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We present detailed results of unrestricted Hartree-Fod#F) calculations for up to eight electrons in a
parabolic quantum dot. The UHF energies are shown to provide rather accurate estimates of the ground-state
energy in the entire range of parameters from high densities with shell model characteristics to low densities
with Wigner molecule features. To elucidate the significance of breaking the rotational symmetry, we compare
restricted Hartree-FockRHF) and UHF calculations. While UHF symmetry breaking admits lower ground-
state energies, misconceptions in the interpretation of UHF densities are pointed out. An analysis of the orbital
energies shows that for very strong interaction the UHF Hamiltonian is equivalent to a tight-binding Hamil-
tonian. This explains why the UHF energies become nearly spin independent in this regime while the RHF
energies do not. The UHF densities display an even-odd effect which is related to the angular momentum of the
Wigner molecule. In a weak transversal magnetic field this even-odd effect disappears.
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[. INTRODUCTION mation, which means that the space of the HF trial wave
functions is extended. The UHF Slater determinant lowers
In the present work we discuss the properties, predictionghe energy by breaking the symmetry of the problem, i.e.,
and limitations of Hartree-FockHF) calculations for quan- spatial and spin rotational invariance. This complicates the
tum dots. This method has a long tradition in atomic andnterpretation of the UHF solution. o
nuclear physics; its application to quantum dots is therefore FOr very strong interaction the UHF calculation is also
natural, and has been discussed in various recent p4ers.expected to give reasonable results because a one-particle
As we will demonstrate, some of the conclusions drawn Orpicture of localized OrbitarSShOUId model the Wigner mol-
the basis of HF calculations are not based on firm groundstcule quite well. In fact, the UHF energies become nearly
This is in particular the case, when the HF wave functionsSPin independent, while this is not the case with RHF ener-
are used to describe charge distributions in a quantum dogies. We show that the UHF Hamiltonian for strong interac-
On the other hand, unrestricted Hartree-FOdKIF) calcula-  tion has the same spectrum as a tight-binding Hamiltonian
tions will be shown to give rather reliable estimates for thef @ particle hopping between the sites of a Wigner molecule.
ground state energies. The hopping matrix elements and on-site energies can be
Wh||e quantum dots may be Considered as tunab|e artifiextracted f.rom theUHF orbital energieS. The |Oca|izat.i0n-
cial atoms, the electron density can be much smaller than iflelocalization transition has already been probed experimen-
real atoms and correlations play a more prominenttaleis  tally in larger quantum dot§; so Wigner molecule spectros-
is why for quantum dots the HF method has to be regarde§0PY is within reach of current technology.
with care. In this work we focus on the crossover from weak ~An incomplete account of our results has been presented
to strong Coulomb interaction, i.e., from higher to lower in an earlier short communicatiérHere, we discuss in detail
electronic densities. This is equivalent to weakening the exthe two-electron problem and present an elaborate analysis of
ternal confinement potential for a given host material of thethe limit of strong interaction. In Sec. Il we briefly recall the
quantum dot. model and method. In Sec. Il we obtain explicit results for
The physics of this crossover can be sketched as followgiuantum-dot helium that already show many features of HF
In the case of weak interactigiigh density a one-particle solutions for higher electron numbers presented in Sec. IV. In
picture is valid: Electrons are filled into the energy shells ofSec. V we also discuss the effect of a magnetic field.
the two dimensional isotropic harmonic oscillator. Here, the
appropriate method is restricted Hartree-FodRHF),*>
where every orbital belongs to an energetic shell and has Il. HAMILTONIAN AND HARTREE-FOCK
good orbital momentum. This shell filling with Hund’s rule APPROXIMATION
has been probed experimentally in small d8tin the case

of strong interactior(low density one can no longer stay in our earlier papet,for zero magnetic field. The Hamil-

within this simple one-pgrticle picture: Wigriéhas shown tonian of an isotropic parabolic quantum dot with magnetic
that for strong correlation the ground state of the tWo-6o1d reads(see, e.g., Refs. 1-9 and 13423

dimensional2D) electron gas is described by localized elec-
trons, representing a classical hexagonal crystal. Accord-

In this work we follow the notation and method presented

ingly, in this limit the electrons in the dot form a small N 1 . 2 2
crystal, a so-called Wigner molecule, and the picture of en- (- | = [ +eA(r;) ]2+ a1 e

: . K . ~ % LM i 2 i E |I’-—I’-| '
ergetic shells is no longer meaningful. One has to improve i=1(2m i<j [Mi—fj
the HF approximation by passing over to the UHF approxi- @
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where the positiongmomenta of the electrons are denoted is manifested in the HF single-particle densit/™(r)

by r](pJ) The effective mass im*, and the dielectric con- ZEiN=l|QDi(r)|2' For a quantum dot in zero magnetic f|e|d,
stant isx. The vector potential of a homogeneous magnetiGhe Hamiltonian is invariant under time reversal. Thus we
field B orthogonal to the plane of the quantum dot in Sym-can choose real expansion coefficients, in Eq. (4). How-
metric gauge read#\(r)=(B/2)(—y,x,0), and the corre- eyer, then the HF one-particle density is always symmetric to

sponding cyclotron frequency is.=eB/m*. _ one axis. Any arbitrary orientation can be obtained by apply-
Now we can introduce oscillator units, and describe thqng exp(aL“’t) to the Slater determinant
Z .

