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Optical properties of confined polaronic excitons in spherical ionic quantum dots

R. T. Senger* and K. K. Bajaj
Department of Physics, Emory University, Atlanta, Georgia 30322, USA
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We report the results of a variational calculation of the energy and the oscillator strength of the exciton
ground state in a spherical ionic quantum dot as a function of radius, assuming infinite potential barriers. The
strong interaction of the exciton with optical phonons is taken into account by using an effective potential
between the electron and the hole as derived by Pollmann and Bu¨ttner. The values of the exciton ground-state
energies calculated using this effective potential are compared with the results of a recent calculation that treats
the exciton interaction with confined and interface phonons independently, and excellent agreement is found.
Comparisons with two simpler models of excitons reveal that the high degree of confinement in small quantum
dots suppresses polaronic corrections in exciton properties. The reduction of the electron-hole correlation in
small quantum dots is observed in the behavior of oscillator strength, which becomes less dependent on the
form of the effective interaction as the dot size is reduced. A proper definition of exciton transition energy in
ionic materials is pointed out, where self-energy renormalization effects are important. The results of our
calculation are presented for quantum dots of some ionic materials such as CdSe, GaN, ZnO, and CuCl.
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y
ca
uc
Th
n-

a
u
i-
ca
ep
n
e
y
a
os
s
e
te
t
ow
h
m
a

ga
ev
f
ice
d
tu

o
od
e
cy
h
u
la

s.
st in
w-
nic
e-
m.

on-
en-
ction
uld

and
al

tum
an
l-

ton-
res

te-
cal-
cal
heir
on-
in-
ter-
nic
f the
nd

and
the

sh
in
atic
in-
I. INTRODUCTION

The past 30 years have witnessed enormous activit
studying the growth and structural, electrical, and opti
properties of low-dimensional semiconductor structures s
as quantum wells, quantum wires, and quantum dots.
ability to grow these structures with well-controlled dime
sions and compositions has been made possible by rapid
vances in modern fabrication techniques such as molec
beam epitaxy~MBE!, metal-organic chemical vapor depos
tion ~MOCVD!, and their several variants such as chemi
beam epitaxy, atomic layer epitaxy, migration enhanced
taxy, etc. The effect of confinement on the electronic a
optical properties increases as one goes from quantum w
to quantum dots. The prospects of emergence of novel ph
cal phenomena and their potential use in designing new
more efficient microelectronic devices constitute the m
important motivations of the strong ongoing interest in the
low-dimensional systems. The electronic and optical prop
ties of quantum well structures have been investigated ex
sively during the last three decades. Significant interes
studying these properties in quantum-dot structures, h
ever, is relatively recent. It is now possible to fabricate hig
quality quantum dots in a number of semiconducting syste
with fairly controlled compositions and dimensions using
variety of techniques. This has allowed extensive investi
tions of their physical properties, which are reviewed in s
eral books and review articles.1–4 The beneficial effects o
strong confinement on the performance of electronic dev
have been pointed out. For instance, it was suggeste
early as in 1982 that lasers based on quantum-dot struc
should exhibit superior performance than those based
quantum wires and quantum wells due to a noticeable m
fication of the density of states.5 It was predicted that thes
lasers would have high differential gain, high-frequen
modulation, ultralow threshold current density, and hig
temperature stability of the threshold current density, sim
taneously. These advantages have been realized, to a
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extent, in a number of quantum-dot-based laser structure6,7

In recent years there has been a great surge of intere
studying the electronic and optical properties of lo
dimensional structures based on wide-band-gap, highly io
semiconductors for their applications in optoelectronic d
vices in the blue and ultraviolet regions of the spectru
Quantum-dot structures based on GaN~Refs. 8–10!, ZnSe
~Ref. 11!, ZnO ~Ref. 12!, MgO ~Ref. 13!, CuCl ~Ref. 14!,
CdS~Ref. 15!, and CdSe~Refs. 16 and 17! have been fabri-
cated and their optical properties as modified by strong c
finement effects have been studied. The exciton binding
ergies in these systems are rather large, and the lasing a
is expected to be excitonic in character and therefore sho
lead to lower values of the threshold current densities
larger values of the differential gain. Recently an all-optic
single-electron read-out device based on GaN quan
dots18 has also been proposed, which can potentially play
important role in quantum computing. In order to fully rea
ize these potentialities a proper understanding of the exci
related phenomena in these highly ionic confined structu
is essential.

