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Unrestricted Hartree-Fock for quantum dots

Boris Reusch* and Hermann Grabert
Physikalisches Institut, Albert-Ludwigs-Universita¨t, D-79104 Freiburg, Germany

~Received 30 October 2002; revised 8 May 2003; published 17 July 2003!

We present detailed results of unrestricted Hartree-Fock~UHF! calculations for up to eight electrons in a
parabolic quantum dot. The UHF energies are shown to provide rather accurate estimates of the ground-state
energy in the entire range of parameters from high densities with shell model characteristics to low densities
with Wigner molecule features. To elucidate the significance of breaking the rotational symmetry, we compare
restricted Hartree-Fock~RHF! and UHF calculations. While UHF symmetry breaking admits lower ground-
state energies, misconceptions in the interpretation of UHF densities are pointed out. An analysis of the orbital
energies shows that for very strong interaction the UHF Hamiltonian is equivalent to a tight-binding Hamil-
tonian. This explains why the UHF energies become nearly spin independent in this regime while the RHF
energies do not. The UHF densities display an even-odd effect which is related to the angular momentum of the
Wigner molecule. In a weak transversal magnetic field this even-odd effect disappears.

DOI: 10.1103/PhysRevB.68.045309 PACS number~s!: 73.21.La, 31.15.Ne, 71.10.Hf
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I. INTRODUCTION

In the present work we discuss the properties, predictio
and limitations of Hartree-Fock~HF! calculations for quan-
tum dots. This method has a long tradition in atomic a
nuclear physics; its application to quantum dots is theref
natural, and has been discussed in various recent pape1–8

As we will demonstrate, some of the conclusions drawn
the basis of HF calculations are not based on firm groun
This is in particular the case, when the HF wave functio
are used to describe charge distributions in a quantum
On the other hand, unrestricted Hartree-Fock~UHF! calcula-
tions will be shown to give rather reliable estimates for t
ground state energies.

While quantum dots may be considered as tunable ar
cial atoms, the electron density can be much smaller tha
real atoms and correlations play a more prominent role.9 This
is why for quantum dots the HF method has to be regar
with care. In this work we focus on the crossover from we
to strong Coulomb interaction, i.e., from higher to low
electronic densities. This is equivalent to weakening the
ternal confinement potential for a given host material of
quantum dot.

The physics of this crossover can be sketched as follo
In the case of weak interaction~high density! a one-particle
picture is valid: Electrons are filled into the energy shells
the two dimensional isotropic harmonic oscillator. Here,
appropriate method is restricted Hartree-Fock~RHF!,1,3

where every orbital belongs to an energetic shell and
good orbital momentum. This shell filling with Hund’s rul
has been probed experimentally in small dots.10 In the case
of strong interaction~low density! one can no longer sta
within this simple one-particle picture: Wigner11 has shown
that for strong correlation the ground state of the tw
dimensional~2D! electron gas is described by localized ele
trons, representing a classical hexagonal crystal. Acc
ingly, in this limit the electrons in the dot form a sma
crystal, a so-called Wigner molecule, and the picture of
ergetic shells is no longer meaningful. One has to impro
the HF approximation by passing over to the UHF appro
0163-1829/2003/68~4!/045309~12!/$20.00 68 0453
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mation, which means that the space of the HF trial wa
functions is extended. The UHF Slater determinant low
the energy by breaking the symmetry of the problem, i
spatial and spin rotational invariance. This complicates
interpretation of the UHF solution.

For very strong interaction the UHF calculation is al
expected to give reasonable results because a one-pa
picture of localized orbitals7 should model the Wigner mol
ecule quite well. In fact, the UHF energies become nea
spin independent, while this is not the case with RHF en
gies. We show that the UHF Hamiltonian for strong intera
tion has the same spectrum as a tight-binding Hamilton
of a particle hopping between the sites of a Wigner molecu
The hopping matrix elements and on-site energies can
extracted from the UHF orbital energies. The localizatio
delocalization transition has already been probed experim
tally in larger quantum dots,12 so Wigner molecule spectros
copy is within reach of current technology.

An incomplete account of our results has been presen
in an earlier short communication.6 Here, we discuss in detai
the two-electron problem and present an elaborate analys
the limit of strong interaction. In Sec. II we briefly recall th
model and method. In Sec. III we obtain explicit results f
quantum-dot helium that already show many features of
solutions for higher electron numbers presented in Sec. IV
Sec. V we also discuss the effect of a magnetic field.

II. HAMILTONIAN AND HARTREE-FOCK
APPROXIMATION

In this work we follow the notation and method present
in our earlier paper,6 for zero magnetic field. The Hamil
tonian of an isotropic parabolic quantum dot with magne
field reads~see, e.g., Refs. 1–9 and 13–23!

H5(
i 51

N H 1

2m*
@pi1eA~r i !#

21
m* v2

2
r i

2J 1(
i , j

e2/k

ur i2r j u
,

~1!
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BORIS REUSCH AND HERMANN GRABERT PHYSICAL REVIEW B68, 045309 ~2003!
where the positions~momenta! of the electrons are denote
by r j (pj ). The effective mass ism* , and the dielectric con-
stant isk. The vector potential of a homogeneous magne
field B orthogonal to the plane of the quantum dot in sy
metric gauge readsA(r)5(B/2)(2y,x,0), and the corre-
sponding cyclotron frequency isvc5eB/m* .

