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Spin-lattice relaxation in Si quantum dots
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We consider spin-lattice relaxation processes for electrons trapped in lateral Si quantum dp@0in a
inversion layer. Such dots are characterized by strong confinement in the direction perpendicular to the surface
and much weaker confinement in the lateral direction. The spin relaxation is assumed to be due to the
modulation of electromg-factor by the phonon-induced strain, as was shown previously for the shallow donors.
The results clearly indicate that the specific valley structure of the ground electron state in Si quantum dots
causes strong anisotropy for both the one-phonon and two-phonon spin-relaxation rates. In addition, it gives
rise to a partial suppression of the two-phonon relaxation in comparison to the spin relaxation of donor
electrons.
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I. INTRODUCTION [see Fig. 13)]. The lateral confinement of electrons is as-
sumed to be due to the attractive potential applied to the gate

Recently, there is growing interest in the physics of elec-€lectrode deposited on top of the oxide layer. In our calcula-
tron spin due to the enormous potential of spin-based detions, we take advantage of the results obtained for spin re-
vices. In these so-called “spintronic” devices, information is laxation of shallow-donor electrons in %i In Refs. 6-8,
encoded in the spin state of individual electrons. Numerou#he spin-lattice relaxation was assumed to be due to the
concepts ranging from spin analogs of conventional elecmodulation of electrong factor by the phonon-induced
tronic devices, to quantum computévehich utilize the Zee-  strain. The parameters of the effective Hamiltonian were es-
man doublet of a confined electron as a qdblitave been timated from microscopic models. Later, they were also de-
proposed. Electron-spin states relax by scattering with impetermined by measuring thgfactor under a static strafiwe
fections or elementary excitations such as phonons. Hence,
the spin-relaxation time is a vital characteristic that deter-
mines the potential value of a spin-based device.

. . : (a) [001]

In particular, considerable attention has been devoted to
the spin properties of electrons confined in artificial semicon-
ductor quantum dotéQD’s). For QD based on IlI-V com-

pounds, spin relaxation is mainly caused by the so-called % %
admixture mechanisfwhich originates from the lack of
spatial inversion symmetry in these materials. As a result, the (b)
electron states in a magnetic field are not pure in spin. This,
. . . - . _ (1,-, down)
in turn, gives rise to the finite coupling of the Zeeman- (1.-) yV )
doublet states by the phonon deformation or piezoelectric (1) _— (1~ up)
potentials. In addition to the spin-lattice relaxation, spin de- P : (1,+,down)
coherence can be due to the fluctuating magnetic field caused i : ]
by the nuclear spins and the spins of the electrons confined in (1,4) I — : (1,+.up)
the neighboring QD’S.As with the spin-lattice relaxation, : : : |
this effect also provides an important parameter in estimating (N :
the validity of device concepts. (0,-) ' | ! (0,-down)
In the present paper, we calculate the longitudinal spin- 0 T 1, 0

lattice relaxation timeT; for electrons confined in Si QD's. © L1, (Onue)
Being a relatively light semiconductor, Si is characterized by v' ¥, (0,+,down)
a weak spin-orbit interaction, which basically determines the t i !

(0,+) v (0x+sUP)

strength of spin relaxation. In addition, only a small fraction

of the isotopes in natural Si possess a nonzero ngclegr mag- gig, 1. (@) Schematics of the lateral QD. Confinement in the
netic ,moment' As a result, the electron-nuclear Sp'n'ﬂ'P pro[001] direction is achieved as in the conventional inversion layers,
cessis expecte_d to be 3|0W The_se two properties of Si, alonghile the lateral confinement is provided by the electrofigack
with the tempting possibility of integrating the “quantum” poxes. (b) Schematic illustration of energy levels in lateral QD's.

part of a computer with the well-developed Si “classical” (g) and(1) mark the different states of lateral confinement. Valley-
electronics, make Si an attractive material for spin devices.split + and — states are further split by the magnetic field into

