PHYSICAL REVIEW B 68, 045307 (2003

Spin Coulomb drag in the two-dimensional electron liquid
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We calculate the spin-drag transresistivity (T) in a two-dimensional electron gas at temperafliie the
random-phase approximation. In the low-temperature regime we show that, at variance with the three-
dimensional low-temperature res@bH(T)fsz], the spin transresistivity of a two-dimensiorsgdin unpo-
larized electron gas has the forml(T)~T2In T. In the spin-polarized case the familiar fopm, (T) =AT?is
recovered, but the constant of proportionalkydiverges logarithmically as the spin-polarization tends to zero.

In the high-temperature regime we obtgin (T) = — (f/€?)(7*Ry*/kgT) (where RY is the effective Ryd-

berg energy independenbf the density. Again, this differs from the three-dimensional result, which has a
logarithmic dependence on the density. Two important differences between the spin-drag transresistivity and
the ordinary Coulomb-drag transresistivity are pointed @utThe InT singularity at low temperature is
smaller, in the Coulomb-drag case, by a factor*rd, wherekg is the Fermi wave vector and is the
separation between the laye(8) The collective mode contribution to the spin-drag transresistivity is negli-
gible at all temperatures. Moreover, the spin-drag effect is, for comparable parameters, larger than the ordinary
Coulomb-drag effect.
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I. INTRODUCTION even in the absence of extrinsic impuritlesater, it was
shown that the SCD also limits the diffusion of a spin packet
The problem of transporting an electronic spin polariza-in a doped semiconductdiadding to the conventional effect
tion from a place to another by means of an electrical curren®f impurity scattering.
has attracted tremendous interest in recent years, both in the- The quantitative measure of the SCD is the spin-drag
oretical and in experimental circlé® particularly challeng- ~ transresistivityp; | (T), which is defined as the ratio of the
ing problem is that of injecting spin-polarized electrons fromgradient of electrochemical potential for up-spin electgn
a ferromagnet into an ordinary nonmagnetic semiconductoio the current of down-spin electrops when the current of
such as GaAs. This is by no means easy, due to the largéP-spin electrons is zero:
impedance mismatch between the ferromagnetic injector and
the semiconductdrHowever, the discovery that GaAs, when Ei=p; (Mj, (j;=0). (D)
doped with magnetic Mn impurities, becomes ferromagnetic
with a Curie temperatur&; as large as 110 KRef. 3 has In Ref. 4 we presented a calculation pf (T) in a pure
raised hopes of realizing useful all-semiconductor spinthree-dimensional electron gas in the random-phase approxi-
electronic devices in a near future. mation (RPA). The calculation is analogous to that of the
In dealing with spin-polarized currents one must be premore familiar Coulomb-drag effeftput, as we will show
pared to treat a situation in which electrons of opposite spifbelow, some important differences exist between the two ef-
orientations travel, on the average, with different speeds. Fdects.
example, the up-spin electrons injected from a ferromagnet The ordinary Coulomb-dra@CD) effect involvestwo dis-
into a semiconductor might be drifting in one direction, tinct quasi-two-dimensional electron layers that are spatially
while the down-spin electrons remain, on the average, staseparated by an insulating barrier. By contrast, in the SCD,
tionary. Whenever such a situation occurs, the existence aofie are dealing with @ingle layer in which the two carrier
Coulomb correlation between up spins and down spins bepopulations(distinguishable by the different spishare the
comes important, because it is a sourcdriattion between same space and interact with the same impuritiegollows
the two components. In our previous wotk8we examined  that the SCD can be either a two-dimensiof2i) or a fully
the effect of up-down spin correlations on spin polarized3D effect, depending on the dimension of the space in which
transport in a three-dimensional electron gas, and we intrathe electrons move. We have already shown that the 3D spin
duced the concept of spin Coulomb dr&§CD):* due to  transresistivity should be measurable in métatsd becomes
Coulomb scattering, momentum is transferred between thiarger in semiconductorsS where it can be of the same order
spin populations, tending to equalize their average drift veof magnitude as the usual Drude resistivity. In this paper we
locities. This process represents an actual drag exerted by tleencentrate on the 2D case. Due to the absence of spatial
slower population on the faster and, in the absence of aseparation between the two spin populations, the bare inter-
external driving field, leads to a decay of the spin currentaction between parallel and antiparallel spin electrons coin-
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cides with the interaction between parallel spin electrons, 10 ' ' ' ' ' ' ' '
and its Fourier transform is simpty(q) = 27e?/qe, whereq - InAs s
is the wave vector in the plane amads the appropriate low- 8 n=10 cm 7
frequency dielectric constatt.By contrast, in the standard @ L N
CD case, the bare interaction between electrons in the tweg
layers has the 2D Fourier transformuv5(q) = | |
=2me’e 99qe, whered is the distance between the layers. =z
This “innocent” difference has two important consequences. <|3. 4
First, there is no acoustic-plasmon-mediated interaction in i noo, 7
SCD, whereas the effect of acoustic plasmons on the tem n=10 cm~ .
perature dependence of the CD in separate layers is quit L 12 2 =
marked!! Second, the effective interaction between up and — 1 10 L. ; ; ;
down spins in SCD remains sizable up to the valueg of 0 1 2 3 4
comparable to the Fermi momentum: the presence of a sig T/T
nificant interaction strength aj=2kg is responsible for a / F
characteristic logarithmic singularity in the low-temperature
transresistivity. FIG. 1. Spin transresistivity,, as a function of temperature
We provide analytical expressions for, in both the low- ~ (rescaled byTg) for InAs parameters it =0.026m,, €=13.6.
and high-temperature limits. At low temperature we deriveEach curve corresponds to a different density as labeled.