system dimensionless: energies in  units Gfweg

— 2 i i — *
?}h L “fl“’cl.‘l andkleng:]hsf'n units dp= VA/m” wer- ThEN 1 NRESTRICTED HARTREE-FOCK METHOD FOR
the Hamiltonian takes the form QUANTUM-DOT HELIUM

N N In this section we present UHF energies and densities for
H=i§1 @ the two-electron quantum déguantum-dot Heliumat zero
magnetic field for increasing interaction strengthThis il-
where we have introduced the dimensionless coupling contustrates the basic concepts and properties of the HF approxi-
stant mation, and reveals features that are also important for
higher electron numbers. We compare with exact results ob-
N=lo/ag=€/klohiw, (3)  tained by a diagonalization of the relative motion. We also
compare with the RHF method, in order to illustrate the dif-
ferences from the UHF method.

T

2wet <=l

1 1 5
—EAi'i‘Eri

with the effective Bohr radiua} . For example\=2 corre-

qunds toﬁ“ws meV for a GaAs quantum dot. Harml- The UHF two-electron problem has been treated previ-
tonian (2) is forma}l!y the same as W.'thOUt magnetic field, ously by Yannouleas and Landmakiowever, we find some
apart from an addltlo_nal term proportlonal to th_e tota! angU-yeviations from their results. An extensive discussion of the
lar monéintum which scales with the dimensionlessg ooy tion for quantum-dot Helium at~2 can be found
parameter’ (J¢:=w./wer. The major part of our calcula- i, pef 1. Finally, we want to mention that the two-electron

tions presgnted below is for ;ero_magnetlc field. problem has also an analytic solution in terms of a power
Regarding the HF approximatidn,let us recall the ex- serie?

pansion of the HF orbitals in terms of the angular momentum

eigenfunctions of the two-dimensional harmonic oscillator )
A. Two-electron Slater determinant

. i The Slater determinant for two electrons wib=0 is
(rliy=¢iN=" 2 upy(rinMa). )
M= 1 1.2 2.1
HF_ _— —
Here,M is the angular and the radial quantum number of ~ © - \/5["71“1)@2“2))(”(* e1(r2) @2(r) x5 x= -
the Fock-Darwin basis. Each orbital has its own fixed spin (5)

o= *1/2, this means there is no double occupancy of orbit-

als with spin up and down, but there are different orbitals forHere we have displayed the orbital and spin parts of the
different spins. Thus only thecomponent of the total spin is Wave function explicitly,x', is the spin of the-th electron.
fixed, S®'=3,0,=S,. Furthermore, orbital¢4) are in gen- The stateVHF is generally not an eigenstate of the total spin
eral no longer eigenfunctions of the one-particle angulaSe:. In order to obtain a singlet one has to ggt= ¢,, and
(UHF) momentum. Therefore the HF Slater determinant isthus

not an eigenstate of the total angular momentulf, it e

breaks the symmetry of the original Hamilton&Another W= @1(r1) 1(r2) Xsinglet: (6)
possibility is to give each orbitala fixed angular momentum s restriction is also called thelosed-shelHF (CSHP

M; . With this restriction one obtains the RHF calculat?tfh, approximation, because if every orbital is filled with spin up
which preserves the total angular momentum but yields,q down, open shells are impossible. One sees froniSEq.
higher ground-state energies. Still another possibility is tQnat the Slater determinant violates the symmetry of the
build a Slater determinant of spatially localized orbitals forproblem. For two electrons the spin symmetry is easily re-
the strongly interacting caSer of multicenter localized or- stored, namely by a superposition of two Slater determinants
bitals in high magnetic fiefdand vary these orbitals to mini- with spin up/down and down/up. For the polarized cSse
mize the HF energy. Our orbitals are self-consistent and are. 1, the total spin is conserved, and the HF wave function is
best adapted to study the crossover from weak to strong Cof oqyct of a symmetric spin function and an antisymmetric

relation. , _ orbital function.
In principle the orientation of the deformed symmetry-

breaking HF solution is arbitrary. This is due to the rotational
invariance of the original Hamiltonian and can be called ori-
entational degeneracy. The actual UHF solution found has a We now compare the energies of different HF approxima-
special orientation and it depends on the initial guess for théions with the results of an exact diagonalizatfoRirst we

density matrix. Often but not always, the symmetry breakingconsider the cas8,=0. The most general ansatz for the HF

B. Different HF approximations
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FIG. 1. Comparison of different HF energies for quantum- 2
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dot helium with the exact ground state energy vs the coupling
constant\.
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FIG. 3. Shadowed contour plots of the UHF one-particle densi-
orbitals is the UHF statfEq. (4)], a spin dependent expan- tiesn"" for N=2 andS,=0. One contour corresponds to 1/10 of
sion with arbitrary angular momentum. Less general is théhe maximal densitya) A =2, (b) =6, (c) A=8, (d) A=20.