We concentrate on particular design of a QD based on @pin-up and spin-down states. The sdtidsheli arrows show elec-
[001] inversion layer formed at the interface of Si and SiO tron transitions under one-phondwo-phonon relaxation.
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conclude that the specific valley structure of the electronwhereA;;y, are the coefficientsy; is the strain tensoBy are
states in lateral QD’s modifies essentially both the singlethe components of the magnetic field, amdare the Pauli
phonon and two-phonon relaxation. In particular, we predictmatrices; here and below we assume summation over the
that for the[ 001] inversion layer, the spin relaxation is sup- repeated indicesHy is written in the basis of the Bloch
pressed if the applied magnetic field is parallel to fa81]  functions corresponding to the bottom of the conduction
or [110] direction. In addition, it is found that the two- Pand and can be used for the calculation of spin transitions
phonon relaxation in lateral QD is much weaker than forfor any e_Iectron state descrlbed_ within the effectl\{e_—mass ap-
shallow donors. Simple analytical expressions are obtaineffoximation. Hence, the formalism developed originally for
for the two limiting cases, namely, foF<E, and T>E,, the spm—relaxauon properties of shallovy don_or elgpprons c,an
where T is the temperature in energy units afg is the be applied to the case of electrons confined in artificial QD’s.

Zeeman-doublet splitting energy. The former case is mor{:\r‘]Onzero coefficients\ are determined by the symmetry of

relevant to the conditions for quantum computation, while crystal using the method of invariaritsFor I1l-V mate-
) or g o P . rials, such a Hamiltonian was used for the spin-lattice relax-
the latter is close to the typical conditions of electrion para-

i For th fation analysis in Ref. 2. For th® point of the Brillouin band
magnetic resonance measurements. For the resonance ffg-5 giamondiike crystal which corresponds to the conduc-

quency of about 50 GHz, and a low enough temperature, thg, nang of Si, there are eight invariants and the Hamil-
spin-relaxation time is found to be several minutes with thegnian for a[001] valley can be written 8%

single-phonon process providing the prevailing contribution

to relaxation. For elevated temperatures, the two-phonon (oo 1

process becomes significant and the relaxation time can be Mo~ 5 #8lA10B(Uxt Uyy) +Ar0,B,Us,
substantially smaller.

An alternative QD design based on Si/SiGe heterostruc- T A30 A ByUyrt Byly,) +Ag(0yByt ayBy)u,,
tures is also possible. However, the SiGe-based design may +A Bot 0B (UsutU
face additional complications for quantum computing appli- s(0:Bxt 0yBy) (Ut Uyy)
cations. For example, electron confinement in Si/SiGe het- +Ag( 0Byt ayBy) Uy + Az(o Uy, + oyUy,)B,

erostructures is relatively weak and the penetration of elec-
tron wave function to the SiGe barriers is inevitable. Since +Ag(0xBx = ayBy) (U Uyy) ]. @)
spin-orbit interaction in Ge is stronger than in Si, these strucHere we introduced the fact@g/2 for convenienceug be-
tures are expected to have higher spin-relaxation rates. Orieg the Bohr magneton. The absolute values of the coeffi-
more important feature of Si/SiGe quantum wells is consid<ientsA can be determined, in principle, by using a many-
erable strain caused by mismatch of Si and SiGe lattices. Theand effective-mass expansion of the electron wave function
influence of these effects on spin relaxation for donors andn @ uniform magnetic field, similar to that used in Ref. 7. In
lateral QD's has been analyzed recently in Ref. 9. Howevemractice, this cannot be accomplished since the required mo-
it? considers only one of the two main contributions to themMentum matrix elements are unknown. However, some
g-factor modulation. One consequence of this simplificationqua“ta“YG considerations are possible. Since the terms of the
is that its prediction for the relaxation rate at high strain is®XPression fog factor contain the energy gaps between the
too optimistic. coupled bands in the denominator, coupling of the closest

The rest of the paper is organized as follows: In Sec. I1pands is expected to be the strongest. For Si, thereA$ a
we introduce the Hamiltonian for spin-lattice relaxation andband which is close to th&; conduction band. These bands
provide expressions for the single-phonon and the twomMerge at theX point in the momentum space but are not
phonon relaxation rates. In Sec. I, the asymptotic depencoupled by either a spin-orbit interaction or momentum op-
dences for different temperatures as well as numerical resulgrators. Therefore), < A, coupling is not manifested in the
are presented. Finally, Sec. IV is devoted to the discussion dffective mass og factor of unstrained Si. However, these
the obtained results along with other potential mechanismbands are coupled by the deformation potential. From the
of spin-lattice relaxation. character tables of th& point and the corresponding invari-
ants, it is easy to conclude that this coupling is realized by
the deformation potential term proportionalug,. SinceH
contains only one invariant proportional tgy, it can be
concluded that the major contribution to the Hamiltonian is