It has been recognized for a long time that in ionic ma
rials such as those mentioned above, the exciton–opti
phonon interaction has a significant effect on their opti
properties. For instance, the exciton binding energies, t
oscillator strengths and radiative lifetimes are modified c
siderably by the exciton–optical-phonon interaction. This
teraction is also expected to play an important role in de
mining the optical properties of quantum dots based on io
materials. Several groups have studied the dependence o
exciton–LO-phonon interaction in quantum-dot systems a
have arrived at conclusions that are often at variance
even contradictory. It has been claimed, for instance, that
Fröhlich-type exciton–LO-phonon interaction should vani
in small nanocrystals.19 However, it has been suggested
another study, using a donorlike exciton model and adiab
approximation, that the strength of exciton–LO-phonon
teraction is independent of the dot size.20 This conclusion
©2003 The American Physical Society13-1
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has, however, been contradicted by another group,21 which
claims that the exciton–LO-phonon interaction should
crease with decreasing dot size. For further discussion
these results the reader is referred to a recent work
Oshiro, Akai, and Matsuura.22

In view of the importance of the effects of the exciton
optical-phonon interaction on the excitonic properties
ionic quantum dots, a proper and accurate description of
interaction is required to describe the observed data.
oversimplified picture in which only the electron and t
hole masses are renormalized to their respective pola
masses is in fact quite inaccurate. In polar semiconduc
the interaction between the electrons and holes depend
their mutual distance in such a way that when this distanc
much larger than their respective polaron radii, the electr
and holes interact like two polarons through the Coulo
potential screened by static dielectric constant. In the op
site limit, however, when the distance between them
comes comparable to or less than the sum of the two pola
radii, the two oppositely polarized virtual phonon clou
overlap and partially cancel out their renormalization effec
so that the electron-hole interaction approaches the dyn
cally screened Coulomb interaction when their mutual d
tance is reduced further. Such a description of the effec
electron and hole interaction in bulk semiconductors, enco
passing the above-mentioned limiting cases has already
given through some effective potentials.23–27

In this paper, we present the results of a variational c
culation of the exciton energy and oscillator strength of
ground state in quantum dots composed of ionic materi
We assume that the quantum dots are spherical in shape
infinite potential barriers. Furthermore, the barrier materia
assumed to be nonpolar and the effects of image charge
also ignored. We consider parabolic conduction and vale
bands with isotropic electron and hole masses. The effec
valence band mixing are not included in our calculations.
describe the exciton–LO-phonon interaction by means of
effective potential between the electron and the hole as
rived by Pollmann and Bu¨ttner24,25 ~PB! in the case of bulk
ionic materials using a variational approach. We show t
the quantum-dot-type confinement has a very significant
fect on the values of both the ground-state energy and
oscillator strength of the exciton. The description of an ex
tonic state with the statically screened Coulomb interact
potential is shown to have limited validity, leading to reaso
able quantitative results only for weakly polar materials su
as GaAs.

Recently, Oshiro, Akai, and Matsuura22 have calculated
the variation of the total energy of the exciton ground state
a function of size in spherical ionic quantum dots using
finite potential barriers. In their calculation they use an int
action Hamiltonian in which electrons and holes inter
with the confined optical phonons and interface phonons.
find that the variation of the total ground-state energy a
function of size, which we calculate using the PB potent
agrees very well with that calculated by these authors. T
excellent agreement along with our results in a few selec
ionic materials will be discussed.
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II. THEORY

The Hamiltonian of an interacting electron-hole pair, p
fectly confined in an ionic quantum dot of radiusR and
coupled to the bulk longitudinal optical~LO! phonons, is
expressed as

H5 (
i 5e,h

S pi
2

2mi
1Vconf~r i ! D 2

e2

«`urWe2rWhu
1\vLO(

qW
aqW

†
aqW

1(
qW

@VqWaqW~eiqW •rWe2eiqW •rWh!1H.c.#, ~1!

where the subscripti 5e and i 5h denotes an electron and
hole, respectively,mi are the isotropic effective band masse
rW i are the position, andpW i are the momentum operators. Th
spherically symmetric confinement potential is assumed
provide perfect confinement and is written as

Vconf~r !5H 0 ~r ,R!