Now we can introduce oscillator units, and describe
system dimensionless: energies in units of\veff

5\Av21vc
2/4 and lengths in units ofl 05A\/m* veff. Then

the Hamiltonian takes the form

H5(
i 51

N S 2
1

2
n i1

1

2
r i
2D2

vc

2veff
Lz

tot1(
i , j

l

ur i2r j u
, ~2!

where we have introduced the dimensionless coupling c
stant

l5 l 0 /aB* 5e2/k l 0\v, ~3!

with the effective Bohr radiusaB* . For examplel52 corre-
sponds to\v'3 meV for a GaAs quantum dot. Hami
tonian ~2! is formally the same as without magnetic fiel
apart from an additional term proportional to the total ang
lar momentum which scales with the dimensionle
parameter24 Vcªvc /veff . The major part of our calcula
tions presented below is for zero magnetic field.

Regarding the HF approximation,25 let us recall the ex-
pansion of the HF orbitals in terms of the angular moment
eigenfunctions of the two-dimensional harmonic oscillato6

^ru i &5w i~r!5 (
n50,̀

M52`,`

unM
i ^runMs i&. ~4!

Here,M is the angular andn the radial quantum number o
the Fock-Darwin basis. Each orbital has its own fixed s
s i561/2, this means there is no double occupancy of or
als with spin up and down, but there are different orbitals
different spins. Thus only thez component of the total spin i
fixed, Sz

tot5( is i[Sz . Furthermore, orbitals~4! are in gen-
eral no longer eigenfunctions of the one-particle angu
~UHF! momentum. Therefore the HF Slater determinan
not an eigenstate of the total angular momentumLz

tot , it
breaks the symmetry of the original Hamiltonian.26 Another
possibility is to give each orbitali a fixed angular momentum
Mi . With this restriction one obtains the RHF calculation,1,3

which preserves the total angular momentum but yie
higher ground-state energies. Still another possibility is
build a Slater determinant of spatially localized orbitals
the strongly interacting case7 or of multicenter localized or-
bitals in high magnetic field8 and vary these orbitals to mini
mize the HF energy. Our orbitals are self-consistent and
best adapted to study the crossover from weak to strong
relation.

In principle the orientation of the deformed symmetr
breaking HF solution is arbitrary. This is due to the rotation
invariance of the original Hamiltonian and can be called o
entational degeneracy. The actual UHF solution found ha
special orientation and it depends on the initial guess for
density matrix. Often but not always, the symmetry break
04530
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is manifested in the HF single-particle densitynHF(r)
5( i 51

N uw i(r)u2. For a quantum dot in zero magnetic fiel
the Hamiltonian is invariant under time reversal. Thus
can choose real expansion coefficientsunM

i in Eq. ~4!. How-
ever, then the HF one-particle density is always symmetri
one axis. Any arbitrary orientation can be obtained by app
ing exp(iaLz

tot) to the Slater determinant.

III. UNRESTRICTED HARTREE-FOCK METHOD FOR
QUANTUM-DOT HELIUM

In this section we present UHF energies and densities
the two-electron quantum dot~quantum-dot Helium! at zero
magnetic field for increasing interaction strengthl. This il-
lustrates the basic concepts and properties of the HF app
mation, and reveals features that are also important
higher electron numbers. We compare with exact results
tained by a diagonalization of the relative motion. We a
compare with the RHF method, in order to illustrate the d
ferences from the UHF method.

The UHF two-electron problem has been treated pre
ously by Yannouleas and Landman.5 However, we find some
deviations from their results. An extensive discussion of
RHF solution for quantum-dot Helium atl'2 can be found
in Ref. 1. Finally, we want to mention that the two-electro
problem has also an analytic solution in terms of a pow
series.22

A. Two-electron Slater determinant

The Slater determinant for two electrons withSz50 is

CHF5
1

A2
@w1~r1!w2~r2!x1

1 x2
2 2w1~r2!w2~r1!x1

2 x2
1 #.

~5!

Here we have displayed the orbital and spin parts of
wave function explicitly,x6

i is the spin of thei-th electron.
The stateCHF is generally not an eigenstate of the total sp
Stot

2 . In order to obtain a singlet one has to setw15w2, and
thus

CHF5w1~r1!w1~r2!xsinglet. ~6!

This restriction is also called theclosed-shellHF ~CSHF!
approximation, because if every orbital is filled with spin u
and down, open shells are impossible. One sees from Eq~5!
that the Slater determinant violates the symmetry of
problem. For two electrons the spin symmetry is easily
stored, namely by a superposition of two Slater determina
with spin up/down and down/up. For the polarized caseSz
51, the total spin is conserved, and the HF wave function
a product of a symmetric spin function and an antisymme
orbital function.