For crystals which possess inversion symmetry like Si, 1
there is no analog of conventional deformation potential for H5001]:§ Aug(0,By+a,B)Uyy, 3
the spin-flip process, which is often called Van Vleck
cancellat.ionl.(_’ This is a direct result of the requirement for ywhere we drop the index of the coefficieAt. This argu-
the Hamiltonian to be invariant under a generalized inversiofinent was initially used by Roth.
transformationC=JK, whereJ andK are spatial and time 7o proceed with the calculation of the longitudinal relax-
inversion operators. In Refs. 6-8, the following effective ation timeT,, we need to describe explicitly the system un-
C-invariant Hamiltonian describing the modulation of elec-der consideration as well as the characteristic energy and

Il. EFFECTIVE HAMILTONIAN FOR SPIN-LATTICE
RELAXATION

tron g factor by strain has been proposed: length scales. As mentioned in the Introduction, we consider
Si lateral QD’s formed at the Si/SiOnterface, where the
Hg=AijiiUijBkoy (1) lateral confinement is due to the gate electrodes. For such a
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system, the lateral dimension of the @I, is typically on  functions corresponding to tH®01] and[001] valleys, re-
the order of one hundred nanometers, exceeding considespectively, andF are the coefficients which determine the
ably the inversion layer thicknessp. The energy structure valley splitting. Particular expressions fér can be found

of the electron levels is determined by the fO”OWing param-using a microscopic model, for examp|e, that of Sham and
eters:(a) quantization energy in the two-dimensior@D)  Nakayamd? In our case, we do not need explicit expres-
inversion channe,p~7%2/(2mypajp); (b) lateral quantiza-  sjons forC. It is enough to use the fact that Zeeman Hamil-

tion energy Ejo~%%(2m,a5,); (c) intervalley-splitting  tonian has identical forms for the@01] and[001] valleys
energy betweep001] and[001] statesA; and(d) Zeeman and its intervalley matrix elements are zero. Therefore, the
energyE,= uggB, whereg is the effectiveg factor of the  matrix element betweeW , andW¥ _, which is proportional
confined electrons depending, in general, on the direction ab the overlap between them, is zero because these states are
the magnetic field. Heren,, and m,,,; are the electron ef- orthogonal.

fective masses in the direction normal and parallel to the The Hamiltonian of Eq(3) is written in the representation
inversion layer, respectively. For tH®01] inversion layer, where the basis electron wave functions correspond to the
they just correspond to the longitudinal and transverse effeddefinite spin projections on theaxis. For calculation of 4,

tive masses of Si. In the following, we assume that the conit must be rewritten by using a representation with the defi-
ditions E;<A, E,,, are satisfied. This allows a perturbative nite spin projection on the direction of the magnetic fi€ld.
treatment of the Zeeman term in the Hamiltonian. In fact,This can be done following the standard procedure of trans-
this is also a necessary requirement for spin qubit operatiorformation for spin operators rotatidfiFinally, we obtain the
Using modern technology,,; can be made about 1 meV, expression for the one-phonon relaxation rafé(ljf/as

which corresponds t@,,; in the range of several tens of

namometers. In contrasfy can be controlled in a much 1 #3A2 75
lesser degree. Fax ,>a,p, Which is a typical condition, —== —(1+2Ny)
L A . . T 4 2
the valley splitting in a lateral QD is the same as in the 1 g°p
corresponding quantum well which is roughly proportional X Si26(co€2 ¢+ coL B P2 )

to the confining electric field in an inversion layer. Experi-
mentally,A was measured to be up to 1 meV in strong fields , (e&i)ng)+e§‘)n§j))2

(see Ref. 18 In Fig. 1(b), we show schematically the energy X f daf : : ()
levels and the electron transitions under consideration. The ' Si

numbers “0” and “1” mark the levels of lateral electron
confinement. The signs- and — denote the valley-split
electron states, and “up” and “down” are the spin states. We
assume that only the lowest Zeeman doublet can be pop
lated, which means that the temperatlirss much less than
A and E|,;. The longitudinal relaxation tim&, is deter-
mined asT; "= W, gownt Waownup, WhereW are the prob-
abilities of spin-up to spin-down and spin-down to spin-up
transitions. The solid arrows indicate the single-phonon tran
sitions, while the dashed arrows correspond to the two

phon.on process. Later in this section, we Con."me”t on thﬁwan the lateral dimensions of QD. In this case, the form
po?ﬁlggf;wg f:ggognp;?t(;rig\s/esnzvrml tlcr)]ntiZﬁ Iz)gg;;/vas factor of the electron-phonon interaction is equal to unity and

