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Spin-lattice relaxation in Si quantum dots
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We consider spin-lattice relaxation processes for electrons trapped in lateral Si quantum dots in a@001#
inversion layer. Such dots are characterized by strong confinement in the direction perpendicular to the surface
and much weaker confinement in the lateral direction. The spin relaxation is assumed to be due to the
modulation of electrong-factor by the phonon-induced strain, as was shown previously for the shallow donors.
The results clearly indicate that the specific valley structure of the ground electron state in Si quantum dots
causes strong anisotropy for both the one-phonon and two-phonon spin-relaxation rates. In addition, it gives
rise to a partial suppression of the two-phonon relaxation in comparison to the spin relaxation of donor
electrons.
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I. INTRODUCTION

Recently, there is growing interest in the physics of el
tron spin due to the enormous potential of spin-based
vices. In these so-called ‘‘spintronic’’ devices, information
encoded in the spin state of individual electrons. Numer
concepts ranging from spin analogs of conventional e
tronic devices, to quantum computers~which utilize the Zee-
man doublet of a confined electron as a qubit!1 have been
proposed. Electron-spin states relax by scattering with im
fections or elementary excitations such as phonons. He
the spin-relaxation time is a vital characteristic that det
mines the potential value of a spin-based device.

In particular, considerable attention has been devote
the spin properties of electrons confined in artificial semic
ductor quantum dots~QD’s!. For QD based on III-V com-
pounds, spin relaxation is mainly caused by the so-ca
admixture mechanism,2 which originates from the lack o
spatial inversion symmetry in these materials. As a result,
electron states in a magnetic field are not pure in spin. T
in turn, gives rise to the finite coupling of the Zeema
doublet states by the phonon deformation or piezoelec
potentials. In addition to the spin-lattice relaxation, spin d
coherence can be due to the fluctuating magnetic field ca
by the nuclear spins and the spins of the electrons confine
the neighboring QD’s.3 As with the spin-lattice relaxation
this effect also provides an important parameter in estima
the validity of device concepts.

In the present paper, we calculate the longitudinal sp
lattice relaxation timeT1 for electrons confined in Si QD’s
Being a relatively light semiconductor, Si is characterized
a weak spin-orbit interaction, which basically determines
strength of spin relaxation. In addition, only a small fracti
of the isotopes in natural Si possess a nonzero nuclear m
netic moment. As a result, the electron-nuclear spin-flip p
cess is expected to be slow. These two properties of Si, a
with the tempting possibility of integrating the ‘‘quantum
part of a computer with the well-developed Si ‘‘classica
electronics, make Si an attractive material for spin devic

We concentrate on particular design of a QD based o
@001# inversion layer formed at the interface of Si and SiO2
0163-1829/2003/68~4!/045308~6!/$20.00 68 0453
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@see Fig. 1~a!#. The lateral confinement of electrons is a
sumed to be due to the attractive potential applied to the g
electrode deposited on top of the oxide layer. In our calcu
tions, we take advantage of the results obtained for spin
laxation of shallow-donor electrons in Si.4–8 In Refs. 6–8,
the spin-lattice relaxation was assumed to be due to
modulation of electrong factor by the phonon-induced
strain. The parameters of the effective Hamiltonian were
timated from microscopic models. Later, they were also
termined by measuring theg factor under a static strain.4 We

FIG. 1. ~a! Schematics of the lateral QD. Confinement in t
@001# direction is achieved as in the conventional inversion laye
while the lateral confinement is provided by the electrodes~black
boxes!. ~b! Schematic illustration of energy levels in lateral QD’
~0! and~1! mark the different states of lateral confinement. Valle
split 1 and 2 states are further split by the magnetic field in
spin-up and spin-down states. The solid~dashed! arrows show elec-
tron transitions under one-phonon~two-phonon! relaxation.
©2003 The American Physical Society08-1
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conclude that the specific valley structure of the elect
states in lateral QD’s modifies essentially both the sing
phonon and two-phonon relaxation. In particular, we pred
that for the@001# inversion layer, the spin relaxation is su
pressed if the applied magnetic field is parallel to the@001#
or @110# direction. In addition, it is found that the two
phonon relaxation in lateral QD is much weaker than
shallow donors. Simple analytical expressions are obtai
for the two limiting cases, namely, forT!EZ and T@EZ ,
where T is the temperature in energy units andEZ is the
Zeeman-doublet splitting energy. The former case is m
relevant to the conditions for quantum computation, wh
the latter is close to the typical conditions of electrion pa
magnetic resonance measurements. For the resonance
quency of about 50 GHz, and a low enough temperature,
spin-relaxation time is found to be several minutes with
single-phonon process providing the prevailing contribut
to relaxation. For elevated temperatures, the two-pho
process becomes significant and the relaxation time ca
substantially smaller.