B. Different HF approximations

We now compare the energies of different HF approxim
tions with the results of an exact diagonalization.6 First we
consider the caseSz50. The most general ansatz for the H
9-2
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UNRESTRICTED HARTREE-FOCK FOR QUANTUM DOTS PHYSICAL REVIEW B68, 045309 ~2003!
orbitals is the UHF state@Eq. ~4!#, a spin dependent expan
sion with arbitrary angular momentum. Less general is
RHF ansatz, where angular momentum is preserved.
still less general is the CSHF Equation~6!, when we force
the two electrons to occupy two identical~rotationally sym-
metric! orbitals. In Fig. 1 one can clearly see the importan
of breaking the symmetry to obtain lower HF energies. Up
l'1 all three methods give nearly the same result. Up
l'3 the closed-shell energy is equal to the RHF energy
other words: From this point on the two RHF orbitals are
longer identical. As expected the UHF energy is lowest.

In Fig. 2 we show the differences of the RHF and UH
energies from the energy of the exact ground state whic
the singlet. ForSz51 one needs two different orbitals, the
is no CSHF. The UHF method gives lower energies th
RHF, but the gain in energy is not as big as in the unpo
ized case. Interestingly, the UHF energies become spin in
pendent with increasingl: they agree within about 0.3%, th
Sz51 state is somewhat lower than theSz50 state. The
exact energies merge more slowly: forl520 the energy dif-
ference between singlet and triplet is still about 1%. N

FIG. 1. Comparison of different HF energies for quantu
dot helium with the exact ground state energy vs the coup
constantl.

FIG. 2. Absolute energy differences with respect to the ex
S50 ground stateDE5ES2EGS

exact. Abovel'4 the two UHF en-
ergies are nearly the same.
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that the RHF energies fail to become spin independent
largel, as can be seen from Fig. 2. Of course, one expe
spin independent energies in the classical limit of localiz
electrons without overlap.

C. UHF one-particle densities

Now we want to have a closer look at the one-parti
density which is just the sum of the densities of the tw
orbitals, nHF(r)5uw1(r)u21uw2(r)u2. In Figs. 3 and 4 we
show this density for different values of the coupling para
eter l. Already for a relatively smalll we detect two azi-
muthal maxima. The density is strongly anisotropic which

-
g

t

FIG. 3. Shadowed contour plots of the UHF one-particle den
ties nHF for N52 andSz50. One contour corresponds to 1/10
the maximal density.~a! l52, ~b! l56, ~c! l58, ~d! l520.

FIG. 4. UHF one-particle densities forN52, Sz51. ~a! l
52, ~b! l56, ~c! l58, ~d! l520.
9-3
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BORIS REUSCH AND HERMANN GRABERT PHYSICAL REVIEW B68, 045309 ~2003!
due to the symmetry breaking. In the case ofSz51 the two
maxima are more distinct as a consequence of the Pauli p
ciple: spin-polarized electrons are more strongly correla
However, the direct interpretation of the two dips as loc
ized electrons is questionable. With increasingl the azi-
muthal modulation first decreases, but forl*8 (l*10 for
Sz51) it increases again. For very highl the densities be-
come almost spin independent. A closer view reveals that
azimuthal maxima are more distinct for the caseSz50. This
arises from the exchange term in the HF energy: it lowers
energy for strong interaction and overlapping spin-polariz
orbitals.

While the azimuthal modulation is an artifact of the H
method, the densities display correctly a minimum in t
center which gets deeper with stronger interaction. Also,
maxima are in very good agreement with the classical p
tions r a5 A3 l/4 ~see the Appendix!.

D. UHF orbitals and orbital energies

In order to understand the form of the UHF densities it
useful to have a closer look at the UHF orbitals. ForSz50
we find two orbitals that are exactly complex conjugate,w1

5w2* . This can be seen by studying the expansion coe
cientsunM in Eq. ~4!, and means that the Slater determina
t is symmetric under time reversal.

For Sz51 the two orbitals depicted in Fig. 5 are alwa
different and can be chosen real. Forl52 one can still in-
terpret the orbitals in the energy shell picture of RHF: t
first orbital is ~approximately! round, S-like, and the secon
one is dumbbell formed, P-like.27

For very highl*14 there is a simple relation between t
orbitals for the two spin polarizations: forSz51 we may
choose both orbitals real and then we find

w1/2
S50'

1

A2
~w1

S516 iw2
S51!. ~7!

In this fashion, we see thatw1/2
S50 are complex conjugate an

approximately orthonormal.

FIG. 5. Pairs of real UHF orbitals forN52, Sz51. ~a!, ~b! at
l52, ~c!, ~d! at l510.
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To shed more light on this behavior we consider also
orbital energies. We start with the HF Hamiltonian in the H
basis forSz51:

S «1 0

0 «2D 5S h111w1212 0

0 h221w1212D . ~8!

Here we use the notationhi j 5^ i uhu j & and wi jkl 5( i j uwukl)
for matrix elements in the HF basis~see Ref. 6!. When we
apply the unitary transform~7!,

1

2 S 1 i

1 2 i D S «1 0

0 «2D S 1 1

2 i i D 5S U 2t

2t U D 5H2 ,

~9!

we obtain a two-state HamiltonianH2, with on-site energy
U5(h111h2212w1212)/2 and tunnel splitting t5(h22
2h11)/2. Thereby, we have mapped the HF Hamiltonian
a lattice problem. It is intuitive that for strong interaction th
two electrons localize, and thus a tight-binding approa
should become physically correct. This is also the case
larger electron number as discussed below.

