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Transport equations for a two-dimensional electron gas with spin-orbit interaction
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The transport equations for a two-dimensional electron gas with spin-orbit interaction are presented. The
distribution function is a 232-matrix in the spin space. Particle and energy conservation laws determine the
expressions for the electric current and the energy flow. The derived transport equations are applied to the
spin-splitting of a wave packet and to the calculation of the structure factor and the dynamic conductivity.
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Spin injection and coherent control of spins in vario
nanostructures represent two principal challenges for
field of spintronics. Recently, the amount of spintronics
search has grown up extensively with the ultimate goal
applications to the quantum computing and informat
processing.1 A number of spin-based devices have been
signed and studied.2–5 Spin manipulation in such devices ca
be achieved by optical6 or electric7–10 methods or by ferro-
magnetic gating.11 A controlled coupling between spin an
orbital degrees of freedom is considered to be a particul
promising tool of efficient spin manipulation dating back
the seminal proposal by Datta and Das.2

Spin-orbit interaction in two-dimensional electron g
~2DEG! confined at GaAs/AlGaAs, GaN/AlGaN or simila
heterojunctions arises because of the quantum well asym
try in the perpendicular@z# direction. The resulting perpen
dicular electric field leads to the coupling of spin to the ele
tron momentum.12 The strength of this coupling can b
experimentally tuned by a gate voltage.13,14

Experimental advances in spin manipulation present a
tain challenge to develop a proper theoretical description
various phenomena related to the spin-orbit interaction
particular, modification of universal conductance fluctuatio
and weak localization has been studied in quantum dots.15–17

The phenomenon of weak localization has been consid
in 2DEG as well.14,18The Friedel oscillations in the presenc
of spin-orbit interaction19 and the ac conductivity and th
plasmon attenuation20 are calculated.

The principal goal of the present paper is to derive gen
transport equations for the spin-dependent distribution fu
tion of 2DEG including the effects of spin-orbital couplin
We assume that the spin-orbit interaction in a tw
dimensional electron gas has the form,

Hso5a~ŝxpy2ŝypx!1b~ŝxpx2ŝypy!, ~1!

where the first term is the Bychkov–Rashba term12 and the
second term is the linear Dresselhaus~or anisotropy! term
present in semiconductors with no bulk inversi
symmetry.21 The expression of Eq.~1! corresponds to the
confinement along the~001! growth direction.22 Hereinafter
we neglect cubic Dresselhaus terms. The free particle Ha
tonian can therefore be written in compact notations as

H5F p2

2m
2mG ŝ01a ikŝ i pk , a ik5S b a

2a 2b D . ~2!
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Here, as usual,ŝ0 ,ŝx ,ŝy ,ŝz constitute the set of Pauli ma
trices. We use italic subscripts for spatial coordinates a
reserve greek subscripts for the spin indexes.

Spectral properties: Before deriving the transport equa
tion we describe briefly the spectral properties of the Ham
tonian ~1!. Its diagonalization is straightforward and revea
the existence of two spin-split subbands in the electron sp
trum,

e1p5jp1Dp , e2p5jp2Dp , ~3!

where

jp5
p2

2m
2m, Dp5Ap2~a21b2!14abpxpy, ~4!

andp25px
21py

2 is the total electron momentum. The eige
functions corresponding to the eigenstates~3! are

c1,2~x!5
1

A2
S eixp/2

6e2 ixp/2D eipx, ~5!

with the upper~lower! sign corresponding to thec1 (c2)
state. The phase factorxp depends on the direction of th
electron momentum,

tanxp5
apx1bpy

apy1bpx
. ~6!

For the isotropic 2DEG~b50! the phasexp coincides with
the angle between the electron momentum and they axis.

Further and more convenient description of the spec
properties can be obtained by considering the spin-depen
retarded Green function, defined as usual by

iGab
R ~x,x8!5u~ t2t8!^^ca~x!cb

†~x8!1cb
†~x8!ca~x!&&.

~7!

Here we have used the shorthand notation for the space
time variables,x5(x,t). In a homogeneous system th
correlation functions depend on the relative coordina
x2x8 only. Using the above expressions~3!–~5! we
can write the expression for the retarded Green function
free electrons in the momentum representation,ĜR(e,p)
5*dt dx ĜR(x)ei et2 ipx, which after simple transformation
takes the form
©2003 The American Physical Society17-1
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ĜR~e,p!5 (
m51,2

Ĝm
R~e,p!