e L . : . TV does not depend on the particular shape of the lateral
considered. It originates from the coupling of the donor sin-

glet and doublet states by an applied magnetic field. It arise(éOmclnlng potential. TO. check(lt)he vaI|d_|ty of this gpproach,
e performed calculations df;~’ assuming parabolic lateral

due to the different valley structure of these states and th&€ P :
anisotropy of they factor in the individual valleys. Although confinement and found that for the lateral level separation of
this Hamiltonian does not iNVolvA <s A’ couplind its con- 1 meV, the obtained correction is less than 10% evenf for
2 , o . L .
tribution is high because of a very small gap between the 50 GHz. That IS not surprising since for the parameter
nder consideration, the characteristic wavelength of the

singlet and doublet states. However, there is no such mech tansverse acoustic phonons is a few times larger than
nism in the[ 001] lateral QD’s, which is probably the main " . : than .
Ism | L00T) Q which IS p y " An additional assumption of the bulklike phonon spectrum is

difference with the case of spin relaxation for donor elec- S . .

trons. The reason for that can be easily seen. Fof @66] made for simplicity. This probably introduces a greater error

. . : i L ince the lateral QD’s are normally situated close to the sur-

inversion layer, the ground electron state is a combination o ) . .
yer, g ace. As shown in Refs. 17-19, the phonon modes in this

[001] and[001] states: case are essentially rebuilt, due to the interference of the
. . incident and reflected phonons as well as the origination of
W = x(Foorboort F o100 (4)  Rayleigh waves, which strongly modify electron-phonon
coupling.
where we dropped the spin index of wave functions. Here Equation(5) predicts strong anisotropy of the relaxation
is the envelope wave functiofjyg; and iy, are the Bloch rate. If the magnetic field is parallel to th€01] or [ 110]

In this equationg is the slightly anisotropig factor of con-
fined electronsf =gugB/(27%) is the resonance frequency,
0 and ¢ are the spherical angles of the magnetic figlds

Yhe material density\t is the Planck phonon population for
the energies equal ;, ()4 is a solid angle in the phonon
wave-vector space, e, andn are the phonon polarization
vector and the unit vector parallel ty respectivelys is the
sound velocity, and the summation is over the acoustic-
phonon branches. Equatiof®) assumes that the phonon
wavelength corresponding to the eneiy is much greater
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direction,T(ll) goes to infinity. When rewritten for the basis sition for a finite phonon wave vector, we need to know the
with the definite spin projection on the direction of the mag-overlap functiony explicitly. For calculations, we assume
netic field, the Hamiltonian of Eq(3) vanishes for these parabolic lateral confinement. In this case, the “lateral” elec-
particular orientations. Of course, in experiments the relaxtron state is determined by the two quantum numibgend
ation for these cases is not expected to be suppressed coly- The O state corresponds kp=0, I,=0, and there are
pletely, since the remaining terms of H@) also give rise to  two degenerate 1 states with=0, I,=1 andl,=1, I,
spin flip. However, their contribution to the relaxation rate is=0. Using the expressions for the wave functions of har-
expected to be much smaller, with a factor of abjo{, monic oscillatort® it is easy to obtain the necessary form

2
—Ea)/(Es,~Ea)]?~5x10 2 whereE, is the energy of factor J,
the corresponding electron branch at thepoint of the mo-

mentum space. Therefore, a significant decrease of the relax- - ;

ation rate is expected for the magnetic-field directions indi- ‘]_f dxdydaoox108XH 1 (Gx +dyy +0,2)]

cated above. It is also worth mentioning that the Hamiltonian o

similar to Eq.(3) does not provide such strong anisotropy in _ 1 _Oxtay @
the case of shallow donofsee Ref. 4 This is due to the V2 Kk ak? |’