E. UHF two-particle densities

Next we examine the conditional probability densi
~CPD! for finding one electron atx, under the condition tha
another electron is aty. For quantum-dot helium andSz50
the CPD reads

nHF~xuy!5
uw1~x!u2uw2~y!u21uw1~y!u2uw2~x!u2

nHF~y!
. ~10!

Now, since we found complex conjugate orbitals,w15w2* ,
we havenHF(xuy)5nHF(x), i.e., the conditional probability
density is independent of the condition. This is not rea
astonishing, because within the HF method two electrons
only correlated by the exchange term, which vanishes her28

For Sz51 the orbitals are different from each other a
the CPD is given by

nHF~xuy!5$uw1~x!u2uw2~y!u21uw1~y!u2uw2~x!u2

22 Re@w1* ~x!w2~x!w1~y!w2* ~y!#%/nHF~y!.

~11!

In Fig. 6 we show contour plots of UHF CPDs for diffe
ent coupling constants and given positionsy. In the upper
row, for y5(2,0), we find for smalll52 a suggestive result
the density has a single maximum at a distinct distance fr
the fixed coordinatey. With increasingl, however, we ob-
tain two maxima, which develop more and more and are
at all located at the classical position.

The situation is likewise irritating when one choosesy
5(0,2) as fixed coordinate~lower row!. While the exact
CPD is rotationally symmetric when bothx andy are rotated,
the UHF CPD does not respect this symmetry. The reason
this lies in the symmetry breaking which cannot complet
account for correlations. The UHF Slater determinant is
9-4
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UNRESTRICTED HARTREE-FOCK FOR QUANTUM DOTS PHYSICAL REVIEW B68, 045309 ~2003!
formed, and derived quantities do not necessarily have a
rect physical meaning—except for the UHF energy which
a true upper bound for the exact energy.

IV. UNRESTRICTED HARTREE-FOCK METHOD FOR
HIGHER ELECTRON NUMBERS

In this section we show further results of UHF calcu
tions, namely, energies and densities for up to eight e
trons (B50). Many effects are similar to what we have a
ready seen for two electrons, for example the errors of
UHF energies and their spin dependence. An interesting p
nomenon shown by the UHF densities is the even-odd ef
discussed below.

A. UHF energies

For N.2 we compare the UHF energies with results o
quantum Monte Carlo~QMC! simulation by Eggeret al.17

These results were obtained for a very low temperaturT
50.1\v/kB . The QMC energies are always below the H
energies and can therefore be considered as effective
temperature reference points.

For theN53 QMC simulation, a semiclassical analysis16

as well as an exact diagonalization study21 predict a transi-
tion from theS51/2 ground state in the weakly interactin
case to aS53/2 ground state forl*4. Within the UHF
calculation this transition occurs already nearl52. In Fig. 7
one can see that the relative error forSz53/2 is small, less
than 3%. In the non-polarized case the error is higher, ab
7% for l*2. With increasingN and l the relative error
becomes smaller because the absolute energies are hig

In Fig. 8 we show the absolute energy differences fr
the QMC ground state for eight electrons. For intermedi
values ofl the UHF energies become already nearly s

FIG. 6. UHF Conditional probability densitynHF(xuy) for N
52 andSz51. In the upper rowy5(2,0) ~x! ~a! l52, and~b! l
56. Lower row:y5(0,2) ~x! ~c! l52, and~d! l510.
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independent, whereas the QMC energies approach this s
classical behavior more slowly. For stronger interaction
HF ground state is always spin-polarized. Thus the U
method can not resolve the correct spin ordering of the
ergies.

For N58 the QMC method predicts a crossover of t
total spin fromS51 to S52 nearl54. The UHF method
finds a polarized ground state withS54 for l*4. There,
however, the energy differences for different spins are
ready quite small.

One can conclude that the UHF Slater determinant w
fixed spin structure gives a rather poor description of
total many-electron wave function. Essentially, the UH
method renders the properties of the spin-polarized solu
for larger l. This can also be seen in the UHF densitie
which become spin independent for larger interaction~see
below!. Finally, we briefly mention the RHF results: there f
large l the HF energies do not become spin independe

FIG. 7. Relative error of the UHF energy (ES
HF2ES

QMC)/ES
QMC

for N53 vs coupling constantl.

FIG. 8. Absolute energy differences from the QMC grou
state,DE5ES2EGS

QMC for eight electrons and various spins vs co
pling constantl.
9-5
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BORIS REUSCH AND HERMANN GRABERT PHYSICAL REVIEW B68, 045309 ~2003!
but the energies for lower spins are considerably higher.
largel the RHF method gives a poor estimate of the grou
state energy.

B. HF densities: Even-odd effect

In this subsection we consider the UHF densities
higher electron numbers. We first show in Fig. 9 the den
ties for rather strong coupling constantl56, various elec-
tron numbersN andSz5N/2. Above this interaction strengt
the UHF densities are essentially the same for allSz ~except
for N52, see above! and do not change qualitatively wit
increasingl.