analytically theT?In T singularity; at high temperature, we d2k
‘”J (2m?"™

[
T

show thatp,, becomes density independent. Both these lim-1my,,(q,»)=
its are significant for realistic metallic and semiconductor

parameters, respectively. We also draw a comparison be- X{8(hw+Ey—Ey_q) — S(hw—Ex+Ex o)},
tween the spin Coulomb drag and the ordinary Coulomb a a
drag. It is hoped that the theoretical results presented in this 4

paper will stimulate experimental work aimed at a direct ob-with E,=#%2k?/2m* and n,= 1/(exd (Ex— u)/kgT]+1) (m*
servation of the SCD and a comparison between SCD anig the effective magswe obtain

cb*?
kF(r\/T:(r

IMQo,(q, )=~ ————
II. SPIN TRANSRESISTIVITY g-a

IN THE 2D ELECTRON LIQUID I I
X[F(elo-~#oTo) — F(elVor ~#a)To)].
To leading order in the strength of the Coulomb

interaction®® the spin-drag transresistivity is given by Eq. (5
(18) of Ref. 4, which, in the static case and after few simpleHere a* =#%e/mé” is the effective Bohr radiu,, is the
rearrangements, can be written as Fermi wave vector ofo-spin electrons;T,=kgT/Eg, and
.= u,lEg, are the temperature and chemical potential of
3 3 Co = P+l o-spin electrons expressed in units of #espin Fermi en-
=—— ergy Eg,,, and
Py (T) & i keT (20 1o da— 9y Ero
_ e 6
y f 1o MR (@IMQy () Vot = Qe 2key” ©
0 |e(q,w)|*sintP(fiw/2kgT) wherevg,=#kg, /m* is the o-spin Fermi velocity.