RHF ansatz, where angular momentum is preserved. And

still less general is the CSHF Equatig8), when we force ] ) o

the two electrons to occupy two identigabtationally sym-  that the RHF energies fail to become spin independent for

metri¢) orbitals. In Fig. 1 one can clearly see the importance@rgeX, as can be seen from Fig. 2. Of course, one expects

of breaking the symmetry to obtain lower HF energies. Up toSpin indepe.ndent energies in the classical limit of localized

A~1 all three methods give nearly the same result. Up tlectrons without overlap.

A~ 3 the closed-shell energy is equal to the RHF energy. In

other words: From this point on the two RHF orbitals are no C. UHF one-particle densities

lonlglelr:i'gegt'\zzl'SﬁiﬁﬁﬁeecgeigetgiigFof?ﬁergé;'SFlgvr:(ejstF Now we want to have a closer look at the one-particle

ener ies-from the energy of the exact ground state which idensny which is just the sum of the densities of the two
9 9y g Brbitals, nF(r) = 41(r)|2+ | ¢o(r)|2. In Figs. 3 and 4 we

}genzmcglsef_" FFO_:%Z; tgrllerggtehdos dtwﬂ/g;ﬁfésvrgrOé?\'éelsié;hter::nshow this density for different values of the coupling param-
RHE. but thé ain in enerav is n(?t as bid as in thegun Olar_eter)\. Already for a relatively smalh we detect two azi-
) ’ gain 9y 9 P01, ithal maxima. The density is strongly anisotropic which is
ized case. Interestingly, the UHF energies become spin inde-

pendent with increasing: they agree within about 0.3%, the ; 3
S,=1 state is somewhat lower than ti&=0 state. The (a) (b)
exact energies merge more slowly: fo# 20 the energy dif-

ference between singlet and triplet is still about 1%. Note

— . —
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FIG. 2. Absolute energy differences with respect to the exact
S=0 ground stat\E=Eg— EZ2®, Above\~4 the two UHF en- FIG. 4. UHF one-particle densities fad=2, S,=1. (a) A
ergies are nearly the same. =2, (b) A\=6, (c) A=8, (d) A=20.
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FIG. 5. Pairs of real UHF orbitals fdl=2, S,=1. (a), (b) at
A=2, (c), (d) at A\=10.

due to the symmetry breaking. In the caseSgt 1 the two
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To shed more light on this behavior we consider also the
orbital energies. We start with the HF Hamiltonian in the HF

basis forS,=1:

|

Here we use the notatiom; =(i|h|j) andwj,=(ij|w|kl)
for matrix elements in the HF basisee Ref. § When we
apply the unitary transforni7),
( ) B H2 ,
9

0
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we obtain a two-state Hamiltoniad,, with on-site energy
U=(hq1+hys+2wy519/2 and tunnel splitting t=(h,,
—hy4)/2. Thereby, we have mapped the HF Hamiltonian on
a lattice problem. It is intuitive that for strong interaction the

maxima are more distinct as a consequence of the Pauli priiwo electrons localize, and thus a tight-binding approach
ciple: spin-polarized electrons are more strongly correlatedshould become physically correct. This is also the case for
However, the direct interpretation of the two dips as local-larger electron number as discussed below.

ized electrons is questionable. With increasinghe azi-
muthal modulation first decreases, but fo=8 (A=10 for
S,=1) it increases again. For very highthe densities be-

come almost spin independent. A closer view reveals that th@C

azimuthal maxima are more distinct for the c&e- 0. This
arises from the exchange term in the HF energy: it lowers th
energy for strong interaction and overlapping spin-polarize
orbitals.

While the azimuthal modulation is an artifact of the HF

method, the densities display correctly a minimum in the
center which gets deeper with stronger interaction. Also, th?\l
maxima are in very good agreement with the classical posi

tionsr,= 3/\/4 (see the Appendijx

D. UHF orbitals and orbital energies

In order to understand the form of the UHF densities it is

useful to have a closer look at the UHF orbitals. g0
we find two orbitals that are exactly complex conjugaie,

= ¢35 . This can be seen by studying the expansion coeffi-
cientsu, in Eq. (4), and means that the Slater determinan-

t is symmetric under time reversal.
For S,=1 the two orbitals depicted in Fig. 5 are always
different and can be chosen real. Ror2 one can still in-

terpret the orbitals in the energy shell picture of RHF: the

first orbital is (approximately round, S-like, and the second
one is dumbbell formed, P-lik€.

For very high\ = 14 there is a simple relation between the
orbitals for the two spin polarizations: fd&,=1 we may
choose both orbitals real and then we find

S=1
2

_ 1 P
<Pffz°*ﬁ(¢f’lil¢ ). (7)

In this fashion, we see that7,° are complex conjugate and
approximately orthonormal.