5
1

2

ŝ01cosxpŝx2sinxpŝy

e2e1p1 ih

1
1

2

ŝ02cosxpŝx1sinxpŝy

e2e2p1 ih
, ~8!

with the indexesm51,2 corresponding to the first and seco
terms, respectively, in the last expression of Eq.~8!.

The central quantity in the transport theory is the dens
matrix,

f ab~x,x8!5^^cb
†~x8!ca~x!&&. ~9!

Its value in the thermal equilibrium is related to the ima
nary part of the retarded Green function via the fluctuati
dissipation theorem,

f̂ ~e,p!5 (
m51,2

nmp@Ĝm
R†~e,p!2Gm

R~e,p!#, ~10!

herenmp is the Fermi–Dirac distribution function for themth
state~3!. It is convenient to expand the density matrix ov
the complete set of the Pauli matrices. In particular, for
equal-time density matrix,

f̂ p5E de

2p
f̂ ~e,p!5

1

2
f pŝ01

1

2
gp•ŝ, ~11!

we observe according to Eq.~10! that in the thermal equilib-
rium,

f p5~n1p1n2p!, gpx5cosxp~n1p2n2p!,

gpz50, gpy52sinxp~n1p2n2p!, ~12!

Transport equations: In a generic nonequilibrium state
the density matrix~9! obeys a set of conjugated equatio
that can be obtained from the equations of motion for
electron operatorsc(x) andc†(x) determined by the Hamil-
tonian ~2!,

F i ] t1
¹2

2m
1m2efxG f̂ ~x,x8!1 ia ikŝ i¹k f̂ ~x,x8!50,

F i ] t82
¹82

2m
2m1efx8G f̂ ~x,x8!1 ia ik¹k8 f̂ ~x,x8!ŝ i50.

~13!

The equations~13! neglect impurity scattering. This is just
fied for ballistic systems when the mean free path exce
the characteristic system size, e.g., in high-mobility 2DEG
semiconductor heterostructures~we discuss the impurity
scattering at the end of the paper!. In Eq.~13! we allowed for
the scalar external fieldfx5f(x,t). In the absence o
electron-impurity or electron-electron collisions no se
energy terms appear in the equations~13! which makes it
sufficient to consider the equal-time (t5t8) functions only.
04531
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Following the known route of deriving kinetic equations23

we utilize the Wigner transformation for the density matri

f̂ p~x,t !5E dr e2 ipr f̂ S x1
r

2
,x2

r

2
,t D . ~14!

By taking the sum of Eqs.~13! in the Wigner representation
we obtain

@] t1v•¹# f̂ p1 ieE dq fq~ f̂ p2(q/2)2 f̂ p1(q/2)!e
iqx

1 ia ikpk@ŝ i , f̂ p#1
1

2
a ik¹k$ŝ i , f̂ p%50, ~15!

wherev5p/m. Here we introduced the spatial Fourier tran
form for the scalar potentialfq5*dx f(x,t)eiqx, with the
shorthand notation for the momentum integrationdq
5d2q/(2p)2.

Finally, to present Eq.~15! in a more transparent way w
turn to the Pauli matrix representation~11! to write,

@] t1v•¹# f p1 ieE dq fq~ f p2(q/2)2 f p1(q/2)!e
iqx1a ik¹kgpi

50, ~16!

@] t1v•¹#gpi1 ieE dq fq~gp2(q/2)i2gp1(q/2)i !e
iqx

2@bp3gp# i1a ik¹kf p50, ~17!

with the following notation for the precession frequenc
bpi52a ikpk52Dp(cosxp ,2sinxp,0).

Conservation laws: The transport equations~16! and~17!
are of the Boltzmann type and therefore fulfill certain pa
ticle and energy conservation conditions which will now
obtained. By integrating Eq.~16! with respect to the momen
tum we find the continuity equation for the particle flow,

] tr1
1

e
¹• j50, ~18!

where the electron density and the electric current are giv
respectively, by

r5E dpf p , j k5eE dp@vkf p1a ikgpi #. ~19!

