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Transport equations for a two-dimensional electron gas with spin-orbit interaction
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The transport equations for a two-dimensional electron gas with spin-orbit interaction are presented. The
distribution function is a 22-matrix in the spin space. Particle and energy conservation laws determine the
expressions for the electric current and the energy flow. The derived transport equations are applied to the
spin-splitting of a wave packet and to the calculation of the structure factor and the dynamic conductivity.
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Spin injection and coherent control of spins in variousHere, as usualyq,dy,0,,6, constitute the set of Pauli ma-
nanostructures represent two principal challenges for th&ices. We use italic subscripts for spatial coordinates and
field of spintronics. Recently, the amount of spintronics re-reserve greek subscripts for the spin indexes.
search has grown up extensively with the ultimate goal of Spectral propertiesBefore deriving the transport equa-
applications to the quantum computing and informationtion we describe briefly the spectral properties of the Hamil-
processind.A number of spin-based devices have been detonian(1). Its diagonalization is straightforward and reveals
signed and studie?:® Spin manipulation in such devices can the existence of two spin-split subbands in the electron spec-
be achieved by opticilor electrid~*° methods or by ferro-  trum,
magnetic gating® A controlled coupling between spin and
orbital degrees of freedom is considered to be a particularly €p=6ptAp,  €p=&— Ay, 3
promising tool of efficient spin manipulation dating back to
the seminal proposal by Datta and Bas. where

Spin-orbit interaction in two-dimensional electron gas 02
(2DEGQ) confined at GaAs/AlGaAs, GaN/AlGaN or similar _r A =Jp2A2t B+ 4 4
heterojunctions arises because of the quantum well asymme- =m0 B VPia®+ B+ AaBp,py, (4

try in the perpendiculafz] direction. The resulting perpen- 9 2. 2 _
dicular electric field leads to the coupling of spin to the elec-2ndP”= P+ py is the total electron momentum. The eigen-
tron momentunt? The strength of this coupling can be functions corresponding to the eigenstat@sare
experimentally tuned by a gate voltatje:* ,

Experimental advances in spin manipulation present a cer- 1 el ipx
tain challenge to develop a proper theoretical description for PrAX)= E + e ixp2 e
various phenomena related to the spin-orbit interaction. In
particular, modification of universal conductance fluctuationswith the upper(lower sign corresponding to the,; (i)
and weak localization has been studied in quantumd@oté.  state. The phase factos, depends on the direction of the
The phenomenon of weak localization has been considereglectron momentum,
in 2DEG as welt*'8The Friedel oscillations in the presence
of spin-orbit interactioff and the ac conductivity and the apy+ Bpy
plasmon attenuatidf are calculated. ta”X;Fm- (6)

The principal goal of the present paper is to derive general y X
transport equations for the spin-dependent distribution funcFor the isotropic 2DEGB=0) the phasey,, coincides with
tion of 2DEG including the effects of spin-orbital coupling. the angle between the electron momentum andythgis.
We assume that the spin-orbit interaction in a two- Further and more convenient description of the spectral
dimensional electron gas has the form, properties can be obtained by considering the spin-dependent

retarded Green function, defined as usual by

®)

Hso= a(axpy— aypx) + B(OxPx— TyPy), @

~R " — Y Tryr Tryr
where the first term is the Bychkov—Rashba tErand the G gp(X,X") = Ot =t )((Pa(X) Yp(X") + hp(x )¢a(X))>-(7)

second term is the linear Dresselhdos anisotropy term
present in semiconductors with no bulk inversionHere we have used the shorthand notation for the space and
symmetry’! The expression of Eq(l) corresponds to the time variables,x=(x,t). In a homogeneous system the
confinement along thé01) growth directior?® Hereinafter ~ correlation functions depend on the relative coordinates
we neglect cubic Dresselhaus terms. The free particle Hamilk—x’ only. Using the above expression8)—(5) we
tonian can therefore be written in compact notations as  can write the expression for the retarded Green function of
free electrons in the momentum representati&®(e,p)
B« @ = [dt dx GR(x)e''~'PX which after simple transformations
—a —pB) takes the form