E. UHF two-particle densities

Next we examine the conditional probability density
PD) for finding one electron at, under the condition that
another electron is gt For quantum-dot helium an§,=0

e CPD reads

_lesPlea0I*+ | @10 || p2()[2
n"%(y) '

ow, since we found complex conjugate orbitals,= ¢35 ,

we haven"f(x|y)=n"F(x), i.e., the conditional probability

density is independent of the condition. This is not really

astonishing, because within the HF method two electrons are

only correlated by the exchange term, which vanishes #ere.
For S,=1 the orbitals are different from each other and

the CPD is given by

n"F(x]y) (10)

nHF(X|Y) ={ <P1(X)|2| ¢2(Y)|2+ | @1(y)|2| @2(X)|2

—2 R4 @7 (X) @2(X) @1(Y) @3 (V) 1Hn"F(y).
(11)

In Fig. 6 we show contour plots of UHF CPDs for differ-
ent coupling constants and given positionsin the upper
row, fory=(2,0), we find for smalh =2 a suggestive result:
the density has a single maximum at a distinct distance from
the fixed coordinatg. With increasing\, however, we ob-
tain two maxima, which develop more and more and are not
at all located at the classical position.

The situation is likewise irritating when one chooses
=(0,2) as fixed coordinatélower row). While the exact
CPD is rotationally symmetric when boxhandy are rotated,
the UHF CPD does not respect this symmetry. The reason for
this lies in the symmetry breaking which cannot completely
account for correlations. The UHF Slater determinant is de-
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FIG. 7. Relative error of the UHF energyef"— EVC)/EIVC
for N=3 vs coupling constank.
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FIG. 6. UHF Conditional probability densitp"F(x|y) for N mdependent, Whereas the QMC energies approach thls semi-
—2 andS,=1. In the upper row—(2,0) (x) (@) A=2, and(b) A classical behawor_more sIowa._For stronger interaction the
—6. Lower row:y=(0,2) (x) (c) A=2, and(d) A= 10. HF ground state is always spin-polarized. Thus the UHF
method can not resolve the correct spin ordering of the en-
ergies.
formed, and derived quantities do not necessarily have a di- For N=8 the QMC method predicts a crossover of the
rect physical meaning—except for the UHF energy which istotal spin fromS=1 to S=2 nearh=4. The UHF method
a true upper bound for the exact energy. finds a polarized ground state wis=4 for A=4. There,
however, the energy differences for different spins are al-
ready quite small.
One can conclude that the UHF Slater determinant with
fixed spin structure gives a rather poor description of the
In this section we show further results of UHF calcula- total many-electron wave function. Essentially, the UHF
tions, namely, energies and densities for up to eight elechethod renders the properties of the spin-polarized solution
trons B=0). Many effects are similar to what we have al- for larger . This can also be seen in the UHF densities,
ready seen for two electrons, for example the errors of th&vhich become spin independent for larger interact&ee
UHF energies and their spin dependence. An interesting phéelow). Finally, we briefly mention the RHF results: there for
nomenon shown by the UHF densities is the even-odd effedarge A the HF energies do not become spin independent,
discussed below.

IV. UNRESTRICTED HARTREE-FOCK METHOD FOR
HIGHER ELECTRON NUMBERS

A. UHF energies

ForN>2 we compare the UHF energies with results of a
quantum Monte CarldQMC) simulation by Eggeet all’
These results were obtained for a very low temperaiure
=0.1hw/kg. The QMC energies are always below the HF
energies and can therefore be considered as effective zero A—A S=2 QMC
temperature reference points. g 1[ A—AS=3 QMC |

For theN=3 QMC simulation, a semiclassical analyis, S=4 QMC
as well as an exact diagonalization stéfdgredict a transi- G—©0 S=1 UHF
tion from theS=1/2 ground state in the weakly interacting ©6—©S=2 UHF
case to aS=3/2 ground state fon=4. Within the UHF ) G—OS8=3 UHF
calculation this transition occurs already n&af2. In Fig. 7 i
one can see that the relative error &= 3/2 is small, less
than 3%. In the non-polarized case the error is higher, about A
7% for A=2. With increasingN and \ the relative error 2 4 N g g
becomes smaller because the absolute energies are higher.

In Fig. 8 we show the absolute energy differences from FIG. 8. Absolute energy differences from the QMC ground
the QMC ground state for eight electrons. For intermediatetate,AE=E— EQYC for eight electrons and various spins vs cou-
values of\ the UHF energies become already nearly spinpling constantx.
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Due to the strong Coulomb repulsion, the electrons move on
anN-fold equilateral polygorifor N<6; for N=6 one elec-
tron enters the center of the gloA rotation by 27/N there-
fore corresponds to a cyclic permutation

2i
exp{WL;"tJ‘Iff(—l)N—l\PN, (12)

where we have used that a cyclic permutation of an even
(odd) number of electrons is od@ven. From Eq.(12) the
allowed total angular momenta of the Wigner molecule can
be easily read off: for an odd number of electrons the mini-
mal angular momentum is zero, whereas it is nonzero and
degenerate for an even electron number, &%= +2 for
N=4. Hence, the UHF wave functions fof=2,4,7 can be
interpreted as standing waves, i.e. superpositions of opposite
angular momentum states. For odd numbers of electrons in a
spatial shell there is no angular momentum degeneracy and
R e e mr therefore no standing wave and no modulation in the densi-
ties. With a similar argument Hirose and Wingrétex-

FIG. 9. Even-odd effect of the UHF One-particle densil‘iég plained the Charge_density_waves which they foundddd
for A=6, different electron numberl and polarized spinS,  pymper of electrons in theveaklyinteracting regime from
=N/2. (& N=3, (b) N=4, (c) N=5, (d) N=8. density functional calculations.