` ~r>R!.
~2!

In the Hamiltonian,aqW
† andaqW are the creation and ann

hilation operators of the phonons of wave vectorqW , and
\vLO is the dispersionless optical phonon energy. The
term defines the Fro¨hlich-type charge-phonon interactio
with the interaction amplitude given by VqW

52 i (2pe2\vLO /V«* )1/2/q, whereV is the normalization
volume and«* 5(1/«`21/«0)21, «0 and«` being the static
and the high-frequency dielectric constants, respectively.

Starting with the same Hamiltonian, but without the co
finement potential, Pollmann and Bu¨ttner24,25 were able to
obtain simple expressions of the effective Hamiltonians
describe the excitons in bulk ionic media and successf
explain the measured values of the exciton transition en
gies. Their procedure consists of transforming the mo
Hamiltonian twice by using two well-known unitary trans
formations and then performing a variational calculation
determine the displacement amplitudes of the system u
bound state wave functions of hydrogenic type. In its fin
form, it is possible to express the detailed effective inter
tion potential and the self-energy of the electron-hole pair
terms of an effective exciton radius and the relative coor
naterW5rWe2rWh . We choose to proceed with such an effecti
Hamiltonian having the following form:

Heff5 (
i 5e,h

S pi
2

2mi
1Vconf~r i ! D 1Veff~r !1Eself. ~3!

The effective potentialVeff(r ) and the self-energy term ar
written as

Veff~r !52
e2

«0r
2

e2

«* r
FC4

B4
2

mehe

Dm
e2rAe /Re

1
mhhh

Dm
e2rAh /Rh2S hm1

C3r

2B3aex
D e2rB/RmG ,

~4!
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Eself52~aege1ahgh2amgm!\vLO , ~5!

where Dm5mh2me is the mass difference. DefiningM
5me1mh as the total mass andmm5memh /M as the exci-
ton reduced mass,

a i5
e2

2«* Ri\vLO

, Ri5A \

2mivLO
~ i 5e,h,m! ~6!

are the dimensionless phonon-coupling constants, and
characteristic polaron radii for the electron, the hole, and
reduced massmm , respectively. The remaining coefficien
have the following explicit forms:

Ai
2511Ri

2/aex
2 ~ i 5e,h!;

B2511C2, C25Rm
2 /aex

2 ;

hi511~mjRi /miaex!
2 ~ j Þ i 5e,h!;

hm52~me /mh1mh /me!C
21C4/B4; ~7!

gi5Ai S 12
1

2
Ri

2/aex
2 D 2

~ i 5e,h!;

gm5C2S 41
1

2
C21C2/B222Aede22AhdhD /B;

di5
11AiBAmj /M

Ai1BAmj /M
~ j Þ i 5e,h!.

The effective interaction Hamiltonian defined above has
explicit and crucial dependence on a quantity called the
citon radius,aex . It is a measure of the size of the excito
and its value is determined variationally. Originally th
Pollmann-Bu¨ttner effective potential between the electr
and the hole was derived for a bulk semiconductor usin
one-parameter hydrogenic trial wave function,C0(r )
5N exp(2lr/a0), wherea05\2«0 /mme2 is the exciton Bohr
radius. Consequently, the value of the exciton radius use
the effective Hamiltonian has a bulk limit given byaex
5^C0u1/r uC0&

215a0 /l. In the present case, however, th
variational trial wave function we use also contains on
particle electron and hole envelope functions, which
compatible with the nature of the spherical-dot potential
ometry:

C~r e ,r h ,r !5N j0~pr e /R! j 0~pr h /R!exp~2lr /a0!.
~8!