The functionF in Eq. (5) is defined as
Herekg is the Boltzmann constan is the number of spa-

tial dimensions, an€p=1, 2w, 47 for D=1, 2, 3, respec- © dx
tively. The dimensionless functioQ,(d,») is defined as F(z)= fo ,e%1 1 )
Qo, (1, @)=0v(q) X0,(q, @), (3) In Fig. 1 we present the behavior pf (T) calculated

from Eq.(2) andD =2 for three different values of the car-
where xo,(q,®) is the noninteracting density-density re- rier density with the values of the effective mass and dielec-
sponse functiorithe “Lindhard function”) for spine=7 or | tric constant appropriate for InAs1(* =0.026n,, m, being
andv(q) is the Fourier transform of the Coulomb interac- the free electron mass, are-13.6). As pointed out in Refs.
tion. €(q,w)=1—Qq;(d,w) —Qo,(d,w) is the RPA dielec- 4,6, the spin transresistivity increases with decreasing densi-
tric function of the electron liquid, and, andn  are the ties. As a function of temperature,, vanishes aff=0,
densities of up- and down-spin electrons. In both two andeaches a maximum about the Fermi temperafire and
three dimensions Iy, can be expressed analytically. In decreases for largé As shown in Fig. 1, the overall scale of
particular, in two dimensions, starting from the familiar ex- the effect, at its largest, is set lye?~=4.1 k). This is quite
pression a large value and should definitely be observable.
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' ' ' there are three distinct regions in which@g,(q, ) is dif-

L A S | ferent from zero:
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FIG. 2. Parameter space for the existence of a nonzero IMQo,(q, @)= — 2% J1—(qi2k )2, (10)
IMQo,(0,w) at T=0. (Upper panel Paramagnetic caseé; /g q A/Kr o
=1). The three curves correspond to the set of points in which one
or both of the arguments of the Heaviside functions in @j.are
equal to zero: §/kg)?/2+q/kg (solid curve, —(g/kg)?/2+alke an) N PP 2w
(dashed curve and @/kg)%/2—qg/kg (dotted curvé ImQq, (g, w) Qeo=Xrs KegVUFo
is different from zero in the region between the solid and the dotted
curve. The points labeled bA—D correspond, respectively, to 2w _
Oao(®)—Up,(w) for w/2Eg,=0.2. (Lower panel Spin-polarized <q<kg, 1+ \/1+ ke oo |~ doo
. . FoVFo
case Kg;/kg;=1.5). The solid curve defines the parameter space
corresponding to I, (q, ), the dashed curve the one related to
ImQy, (g,w). The points labeled aB| andC| correspond tayg, K >
andqc, , respectively, and delimit the interval relevant to the cal- __ Fo \/ w 41— q
culation of Eq.(14). IMQo,(a, ) g’a* V KroUrs 1 4k§0' (1
We now derive and discuss the degenerate and nondegen-
erate limits of Eq/(2). Let us first consider the paramagnetic case=n,, kg,
.=k,:l etc. In re-gion(l).the prqduct I@OTI_QO is propor-
Il. THE DEGENERATE LIMIT tional to w, while the integration region in the space is a

shell of thickness proportional 2. The netq dependence
In the limit T<T the calculation ofp; | (T) can be car- of the integrandtaking into account the fact that(q,0)

ried out analytically. The temperature dependencg;of in =1+2/(qa*), |e(q,0)|>~1/(qa*)?] is =q, giving an extra
this_regime, is entirely determined by the denominatoffactor w/vp. Sinceriw~kgT, the contribution of this region
sintf(hw/2kgT), which restricts the integral in Eq2) to o p;, is at least of ordeT* and will be disregarded hereaf-
frequencies of the order 6 T. We can therefore neglect the ter.
temperature dependence O.f% and replace this function In region (1) the product InQo;ImQy, is proportional to
by its zero-temperature limit w?, while the integration region in thg space is a shell of

thickness~ 2kg . This would give a contribution of ordar?