) Equation(12) does not hold anymore when the spins are
but the energies for lower spins are considerably higher. FaRot polarized, because the total wave function is not a prod-
large\ the RHF method gives a poor estimate of the ground,ct of spin and orbital wave functions. However, within UHF
state energy. method we do not fix the exact spin but only subspaces with

fixed S,. For S,<N/2 and strong interaction the UHF solu-

B. HF densities: Even-odd effect tion mainly renders the properties of the spin-polarized solu-
tion, since the energies and densities are essentially the same
"for \=6. The even-odd effect is thust a physical effect
"but an artifact of the UHF symmetry breaking. Therefore
great caution must be taken when interpreting the UHF den-
sities. In particular, the exact onset of Wigner crystallization
cannot be determined reliably from UHF calculations.

In this subsection we consider the UHF densities fo
higher electron numbers. We first show in Fig. 9 the dens
ties for rather strong coupling constant=6, various elec-
tron numbersN andS,=N/2. Above this interaction strength
the UHF densities are essentially the same foSallexcept
for N=2, see aboveand do not change qualitatively with
increasing\ .

Surprisingly, only for somé&l does one obtain a molecule-
like structure, i.e. an azimuthal modulation as seen for two As we have just discussed, for three electrons with strong
electrons. For three and five electrons the density is appaimteraction we do not find the naively expected density with
ently rotationally symmetric and also for eight electrons,three maxima but a nearly round density. When we plot the
where we have a pronounced maximum in the center. Thdensity of Fig. 9a) with more contour linegnot shown a
expected molecule-like structure shows up only fb=2  tiny sixfold modulation of the density is discernible. This can
and 4. Thus, when we consider aNe=6 and 7(see beloy,  be understood by going back to Ed.2): after M'=0 the
we recognize that azimuthal maxima occur only for an evernext allowed total angular momentum values &=
number of electrons per spatial shell. In stating this we wantt 3, which give rise to a standing wave with six maxima.
to emphasize, that all the densities shown belong to symmeéFhis becomes also clear from the densities of the single or-
try breaking, deformed Slater determinants. bitals building the UHF single-particle density. In Fig. 10 we

This even-odd effect is also surprising, because UHF calshow the orbital densities fox=4 andA=6. We find a
culations for quantum dots in a strong magnetic fidind  sixfold orbital, as well as two diametrically oriented three-
molecule like densities for all electron numbers, and fre-fold orbitals. One clearly recognizes how the sixfold modu-
guently a magnetic field leads to similar effects as a strongdation results from this. Note that the HF orbitals are not
interaction. We also have performed calculations with a maglocalized(for example at the angles of a triangle
netic field that reproduce the densities of Ref. 4 and show At this point we want to address a related issue, the
that the molecule-like structure disappears for ddidr van-  uniqueness of the HF orbitals. One can easily show with the
ishing field?® help of the HF equations that HF orbitals with the same spin

A physical explanation of the even-odd effect combinesare no longer unique, if the corresponding one-particle ener-
the geometry of the classical system with the symmetry ofjiese; are degenerate. In this case, any unitary transforma-
quantum mechanics. Consider theexact spin-polarized tion of degenerate orbitals also fulfills the HF equations. In
N-electron wave function for the Wigner molecule case. Fig. 10, the energies; are degenerate for the two states

C. Closer look at three electrons
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FIG. 10. UHF orbital densi-
ties|¢;]? (i=1,2,3) forN=3 and
S,=3/2. Upper rowh=4, lower
row \=6. For the single-particle
energies we obtairfa) £,;=4.92
and (b), (c) e,=e3=5.84; (d) &4
=6.44 and(e), (f) e,=e3=7.11.

3 -3 -2 -1 0 1 2 3

and (c) and (e) and (f). Therefore these two orbitals are no D. Lattice Hamiltonian and localized orbitals
longer uniquely determined—in addition to the orientational

. - * For large\ the HF Hamiltonian has the same eigenvalues
degeneracy of the total Slater determinant which is physi