The terms containing the external potentialfq cancel as is
readily seen by the change of integration variables. To ob
the energy continuity condition we multiply Eq.~16! by jp
and Eq.~17! by bp and add them together. After simple tran
formations the conservation of energy can be written in
conventional form,

] tr
e1¹• j e5 j•E, ~20!

where the energy density and energy current are,

re5E dp@jpf p1bpigpi #,

j k
e5E dpvk@jpf p 1bpigpi #1a ikE dp@jpgpi1bpi f p#.
7-2
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TRANSPORT EQUATIONS FOR A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 045317 ~2003!
The equation~20! means that the local energy change is d
to the energy flow to the neighboring points in space as w
as a result of the local Joule heating~right-hand side!.

Wave packet splitting: To give a specific application of th
derived equations let us now use them to describe the pr
gation of a wave packet in 2DEG with a spin-orbit couplin
We neglect a spin-orbit anisotropyb50 for simplicity. The
wave packet propagates along they direction and is uniform
along thex axis. The transport equations~16! and ~17! are
then one-dimensional and~with no external field applied!
yield

@] t1v]y# f 52a]ygx ,

@] t1v]y#gx52a]yf ,

@] t1v]y#gy522Dpgz ,

@] t1v]y#gz52Dpgy . ~21!

First, we consider a spin-unpolarized Gaussian wave pa
injected at the pointy50 at the timet50 and moving with
the average momentump̄,

f̂ p~x,t50!5ŝ0F~y!, F~y!5e2y2dp22[( py2 p̄)2/dp2] .
~22!

In this geometry the phase factorxp50, which means tha
the precession vectorb is directed along thex axis. We also
observe thatgy5gz50. The remaining two of the equation
~21! are easily solved by Fourier transforming them into a
of linear algebraic equations. The general solution of E
~21! takes the form

f ~y,t !5A~y2v1t !1B~y2v2t !,

gx~y,t !5A~y2v1t !2B~y2v2t !,

where we have introduced subband velocitiesv65v6a. So
far, A(x) andB(x) are two arbitrary functions which have t
be determined from the initial condition~21! yielding,
A(y)5B(y)5F(y). We find that the incident wave packe
~22! is decomposed into two independent constituents op
sitely polarized alongx-direction and moving with differen
velocities. The spatial distribution of the electron density
given by the integral over all momenta, i.e.,

r6~y,t !5
1

2p1/2dx~ t !
expF2

~x2 v̄6t !2

dx2~ t !
G , ~23!

with the average velocitiesv̄65 p̄/m6a, and the Gaussian
width at finite times,dx2(t)5dp221(t2dp2/m2). To ob-
serve the spin-orbit induced splitting of a wave packet
following conditions should be satisfied:

dp

m
!a!

t

dp
.

The first of the two conditions ensures that the splitti
dominates over the wave packet broadening, while the
ond condition means that enough time has to elapse be
the splitting becomes larger than the intrinsic packet wid
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Now let us consider an injection of a packet initially p
larized along they direction.

f̂ p~x!5~ ŝ01ŝy!F~y!, ~24!

The equations for thef and gx components of the densit
matrix remain unchanged with the above analysis still va
The second pair of Eqs.~21! is independent of the first pai
and have a solution

gy~y,t !5F~y2vt !cos~2Dpt !,

gz~y,t !52F~y2vt !sin~2Dpt !. ~25!

According to the expressions~25! the initial spin polarization
precesses with a frequency 2Dp around the axis perpendicu
lar to the propagation direction. Note that the precessing s
propagates with the center-of-mass velocityv̄ rather than
with the subband velocitiesv̄6 .