In the above,N is the normalization constant,j 0 is the
zeroth-order spherical Bessel function of first kind, andl is
a variational parameter. To account for the confinement
fects we simply generalize the definition of exciton rad
using the new wave function:aex5^Cu1/r uC&21. As ex-
pected, such a form will have the correct bulk limit and w
lead to a smaller exciton size when the dot size is reduc

We should also note that in this treatment of the effect
electron-hole interaction, the renormalization of the elect
and hole masses is not needed as shown by Pollmann
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Büttner in their work.25 We assume that the above form
the effective potential, which is derived for bulk, is not si
nificantly modified in the presence of the external confin
ment. Such an approximation has been used successful
describe the measured diamagnetic shifts in the case
polaronic exciton in a magnetic field,28 where the magnetic
field provides the means of confinement. The direct influe
of the confinement potential on the strength of the electr
hole interaction potential and on the polaronic self-energy
the exciton as well is through the quantity exciton rad
(aex) as defined above. Due to the confinement, the valu
exciton size attains a strong dependence on the size o
quantum dot, and thereby modifies the values of those qu
tities as a function of dot radius. Although preserving t
formal expressions of the effective potential and the s
energy terms as derived for bulk, and assuming that th
forms are not significantly modified even in the case
quantum-dot confinement is an approximation, as will be d
cussed in the next section, the formulation is seen to y
quite accurate results by only an appropriate redefinition
aex . In fact such an approach is in accordance with the bu
phonon approximation that is applied in this study, where
confinement effects are taken to affect the wave functions
the electron and the hole only, but not the nature of phon
field.

To calculate the ground-state energy of the system
minimize the expectation value of the effective Hamiltonia
Eq. ~3!,

E05min
l

^CuHeff~l!uC&. ~9!

The energy of the exciton ground state contains contributi
from the confinement subband energies of the electron
the hole, the screened Coulomb correlation energy, and
detailed renormalization effects of the exciton-phonon c
pling. The subband energies, having a strong (;1/R2) de-
pendence on the dot size, dominate the total energy in s
quantum dots. The PB effective potential, on the other ha
describes the collective form of the potential energy due
the Coulomb interaction and the polarization fields of t
oppositely charged electron and hole.

Even without the confinement effects, the PB descript
of the exciton-phonon interaction in an ionic medium brin
about significant improvements over some simplified a
proaches. Let us briefly review the details of how the P
potential provides a successful description of the excit
phonon interaction, first in the bulk limit. The first term i
Eq. ~4! corresponds to a statically screened Coulomb in
action. As compared to the original form of the Hamiltonia
~1!, the elimination of phonon coordinates to obtain an effe
tive electron-hole interaction transforms the Coulomb int
action from a dynamically screened to a statically scree
one, in the leading order. However, the remaining terms
Eq. ~4! as well as the self-energy expression, Eq.~5!, are
essential to describe the detailed and nontrivial interaction
the two charges with opposite polarization fields arou
them. The crucial parameter that determines the form of
effective interaction is the ratio of the exciton radiusaex to
the polaron radiiRi . It is instructive to check the limiting
3-3
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TABLE I. Values of the various physical parameters used in our calculation. The electron and th
masses are expressed in units of the free electron mass. The LO-phonon energies are given in m
polaron radii (Re , Rh), and the Bohr radius (a0) are given in Å units.ERy is the Rydberg energy in units o
meV. All other symbols are defined in the text.

Material me mh «0 «` \vLO ae ah Re Rh a0 ERy

CdSea 0.10 0.40 9.3 6.1 26.5 0.40 0.81 37.9 19.0 61.5 12.5
GaNb 0.20 0.80 9.8 5.4 92.0 0.45 0.90 14.4 7.20 32.4 22.6
ZnO c 0.24 0.78 8.1 4.0 72.0 0.85 1.54 14.8 8.24 23.4 38.0
CuCl d 0.44 3.60 7.4 3.7 27.2 2.01 5.73 17.8 6.24 9.99 97.4

aReference 22.
bReferences 48 and 49.
cReferences 27 and 32.
dReferences 27 and 50.
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cases of this ratio in an ionic material. In the limits of stro
and weak binding it is easy to show that

lim
aex /Ri→0

Eself50, lim
aex /Ri→`

Eself52~ae1ah!\vLO .