! as a lattice Hamiltonian. Thus, there must be one-to-one cor-
cally obvious. ) respondence between these two. Remember, however, that
_Now, we want to have a closer ook on the orbital enery,o E method is a one-particle picture and thus the tight

gies: it is natural to presume that their degeneracies are Binding Hamiltonian describesne particle hopping on a

signature of Wigner crystallization, i.e., the geometry of the, iy The HE Hamiltonian is diagonal in the HF bai
Wigner molecule. For strong interaction one should be abl zP]' '
S

to represent the system as a lattice problem on an equilater

triangle. The corresponding Hamiltonian fdd=3, S, N
=3/2, reads ([hli)y+2> (iklw]jk)=e&;5; . (15
K
U -t -t Now, if the eigenvalueg; coincide with those of a lattice
Hy=| -t U —t], (13 Hamiltonian, e.g.H3 in Eq. (13), this means that we have to
—t -t U transform the UHF orbitals with the inverse of the orthogo-

nal transformation which diagonalizes the lattice Hamil-
whereU is the on-site energy anis the tunneling matrix tonian to pass over to localized orbitals. The Slater determi-
element between localized states. The eigenvalu¢s,aire  nant is not changed when we transform among occupied
£,=U— 2t and twices = U+t which is in fact the degen- Orbitals>®
eracy of the UHF orbital energidfig. 10. \

On the other hand, fo8,=1/2 the tight-binding Hamil- .

tonian involves tunneling only between the two spin up Ip)ZZ opli)- (16)
states and takes the form

In this new basis the HF equations read

Uu -t 0
N N

Hi=| -t U 0]. (14 E[<p|h|q>+2(pr|W|qr)]OL=8i0ip- 17)
0 0 U ‘ r

Now, in the basi$p), we should have non vanishidg|h|q)
only for nearest neighbotsand the contribution of the two-
particle matrix element should essentially be given by the
Ctiirect term, i.e., diagonal elements of the Coulomb interac-
ion. Then Eq.(17) reduces to

The eigenvalues are;,=U =t (spin up andez=U (spin
down). With the UHF method foin=6 we find ;=6.65,
£,=7.10 ande3;=6.87, which has to be compared with the
orbital energies for the polarized state given in Fig. 10 an
yields t~0.22. For largem the agreement becomes better,
e.g. for \=12 we find £,=10.140, £,=10.309 ande; N

N
=10.224 forS,=1/2, whilee,;=10.06 ande,,;=10.313 for hlgy+ 8 r N'o =g o 18
S,=3/2, which givest~0.084 in both cases. % (plhla) pqEr (priwlpr) f0g=2i0p, (19
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which is now of the form of a lattice Hamiltonian. 0.60 ,
We now present strong numerical evidence for this con- &
nection between the UHF Hamiltonian and a lattice Hamil- o % 8
tonian forN=4 and 5 which are the simplest cases of elec- s
trons on a ring. FON=4 andS,=2, we have
. N=2
-t U -t 0 e
H,= ) 19 A
1o -t U -t 19 © N=4
“t 0 -t U o NS
with the eigenvalues;=U—2t, ,5=U ande,=U+2t. 0.02 i 5 2 =

The eigenvectors ofl, determine transformatio(i6). Ap-

plying this transformation to the HF Hamiltonian, as we did

in (9), we obtain forh =8 an Hamiltonian of the form of Eq.

13
A

FIG. 11. Log-linear plot of tunnel matrix elements \?° for

(19 with U=10.924 and=0.195. The next nearest neigh- various electron numbers. Far=8 the line of best fit is shown.

bor hopping matrix elemerthopping along the diagonal of
the squargis t*=2e,—¢,—¢,=0.003, which is indeed
very small.

with the eigenvalues;=U —2t, g,5=U+t(1—/5)/2 and

Likewise we can determine.the Ia;tice Hamiltonians forg,,.=U+t(1+/5)/2, while forS,=3/2 we have
other electron numbers and spin configurations and we have

collected results fot and U for stronger interaction up to
A=20. ForN=4 andS,=1, the lattice Hamiltonian reads

U -t 0 0
—t U -t 0

=l o ¢t U o 20
0O 0 0 U

with the eigenvaluess;=U—+2t, s,=U and e3=U
+/2t (spin up ande,=U (spin down, while for N=4,
S,=0 we have

U -t 0 0
t U 0 O

Hi=l o o0 u —t]’ @D
0 0 -t U

with g4,=U =t (spin up andeg,=U =t (spin down. Here,
we have to assume that the four states are occupied with

agreement with the UHF orbital energies. The valuesvoé
obtain in this way for the three spin stat8s=0,1, and 2
agree within 1% fon =8.

For N=5 we have a pentagon and again three differen

spin states. FoB,=5/2 the lattice Hamiltonian with nearest
neighbor hopping is

Uu -t 0 0 -t
-t U -t 0

He=| 0 -t U -t 0 |, 22)
0 0 -t U -t
~t 0 -t U

U -t 0 0 0
-t U -t 0 0

Hi= 0 -t U -t o], (23)
0 0 -t U 0
0o 0 0 0 U

With £1,=U—t(5+1)/2, £3,=U+t(\/5F1)/2 (spin up
andes=U (spin down. Finally for S,=1/2 we have

Uu 0 0 0 0
0O U -t oo

Hi=| 0 -t 0 0], (24)
0 0 U o
0 0 0u

with the eigenvaluegs=U=*t, g,=U (spin up and e
=U (spin down. Note that here the values of the UHF or-
%ital energies suggest a model with only two nearest neigh-

pairs of nearest neighbor parallel spins in order to obtz;\ilﬁpor parallel spins. Fok=6 the values of for all three spin

states coincide within 1%.