An alternative QD design based on Si/SiGe heterostr
tures is also possible. However, the SiGe-based design
face additional complications for quantum computing app
cations. For example, electron confinement in Si/SiGe h
erostructures is relatively weak and the penetration of e
tron wave function to the SiGe barriers is inevitable. Sin
spin-orbit interaction in Ge is stronger than in Si, these str
tures are expected to have higher spin-relaxation rates.
more important feature of Si/SiGe quantum wells is cons
erable strain caused by mismatch of Si and SiGe lattices.
influence of these effects on spin relaxation for donors
lateral QD’s has been analyzed recently in Ref. 9. Howe
it9 considers only one of the two main contributions to t
g-factor modulation. One consequence of this simplificat
is that its prediction for the relaxation rate at high strain
too optimistic.

The rest of the paper is organized as follows: In Sec.
we introduce the Hamiltonian for spin-lattice relaxation a
provide expressions for the single-phonon and the tw
phonon relaxation rates. In Sec. III, the asymptotic dep
dences for different temperatures as well as numerical res
are presented. Finally, Sec. IV is devoted to the discussio
the obtained results along with other potential mechanis
of spin-lattice relaxation.

II. EFFECTIVE HAMILTONIAN FOR SPIN-LATTICE
RELAXATION

For crystals which possess inversion symmetry like
there is no analog of conventional deformation potential
the spin-flip process, which is often called Van Vle
cancellation.10 This is a direct result of the requirement fo
the Hamiltonian to be invariant under a generalized invers
transformationC5JK, whereJ and K are spatial and time
inversion operators. In Refs. 6–8, the following effecti
C-invariant Hamiltonian describing the modulation of ele
tron g factor by strain has been proposed:

Hg5Ai jkl ui j Bks l , ~1!
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whereAi jkl are the coefficients,ui j is the strain tensor,Bk are
the components of the magnetic field, ands l are the Pauli
matrices; here and below we assume summation over
repeated indices.Hg is written in the basis of the Bloch
functions corresponding to the bottom of the conduct
band and can be used for the calculation of spin transiti
for any electron state described within the effective-mass
proximation. Hence, the formalism developed originally f
the spin-relaxation properties of shallow donor electrons
be applied to the case of electrons confined in artificial QD
Nonzero coefficientsA are determined by the symmetry o
the crystal using the method of invariants.11 For III-V mate-
rials, such a Hamiltonian was used for the spin-lattice rel
ation analysis in Ref. 2. For theD point of the Brillouin band
in a diamondlike crystal which corresponds to the cond
tion band of Si, there are eight invariants and the Ham
tonian for a@001# valley can be written as12

Hg
[001]5

1

2
mB@A1szBz~uxx1uyy!1A2szBzuzz

1A3sz~Bxuxz1Byuyz!1A4~sxBx1syBy!uzz

1A5~sxBx1syBy!~uxx1uyy!

1A6~sxBy1syBx!uxy1A7~sxuxz1syuyz!Bz

1A8~sxBx2syBy!~uxx2uyy!#. ~2!

Here we introduced the factormB/2 for convenience,mB be-
ing the Bohr magneton. The absolute values of the coe
cientsA can be determined, in principle, by using a man
band effective-mass expansion of the electron wave func
in a uniform magnetic field, similar to that used in Ref. 7.
practice, this cannot be accomplished since the required
mentum matrix elements are unknown. However, so
qualitative considerations are possible. Since the terms o
expression forg factor contain the energy gaps between t
coupled bands in the denominator, coupling of the clos
bands is expected to be the strongest. For Si, there is aD28
band which is close to theD1 conduction band. These band
merge at theX point in the momentum space but are n
coupled by either a spin-orbit interaction or momentum o
erators. Therefore,D1↔D28 coupling is not manifested in the
effective mass org factor of unstrained Si. However, thes
bands are coupled by the deformation potential. From
character tables of theD point and the corresponding invar
ants, it is easy to conclude that this coupling is realized
the deformation potential term proportional touxy . SinceHg
contains only one invariant proportional touxy , it can be
concluded that the major contribution to the Hamiltonian