~10!

For large exciton radii the total self-energy approaches
sum of the two individual self-energies of the free polaro
For very small exciton radii the total self-energy of the e
citon vanishes because the polarization clouds of the elec
and the hole cancel each other. In general, and under
influence of the confinement potential, the partial cance
tion of the polarization fields is well described by Eq.~5!.
Similarly, in these extreme limits the effective potential ge
the following asymptotic forms:

lim
aex

Ri
→0

Veff~r !52
e2

«`r
,

lim
aex

Ri
→`

Veff~r !52
e2

«0r
2

e2

«* r

~mhe2r /Rh2mee
2r /Re!

~mh2me!
.

~11!

With these reasonable limits, the PB Hamiltonian gives
successful description of the polaronic excitons.25 In the
present study the main effect of the confining potential is
shrink the charge densities of both the electron and the h
decreasing the relative distance between them, which in
makes the effective electron-hole interaction potential to
less screened through the PB term. Thus by leading
smaller values ofaex , the high degree of confinement
expected to diminish the polaronic effects in the excit
state.

Apart from the ground-state energy of the exciton, an i
portant quantity of interest is the oscillator strength, which
sensitively dependent on the confinement of the electron
hole wave functions and the overlap between them. Us
the envelope-function approximation, the oscillator stren
for the exciton ground state is given by29–31
04531
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f ex5
2P2

m0DE
U E C~xW5rWe5rWh!d3xU2

, ~12!

where P describes the intracell matrix elements,m0 is the
bare electron mass,DE5Eex2E0, andEex and E0 are the
energies of the states with and without the exciton, resp
tively. Since we are interested in comparing the effect
using the PB potential on the oscillator strength with that
using the statically screened Coulomb potential, we calcu
the ratio of the two oscillator strengths,f ex / f ex

(s) , which can
be expressed in terms of these energies and the simple
grals over the exciton wave functions.

We now consider two simpler models of the exciton f
comparison of their results with those of the present effec
potential approach. One of the models is the so-ca
‘‘shallow-exciton model’’ where the Coulomb interaction
statically screened and the exciton self-energy is assume
be the sum of the individual self-energy shifts of the electr
and the hole polarons. The validity of this model is limited
excitons of larger size in weakly polar materials, and in we
confinement case, because the overlapping of the pola
tion fields of the particles is neglected entirely. We will d
note the quantities as obtained within this model by the
perscript (s), like in the case of the ground-state energ
E0

(s) . The other model is the so-called ‘‘bare-exciton mode
where the coupling to the phonons is completely ignor
and the Coulomb interaction of the electron-hole pair is c
sidered with dynamical screening«` . The PB effective po-
tential formulation is formally expected to reproduce the
sults of the bare-exciton model in the high-confinement lim
In the following the superscript~b! will denote the quantities
relevant to this model.

III. RESULTS AND DISCUSSION

We have calculated the variation of the ground-state e
ton energy as a function of the dot radius in four represen
tive ionic materials, i.e., CdSe, GaN, ZnO, and CuCl. T
values of the various physical parameters used in our ca
lations are given in Table I. We display the results for Cd
dots in Fig. 1. The ground-state energy of the system
calculated using all three models under consideration is
sented. We first note that the model with the effective
3-4
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potential provides the lowest upper bounds to the grou
state energy throughout the displayed domain of dot s
The inset shows the deviations ofE0 from the results of the
simpler modelsE0

(s) and E0
(b) . A clear immediate feature

arising from the content of the inset is that at high degree
confinement the differenceE02E0