Ke o 5 5 (as in 3D were it not for the square root divergence of

IMQo,(q, @)= — 29 [O1—v IN1=v,_ ImQ,, When q approaches - [see Eq.(10)]. Due to the
a “piling-up” of two square-root singularities, one gets an ad-

—0(1- V§+)WJ- (8)  ditional In(w) from the upper limit ¢~ 2kg) of the integra-

tion interval. Thus the total contribution of this regiongde
The behavior of I, (q,w) for small @ depends crucially is of orderT?In T. Notice that this logarithmic contribution
on the value ofg. As shown in the upper panel of Fig. 2, would be severely suppresseid the case of the ordinary
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Coulomb drag, since the Fourier transform of the Coulomb ' [ ' ' '
interaction between electrons in different layers decreases ’
with increasingg, ase ™99,

Finally, in region(lll), the product In@;IMQy, is again
proportional tow, but the integration region in thgspace is
now a shell of thickness-w/vg centered aboutkg. The
contribution of this region is therefore of ord&f.

Combining the contributions of regiond) and (lll) to-
gether, after some calculations, we arrive at the following
expression:

pN(T)TiTF_ﬁZW_Z@(@_T)Z{f(g
€2 3(V2+ry?! Ef 2

10 _
02r n=10 cm > 4

0.15 - C b

~-p (koh
PM(Om)

0.1F _

0.05 - b

) 1. (KeT % 0.02 004 006 008 0.1
ol
2

T/ TF
FIG. 3. Degenerate regime: Comparison betwegn(curve la-
, (12) beledC), its analytical approximation Eq12) (curve labeled),
the approximation obtained using the zero-temperature form of

wherer =1/J/mna* is the dimensionless Wigner-Seitz ra- ImQq,(q,®) in Eq. (2) (curve labeledA), and the analytic one
dius, [ (y?In y/sintPy)dy=—0.55981, and the functiof(x)  obtained by neglecting th&In T term in Eq.(12) (curve labeled

is defined as D). The curves are plotted vs temperaturescaled byT¢) for n
=10' cm 2 and InAs parameters.

3 ["y?n
+in2+1- | YV 4
n 772JO sinky y

1+X
2X

X2+ 1

1+ _1.n

. (13

1
Y Tx—1 D is obtained neglecting th&?InT term in Eq. (12): by

comparing theD curve with theB curve, the importance of
the T?In T correction becomes evident: without it, the spin
drag is strongly underestimated. TAecurve represents the
result obtained using in EqR) the zero-temperature limit for
ImQy,(q,w). As expected, Fig. 3 shows that in this range of

Thus,in the paramagnetic casthe spin transresistivity be-
haves asr?In T rather tharT?.

This is no longer true if the electron gas is spin polarized
Let us assume,;>n,; so thatkg,>kg, . For a finite polar-
ization and at sufficiently low temperatures such thgl ; P -

. temperatures, the analytical approximati@ curve is ver
<Eg; and kgT<Eg|, ImQq,(q,w) can be approximated P y PP durve y
! . . ~ close to such a result.
with its zero-temperature expression and the region of inte-
gration ing coincides with the region in which 1@y, (g, ®)

differs f_rom zero(;ge lower panej of Fig.)?As in the para- IV. THE NONDEGENERATE LIMIT
magnetic case, it is then possible to divide tpntegral
into regions in which IMY,, takes values given by Egs. In the nondegenerate limikgT>Eg, the dimensionless

(9—(11). At the upper limit of region(ll) for down spins  chemical potential,, of Eq. (5) is given by the classical
[Eq. (10, q=2kg—wl/vg;, IMQo (q,w) diverges as formulau,=T,In(E2m,/m*ksT). Since -, /T,— we
1/y1—(a/2kg|)°. However, InQq(q,w) remains regular. can replace the functioR(z) [Eq. (7)] by its limiting form
Therefore, the logarithmic divergence leading to thel In F(z)— \/7/2z for z—oo.