fact that the ground state of a donor electron in Si is a uni-

formly weighted combination of all six valleys. Conse- where the subscript of represent thd, and l, quantum
quently, the relaxation rate is determined by the sum of the,ymbers and is expressed through the energy gébe-
partial contributions of each valley. For a magnetic field partween 0 and 1 states and the lateral effective mass:
allel to the[ 001] or [110] direction, only the matrix element _ Imiac0/%i. Here, we take into account that the thickness of
for the [001] and[001] valleys vanishes and that for the the inversion layer is much less than the typical phonon
remaining four valleys does not. As a result, the cumulativayavelength. In the following, we also assume that the typical
matrix element does not go to zero for any direction of magphonon wave-vector is less thiinand drop the exponent in
netic field. the expression fod. Note that) can be modified due to the
Assuming an isotropic acoustic-phonon spectrum, we obdiamagnetic influence of the magnetic field as well. In par-
tain ticular, it can lift the degeneracy of 1 states. In our calcula-
tions, we do not consider this effect.
1 27%A2 jfS We can distinguish three contributions to the two-phonon
m: - — 5 (1+2Ny) relaxation rate(a) due to emission of two phonong)) due
1 9°pS; to absorption of two phonons, arid due to phonon scatter-
ing. For each of them the rate can be expressed in a uniform
manner:

Here, we take into account only transverse acoustic phonons,
which provide the major contribution to the relaxation rate.

Let us now turn to the calculation of the relaxation time ﬁ=34471°(
due to the two-phonon transition ). This is a second- Ty
order transition where the electron is virtually scattered first
to an intermediate state and then to the final state. One of the
virtual transitions is accompanied by spin flip, while the
other occurs with spin conservation. The probability of a
two-phonon transition can be found using the second-ord

X sin?(co$2 ¢+ cos 0 sif2¢). (6)

16)2 AZESHSF13
105 5*g2p?si*miy,
X sirf6(cog2¢+cog o sin2¢)D; . 8

Here, only the transverse phonons are taken into account,
\{yhich provide the major contribution to the relaxation rate.

perturbation theorysee, for example, Ref. 20For the spin e\We also assume that typical phonon energies are consider-

relaxation of donor electrons, the intermediate electron statgbIy less thand. The spin-conserving virtual transition is

is represented by the excited doublet. In contrast, for the castéeated within the deformation model, which for the01]

of [001] lateral QD, the valley-split state cannot serve as anvalley provides the interactioR = E,U;; + EU,,, whereE,

intermediate state. This is because the valley-split states aPé]d E; are the deformation potential constants. The coeffl-
not coupled by the Hamiltonian of Eq2). This can be cients D depend on temperature and they are different for

shown using a argument similar to that applied for the prooieaCh of the three processes mentioned:
of the absence aj factor modulation due to coupling of the
valley-split states. Other possible transitions are through the
excited states of the lateral confinement. Since the intervalley
splitting is controlled by the electron confinement in the
direction rather than in the lateral direction, these transitions 1

are actually possible between the states having the same val- X ( 1+ exg(1—x)/t]—-1
ley structure[see Fig. 1b)]. If the phonon wave vector is
very small, then the probability of such a transition goes to L 1 1
zero because the overlap functions of 0 and 1 states are or- b:f dx&(1—x)°

thogonal. To determine the probability of two-phonon tran- = Jo exp(x/t) =1 ex (1-x)/t] -1’

[ s 1 )
Dem—fodxxf’(l x)°| 1+ XX =1

, (€)
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one-phonon

10° 10 one-phonon
------ two-phonon ~ == t-ph., t=0.1
102 T=2K 1024 --—-t-ph,t=02
~ 10* - _ 10
K2 s ,/
"o 10° -~ 10° /’
e = St /-'
z )
10° | 10°® S
i i R
1010 o AN R 10‘10 ., —r—r—rrrry — ey
1 10 100 1 10 100
Resonance frequency (GHz) Resonance frequency (GHz)

FIG. 2. Dependence of the one-phongolid lines and two- FIG. 3. Dependence of the spin-relaxation rates on resonance
phonon(dashed linesspin-relaxation rates on resonance frequencyfrequency for the case where the ratio of temperature and Zeeman
for temperatures of 0.5 K, 1 K, and 2 K. splitting t is kept constant. The one-phonon rates for the considered

values of this ratio cannot be resolved on this scale and is presented
20| (= 1 by one curve

Dscar= 75 XC(1+X)—— '

seat 17 fo et ) exp(x/t)—1
on the resonance frequency is presented in Fig. 2 for several
w14 1 i Jocdxx5(x+1)5 temperatures. One can see that 7§V, the transition be-
exg (1+x)/t]—1 0 tween the described power dependences at the different tem-

perature regimes is quite fast. This is not the caseTff))r,
which is due to the different temperature dependence of pho-
non absorption, emission, and scattering rates.