The above analysis assumes that a wave packet is inje
with a given momentump̄. Such an injection into 2DEG
with a spin-orbit coupling is not easy to achieve. For e
ample, injection through an interface with a ‘‘normal’’~with
no spin-orbit interaction! 2DEG24–26 would not result in a
spatial splitting of a wave packet. This is due to the fact t
the injection happens with a conservation of energy rat
than momentum. As seen from Eqs.~3! and~4! the two states
with the same energy propagate with the same velocity26,27

within the approximations of this paper. However, if we ta
into account the cubic Dresselhaus terms, which have b
omitted in our discussion, there can be a splitting of velo
ties at the same energy. In order to achieve splitting with
the cubic terms we need to consider a more complica
setup. As a demonstration of principle, we consider the
lowing example. Let us inject a wave packet propagat
along they direction with the spin polarized along the inte
face (x axis!, e.g., by injection from a ferromagnetic contac
The states forming the wave packet belong to the subban
with a spin polarization (1/A2)(1,1). Let us now switch on
ac magnetic field along they axis rotating the spin direction
until it is aligned with thez axis (1,0), and then switch th
magnetic field off. The resulting state will be an equal m
ture of both eigenstates (1/A2)(1,1) and (1/A2)(1,21)
without any change of momentum~the energy is no longe
conserved!. The velocities of these states are different a
the packet will split.

The above picture holds not only for the injection of in
tially polarized packet. If the incident packet is unpolariz
and has a given energy, upon entering the interface it
become a mixture of two states: (1/A2)(1,1) with the mo-
mentump02ma, and (1/A2)(1,21) with the momentum
p01ma. Both velocities remain equal tov05p0 /m. After
switching on the ac magnetic field with the frequencyv
'2ap0 ~which is a resonant frequency for the transitio
between the two subbands!, the first state will evolve into the
mixture of the states: (1/A2)(1,1) and (1/A2)(1,21), both
with the momentump01ma, meaning two different veloci-
tiesv0 andv022a. The same reasoning shows that the oth
7-3
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E. G. MISHCHENKO AND B. I. HALPERIN PHYSICAL REVIEW B68, 045317 ~2003!
initial state will develop two velocitiesv0 and v012a.
Therefore, the initially unpolarized packet will split int
three parts.

Ballistic spin injection: We envisage a spin injection from
ferromagnetic contacts into ballistic 2DEG among the ap
cations for the equations derived above. In this case the
jection occurs with conservation of energy, and can be
scribed by the time-independent solution of the equati
~16! and ~17! with the appropriate boundary condition
which require a conservation of the normal components
the electric current, Eq.~19!, at the interfaces. A correspond
ing theory would generalize the existing approach for
ballistic spin-injection based on the ordinary Boltzma
equation.28 In the latter case the Boltzmann equation meth
is more convenient for the calculation of spin polarization
current and magnetoresistance than the direct solution o
single-particle Schro¨dinger equation.

Structure factor: The electron density fluctuations are d
scribed by the structure factor29 defined as the retarded co
relation function,

x~x,x8!52 iu~ t2t8!^^r~x!r~x8!2r~x8!r~x!&&,
~26!

of the electron density operatorsr(x)5ca
†(x)ca(x). At

equilibrium the structure factor~26! depends on the relativ
coordinatesx2x8 only. The imaginary part of the Fourie
transformx~v,q! measures the energy dissipation of the e
ternal field at a given frequencyv and a wave vectorq. In
the isotropic system the structure factor is related to the
conductivity by the relation

s~v!5 lim
q→0

ie2v

q2
x~v,q!. ~27!

The formula~27! is readily checked using the Kubo formu
for the conductivity and the continuity equation~18!.

According to the fluctuation-dissipation theorem, t
structure factor can be determined from calculations of
linear response to an external scalar field. The field-indu
modulation of electron density is related to the magnitude
the external perturbation through the structure factor acc
ing to,29

dr~v,q!5ex~v,q!f~v,q!. ~28!

The electron density modulation is given by the deviation
the function f p(t,x) from its equilibrium value,dr(v,q)
5*dp d f p(v,q), and can be found from the linearized equ
tions ~16! and~17!. In the linear approximation by the exte
nal fieldf~v,q!, the distribution function is a small deviatio

f p5 f p
01d f p , gp5gp

01dgp , ~29!

from its equilibrium value~12!. The linearized transpor
equations~16! and ~17! take the form

~v2qv!d f p2a ikqidgpk5ef~v,q!~ f p1(q/2)
0 1 f p2(q/2)

0 !,
04531
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~v2qv!dgpi2 i @bp3dgp# i2a ikqkd f p

52ef~v,q!~gp1(q/2)i
0 1gp2(q/2)i

0 !. ~30!