singularity in the transresistivity is cut off. This leads to the result
Our final result takes the form
T<Tg 2.2 2 T>T,
% T kgT F1 Er, *
pr(T) =~ -2 —(i) 9(rs.6), (14 IMQo,(Q,0) ~ — =Foy/MT
e’ 3(1-¢9)%\ Br a* kgT Y 2kgT
where functiong is defined as X%e‘m* oPI2eTC g 28T T (1)

X

1
g(rs,a:fodx

re |’ identical to the 3D case. The Gaussian faof “@/8m" ksT
X+\/T V(1= ax)(1-x) on the right-hand side of this equation tends to 1 in the

(1=¢) (15) classical limit(i.e., for #—0) for any finite wave vector.

However, we cannot séi=0, because the integral extends
¢&=(n;—n))/(n;+n)) is the degree of spin polarization and to arbitrarily large wave vectors, and the classical approxi-
a=+1-¢/\1+¢&. Notice thatg(rg, &) diverges logarithmi-  mation fails at large enough values@fThe Gaussian factor
cally for é&—0, in agreement with our previous findings. assures the convergence of the integral in by cutting
Figure 3 focuses on the paramagnetic degenerate regimeff the integral at values o such thati?q%/2m* ~kgT.

it presents a comparison between the numerical evaluation of Using the classical expression for the dielectric constant
py, from Eq. (2) (curve labeledC) and its analytical ap- €(q,w)~1+Kkp/q, with kp=2me’n/ekgT, after simple
proximation Eq(12) (curve labeled). The curve labeled as manipulations, we finally obtain
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FIG. 4. Nondegenerate regime: Comparison betwggn(solid 8 0.02¢ F 1
line) and its universal limiting behavigdash-dotted lineEq. (18) - T/TF =05 1
vs temperature for different carrier densities and InAs parameters. 001} n=10" cm™ .
Inset: Comparison betwegn | (solid line) and its approximations L 3 -
[Eqg. (17) (dashed ling and Eq.(18) (dashed-dotted ling The e
curves are calculated for=10' cm~? and plotted vs temperature 0 02 0.4 0.6 0.8 1
(rescaled by the Fermi temperature hw/2Eg
T>TE 5 Rv* [ Vo amx FIG. 5. Behavior qu I (w,q)=exp
pi(T) =~ — _2773/2_L dx—X€ = (17) (—2dq)ImQ0T(q,w)Ionl(q,w){4|e(q,w)| sinFP(hw/2kgT) vs t.he
e kgTJo (&4- )\)2 rescaled frequencl w/2E¢ for fixed q and temperature but differ-
ent values ofd (0<d/kg=<9). Upper panel: smali behavior ¢
A—0 =0.1kg). Each curve corresponds to a different valuedtf. as
~ — iWZBﬂ, (18 labeled. Lower panel: intermediatgbehavior ¢=0.5kg). Curves
e2  kgT are labeled with the corresponding valueddkg (as in the upper