In Fig. 3, we plot the relaxation rates as a functionf of
under the conditioT/E,=const. This is relevant to the case

Bt QD-based qubit, where this ratio must be kept small to
phonon relaxation rate. In the following section, we analyze Q quort, P

h totic d d fthe relaxat tes for diff ensure initial-state preparation of the qubits. We see that un-
€ asymptotic dependences of the refaxation rates 1or Aiflelqq . vig condition the major contribution is provided by one-
ent temperature regimes and perform numerical calculation

%honon scattering.

Of course, the predicted huge relaxation times for small
resonance frequencies can be handly measured in experi-
ments. This is similar to the case of donor spin relaxation,

where actual experiments were undertakerf fdvout tens of
For the limiting cases of <E; and T>E, the relax-  gigahertz.

ation rates obey simple power laws as a function of reso-
nance frequency and temperature. In particaigh~f 5 in
the former case and@{"~f T~ in the latter case. This is
similar to the case of donor spin relaxati®i. The two- Let us first summarize the major distinction of the spin-
phonon relaxation time folf <E; is proportional tof “**  relaxation process for lateral QD's and shallow donors. First,
with the main contribution from the two-phonon emission. we predict that the relaxation for lateral QD's is more aniso-
For T>E;, the relaxation is mainly due to the phonon scat-tropic than that for donor electrons. In particular, f@01]
tering and T{?~f 2T~ For donor electrons, Roth ob- inversion layer the relaxation rate is suppressed for a mag-
tained a different power laWThis is because for donor elec- netic field parallel to th¢ 001] or [110] direction. Second,
trons the form factor of singlet-doublet transition in the the two-phonon relaxation in lateral QD’s is, in general,
lowest approximation is equal to unity, in contrast to Ef).  weaker than for donor electrons and is characterized by dif-
for the lateral QD where the form factor is suppressed fofferent power dependences on the resonance frequency and
long-wavelength phonons. temperature. Both of these features arise due to the different
In Figs. 2 and 3, we show the results of numerical calcuvalley structure of the electron states in lateral QD’s in com-
lations for the one-phonon and two-phonon rates. We assunparison to that of donor electrons. This valley structure in the
a magnetic field parallel to theg 100] direction, p case of inversion layer-based QD is due to the electron con-
=2329 kg/m, the transverse sound velocity=5420 m/s, finement. It is worth mentioning that similar effect can be
E,=10 eV, m3;;=0.19my, =2 meV, andg=2. The coef- realized by means of uniaxial strain. This can take place for
ficient A can be determined by the measurement of the donoBi/SiGe heterostructures as well as for donors in intention-
g factor in strained Si. With this metho#y=1.32 was ob- ally strained crystals.
tained in Ref. 4. The dependence of the spin-relaxation rate We have to stress that the first conclusion relies on the

1
X exd(xr Dit]—1

P

exp(x/t)—l)

wheret=T/E;. One can see that the two-phonon relaxation

IIl. RELAXATION RATES FOR LOW AND HIGH
TEMPERATURES: NUMERICAL RESULTS

IV. DISCUSSION
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model used for calculations, which must be checked by exstate of the QD by both steady-state and strain-induced con-
periments. This is because the values of the coefficikepia  tributions of Zeeman Hamiltonian can be possible. As a re-
Eq. (2) are determined not only by the energy gaps betweesult, both one-phonon and two-phonon relaxation will be
the bands, but also by a number of interband matrix elemodified. According to self-consistent calculatidisuch a
ments, which are unknown. Strictly speaking, the experisijtuation is possible for particular parameters of Si inversion
ments with donors cannot be considered as a rigorous progiyer.
of single-valley Hamiltonian of E¢3). In fact, for the donor " Finally, we would like to stress that the electron-spin re-
electrons, eight invariants of ER) are transformed to three |ayation in QD’s is of the same order of magnitude as that
|nvar|a.nts after summation over the valleys. The term meagiained for donors. It is much longer than thein I1I-V
sured in Ref. 4H~ Uy, (0B, +0yBy) +cp wherecp stands _ ,5056nds, which proves a good perspective of Si for quan-
for cyclic permutations, is obtained from several terms of equm information processing
(2), not only from that of Eq(3). '
There is another mechanism that can modify the spin re-
laxation in the lateral QD’s. This can take place if some
guantum levels originated from the longitudinf001],
[001] valleys and the transver§&00], [ 100], [010], [010] The work performed at North Carolina State University
valleys come close. In this case, the intervalley coupling camvas supported by the Office of Naval Research and the De-
mix these two groups. Mixing of these states and the grounfense Advanced Research Projects Agency.
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