Solving these equations for the variation of the electron d
sity ~19! we obtain the structure factor with the help of th
relation ~28!,

x~v,q!5
1

2 (
mm8

E dp@11~21!mm8 cos~xp2xp8!#

3
nmp2

2nm8p1

v2em8p1
1emp2

, ~31!

where p65p6q/2. The expression~31! with v50 corre-
sponds to the previously derived result for the static diel
tric function.19 To simplify further the subsequent discussio
we will disregard the anisotropy,b50, and consider the
zero-temperature limitT50. The two spin-orbit subband
are axially symmetric, shown on Fig. 1. The subbands
filled up to the same Fermi energy leveleF but have two
different Fermi momenta,p1 and p2, determined from the
equationse i(pi)5eF , wheree i(p) are given by Eqs.~3! and
~4! with b50. This leads to the values

p15p02ma1O~m2a2/p0
2!,

p25p01ma1O~m2a2/p0
2!, ~32!

where p0 is determined byeF5p0
2/2m, namely p0 is the

Fermi momentum in the absence of spin-orbit interacti
Note that the Fermi velocities for the two subbands,

v i5
]e i~p!

]p
up5pi

5
p0

m
1O~m2a2/p0

2!, ~33!

are the same and~up to higher-order terms! equal to the
Fermi velocity in 2DEG with no spin-orbit couplinga50.
The imaginary part of the structure factorx~v,q! determines
the absorption, or Landau damping, of the external field
given frequency and wave vector. The points in the elect

FIG. 1. Spin-orbit induced subbands of an isotropic tw
dimensional electron gas,ep5p2/2m6aupu. At T50 all states be-
low the Fermi energyeF are filled. The Fermi momenta for the tw
subbands arep1,25p07ma. The direct transitions,q50 ~shown by
the arrow! are possible for the states between the dashed linesp1

,p,p2.
7-4
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TRANSPORT EQUATIONS FOR A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 045317 ~2003!
momentum space that contribute to the Landau damping
respond to the zeros of the denominators. There are total
determined by the equations

v5qv6ap16ap2 , ~34!

with the opposite signs of the last two terms correspond
to the ~gapless! transitions within the same subbands@Eq.
~3!# and equal signs describing the transitions between
ferent subbands.

The terms withm5m8 in Eq. ~31! represent the effect o
intrasubband transitions. Only indirect (qÞ0) transitions
contribute to the imaginary part of the structure factor. F
small transferred momentaq!p0 one can disregard the de
viation of the cosine factor from unity and also approxima
nip2

2nip1
.2q]ni /]p. Taking the momentum integral w

obtain for the contribution of thei th subband,

Ix i~v,q!52n i

v

Aq2v0
22v2

u~q2v0
22v2!, ~35!

wherev05p0 /m andn i stands for the density of states of th
i th subband at its Fermi surfacep5pi :

n15
m

2p S 12
ma

p0
D , n25

m

2p S 11
ma

p0
D .

Note that the sum of the two contributions~35! is indepen-
dentof the spin-orbit interaction~up to higher-order terms!, a
consequence of the fact that the two subbands have the
value of the Fermi velocity. Spin-orbit interaction resu
only in a redistribution of the spectral weight between t
subbands controlled by the changes in the densities of st

The terms withmÞm8 in Eq. ~31! correspond to the in-
tersubband transitions. Their contribution to the struct
factor for ma!q!p0 is negligible compared to the abov
considered intrasubband transitions by the factor;q2/p0

2

~due to the small sin2 prefactor!. However, the presence o
the two subbands is important as it makes the direct,q50,
transitions possible. The factorn1p2n2p then defines the
momentum space available for the direct transitions,p1,p
,p2 ~see Fig. 1!, which corresponds to the frequency d
main 2D022ma2,v,2D012ma2, whereD05Dp0

,

x~v,q→0!5
aq2

4p E
p1

p2 dp

~v1 i0!224Dp
2

. ~36!

The imaginary part of this expression is

Ix~v,q→0!52
q2 sgnv

32D0
u@4m2a42~v22D0!2#.

~37!