2

H=l2m

0o+ @ik Pk, a’ik:<
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Following the known route of deriving kinetic equatihs

GR(e.p)= 212 GE(G,P) we utilize the Wigner transformation for the density matrix,
pn=1,
N N N - . r r
:} 0o+ COSYpOx— SIN Y0y fp(X,'[)ZJ' dr e 'P'f| x+ E'X_E't . (14
2 €—€ptin
R R L By taking the sum of Eqg13) in the Wigner representation
1 og—Ccosx,0x+siny,oy we obtain
5 e — . ®
€~ €ty

with the indexesu=1,2 corresponding to the first and second [o+v-V]fp+ ief dd ¢q(fp— (a2~ Fpr (a2 €™
terms, respectively, in the last expression of ).
The central quantity in the transport theory is the density

, . o
matrix +iajpl o, fpl+ Eaikvk{o'i fob=0, (15

N T wherev=p/m. Here we introduced the spatial Fourier trans-
Fag06X') = (WX 9 0))- © form for the scalar potentiah,=fdx ¢(x,t)e'%, with the
Its value in the thermal equilibrium is related to the imagi- shorthand notation for the momentum integratialy
nary part of the retarded Green function via the fluctuation—=d?q/(2)>.
dissipation theorem, Finally, to present Eq(15) in a more transparent way we
turn to the Pauli matrix representati¢hl) to write,

flep)= 2, nulGE'(ep)~GR(e,m], (10 _ .
W T . [5t+V'V]fp+|ef dd ¢q(fp— (g2~ T+ (912)) €' T+ @i ViOpi

heren,,, is the Fermi—Dirac distribution function for theth

state(3). It is convenient to expand the density matrix over =0, (16)
the complete set of the Pauli matrices. In particular, for the _
equal-time density matrix, [at+v~V]gpi+ief dq ¢q(9p—(qr2)i — Ip+ (231 €'
fp=f2—6?<e,p)=%fp&o+%gp-&, 1 ~ LB X Gl + i p =0, 17
™ with the following notation for the precession frequency,
we observe according to E€LO) that in the thermal equilib-  bpi =2aikPk=2A,(COSXp , — SiNxp,0). _
rium, Conservation lawsThe transport equatior(d6) and(17)
are of the Boltzmann type and therefore fulfill certain par-
fo=(N1ptNzp),  Gpx=COSXp(N1p—Nyp), ticle and energy conservation conditions which will now be
obtained. By integrating Eq16) with respect to the momen-
Upz=0, Gpy= —SiNxp(N1p—Nayp), (12) tum we find the continuity equation for the particle flow,
T t ti | i ilibri tat 1o
ransport equationsin a generic nonequilibrium state, 5tP+EV'J:0, (18

the density matrix9) obeys a set of conjugated equations

that can be obtained from the equations of motion for th&yhere the electron density and the electric current are given,
electron operatorg(x) and'(x) determined by the Hamil- respectively, by

tonian(2),
v A A p= [ oty i-e dolvityraugpl (9
10+ ==+ u—ed, | F(X,X")+ia;oVf(x,x")=0,
t2m * Tk The terms containing the external poteni| cancel as is
readily seen by the change of integration variables. To obtain
. 2 - . - A the energy continuity condition we multiply E¢L6) by &,
["yt’_ om T ehe [T X)) Hiay Vi (xx")5=0. and Eq.(17) by b, and add them together. After simple trans-

(13)  formations the conservation of energy can be written in the

. . . ) .. . . conventional form,
The equationg13) neglect impurity scattering. This is justi-

fied for ballistic systems when the mean free path exceeds dp+V-jc=j-E, (20
the characteristic system size, e.g., in high-mobility 2DEG i
semiconductor heterostructurgsve discuss the impurity
scattering at the end of the papdn Eq.(13) we allowed for .