(b) tends to vanish, show
ing that the PB potential effectively transforms to a dynam
cally screened Coulomb potential, and the polaronic s
energy corrections of the exciton vanish almost entirely.
large sizes of the quantum dot the bare-exciton model p
vides larger ground-state energies than the shallow-exc
model, because the latter includes self-energy terms.
solid squares in Fig. 1 are the results of a recent calcula
of the ground-state energy22 in which the exciton is taken to
interact separately with the confined and interface pho
modes of the dot. In our calculation, however, the so-ca
‘‘bulk-phonon’’ approximation is adopted. The qualitativ
and the quantitative agreement between the results of the
calculations is excellent. Similar agreement was also fo
in the case of quantum wells.32 Several groups33–37 have
shown that in quantum wells the interaction of an excit
with all three phonon modes~confined, interface, and half
space! can effectively be reduced, with a high degree of a
curacy, to a bulk-LO-phonon–exciton interaction. The sa
seems to be true in the case of quantum dots as we
indicated by our calculation.

As mentioned above, Oshiro, Akai, and Matsuura22 have
considered the effect of excitons interacting with confin
LO phonons and interface phonons on the exciton ene
exciton-phonon interaction energy, and the virtual phon
number. They find that the polaronic effects on these qu
tities decrease as the dot size is reduced, a result also

FIG. 1. Size dependence of the total ground-state energy (E0) of
the exciton-phonon system in a CdSe quantum dot. The solid c
is obtained using Pollmann-Bu¨ttner effective potential. The result
of Oshiro et al. ~Ref. 22! which are represented by solid square
are included for comparison. The dashed and dot-dashed cu
correspond to shallow-exciton (E0

(s)) and bare-exciton (E0
(b)) mod-

els, respectively. In the inset, the energy differencesE02E0
(s)

~dashed curve! andE02E0
(b) ~solid curve! are drawn.
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tained by us using the PB potential. In addition, the polaro
contribution of the bulk-type confined LO phonons to t
above-mentioned quantities is much larger than that of
interface phonons, especially in larger (R*a0) quantum
dots. The excellent agreement between the energy of the
citon ground state that we calculate and that calculated
Oshiro, Akai, and Matsuura22 in CdSe quantum dots is clea
evidence of this feature.

In Fig. 2 we present results in quantum dots made
materials more ionic than CdSe, such as GaN, ZnO,
CuCl. In order to eliminate the dominating contribution
the subband energies in small-sized dots we define a qua
‘‘change in exciton binding energy,’’DEB , which has a van-
ishing bulk value,

ve

,
es

FIG. 2. Variation of change in exciton binding energy,DEB , as
a function of dot size, for~a! GaN, ~b! ZnO, and~c! CuCl. The
insets show the deviations between the results of different mod
the solid curves areE02E0

(b) , and the dashed curves ar
E02E0

(s) .
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DEB~R!5
\2p2

2mmR2
2E0~R!1E0

bulk, ~13!

whereE0
bulk is the exciton ground-state energy calculated

ing the PB potential in bulk medium. As shown in Fig. 2, t
general form of the size dependence ofDEB is qualitatively
the same for all materials. The actual value of the onse
the confinement effects is, however, proportional to the
citon Bohr radius. Due to confinement in all spatial dire
tions the increase in the value ofDEB is quite pronounced.

A series of insets in Fig. 2 compares the values of
ground-state energy obtained using the PB potential to th
obtained using other simplified models mentioned abo
The general trend is that as the material becomes more i
the results of the static screening model get poorer. Mo
over, the discrepancy becomes larger in smaller dots. On
other hand, the bare-exciton model has an opposite beha
although it does not give satisfactory results in the bulk lim
the confinement effects increase its validity, making t
model a formal asymptote of the PB model in the limit
extremely small dots.

In the PB model, the effect of confinement on the excit
ground-state energy is reflected by the parameter, the exc
radiusaex . Figure 3 shows the variation of this parameter
a function of dot size. In the bulk limit the exciton size
determined by the relative strength of the interaction
tween the electron and the hole. The polaronic correcti
are seen to favor more bound excitons with smaller size24

When the dimension of the dot is reduced, the size of
exciton is determined mainly by the boundaries of the c
finement potential. This is depicted in Fig. 3 by the line
asymptotic behavior ofaex independent of the type of th
material.

