantum Hall problem, that this program has seri
problems already atNL5` which do not appear to be reme
diable within the 1/NL expansion. Accordingly, we conclud
that the calculation of MZS does not represent a computa
of the quantum Hall correlation length exponent. As there
no other approximation scheme that readily suggests itse
the Liouvillian formalism, and as we have argued in the
troduction that alternatives are likely anyway to suffer fro
similar deficiencies, we are pessimistic about the utility
Liouvillians for making progress on the problem of the qua
tum Hall transition.

There are a couple of loose ends in our analysis
would be nice to tie up. First, we have not carried out
energy unintegration of the LiouvillianNL5` answer for
the quantum Hall problem nearq50, and it would be of
some technical interest to see if this has an analytic struc
different from large momenta as well as a technical challe
to see how this might be performed. Second, it may be p
sible to use our ideas on energy unintegration to see if
logarithm found by MZS has any interpretation in the Gree
function perturbation theory. Perhaps an intrepid reader
be inspired to sort these out.
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APPENDIX A: CRITICAL BEHAVIOR OF THE
QUANTUM HALL LIOUVILLIAN

For completeness, but also because some of the orig
discussion7 was incorrect,20 we discuss here how it is th
energy integrated Liouvillian propagator can be used to
tract the localization length exponent. Most of the argum
we present follows the steps of SMG, but in Eq.~A4! we find
that it is v, rather thanq as used by SMG, which acts as
04531
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cutoff for diffusion. Considering the energy integrated prop
gator, one might worry that, as the critical wave functions
a set of measure zero in the spectrum, any information
them will be lost upon integrating over the band and t
behavior at smallv andq will be that of an insulator. This is
not the case: the Liouvillian Green function exhibits critic
asymptotics intermediate between those of the metal and
sulator in the transport limitq!v, with the diffusion con-
stantD(v,q50);v1/2n, wheren is the correlation length
exponent.20

Near the critical energyEc , the two-particle Green func
tion for the quantum Hall problem can be parametrized a12

K~E,v;q!5
2pr~E!

iv2D~E,v;q!q2
. ~A1!

In the transport limitDq2!v, we can expand the denom
nator to obtain

K~E,v;q!'2pr~E!F 1

iv
2

Dq2

v2 G . ~A2!

These forms also hold for a metal, withD(E,v;q50) non-
zero, and for an insulator withD(E,v;q50) vanishing for
v→0 roughly as v2. For the quantum Hall problem
D(E,v,q) has a nontrivial dependence onE, v, andq.

To quantify this dependence, consider the two import
length scales in the transport limit. These are the localiza
length j; l uEc /(E2Ec)un and Lv5(r(e)v)21/2 which is
the size of a box with level spacing of the order of the fr
quency. Then, whenLv!j(E), localization is unimportant
and we may takeD(E,v,q)'Dc , a nonzero constant. In th
opposite limit,Lv@j(E), we have the insulating behavio
D(E,v,q)5D ins(v);v2. In the following, we will assume
a sharp crossover between these two limiting forms, whic
sufficient for our purposes.

Armed with these facts we can now carry out the ene
integration to deduce the form ofP(q,v) in the transport
limit. Specifically,

E dE ReK~E,v;q!52p
q2

v2E2`

`

dEr~E!D~E,v,q50!.

~A3!

We will see that the integral is dominated by energies n
Ec so that we can replacer(E)'r(Ec) and trade the integra
over E for one over the localization length using th
asymptotic relationj; l uEc /(E2Ec)un. This yields

ImP~q,v!;
q2

v2

Ecl
1/n

n
r~Ec!E

l

`

djj2121/n

3D„Ec1Ec~ l /j!1/n,v,q50…

;
q2

v2

Ecl
1/n

n
r~Ec!

3F E
l

Lv
djj2121/nD ins~v!1E

Lv

`

djj2121/nDcG

8-15
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;
q2

v2
Ecr~Ec!@D ins~v!1Dc„l

2r~Ec!v…

1/2n#

;
Dcq

2

v2
„l 2r~Ec!v…

1/2n, ~A4!

where the last simplifcation follows upon noting th
D ins(v);v2 is much smaller thanv1/2n for n.1/4, which is
true, in general, for a random critical point in two dime
sions on the grounds of the Harris criterion, and holds for
reasonably precise estimates ofn available in this case. As a
statement about Liouvillian theory, this result implies that t
self-energy of the exact Liouviliian Green function has t
behaviorS(v,q→0)5v21/P(v,q); iq2v1/2n.

APPENDIX B: DETAILS OF ENERGY UNINTEGRATION

We start from Eq.~43!. After a change of variables, i
reads

K~E1 ,E2!

5E
0

p/2

duE
0

` rdrexp@2r ~E2cosu1E1sinu!#

2v2r 2

3 R dzez

2p i
@z2Az22~2vr !2#

5E
0

p/2

duE
0

`drexp@2r ~E2cosu1E1sinu!#

v
I 1~2vr !

5
1

2v2E0

p/2

duS R cos~u1f!

AR2cos2~u1f!21
21D , ~B1!

where we have defined

R[
1

2v
AE1

2 1E2
2 5

1

2v
AE21~v/21 i01!2 ~B2!

and

tanf[
E2

E1
. ~B3!

Proceeding further,

K~E1 ,E2!

5
1

2v2 Fsin21
R cosf

AR221
1sin21

R sinf

AR221
2

p

2 G
5

1

2v2 F sin21
E1

AE1
2 1E2

2 24v2

1sin21
E2

AE1
2 1E2

2 24v2
2

p

2 G
5

1

2v2 F sin21
E1AE1

2 24v21E2AE2
2 24v2

E1
2 1E2

2 24v2
2

p

2G ~B4!

which is Eq.~44!.
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APPENDIX C: MAGNETIC ALGEBRA
AND RANDOM MATRICES

In this appendix, we demonstrate that an algebra like t
of density operators in the lowest Landau level may be se
for an arbitrary Hamiltonian. We consider an orthonorm
basis$ua&% for V and the corresponding basis$ua,b&% onAV ,
wherea andb range from 1 toN). We define

uq)5
1

N1/2
eiqxqyp/N(

n
un1qy ,n)eiqxn2p/N ~C1!

for integerqx andqy ~ranging from 1→N) which also form
an orthonormal basis. We can rewrite

Ĥ5(
mn

Hmnum,n)5(
q

V2quq), ~C2!

where

V2q[(
n

Hn1qy ,n

N1/2
e2 iqx(n1qy/2)2p/N. ~C3!

Switching to operator notation, withtq[uq), one can check
that

@tq ,tp#52isin
pq∧p

N
tq1p ~C4!

so that

]

i ]t
uq)5

1

N1/2 (
p

2iV2psin
pq∧p

N
up1q). ~C5!

These expressions are in parallel to those for the Liouvill
in the lowest Landau level. Strikingly, we have recast a
neric problem in the notation of the magnetic translation o
erators. Of course, the definition of the~discrete! momenta is
ad hoc, and so, while this rewriting appears suggestive, it
not generally useful. Nevertheless, the GUE retains its s
plicity in this approach: Eq.~27! implies that

^VpVq&5
v2

N
dp,2q• ~C6!

Disorder correlators are thus diagonal inq, continuing the
analogy with spatially extended systems.
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