the scalar external fieldp,=(x,t). In the absence of p :f dp[£pfptbpiGyil,
electron-impurity or electron-electron collisions no self-

energy terms appear in the equatidd8) which makes it e

sufficient to consider the equal-time=(t’) functions only. lk:f dpv [ €pfp +bpigpi]+aikf dp[£pgpi +bpifp]-

"Wwhere the energy density and energy current are,
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The equatior{20) means that the local energy change is due Now let us consider an injection of a packet initially po-
to the energy flow to the neighboring points in space as wellarized along they direction.

as a result of the local Joule heatitright-hand sidg

Wave packet splittingro give a specific application of the 2 (A o~

derived equations let us now use them to describe the propa- T =(0010y)F(y), @49
gation of a wave packet in 2DEG with a spin-orbit coupling. 1o equations for thé and g,
We neglect a spin-orbit anisotrogg=0 for simplicity. The
wave packet propagates along thdirection and is uniform
along thex axis. The transport equatiori6) and (17) are
then one-dimensional an@vith no external field applied

components of the density
matrix remain unchanged with the above analysis still valid.
The second pair of Eq$21) is independent of the first pair
and have a solution

yield 6,(y,0)=F(y—vt)cos 24 ),
[di+vdy]f=—ady0x,
9.y, t)= —F(y—vt)sin(2At). (25
[ditvdy]gy=—adf,
According to the expressiori&5) the initial spin polarization
[di+vdylgy=—2A,0;, precesses with a frequencyAg around the axis perpendicu-
lar to the propagation direction. Note that the precessing spin
[di+vdy]g,=2A,9, . (2D propagates with the center-of-mass veloaiyrather than
First, we consider a spin-unpolarized Gaussian wave pack#&ith the subband velocities... .
injected at the poiny=0 at the timet=0 and moving with The above analysis assumes that a wave packet is injected
the average momentum with a given momentunp. Such an injection into 2DEG
with a spin-orbit coupling is not easy to achieve. For ex-
fo(x,t=0)=GoF(y), F(y)=e Yo ~1(py~P?op? ample, injection through an interface with a “normaifith

(22)  no spin-orbit interaction2DEG**~2® would not result in a
spatial splitting of a wave packet. This is due to the fact that
the injection happens with a conservation of energy rather
than momentum. As seen from E@8) and(4) the two states

ith the same energy propagate with the same velcity
ithin the approximations of this paper. However, if we take
into account the cubic Dresselhaus terms, which have been
omitted in our discussion, there can be a splitting of veloci-

In this geometry the phase factgp=0, which means that
the precession vectdr is directed along th& axis. We also
observe thag,=g,=0. The remaining two of the equations W
(21) are easily solved by Fourier transforming them into a se(N
of linear algebraic equations. The general solution of Egs
(21) takes the form

f(y,)=A(y—v.t)+B(y—v_1), ties at the same energy. In order to achieve splitting without
the cubic terms we need to consider a more complicated
O (Y, ) =A(y—v.t)—B(y—v_t), setup. As a demonstration of principle, we consider the fol-

_ » lowing example. Let us inject a wave packet propagating
where we have introduced subband velocities=v = a. S0 jong they direction with the spin polarized along the inter-
far, A(x) andB(x) are two arbitrary functions which have to face (x axis), e.g., by injection from a ferromagnetic contact.
be determined from the initial conditiofi2l) yielding,  The states forming the wave packet belong to the subband 1,
A(y)=B(y)=F(y). We find that the incident wave packet yth a spin polarization (4/2)(1,1). Let us now switch on
(22) is decomposed into two independent constituents 0ppasc magnetic field along theaxis rotating the spin direction
sitely polarized along-direction and moving with different il it is aligned with thez axis (1,0), and then switch the
velocities. The spatial distribution of the electron density ismagnetic field off. The resulting state will be an equal mix-

given by the integral over all momenta, i.e., ture of both eigenstates ({2)(1,1) and (1{2)(1,—1)
— 2 without any change of momentufthe energy is no longer
po(y,t)= exd — (x—v.b) , (23 conservell The velocities of these states are different and
= 2mY25%(t) SX2(t) the packet will spilit.