We now discuss the modifications obtained in the val
of the oscillator strength of the exciton ground state when
exciton model is considered with the PB potential. As me
tioned above, the actual size of the exciton is smaller t
that calculated with the simple ‘‘shallow-exciton model

FIG. 3. Variation of exciton radiusaex as a function of confine-
ment in CuCl, ZnO, and GaN quantum dots. The dashed curv
the same for all materials, and corresponds toaex5^Cu1/r uC&21

when the Coulomb interaction is taken as statically screened. B
the exciton radius and the dot size are scaled by the correspon
Bohr radius.
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The difference in the two models is reflected more dram
cally in the results of the calculation of the oscillat
strength. In Fig. 4 we display the variation of the ratio of t
two oscillator strengths as calculated with those models a
function of the dot size. The enhancements are seen to
larger in more polar quantum dots. In the bulk limit, fo
instance, with the PB potential, we see that the oscilla
strength is actually about 7.3 times~4.4 times! larger than the
value obtained with the Coulomb potential for CuCl~ZnO!.
Although bothf ex and f ex

(s) increase with the decreasing d
size, their ratio starts to get smaller and approaches unit
the high-confinement limit. This is because in very sm
dots, the confinement effect takes over and strongly s
presses the correlation between the electron and the h
thereby drastically reducing the significance of the form
the interaction.

We shall now comment briefly on the approximations w
have made in our calculations. We have used effective m
approximation and have assumed parabolic conduction
valence bands with isotropic effective masses, thus co
pletely ignoring the nonparabolicity of the conduction ba
and complex nature of the valence band structure. The ap
cation of both the effective mass approximation and
Fröhlich continuum Hamiltonian is valid in quantum do
where the values ofR are considerably larger than those
lattice constants. The validity of these approximations
somewhat limited in the case of CuCl, where the charac
istic sizes of the exciton and the polarons become com
rable to the lattice constant. Therefore the results for C
quantum dots are intended to provide only an estimate of
excitonic properties. We have assumed infinite values for
conduction and valence band offsets and have not consid
the effect of the image charges due to dielectric mismatch
the exciton ground-state energy. It is well known that t
dielectric mismatch between the confined material and
barrier material has a significant effect on the energy lev
of quantum wells38,39 and quantum wires.40 Similar effects
are also expected in quantum dots. Recently Fonobe
Pokatilov, and Balandin41 have calculated the effect of di
electric mismatch on the lowest-energy levels in spher
quantum dots assuming infinite potential barriers. They fi

is

th
ing

FIG. 4. Variation of the ratio of oscillator strengths as a functi
of confinement in quantum dots of GaN, ZnO, and CuCl.f ex and
f ex

(s) are the oscillator strengths as calculated using Pollma
Büttner and statically screened Coulomb potentials, respectivel
3-6
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that the inclusion of the dielectric mismatch effect in th
calculation leads to the addition of three terms to the exc
Hamiltonian, namely, the electron self-energy, the hole s
energy ~both positive!, and a negative contribution to th
interaction potential. The value of the exciton binding ene
is therefore enhanced but the exciton transition energ
relatively insensitive to the dielectric mismatch. The we
dependence of the optical gap on the surrounding medium
quantum dots is also concluded by pseudopoten
calculations.42

The surface and interface effects are also completely
nored. It should be noted that the effects of the excit
phonon interaction and the image potential on the exc
energy in ionic quantum structures have been treated in
pendently. However, it has been pointed out by Sak43 and by
Evans and Mills44 that these two effects are not independe
of each other, thus leading to a very complex resultant in
action, the effect of which on the exciton binding energy
very difficult to calculate.