Figure 11 summarizes our findings about the tunnel ma-
trix elements. Reference 16 predittsexp(— \/r—s), wherer ¢
{s the nearest neighbor distance of the electrons measured in
units of the effective Bohr radius. Since classically\*3
(cf. the Appendix we plot Int versush?3. For\=8 we find
indeed a linear behavior. For lower, the tunneling matrix
element is not really defined, since the lattice model is not
appropriate. The tunneling matrix element is largest Nor
=2 because two electrons are always closest the Appen-
dix). Three electrons always have the smallest valud¢ of
because the corresponding equilateral triangle has a longer
side than the square and the pentagon. For higher electron
numbers one electron enters the center of the dot, and the
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obtain in this way agree also well with the results of Ref. 17.
Therer is determined from the first maximum of the two-
particle correlation function.

(b)

V. UNRESTRICTED HARTREE-FOCK METHOD
WITH A MAGNETIC FIELD

In this section we want to present some calculations with
a magnetic field orthogonal to the plane of the quantum dot.
This system has been discussed extensively in the literature,
especially in connection with the quantum Hall effect. UHF
calculations by Miler and Kooniff have shown anagnetic
field induced Wigner crystallizationHowever, they only
considered the limiting case of a strong magnetic field and
therefore included in the basis for expanding the UHF orbit-
als only states from the lowest Landau leyEbck-Darwin
levels withn=0). The high field case has also been studied
by Palacioset al? and Ruan and co-worket&72° To study
smaller magnetic fields, our basis is better adjusted to the
problem. It is intuitively clear, that electrons are further lo-
calized by the magnetic field. Indeed, for sufficiently strong
fields, we do not find an even-odd effect for UHF densities-
but moleculelike densities for all electron numbers.

Numerically, thanks to the similar form of Hamiltonian
(2) to the one without magnetic field, the generalization of
UHF spectra are more complicated but still show the typicabyr UHF code is straightforward. However, the magnetic
degeneracies. However, now the lattice Hamiltonian hagield breaks time reversal symmetry, left and right turning
various tunneling constants and on-site energies. solutions are no longer energetically degenerate. Therefore in
the expansion of UHF orbitalgl) we have to use complex
coefficients.

We first consider three electrons and a large interaction

Seven classical electrons form a equilateral hexagon witparametei = 10. This means that we have a shallow quan-
one central electron, which is a fragment of a hexagonatum dot where the Coulomb interaction dominates and the
lattice. In Fig. 12 we show UHF densities fbir=7 starting magnetic field is relatively weak. In Fig. 13 we display the
with a small\. The UHF ground state iS,=1/2 up to\ evolution of the UHF one-particle densities with increasing
=3, then spin polarized. In Fig. @ for A\=1 we see a magnetic field strengtho,=w./w at fixed . This is not
fourfold modulated density. How is that possible for sevenexactly the physical situation, corresponding to a quantum
electrons? The answer is that in this case the energy shelbt exposed to an increasing magnetic field, since the cou-
picture of the harmonic oscillator is still valid: six electrons pling constanh becomes smaller with increasing field. Here
are just a shell closure and the next electron is put in the newye just want to show that a magnetic field does not have the
shell in an orbital with maximal angular momentum. This same effect on the UHFE density as a strong interaction.
angular momentum i81==2 and from the superposition  |n Fig. 13d) we see three distinct, localized electrons in
one obtains a fourfold standing wate. Ref. 14. Here, the  the UHF density. The three single orbital densities have
energy is basically the same as in the RHF method, but thgearly the same form. They are thus similar to the orbitals
Slater determinant breaks the symmetry. chosen in Ref. 8. Witlilecreasingnagnetic field strength the

With increasing interaction strength a Wigner molecule ismaxima in azimuthal direction vanish slowly, until we have
formed with one electron in the center and six in the suragain a nearly round density fes,=0 as in Fig. a). The
rounding ring[Figs. 12b) and 1Zc)]. We want to emphasize density in Fig. 18a) has been obtained from an initial guess
that the UHF densities mirror the classical shell filling. Thiswith threefold symmetry. Therefore we can be sure that we
can even be quantified: the positions of the maximeen in  have not obtained a local minimum but the true HF ground
the ‘round’ densitiesagree very well with the classical con- state.
figurations in the Appendix. From the UHF density the near-  As a second example we show the evolution of the UHF
est neighbor distancés can be determined. For example density of six electrons at intermediate coupling strength
from Fig. 12d) we findT¢~3.0, which is also the classical =3.2. Without magnetic field the densityis rouréig.
value. Here we have to take into account that we measurg4(a)], and with a weak magnetic field fivefold with a central
length in oscillator units. Frequently, one is interested in theelectron[Figs. 14b) and 14c)]. Remarkably, for intermedi-

density parameter; given in effective Bohr radif? Then  ate magnetic field,~1 . . . 1.5, the UHF ground state has a
Fig. 12d) givesrs=rgo/ag=Ars~30. Ther values we perfectly round densitjfFig. 14d)] and also a rotationally

-4 -3-2-10 1 2 3 4

FIG. 12. One-particle densities for the UHF ground stateN of
=7 electrons(a) A\=1, (b) A=2; bothS,=1/2. (c) \=4, (d) A
=10; bothS,=7/2.