Hg
[001]5

1

2
AmB~sxBy1syBx!uxy , ~3!

where we drop the index of the coefficientA6. This argu-
ment was initially used by Roth.8

To proceed with the calculation of the longitudinal rela
ation timeT1, we need to describe explicitly the system u
der consideration as well as the characteristic energy
length scales. As mentioned in the Introduction, we consi
Si lateral QD’s formed at the Si/SiO2 interface, where the
lateral confinement is due to the gate electrodes. For su
8-2
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system, the lateral dimension of the QDalat is typically on
the order of one hundred nanometers, exceeding cons
ably the inversion layer thicknessa2D . The energy structure
of the electron levels is determined by the following para
eters: ~a! quantization energy in the two-dimensional~2D!
inversion channelE2D;\2/(2m2Da2D

2 ); ~b! lateral quantiza-
tion energy Elat;\2/(2mlatalat

2 ); ~c! intervalley-splitting

energy between@001# and @001̄# states,D; and ~d! Zeeman
energyEZ5mBgB, whereg is the effectiveg factor of the
confined electrons depending, in general, on the directio
the magnetic field. Here,m2D and mlat are the electron ef-
fective masses in the direction normal and parallel to
inversion layer, respectively. For the@001# inversion layer,
they just correspond to the longitudinal and transverse ef
tive masses of Si. In the following, we assume that the c
ditions EZ!D, Elat are satisfied. This allows a perturbativ
treatment of the Zeeman term in the Hamiltonian. In fa
this is also a necessary requirement for spin qubit operat
Using modern technology,Elat can be made about 1 meV
which corresponds toalat in the range of several tens o
namometers. In contrast,D can be controlled in a much
lesser degree. Foralat@a2D , which is a typical condition,
the valley splitting in a lateral QD is the same as in t
corresponding quantum well which is roughly proportion
to the confining electric field in an inversion layer. Expe
mentally,D was measured to be up to 1 meV in strong fie
~see Ref. 13!. In Fig. 1~b!, we show schematically the energ
levels and the electron transitions under consideration.
numbers ‘‘0’’ and ‘‘1’’ mark the levels of lateral electron
confinement. The signs1 and 2 denote the valley-split
electron states, and ‘‘up’’ and ‘‘down’’ are the spin states. W
assume that only the lowest Zeeman doublet can be p
lated, which means that the temperatureT is much less than
D and Elat . The longitudinal relaxation timeT1 is deter-
mined asT1

215Wup-down1Wdown-up , whereW are the prob-
abilities of spin-up to spin-down and spin-down to spin-
transitions. The solid arrows indicate the single-phonon tr
sitions, while the dashed arrows correspond to the tw
phonon process. Later in this section, we comment on
possible two-phonon processes shown in the figure.

In Refs. 6 and 7, an alternative Hamiltonian to Eq.~3! was
considered. It originates from the coupling of the donor s
glet and doublet states by an applied magnetic field. It ar
due to the different valley structure of these states and
anisotropy of theg factor in the individual valleys. Although
this Hamiltonian does not involveD↔D28 coupling, its con-
tribution is high because of a very small gap between
singlet and doublet states. However, there is no such me
nism in the@001# lateral QD’s, which is probably the mai
difference with the case of spin relaxation for donor ele
trons. The reason for that can be easily seen. For the@001#
inversion layer, the ground electron state is a combination

@001# and @001̄# states:

C65x~F001
6 c0011F001̄

6
c001̄!, ~4!

where we dropped the spin index of wave functions. Herx
is the envelope wave function,c001 andc001̄ are the Bloch
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functions corresponding to the@001# and @001̄# valleys, re-
spectively, andF are the coefficients which determine th
valley splitting. Particular expressions forF can be found
using a microscopic model, for example, that of Sham a
Nakayama.14 In our case, we do not need explicit expre
sions forC. It is enough to use the fact that Zeeman Ham
tonian has identical forms for the@001# and @001̄# valleys
and its intervalley matrix elements are zero. Therefore,
matrix element betweenC1 andC2 , which is proportional
to the overlap between them, is zero because these state
orthogonal.