Surprisingly, only for someN does one obtain a molecule
like structure, i.e. an azimuthal modulation as seen for t
electrons. For three and five electrons the density is ap
ently rotationally symmetric and also for eight electron
where we have a pronounced maximum in the center.
expected molecule-like structure shows up only forN52
and 4. Thus, when we consider alsoN56 and 7~see below!,
we recognize that azimuthal maxima occur only for an ev
number of electrons per spatial shell. In stating this we w
to emphasize, that all the densities shown belong to sym
try breaking, deformed Slater determinants.

This even-odd effect is also surprising, because UHF
culations for quantum dots in a strong magnetic field4 found
molecule like densities for all electron numbers, and f
quently a magnetic field leads to similar effects as a stron
interaction. We also have performed calculations with a m
netic field that reproduce the densities of Ref. 4 and sh
that the molecule-like structure disappears for oddN for van-
ishing field.29

A physical explanation of the even-odd effect combin
the geometry of the classical system with the symmetry
quantum mechanics.15 Consider theexact spin-polarized
N-electron wave functionCN for the Wigner molecule case

FIG. 9. Even-odd effect of the UHF one-particle densitiesnHF

for l56, different electron numbersN and polarized spinSz

5N/2. ~a! N53, ~b! N54, ~c! N55, ~d! N58.
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Due to the strong Coulomb repulsion, the electrons move
anN-fold equilateral polygon~for N,6; for N56 one elec-
tron enters the center of the dot!. A rotation by 2p/N there-
fore corresponds to a cyclic permutation

expH 2p i

N
Lz

totJ CN5~21!N21CN , ~12!

where we have used that a cyclic permutation of an e
~odd! number of electrons is odd~even!. From Eq.~12! the
allowed total angular momenta of the Wigner molecule c
be easily read off: for an odd number of electrons the m
mal angular momentum is zero, whereas it is nonzero
degenerate for an even electron number, e.g.,M tot562 for
N54. Hence, the UHF wave functions forN52,4,7 can be
interpreted as standing waves, i.e. superpositions of oppo
angular momentum states. For odd numbers of electrons
spatial shell there is no angular momentum degeneracy
therefore no standing wave and no modulation in the de
ties. With a similar argument Hirose and Wingreen14 ex-
plained the charge-density-waves which they found forodd
number of electrons in theweakly interacting regime from
density functional calculations.

Equation~12! does not hold anymore when the spins a
not polarized, because the total wave function is not a pr
uct of spin and orbital wave functions. However, within UH
method we do not fix the exact spin but only subspaces w
fixed Sz . For Sz,N/2 and strong interaction the UHF solu
tion mainly renders the properties of the spin-polarized so
tion, since the energies and densities are essentially the s
for l*6. The even-odd effect is thusnot a physical effect
but an artifact of the UHF symmetry breaking. Therefor
great caution must be taken when interpreting the UHF d
sities. In particular, the exact onset of Wigner crystallizati
cannot be determined reliably from UHF calculations.

C. Closer look at three electrons

As we have just discussed, for three electrons with stro
interaction we do not find the naively expected density w
three maxima but a nearly round density. When we plot
density of Fig. 9~a! with more contour lines~not shown! a
tiny sixfold modulation of the density is discernible. This ca
be understood by going back to Eq.~12!: after M tot50 the
next allowed total angular momentum values areM tot5
63, which give rise to a standing wave with six maxim
This becomes also clear from the densities of the single
bitals building the UHF single-particle density. In Fig. 10 w
show the orbital densities forl54 and l56. We find a
sixfold orbital, as well as two diametrically oriented thre
fold orbitals. One clearly recognizes how the sixfold mod
lation results from this. Note that the HF orbitals are n
localized~for example at the angles of a triangle!.

At this point we want to address a related issue,
uniqueness of the HF orbitals. One can easily show with
help of the HF equations that HF orbitals with the same s
are no longer unique, if the corresponding one-particle en
gies« i are degenerate. In this case, any unitary transfor
tion of degenerate orbitals also fulfills the HF equations.
Fig. 10, the energies« i are degenerate for the two states~b!
9-6
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FIG. 10. UHF orbital densi-
tiesuw i u2 ( i 51,2,3) forN53 and
Sz53/2. Upper rowl54, lower
row l56. For the single-particle
energies we obtain~a! «154.92
and ~b!, ~c! «25«355.84; ~d! «1

56.44 and~e!, ~f! «25«357.11.
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and ~c! and ~e! and ~f!. Therefore these two orbitals are n
longer uniquely determined—in addition to the orientation
degeneracy of the total Slater determinant which is ph
cally obvious.

Now, we want to have a closer look on the orbital en
gies: it is natural to presume that their degeneracies a
signature of Wigner crystallization, i.e., the geometry of t
Wigner molecule. For strong interaction one should be a
to represent the system as a lattice problem on an equila
triangle. The corresponding Hamiltonian forN53, Sz
53/2, reads

H35S U 2t 2t

2t U 2t

2t 2t U
D , ~13!

whereU is the on-site energy andt is the tunneling matrix
element between localized states. The eigenvalues ofH3 are
«15U22t and twice«2/35U1t which is in fact the degen
eracy of the UHF orbital energies~Fig. 10!.