E. Seven-electron Wigner molecule
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(a)

(b)

-4 -3-2-10 1

-4 -3-2-10 1

3

FIG. 13. Evolution of the UHF one-particle densities fr
=3, S,=3/2, and\=10 with increasing magnetic field strength

we=wclw. @ ©.=0, () 0.=05, (¢) w.=1.5 and(d) o,

=2.5.

symmetric Slater

maximum-density-droplet of MacDonakt a

determinant.

This

is the so-called

|',23

where the
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VI. CONCLUSION

In conclusion, we have discussed the properties of unre-
stricted Hartree-FockUHF) calculations for electrons in a
quantum dot, focusing on the regime of strong correlations,
when the electrons begin to form a Wigner molecule. The
UHF energies are good estimates of the true ground-state
energies, especially for the polarized states, even at strong
interaction. In this regime, the UHF energies become nearly
spin independent, faster than it is the case for the true ener-
gies. However, the energy differences between different spin
states cannot be resolved correctly by the UHF method, the
polarized state is unphysically favored for stronger interac-
tion.

Regarding the interpretation of other quantities obtained
from the UHF Slater determinant, we have shown that con-
siderable caution must be taken: we find deformed densities
in the regime of intermediate interaction~1 ...4. For
stronger interaction the densities are azimuthally modulated
for an even number of electrons per spatial shell, and round
for an odd number per shell. The onset of this modulation is
enhanced within the UHF method, so that the UHF method
leads to an overestimation of the value of the critical density
for the crossover to the Wigner molecule. We want to em-
phasize that the even-odd effect we found is an artifact of the
symmetry breaking of the UHF method and arises from a
degeneracy of states with opposite total angular momentum.

For very strong interaction, we have shown that the UHF
Hamiltonian corresponds to a tight-binding model of a par-

electrons occupy the Iow_est orbitals with increasing angulagjc|e hopping between the sites of the Wigner molecule.
momentum. Here the orbitals wit =0, 1, 2, 3, 4and 5 are  From the UHF orbital energies we have obtained the hopping
occupied, and the UHF solution is identical to the RHF so-matrix elements. This correspondence explains why the UHF
lution with total angular momenturkl °'=15.

_ Finally, in Fig. 14e) for strong magnetic field we have a for |ocalized electrons and was not found with the restricted
distinctly localized fivefold Wigner molecule. Figure (i4

for w.= 2.5 shows a sixfold isomer which is higher in energy The maxima of the UHF densities mirror the classical

by 0.009 than the fivefold ground state.

energies become nearly spin independent which is expected
HF method.

filing scheme with the electrons arranged in spatial shells. In

(a)

(b)

(c)

FIG. 14. Evolution of the UHF
one-particle density foN=6, S,
=3, and\A=3.2 with increasing

-4 -3-2-10

magnetic field strength(a)

=0, (b) ©.=0.1, (c) w,=0.5, (d)
w.=1, (© w.=2, and (f) .
=2.5. In (f) sixfold isomer with
energyEf-=45.182.

-4-3-2-10 1 2

1 2 3 4

4
-4-3-2-10 1 2 3 4
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contrast, the UHF two particle densifgonditional probabil- TABLE I. Energies and configurations of classical point charges
ity density) has no direct physical meaning, because the UHFn a 2D parabolic potentialsee text
method cannot take correlations properly into account. Fi

nally, in a strong magnetic field the UHF densities are always\ Geometry raN rd N Eird
molecule-like and there is no even-odd effect. 1
The numerical complexity of the UHF method is compa- 2 dumbbell(2) 3 ~1.260 3

rable to the frequently used density-functional approach.

However, as shown here, UHF has the advantage to cope wianale(3 1 1442 9
also with the strongly interacting limit and gives further riangle(3) £*0-577 - 3
physical insight in that case. For the tiny energy differences
which determine the spin ordering or the addition energies a§ square(4) }+ iko_%? ~1.394 6
A=2, one has to employ the computationally more expen- 4 2
sive quantum Monte Carlo methods.
2 15
5 pentagor(5) A/1+ —~1376 =~1308 =
J5 2
. 5 1
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APPENDIX: CONFIGURATIONS OF CLASSICAL gons, 4t g s '

POINT CHARGES

In Table | we give the classical configurations for up to  ForN=5 and 6 we specify isomers with higher energies.
seven 2D electrons in a parabolic confinement potential witlbue to the classical virial theorem there is a simple relation-
zero magnetic fieldr, is the distance of the outer electrons ship between the energy amg. When we denote the dis-
from the center measured in oscillator lendth rg is the  tance of the-th electron from the center hy, we have
nearest neighbor distance measured in effective Bohr radii N
ag . Energies are given in units éfw. These quantities de- E= § E (2

2=

Al
pend only onN andA. (AL)
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