: e , The above picture holds not only for the injection of ini-
with the average velocities.. =p/m* a, and the Gaussian a1y polarized packet. If the incident packet is unpolarized
width at finite times, 5x*(t) =4p “+(t°6p"/m7). To 0b- 54 hag a given energy, upon entering the interface it wil
serve'the spln_—prblt induced splltt_lng of a wave packet thebeCOme a mixture of two states: (2)(1,1) with the mo-
following conditions should be satisfied: mentumpy—ma, and (142)(1—1) with the momentum
Sp t po+ma. Both velocities remain equal t@y=py/m. After
E<a<5_p' switching on the ac magnetic field with the frequenoy
~2apy (which is a resonant frequency for the transition
The first of the two conditions ensures that the splittingbetween the two subbangshe first state will evolve into the
dominates over the wave packet broadening, while the secnixture of the states: (12)(1,1) and (1{2)(1,~1), both
ond condition means that enough time has to elapse beforgith the momentunp,+ mea, meaning two different veloci-
the splitting becomes larger than the intrinsic packet width.tiesvy andv,—2a. The same reasoning shows that the other
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initial state will develop two velocities, and vy+2a.
Therefore, the initially unpolarized packet will split into
three parts.

Ballistic spin injection We envisage a spin injection from
ferromagnetic contacts into ballistic 2DEG among the appli-
cations for the equations derived above. In this case the in-
jection occurs with conservation of energy, and can be de-
scribed by the time-independent solution of the equations
(16) and (17) with the appropriate boundary conditions,
which require a conservation of the normal components of
the electric current, Eq19), at the interfaces. A correspond-
ing theory would generalize the existing approach for the
ballistic spin-injection based on the ordinary Boltzmann
equatior’® In the latter case the Boltzmann equation methody. -~ "\ oo ciron gas, = p2m=alp|. At T=0 all states be-

is more convenient for the calculation of spin polariz_ation of\ow the Fermi energy; are filled. The Fermi momenta for the two
current and magnetoresistance than the direct solution of thg,,nands arp; ,= po ¥ Me. The direct transitionsj=0 (shown by

single-particle Schidinger equation. . the arrow are possible for the states between the dashed Imes,
Structure factor The electron density fluctuations are de- <p<p,.

scribed by the structure factdrdefined as the retarded cor-
relation function, (@—QV) 8gp —i[bpX 80— @i iF

FIG. 1. Spin-orbit induced subbands of an isotropic two-

X(x.X')==10(t=t" ) {{p(x)p(x") = p(x) p(x))), - = —e¢(,0)(9p+ (g2 + G- (@2))- (30
Solving these equations for the variation of the electron den-

of the electron density operators(x)= | (x)i,(x). At  sity (19) we obtain the structure factor with the help of the
equilibrium the structure factai26) depends on the relative relation(28),

coordinatesx—x" only. The imaginary part of the Fourier 1

transformy(w,q) measures the energy dissipation of the ex- _= f dol 1+ (— 1) cod v.— v

ternal field at a given frequenay and a wave vectog. In x(@,9) 2 E PLL+(=1) Xp~ Xp')]

the isotropic system the structure factor is related to the ac

conductivity by the relation Nup_—Nurp,
| %0 w—eﬂrm—l—eﬂm
U(w):llmo 7 x(@,q). (27)  wherep.=p+q/2. The expressiori31) with w=0 corre-

sponds to the previously derived result for the static dielec-
tric function® To simplify further the subsequent discussion
we will disregard the anisotropy3=0, and consider the
zero-temperature limif=0. The two spin-orbit subbands
re axially symmetric, shown on Fig. 1. The subbands are
jlled up to the same Fermi energy level but have two

The formula(27) is readily checked using the Kubo formula
for the conductivity and the continuity equati¢i8).
According to the fluctuation-dissipation theorem, the
structure factor can be determined from calculations of th
linear response to an external scalar field. The field-induced. - ;
modulation of electron density is related to the magnitude o ifferent Fermi momentap, and p,, determined from the