The Hamiltonian of Eq.~3! is written in the representation
where the basis electron wave functions correspond to
definite spin projections on thez axis. For calculation ofT1,
it must be rewritten by using a representation with the d
nite spin projection on the direction of the magnetic field15

This can be done following the standard procedure of tra
formation for spin operators rotation.16 Finally, we obtain the
expression for the one-phonon relaxation rate 1/T1

(1) as

1

T1
(1)

5
p3A2

4

\ f 5

g2r
~112NT!

3sin2u~cos22f1cos2u sin22f!

3(
i
E dVq

( i )
~ex

( i )ny
( i )1ey

( i )nx
( i )!2

si
5

. ~5!

In this equation,g is the slightly anisotropicg factor of con-
fined electrons,f 5gmBB/(2p\) is the resonance frequenc
u andf are the spherical angles of the magnetic field,r is
the material density,NT is the Planck phonon population fo
the energies equal toEZ , Vq is a solid angle in the phonon
wave-vector spaceq, e, and n are the phonon polarization
vector and the unit vector parallel toq, respectively,s is the
sound velocity, and the summation is over the acous
phonon branches. Equation~5! assumes that the phono
wavelength corresponding to the energyEZ is much greater
than the lateral dimensions of QD. In this case, the fo
factor of the electron-phonon interaction is equal to unity a
T1

(1) does not depend on the particular shape of the lat
confining potential. To check the validity of this approac
we performed calculations ofT1

(1) assuming parabolic latera
confinement and found that for the lateral level separation
1 meV, the obtained correction is less than 10% even fof
550 GHz. That is not surprising since for the parame
under consideration, the characteristic wavelength of
transverse acoustic phonons is a few times larger thanalat .
An additional assumption of the bulklike phonon spectrum
made for simplicity. This probably introduces a greater er
since the lateral QD’s are normally situated close to the s
face. As shown in Refs. 17–19, the phonon modes in
case are essentially rebuilt, due to the interference of
incident and reflected phonons as well as the origination
Rayleigh waves, which strongly modify electron-phon
coupling.

Equation~5! predicts strong anisotropy of the relaxatio
rate. If the magnetic field is parallel to the@001# or @110#
8-3
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B. A. GLAVIN AND K. W. KIM PHYSICAL REVIEW B 68, 045308 ~2003!
direction,T1
(1) goes to infinity. When rewritten for the bas

with the definite spin projection on the direction of the ma
netic field, the Hamiltonian of Eq.~3! vanishes for these
particular orientations. Of course, in experiments the rel
ation for these cases is not expected to be suppressed
pletely, since the remaining terms of Eq.~2! also give rise to
spin flip. However, their contribution to the relaxation rate
expected to be much smaller, with a factor of about@(ED

28

2ED1
)/(ED1

2ED5
)#2;531022, whereED is the energy of

the corresponding electron branch at theD point of the mo-
mentum space. Therefore, a significant decrease of the re
ation rate is expected for the magnetic-field directions in
cated above. It is also worth mentioning that the Hamilton
similar to Eq.~3! does not provide such strong anisotropy
the case of shallow donors~see Ref. 4!. This is due to the
fact that the ground state of a donor electron in Si is a u
formly weighted combination of all six valleys. Cons
quently, the relaxation rate is determined by the sum of
partial contributions of each valley. For a magnetic field p
allel to the@001# or @110# direction, only the matrix elemen
for the @001# and @001̄# valleys vanishes and that for th
remaining four valleys does not. As a result, the cumulat
matrix element does not go to zero for any direction of m
netic field.

Assuming an isotropic acoustic-phonon spectrum, we
tain

1

T1
(1)

5
2p4A2

5

\ f 5

g2rst
5 ~112NT!

3sin2u~cos22f1cos2u sin22f!. ~6!

Here, we take into account only transverse acoustic phon
which provide the major contribution to the relaxation rat

Let us now turn to the calculation of the relaxation tim
due to the two-phonon transitionsT1