On the other hand, forSz51/2 the tight-binding Hamil-
tonian involves tunneling only between the two spin
states and takes the form

H385S U 2t 0

2t U 0

0 0 U
D . ~14!

The eigenvalues are«1/25U6t ~spin up! and «35U ~spin
down!. With the UHF method forl56 we find «156.65,
«257.10 and«356.87, which has to be compared with th
orbital energies for the polarized state given in Fig. 10 a
yields t'0.22. For largerl the agreement becomes bett
e.g. for l512 we find «1510.140, «2510.309 and«3
510.224 forSz51/2, while«1510.06 and«2/3510.313 for
Sz53/2, which givest'0.084 in both cases.
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D. Lattice Hamiltonian and localized orbitals

For largel the HF Hamiltonian has the same eigenvalu
as a lattice Hamiltonian. Thus, there must be one-to-one
respondence between these two. Remember, however,
the HF method is a one-particle picture and thus the ti
binding Hamiltonian describesone particle hopping on a
grid. The HF Hamiltonian is diagonal in the HF basis@Eq.
~4!#,

^ i uhu j &1(
k

N

~ ikuwu jk !5« id i j . ~15!

Now, if the eigenvalues« i coincide with those of a lattice
Hamiltonian, e.g.,H3 in Eq. ~13!, this means that we have t
transform the UHF orbitals with the inverse of the orthog
nal transformation which diagonalizes the lattice Ham
tonian to pass over to localized orbitals. The Slater deter
nant is not changed when we transform among occup
orbitals,30

up&5(
i

N

op
i u i &. ~16!

In this new basis the HF equations read

(
q

N H ^puhuq&1(
r

N

~pruwuqr !J oq
i 5« iop

i . ~17!

Now, in the basisup&, we should have non vanishing^puhuq&
only for nearest neighbors31 and the contribution of the two
particle matrix element should essentially be given by
direct term, i.e., diagonal elements of the Coulomb inter
tion. Then Eq.~17! reduces to

(
q

N H ^puhuq&1dpq(
r

N

~pruwupr !J oq
i 5« iop

i , ~18!
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which is now of the form of a lattice Hamiltonian.
We now present strong numerical evidence for this c

nection between the UHF Hamiltonian and a lattice Ham
tonian forN54 and 5 which are the simplest cases of el
trons on a ring. ForN54 andSz52, we have

H45S U 2t 0 2t

2t U 2t 0

0 2t U 2t

2t 0 2t U

D , ~19!

with the eigenvalues«15U22t, «2/35U and «45U12t.
The eigenvectors ofH4 determine transformation~16!. Ap-
plying this transformation to the HF Hamiltonian, as we d
in ~9!, we obtain forl58 an Hamiltonian of the form of Eq
~19! with U510.924 andt50.195. The next nearest neigh
bor hopping matrix element~hopping along the diagonal o
the square! is t* 52«22«12«450.003, which is indeed
very small.

Likewise we can determine the lattice Hamiltonians
other electron numbers and spin configurations and we h
collected results fort and U for stronger interaction up to
l520. ForN54 andSz51, the lattice Hamiltonian reads

H485S U 2t 0 0

2t U 2t 0

0 2t U 0

0 0 0 U

D , ~20!

with the eigenvalues«15U2A2t, «25U and «35U
1A2t ~spin up! and «45U ~spin down!, while for N54,
Sz50 we have

H495S U 2t 0 0

2t U 0 0

0 0 U 2t

0 0 2t U

D , ~21!

with «1/25U6t ~spin up! and«3/45U6t ~spin down!. Here,
we have to assume that the four states are occupied with
pairs of nearest neighbor parallel spins in order to obt
agreement with the UHF orbital energies. The values oft we
obtain in this way for the three spin statesSz50,1, and 2
agree within 1% forl58.

For N55 we have a pentagon and again three differ
spin states. ForSz55/2 the lattice Hamiltonian with neares
neighbor hopping is

H55S U 2t 0 0 2t

2t U 2t 0 0

0 2t U 2t 0

0 0 2t U 2t

2t 0 0 2t U

D , ~22!
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with the eigenvalues«15U22t, «2/35U1t(12A5)/2 and
«4/55U1t(11A5)/2, while forSz53/2 we have

H585S U 2t 0 0 0

2t U 2t 0 0

0 2t U 2t 0

0 0 2t U 0

0 0 0 0 U

D , ~23!

with «1/25U2t(A561)/2, «3/45U1t(A571)/2 ~spin up!
and«55U ~spin down!. Finally for Sz51/2 we have

H595S U 0 0 0 0

0 U 2t 0 0

0 2t U 0 0

0 0 0 U 0

0 0 0 0 U

D , ~24!

with the eigenvalues«1/35U6t, «25U ~spin up! and «4/5
5U ~spin down!. Note that here the values of the UHF o
bital energies suggest a model with only two nearest ne
bor parallel spins. Forl56 the values oft for all three spin
states coincide within 1%.