: equationse; (p;) = er, Wheree;(p) are given by Eqs(3) and
;crr]ls teoxztgrnal perturbation through the structure factor accorqa) with B—0. This leads to the values

p1=po—Ma+O0(m?a?/pj),
Sp(,)=ex(0.q) $(.q). (29) LPe e “ o

The electron density modulation is given by the deviation of
the function f,(t,x) from its equilibrium value,p(w,q)  where p, is determined byer=p3/2m, namely p, is the
= [dp 6f,(w,q), and can be found from the linearized equa-Fermi momentum in the absence of spin-orbit interaction.
tions (16) and(17). In the linear approximation by the exter- Note that the Fermi velocities for the two subbands,
nal field ¢(w,q), the distribution function is a small deviation sei(p)
€
V= _, = —+0(m2a?/p?), (33
fo=f0+6f, Gy=00+ G, (29) = op len T Tl Po

are the same ancup to higher-order termsequal to the
Fermi velocity in 2DEG with no spin-orbit coupling=0.
The imaginary part of the structure factgfw,q) determines
the absorption, or Landau damping, of the external field at
(0—qv) 8fy— a0 89p=ed(@,0) (o (2 Fo-(qi2))» given frequency and wave vector. The points in the electron

P,= Po+ Ma+0(m2a?/p3), (32

from its equilibrium value(12). The linearized transport
equationg16) and (17) take the form
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momentum space that contribute to the Landau damping coing to Eq.(27)] remains finite, which is clear since the op-
respond to the zeros of the denominators. There are total fowrator of electron velocity has nonzero matrix elements for

determined by the equations the intersubband transitions evengat 0.
The experimental observation of the direct transiti(8¥3
wo=qvrtap,*ap_, (34) is feasible in the measurements of the resonant microwave
with the opposite signs of the last two terms correspondin@bsorpt'on in high-mobility sen_ncondu.ctor heterostructures:
to the (gapless transitions within the same subbang. Screened electron-electron interaction and plasmon exci-
(3)] and equal signs describing the transitions between dif'gatlon_s So far our analysis has been restricted to the nonin-
ferent subbands. teracting electron gas. To incorporate the effects of the

¢ €lectron-electron interaction in the random phase approxima-
tion one has to account for the self-consistent electric field
jdnduced by the variations of the electron density. The poten-

small transferred momeng<p, one can disregard the de- tigl for _this field ¢sc_ obeys the Poisson e_quation. In_ two
viation of the cosine factor from unity and also approximated'mens'ons the Fourier transform of the Poisson equation has

Nip_—Nip, =—Qqdn, /dp. Taking the momentum integral we the form
obtain for the contribution of théth subband, edsd ©,0)=Vgp(w,q), (39)

The terms withu=u" in Eq. (31) represent the effect o
intrasubband transitions. Only indirecg#0) transitions
contribute to the imaginary part of the structure factor. Fo

where Vq=21-re2/q is the bare Coulomb propagator. The
Txi(w,q)=—v; —— e(qzvé— w?), (35 random phase approximati¢RPA) is then equivalent to the
Vadvp— substitutiong(w,q) — ¢sd @,q) + #(w,q) on the right-hand

side of Eq.(30). It is straightforward to see that the structure

wherev o= po/m andy; stands for the density of states of the
vo=Po Vi y factor takes the familiar RPA form,

ith subband at its Fermi surfape=p; :