(2) . This is a second-
order transition where the electron is virtually scattered fi
to an intermediate state and then to the final state. One o
virtual transitions is accompanied by spin flip, while th
other occurs with spin conservation. The probability of
two-phonon transition can be found using the second-o
perturbation theory~see, for example, Ref. 20!. For the spin
relaxation of donor electrons, the intermediate electron s
is represented by the excited doublet. In contrast, for the c
of @001# lateral QD, the valley-split state cannot serve as
intermediate state. This is because the valley-split states
not coupled by the Hamiltonian of Eq.~2!. This can be
shown using a argument similar to that applied for the pr
of the absence ofg factor modulation due to coupling of th
valley-split states. Other possible transitions are through
excited states of the lateral confinement. Since the interva
splitting is controlled by the electron confinement in thez
direction rather than in the lateral direction, these transiti
are actually possible between the states having the same
ley structure@see Fig. 1~b!#. If the phonon wave vector is
very small, then the probability of such a transition goes
zero because the overlap functions of 0 and 1 states ar
thogonal. To determine the probability of two-phonon tra
04530
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sition for a finite phonon wave vector, we need to know t
overlap functionx explicitly. For calculations, we assum
parabolic lateral confinement. In this case, the ‘‘lateral’’ ele
tron state is determined by the two quantum numbersl x and
l y . The 0 state corresponds tol x50, l y50, and there are
two degenerate 1 states withl x50, l y51 and l x51, l y
50. Using the expressions for the wave functions of h
monic oscillator,16 it is easy to obtain the necessary for
factor J,

J[E dxdydzx00x10exp@ i ~qxx1qyy1qzz!#

5
1

A2

qx

k
expS 2

qx
21qy

2

4k2 D , ~7!

where the subscript ofx represent thel x and l y quantum
numbers andk is expressed through the energy gapd be-
tween 0 and 1 states and the lateral effective massk
5Amlatd/\. Here, we take into account that the thickness
the inversion layer is much less than the typical phon
wavelength. In the following, we also assume that the typi
phonon wave-vector is less thank, and drop the exponent in
the expression forJ. Note thatJ can be modified due to the
diamagnetic influence of the magnetic field as well. In p
ticular, it can lift the degeneracy of 1 states. In our calcu
tions, we do not consider this effect.

We can distinguish three contributions to the two-phon
relaxation rate:~a! due to emission of two phonons,~b! due
to absorption of two phonons, and~c! due to phonon scatter
ing. For each of them the rate can be expressed in a unif
manner:

1

T1
(2)

534p10S 16

105D
2 A2E2

2\6f 13

d4g2r2st
14mlat

2

3sin2u~cos22f1cos2u sin22f!Di . ~8!

Here, only the transverse phonons are taken into acco
which provide the major contribution to the relaxation ra
We also assume that typical phonon energies are cons
ably less thand. The spin-conserving virtual transition i
treated within the deformation model, which for the@001#
valley provides the interactionE5E1uii 1E2uzz, whereE1
and E2 are the deformation potential constants. The coe
cients D depend on temperature and they are different
each of the three processes mentioned:

Dem5E
0

1

dxx5~12x!5S 11
1

exp~x/t !21D
3S 11

1

exp@~12x!/t#21D , ~9!

Dab5E
0

1

dxx5~12x!5
1

exp~x/t !21

1

exp@~12x!/t#21
,

8-4



io
on
z

ffe
on

so

n
at
-
-
e

fo

cu
um

n

ra

eral

tem-

ho-

f
e
to
un-
e-

all
peri-
n,

in-
rst,
o-

ag-

al,
dif-
and

rent
m-
the
on-
e
for
on-

the

c
nce
man
red
nted

SPIN-LATTICE RELAXATION IN Si QUANTUM DOTS PHYSICAL REVIEW B68, 045308 ~2003!
Dscat5
20

17F E
0

`

dxx5~11x!5
1

exp~x/t !21

3S 11
1

exp@~11x!/t#21D1E
0

`

dxx5~x11!5

3
1

exp@~x11!/t#21 S 11
1

exp~x/t !21D G ,
wheret5T/EZ . One can see that the two-phonon relaxat
rate is characterized by the same anisotropy as in the
phonon relaxation rate. In the following section, we analy
the asymptotic dependences of the relaxation rates for di
ent temperature regimes and perform numerical calculati

III. RELAXATION RATES FOR LOW AND HIGH
TEMPERATURES: NUMERICAL RESULTS

For the limiting cases ofT!EZ and T@EZ , the relax-
ation rates obey simple power laws as a function of re
nance frequency and temperature. In particular,T1

(1); f 25 in
the former case andT1

(1); f 24T21 in the latter case. This is
similar to the case of donor spin relaxation.6–8 The two-
phonon relaxation time forT!EZ is proportional tof 213

with the main contribution from the two-phonon emissio
For T@EZ , the relaxation is mainly due to the phonon sc
tering andT1

(2); f 22T211. For donor electrons, Roth ob
tained a different power law.7 This is because for donor elec
trons the form factor of singlet-doublet transition in th
lowest approximation is equal to unity, in contrast to Eq.~7!
for the lateral QD where the form factor is suppressed
long-wavelength phonons.