The equation~36! corresponds to the previously obtaine
result20 for the optical conductivitys~v!. The expression
~36! goes to zero with the wave vector, which is easily u
derstood by noting that the matrix elements for the tran
tions betweenc1(p2) and c2(p1) states are suppressed
small transferred momenta since they are orthogonal aq
50. However, their contribution to the conductivity@accord-
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ing to Eq. ~27!# remains finite, which is clear since the op
erator of electron velocity has nonzero matrix elements
the intersubband transitions even atq50.

The experimental observation of the direct transitions~37!
is feasible in the measurements of the resonant microw
absorption in high-mobility semiconductor heterostructure

Screened electron-electron interaction and plasmon e
tations: So far our analysis has been restricted to the non
teracting electron gas. To incorporate the effects of
electron-electron interaction in the random phase approxi
tion one has to account for the self-consistent electric fi
induced by the variations of the electron density. The pot
tial for this field fsc obeys the Poisson equation. In tw
dimensions the Fourier transform of the Poisson equation
the form

efsc~v,q!5Vqr~v,q!, ~38!

where Vq52pe2/q is the bare Coulomb propagator. Th
random phase approximation~RPA! is then equivalent to the
substitutionf(v,q)→fsc(v,q)1f(v,q) on the right-hand
side of Eq.~30!. It is straightforward to see that the structu
factor takes the familiar RPA form,

xRPA~v,q!5
x~v,q!

12Vqx~v,q!
. ~39!

The pole of this expression determines the plasmon spec
v5vq1 igq , wherevq

25v2kq/2, with k52pe2n standing
for the static screening radius. The plasmon linewidth
given by the imaginary part of the bare structure factor
v5vq ,

gq5 1
2 VqvquIx~vq ,q!u. ~40!

For the plasmon to be an undamped excitation its freque
should lie above the electron-hole continuum,vq.qv,
which requiresk.2q. As was already pointed out in Ref. 2
the plasmon acquires damping whenvq;2D. Since q
!(qk)1/2;ma at this range, the direct transitions~37! make
the principal contribution to Eq.~40!.

Impurity scattering: The equations presented in this pap
assume ballistic electron motion. The absence of impuri
allows one to write kinetic equation as a closed set of eq
tions, Eq. ~15!, for the density matrix integrated over th
energy variablee @see Eq.~11!#, i.e., at coinciding times. In
the presence of disorder the self-energy due to impurity s
tering should be added to the right-hand side of Eq.~13!. In
general, since plain waves are no longer eigenstates of
system with impurities, the equations for the distributi
function depending on the momentump ~and not on the
energye) become not very convenient. More natural~though
more complicated! equations would result from integratio
over jp , similar to the usual spin-degenerate case.31 Such
equations are beyond the scope of the present paper.

Special casea56b: Recently, Schliemannet al.30 pro-
posed a spin field-effect transistor based on a particular
ing of the spin-orbit coupling constants such thata5b ~or
a52b!. This special system is expected to preserve s
coherence even in the presence of disorder. This is due to
fact that the spin eigenstates~5! are independent of the elec
7-5



n-
m

tr
on

b

r
a
v

ut
s
a

ve-
ion

ew
n

g,
his
rant
rch

E. G. MISHCHENKO AND B. I. HALPERIN PHYSICAL REVIEW B68, 045317 ~2003!
tron momenta,xp5const, therefore a scalar impurity pote
tial does not result in the intersubband transitions. The sa
observation holds for the structure factor. Since the ma
elements of the density are identically zero for the transiti
between different subbands the second line of Eq.~31! is
absent in this case and the structure factor is intact
the presence of spin-orbit interaction~up to higher order
corrections!.

Conclusions: To summarize, we have derived transpo
equations for the distribution function of a two-dimension
electron gas with spin-orbit interaction of both the Bychko
Rashba and the Dresselhaus mechanisms. The distrib
function is a 232-matrix in the spin space. General expre
sions for the particle and energy currents and densities
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available in terms of the densityf p and spingp distribution
functions. The obtained equations are applied to the wa
packet propagation in a ballistic 2DEG and to the calculat
of the density-density correlation functionx(v,q). We ob-
serve that forq.ma the structure factorx(v,q) is almost
not affected by the spin-orbit interaction, but it reveals n
features whenq!ma due to the direct transitions betwee
different spin-orbit subbands.
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