Figure 11 summarizes our findings about the tunnel m
trix elements. Reference 16 predictst}exp(2Ar s), wherer s
is the nearest neighbor distance of the electrons measure
units of the effective Bohr radius. Since classicallyr s}l4/3

~cf. the Appendix! we plot lnt versusl2/3. For l*8 we find
indeed a linear behavior. For lowerl, the tunneling matrix
element is not really defined, since the lattice model is
appropriate. The tunneling matrix element is largest forN
52 because two electrons are always closest~see the Appen-
dix!. Three electrons always have the smallest value ot
because the corresponding equilateral triangle has a lo
side than the square and the pentagon. For higher elec
numbers one electron enters the center of the dot, and

FIG. 11. Log-linear plot of tunnel matrix elementt vs l2/3 for
various electron numbers. Forl>8 the line of best fit is shown.
9-8
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UNRESTRICTED HARTREE-FOCK FOR QUANTUM DOTS PHYSICAL REVIEW B68, 045309 ~2003!
UHF spectra are more complicated but still show the typi
degeneracies. However, now the lattice Hamiltonian
various tunneling constants and on-site energies.

E. Seven-electron Wigner molecule

Seven classical electrons form a equilateral hexagon w
one central electron, which is a fragment of a hexago
lattice. In Fig. 12 we show UHF densities forN57 starting
with a small l. The UHF ground state isSz51/2 up tol
&3, then spin polarized. In Fig. 12~a! for l51 we see a
fourfold modulated density. How is that possible for sev
electrons? The answer is that in this case the energy s
picture of the harmonic oscillator is still valid: six electron
are just a shell closure and the next electron is put in the
shell in an orbital with maximal angular momentum. Th
angular momentum isM562 and from the superpositio
one obtains a fourfold standing wave~cf. Ref. 14!. Here, the
energy is basically the same as in the RHF method, but
Slater determinant breaks the symmetry.

With increasing interaction strength a Wigner molecule
formed with one electron in the center and six in the s
rounding ring@Figs. 12~b! and 12~c!#. We want to emphasize
that the UHF densities mirror the classical shell filling. Th
can even be quantified: the positions of the maxima~even in
the ‘round’ densities! agree very well with the classical con
figurations in the Appendix. From the UHF density the ne
est neighbor distancer̃ s can be determined. For examp
from Fig. 12~d! we find r̃ s'3.0, which is also the classica
value. Here we have to take into account that we meas
length in oscillator units. Frequently, one is interested in
density parameterr s given in effective Bohr radii.32 Then
Fig. 12~d! gives r s5 r̃ sl 0 /aB* 5l r̃ s'30. The r s values we

FIG. 12. One-particle densities for the UHF ground state oN
57 electrons.~a! l51, ~b! l52; both Sz51/2. ~c! l54, ~d! l
510; bothSz57/2.
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obtain in this way agree also well with the results of Ref. 1
Therer s is determined from the first maximum of the two
particle correlation function.

V. UNRESTRICTED HARTREE-FOCK METHOD
WITH A MAGNETIC FIELD

In this section we want to present some calculations w
a magnetic field orthogonal to the plane of the quantum d
This system has been discussed extensively in the litera
especially in connection with the quantum Hall effect. UH
calculations by Mu¨ller and Koonin4 have shown amagnetic
field induced Wigner crystallization. However, they only
considered the limiting case of a strong magnetic field a
therefore included in the basis for expanding the UHF orb
als only states from the lowest Landau level~Fock-Darwin
levels withn50). The high field case has also been stud
by Palacioset al.2 and Ruan and co-workers.18–20 To study
smaller magnetic fields, our basis is better adjusted to
problem. It is intuitively clear, that electrons are further l
calized by the magnetic field. Indeed, for sufficiently stro
fields, we do not find an even-odd effect for UHF densitie
but moleculelike densities for all electron numbers.

Numerically, thanks to the similar form of Hamiltonia
~2! to the one without magnetic field, the generalization
our UHF code is straightforward. However, the magne
field breaks time reversal symmetry, left and right turni
solutions are no longer energetically degenerate. Therefo
the expansion of UHF orbitals~4! we have to use complex
coefficients.

We first consider three electrons and a large interac
parameterl510. This means that we have a shallow qua
tum dot where the Coulomb interaction dominates and
magnetic field is relatively weak. In Fig. 13 we display th
evolution of the UHF one-particle densities with increasi
magnetic field strengthṽc5vc /v at fixed l. This is not
exactly the physical situation, corresponding to a quant
dot exposed to an increasing magnetic field, since the c
pling constantl becomes smaller with increasing field. He
we just want to show that a magnetic field does not have
same effect on the UHF density as a strong interaction.

In Fig. 13~d! we see three distinct, localized electrons
the UHF density. The three single orbital densities ha
nearly the same form. They are thus similar to the orbit
chosen in Ref. 8. Withdecreasingmagnetic field strength the
maxima in azimuthal direction vanish slowly, until we hav
again a nearly round density forvc50 as in Fig. 9~a!. The
density in Fig. 13~a! has been obtained from an initial gue
with threefold symmetry. Therefore we can be sure that
have not obtained a local minimum but the true HF grou
state.