In Figs. 2 and 3, we show the results of numerical cal
lations for the one-phonon and two-phonon rates. We ass
a magnetic field parallel to the@100# direction, r
52329 kg/m3, the transverse sound velocityst55420 m/s,
E2510 eV, mlat50.19m0 , d52 meV, andg52. The coef-
ficient A can be determined by the measurement of the do
g factor in strained Si. With this method,A51.32 was ob-
tained in Ref. 4. The dependence of the spin-relaxation

FIG. 2. Dependence of the one-phonon~solid lines! and two-
phonon~dashed lines! spin-relaxation rates on resonance frequen
for temperatures of 0.5 K, 1 K, and 2 K.
04530
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on the resonance frequency is presented in Fig. 2 for sev
temperatures. One can see that forT1

(1) , the transition be-
tween the described power dependences at the different
perature regimes is quite fast. This is not the case forT1

(2) ,
which is due to the different temperature dependence of p
non absorption, emission, and scattering rates.

In Fig. 3, we plot the relaxation rates as a function of
under the conditionT/EZ5const. This is relevant to the cas
of QD-based qubit, where this ratio must be kept small
ensure initial-state preparation of the qubits. We see that
der this condition the major contribution is provided by on
phonon scattering.

Of course, the predicted huge relaxation times for sm
resonance frequencies can be handly measured in ex
ments. This is similar to the case of donor spin relaxatio4

where actual experiments were undertaken forf about tens of
gigahertz.

IV. DISCUSSION

Let us first summarize the major distinction of the sp
relaxation process for lateral QD’s and shallow donors. Fi
we predict that the relaxation for lateral QD’s is more anis
tropic than that for donor electrons. In particular, for@001#
inversion layer the relaxation rate is suppressed for a m
netic field parallel to the@001# or @110# direction. Second,
the two-phonon relaxation in lateral QD’s is, in gener
weaker than for donor electrons and is characterized by
ferent power dependences on the resonance frequency
temperature. Both of these features arise due to the diffe
valley structure of the electron states in lateral QD’s in co
parison to that of donor electrons. This valley structure in
case of inversion layer-based QD is due to the electron c
finement. It is worth mentioning that similar effect can b
realized by means of uniaxial strain. This can take place
Si/SiGe heterostructures as well as for donors in intenti
ally strained crystals.

We have to stress that the first conclusion relies on

y
FIG. 3. Dependence of the spin-relaxation rates on resona

frequency for the case where the ratio of temperature and Zee
splitting t is kept constant. The one-phonon rates for the conside
values of this ratio cannot be resolved on this scale and is prese
by one curve.
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model used for calculations, which must be checked by
periments. This is because the values of the coefficientsAn in
Eq. ~2! are determined not only by the energy gaps betw
the bands, but also by a number of interband matrix e
ments, which are unknown. Strictly speaking, the expe
ments with donors cannot be considered as a rigorous p
of single-valley Hamiltonian of Eq.~3!. In fact, for the donor
electrons, eight invariants of Eq.~2! are transformed to thre
invariants after summation over the valleys. The term m
sured in Ref. 4,H;uxy(sxBy1syBx)1cp wherecp stands
for cyclic permutations, is obtained from several terms of E
~2!, not only from that of Eq.~3!.

There is another mechanism that can modify the spin
laxation in the lateral QD’s. This can take place if som
quantum levels originated from the longitudinal@001#,

@001̄# valleys and the transverse@100#, @ 1̄00#, @010#, @01̄0#
valleys come close. In this case, the intervalley coupling
mix these two groups. Mixing of these states and the gro
s.

ts

04530
x-

n
-

i-
of

-

.

-

n
d

state of the QD by both steady-state and strain-induced c
tributions of Zeeman Hamiltonian can be possible. As a
sult, both one-phonon and two-phonon relaxation will
modified. According to self-consistent calculations,13 such a
situation is possible for particular parameters of Si invers
layer.

Finally, we would like to stress that the electron-spin r
laxation in QD’s is of the same order of magnitude as t
obtained for donors. It is much longer than theT1 in III-V
compounds, which proves a good perspective of Si for qu
tum information processing.
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