_m 1 Mo _m +ma
Ear T LN F RS

x(®,q)
_ XRPA(w,Q)Im-

Note that the sum of the two contributiofs) is indepen- The pole of this expression determines the plasmon spectrum

dentof the spin-orbit interactiofup to higher-order termsa @~ “a™! Y. wherewg=v?q/2, with k=2me’» standing
consequence of the fact that the two subbands have the saffé the static screening radius. The plasmon linewidth is
value of the Fermi velocity. Spin-orbit interaction results 9Ven by the imaginary part of the bare structure factor at
only in a redistribution of the spectral weight between the®~ “a:
subbands controlled by the changes in the densities of states. =1V wg|Ix(0q,9)] (40)
The terms withu# ' in Eq. (31) correspond to the in- Ya™ 2 Va@qlAXL @q -
tersubband transitions. Their contribution to the structurd=or the plasmon to be an undamped excitation its frequency
factor for ma<q<p, is negligible compared to the above should lie above the electron-hole continuumg>qu,
considered intrasubband transitions by the factay?/pZ  Which requires<>2q. As was already pointed out in Ref. 20
(due to the small sihprefactoy. However, the presence of the plasmon acquires damping whesy~2A. Since g
the two subbands is important as it makes the dirget0, <(qK)l/2_~ ma at this range, the direct transitio(®7) make
transitions possible. The factor;,—ny, then defines the the principal contribution to Eq40).

(39

momentum space available for the direct transitignss p Impurity scattering The equations presented in this paper

<p, (see Fig. 1, which corresponds to the frequency do- @ssume ballistic electron motion. The absence of impurities

main 24— 2ma’<w<2Aq+2ma?, whereAg=A, allows one to write kinetic equation as a closed set of equa-
) 01

tions, Eq.(15), for the density matrix integrated over the

e (P dp energy variables [see Eq(11)], i.e., at coinciding times. In
x(0,0-0)=——| ———— . (36)  the presence of disorder the self-energy due to impurity scat-
47 Jpy (0+i0)2—4A7 tering should be added to the right-hand side of @§). In

general, since plain waves are no longer eigenstates of the
system with impurities, the equations for the distribution
92 sgnw function depending on the momentum (and not on the
oA o[4mPat— (w—2A0)?]. energye) become not very convenient. More natutthlough

0 37) more complicatedequations would result from integration

over &, similar to the usual spin-degenerate c3ssuch

The equation(36) corresponds to the previously obtained equations are beyond the scope of the present paper.
result® for the optical conductivityo(w). The expression Special casex==*g: Recently, Schliemanet al*° pro-
(36) goes to zero with the wave vector, which is easily un-posed a spin field-effect transistor based on a particular tun-
derstood by noting that the matrix elements for the transiing of the spin-orbit coupling constants such tlat g (or
tions betweeny;(p_) and ¢,(p,) states are suppressed at a=—p). This special system is expected to preserve spin
small transferred momenta since they are orthogonaj at coherence even in the presence of disorder. This is due to the
=0. However, their contribution to the conductiv[tgccord-  fact that the spin eigenstatés) are independent of the elec-

The imaginary part of this expression is

Ix(w,q—0)=—
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tron momentay,= const, therefore a scalar impurity poten- available in terms of the densitl, and sping, distribution
tial does not result in the intersubband transitions. The samfinctions. The obtained equations are applied to the wave-
observation holds for the structure factor. Since the matripacket propagation in a ballistic 2DEG and to the calculation
elements of the density are identically zero for the transition®f the density-density correlation functiof(w,q). We ob-

between different subbands the second line of @&4) is  Serve that fog>ma the structure factox(w,q) is almost

absent in this case and the structure factor is intact b)?ot affected by the spin-orbit interaction, but it reveals new

the presence of spin-orbit interactidap to higher order ieatures wherg<ma due to the direct transitions between
corrections. different spin-orbit subbands.

Conclusions To summarize, we have derived transport  ppitful discussions with A. Andreev, K. Flensberg,
equations for the distribution function of a two-dimensional | Glazman, and C. Marcus are gratefully appreciated. This
electron gas with spin-orbit interaction of both the Bychkov-material is based on work supported by the NSF under Grant
Rashba and the Dresselhaus mechanisms. The distributioqo. PHY-01-17795 and by the Defense Advanced Research
function is a 22-matrix in the spin space. General expres-Programs AgencyDARPA) under Award No. MDA972-01-
sions for the particle and energy currents and densities are-0024.
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