As a second example we show the evolution of the U
density of six electrons at intermediate coupling strengthl
53.2. Without magnetic field the density is round@Fig.
14~a!#, and with a weak magnetic field fivefold with a centr
electron@Figs. 14~b! and 14~c!#. Remarkably, for intermedi-
ate magnetic fieldṽc'1 . . . 1.5, the UHF ground state has
perfectly round density@Fig. 14~d!# and also a rotationally
9-9
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BORIS REUSCH AND HERMANN GRABERT PHYSICAL REVIEW B68, 045309 ~2003!
symmetric Slater determinant. This is the so-cal
maximum-density-droplet of MacDonaldet al.,23 where the
electrons occupy the lowest orbitals with increasing angu
momentum. Here the orbitals withM50, 1, 2, 3, 4 and 5 are
occupied, and the UHF solution is identical to the RHF s
lution with total angular momentumM tot515.

Finally, in Fig. 14~e! for strong magnetic field we have
distinctly localized fivefold Wigner molecule. Figure 14~f!
for ṽc52.5 shows a sixfold isomer which is higher in ener
by 0.009 than the fivefold ground state.

FIG. 13. Evolution of the UHF one-particle densities forN
53, Sz53/2, andl510 with increasing magnetic field streng

ṽc5vc /v. ~a! ṽc50, ~b! ṽc50.5, ~c! ṽc51.5, and ~d! ṽc

52.5.
04530
d
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VI. CONCLUSION

In conclusion, we have discussed the properties of un
stricted Hartree-Fock~UHF! calculations for electrons in a
quantum dot, focusing on the regime of strong correlatio
when the electrons begin to form a Wigner molecule. T
UHF energies are good estimates of the true ground-s
energies, especially for the polarized states, even at st
interaction. In this regime, the UHF energies become ne
spin independent, faster than it is the case for the true e
gies. However, the energy differences between different s
states cannot be resolved correctly by the UHF method,
polarized state is unphysically favored for stronger inter
tion.

Regarding the interpretation of other quantities obtain
from the UHF Slater determinant, we have shown that c
siderable caution must be taken: we find deformed dens
in the regime of intermediate interactionl'1 . . . 4. For
stronger interaction the densities are azimuthally modula
for an even number of electrons per spatial shell, and ro
for an odd number per shell. The onset of this modulation
enhanced within the UHF method, so that the UHF meth
leads to an overestimation of the value of the critical dens
for the crossover to the Wigner molecule. We want to e
phasize that the even-odd effect we found is an artifact of
symmetry breaking of the UHF method and arises from
degeneracy of states with opposite total angular moment

For very strong interaction, we have shown that the U
Hamiltonian corresponds to a tight-binding model of a p
ticle hopping between the sites of the Wigner molecu
From the UHF orbital energies we have obtained the hopp
matrix elements. This correspondence explains why the U
energies become nearly spin independent which is expe
for localized electrons and was not found with the restric
HF method.

The maxima of the UHF densities mirror the classic
filling scheme with the electrons arranged in spatial shells
FIG. 14. Evolution of the UHF
one-particle density forN56, Sz

53, and l53.2 with increasing

magnetic field strength,~a! ṽc

50, ~b! ṽc50.1, ~c! ṽc50.5, ~d!

ṽc51, ~e! ṽc52, and ~f! ṽc

52.5. In ~f! sixfold isomer with
energyEHF* 545.182.
9-10
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UNRESTRICTED HARTREE-FOCK FOR QUANTUM DOTS PHYSICAL REVIEW B68, 045309 ~2003!
contrast, the UHF two particle density~conditional probabil-
ity density! has no direct physical meaning, because the U
method cannot take correlations properly into account.
nally, in a strong magnetic field the UHF densities are alw
molecule-like and there is no even-odd effect.

The numerical complexity of the UHF method is comp
rable to the frequently used density-functional approa
However, as shown here, UHF has the advantage to c
also with the strongly interacting limit and gives furth
physical insight in that case. For the tiny energy differen
which determine the spin ordering or the addition energie
l*2, one has to employ the computationally more exp
sive quantum Monte Carlo methods.
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APPENDIX: CONFIGURATIONS OF CLASSICAL
POINT CHARGES

In Table I we give the classical configurations for up
seven 2D electrons in a parabolic confinement potential w
zero magnetic field.r a is the distance of the outer electron
from the center measured in oscillator lengthl 0 . r s is the
nearest neighbor distance measured in effective Bohr r
aB* . Energies are given in units of\v. These quantities de
pend only onN andl.
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dress: reusch@thphy.uni-duesseldorf.de
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1

4
'1.260 3

3 triangle~3!
1

A3
'0.577 '1.442

9

2

4 square~4!
1

4
1

1

A2
'0.957 '1.394 6

5 pentagon~5! A11
2

A5
'1.376 '1.308

15

2
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5

4
1

1
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'1.957 '1.251 6

6 pentagon~5,1! 11A11
2

A5
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1

1

A3
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7 hexagon~6,1!
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1

1
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'2.827 '1.414 9
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