The use of the effective mass approximation leads
larger values of the confinement energies45 than those ob-
tained by other band structure calculations such
tight-binding46 and pseudopotential approaches.47 We note
that proper incorporation of exciton–optical-phonon inter
tions in the band structure calculations is a formidable ta
It should be emphasized that our primary objective in t
work is twofold: ~i! to investigate the effect of the exciton
optical-phonon interaction on the exciton ground state as
culated using the PB formulation of this interaction, and~ii !
to compare our results with those obtained by conside
the exciton interacting with the phonon modes of the qu
tum dot, namely, confined and interface phonons.22 As men-
tioned earlier our results of the total ground-state energy
the exciton agree remarkably well with those obtained us
the latter model. Our approach is considerably simpler t
that followed by Oshiro, Akai, and Matsuura22 and thus can
easily be generalized to study the effects of external per
bations such as electric and magnetic fields on the prope
of the exciton ground state in ionic quantum dots. We belie
that the effect of the exciton–optical-phonon interaction
the ground-state energy of an exciton in ionic quantum d
as calculated using effective mass theory should not be
nificantly different from that determined by including th
complexities of the band structure even if such a determ
tion was feasible.

In order to compare directly the results of our calculatio
with experimental data we need to determine the transi
energy of the excitonic ground state. This is obtained
adding E0 to the appropriate band-gap energy. The pro
value of the band-gap energy to use is the one that has
been renormalized by the self-energies of the free elec
and hole polarons. The experimentally measured value
the energy band gaps (Eg), however, are always renorma
ized by these self-energies. Thus the transition energy of
ground-state exciton can be defined as

ET~R!5@Eg1~ae1ah!\vLO#1E0~R!. ~14!
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Obviously,E0 contains the self-energy terms of the confin
electron and the hole in the exciton ground state, which h
different values than those of a free electron and a free h
The value of the transition energy of the excitonic grou
state thus calculated should be compared with its experim
tal value in ionic quantum dots.

As mentioned earlier, quantum-dot structures based o
variety of ionic materials have been fabricated using epit
ial crystal-growth techniques, such as MOCVD and MB
and chemical approaches. Their structural and optical pr
erties have been studied in considerable detail. The obse
excitonic transitions are generally quite broad, reflecting
size distribution of the ensemble. Data on single quant
dots of these materials are still very limited. In general,
transitions are shifted to the higher-energy side, reflecting
effects of spatial confinement except in the case of G
quantum dots where the piezoelectric and spontaneous p
ization electric fields shift the transition to lower energies
is clearly not very meaningful to compare the values of
excitonic transition energies we calculate with the expe
mental data in ionic quantum dots as we have not inclu
the effects of the finite potential barrier, complex band str
ture, dielectric mismatch, and surface and interface polar
tion in our calculations. The contribution of these effects a
that of the exciton-phonon interaction to the exciton tran
tion energy, as we have calculated, should be considered
a proper comparison with experimental data.

In summary, we have calculated the variation of the e
ergy and the oscillator strength of the ground state of
exciton in a spherical ionic quantum dot as a function
radius, assuming infinite values of the electron and hole b
offsets. The effective potential between the electron and
hole as derived by Pollmann and Bu¨ttner is used to describe
the strong interaction of the exciton with optical phonon
We follow a variational approach and find that the effect
the exciton-phonon interaction on the energy and the os
lator strength of the exciton ground state is reduced w
decreasing size of the quantum dot. We compare our res
with those obtained using two simpler models in which t
interaction between the electron and the hole is screene
static and dynamic dielectric constants, respectively, and
cuss regions of their validity. The values of the excit
ground-state energies calculated using Pollmann-Bu¨ttner po-
tential are also compared with the results of a recent ca
lation that treats exciton interaction with the confined a
interface phonons independently, and excellent agreeme
found. We observe a reduction in the importance of electr
hole correlation in small quantum dots in the behavior
oscillator strength, which becomes less dependent on
form of the effective potential as the dot size is reduced.
also provide a definition of the excitonic transition energy
ionic quantum dots that properly takes into account the s
energy terms. And finally we present the results of our c
culations in quantum dots of ionic materials such as Cd
GaN, ZnO, and CuCl.
3-7
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