where \=(232r2)(Ry* IksT)¥? and Ry =m*e*/2¢2:2 is P2
the effective Rydberg.
Remarkably, the last resultorresponding tkgT>Ry*  due to the fast variation of I@o,(q,w) for g~2kg,, so
or rg>1) is independent of the electronic densitydiffers  that the highg regime dominates the low-temperature behav-
from the analogous result in three dimensions, which scalei®r of p;, . This correction is also present, in principle, in the
as 1T%3n(T) and has a weakogarithmid dependence on Mmore familiar Coulomb-drag transresistivity between two
the electronic density. separate electron layers. However, in that case, due to the
The limiting form of the transresistivity Eq18) is shown  Presence of the insulating barrier of thicknesshe Fourier
in Fig. 4 (dashed-dot linealong with the results obtained transform of the interlayer Coulomb interaction is given by
from Eq. (2) for the same choice of carrier densities as in2me’e” %% eq and decays exponentially for large Thus, in
Fig. 1. We stress that this curve delimits the region of theCD the influence of the logarithmic term on the behavior of
(n,T) plane occupied by the family of curves,(n,T) and  p|_in the degenerate regime is negligible. o
is approached at lower and lower temperatures for decreasing The exponential decay of the interlayer interaction is re-
densities(see Fig. 4 The inset of Fig. 4 shows the compari- sponsible for another main difference between the_ Coulomb
son betweerp, | calculated forn=10'" cm™2 (solid ling ~ drag and the spin Coulomb drag. As can be seen in Ref. 11,
and its limiting behaviors, Eqg17) (dashed ling and (18) for T<Tg the transresistivity is dominated by the plasmon
(dashed-dot ling It is interesting to notice that, because of modes(especially the acoustic opevhich enhance the con-
the low Fermi temperatures and at variance with the 3D casdlibution of small wave vectors. In the 2DSCD, however, the
in 2D the nondegenerate behavior of the spin transresistivitgcoustic mode, in which the two electron populations oscil-
could be observed experimentally, since it corresponds, foiate out of phase, is absent. Figure 5 shows how the function
reasonable densities, to temperatures as low as 10e& | (@,q) = exp(—2dg)im Qg (g, »)Im Qg (q, w)/[4]€(q, w)|?
inset in Fig. 4. We also notice that the nondegenerate limit, X sintf(w/2kgT)], behaves for smal(upper panel and
Eq. (17), is in reality a good approximation even for tem- intermediate (lower panel values of q in the paramag-

peratures as low as feWl . netic regime. Ford=0, I(w,q) corresponds to the inte-
grand of Eq.(2); in the figure, however, the interaction
V. DISCUSSION AND SUMMARY between the two spin populations is taken as

=(2me?/q)exp(—qd) and the RPA dielectric function as
A few comments are now in order. As E@.2) shows, in  €(q,0)=[1—v(q)x0:(q, @) [ 1—v(q)x0,(q, )]
the degenerate regime, the 2D spin transresistivity behavesuv ;| xo:(q,®) xo,(9,®). Different curves correspond to
as T?(A+BInT), in contrast to the 3D case in whighy, | different values ofd (0<d/kg<9, as labeled Let us first
~T? (see Ref. 4 The additional logarithmic correction is focus on the upper panel in whid=0.1kg: for d=0 the
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main contribution to the integral comes from the single-pair 5% 10°
excitation continuum. In this case the only possible collec- I
tive mode[corresponding to the zeros efq,w)] is the in-
phase optical mode, whose contributighe spike labeled as
0) is in any case negligible. As the exponential factor in the
interactionv | is turned on(i.e., as the scattering rate be- 4
tween the two spin populations is decregséle strength of 4
the integrand is transferred from the single-pair excitation
continuum to the collective modes and the out-of-phase I
acoustic plasmon appeaisee the two maxima labeled with . , , , , , . .
9, corresponding tol=9Kkg). 1 2 3 4
The lower panel of Fig. 5 presents(w,q) for g T/Tg
=0.5g : already at this intermediate value, the contribution R 'u e ot . C
to p; | becomes negligible whet™>0. In factl(w,q) scales
asv?| ~exp(—2qd). L
We would like to emphasize a more general point: as Fig. g‘: 04
5 clearly shows, due to the absence of the exponential facto F
e 9% in the Fourier transform of the Coulomb potential, the
drag effect in the SCD is definitely larger than in the ordinary 021
CD. In other words, in SCD, the two electron populations
can transfer momentum to one another more effectively.
The plasmon enhancement is absent in 3D as well. In this
case, however, this is due to a combination of three different T (K)
effects:(i) the 3D plasmon frequenay,(T) is finite at any . y
temperature[ w,(T)=16mna* *Ry*/#]; (i) due to the FIG. 6. Upper panel: Spin-drag mobilite; =~ 1/p; ne vs
sinti(fiw/2kgT) term in the denominator, the integrand in Leinfglrzaé‘:;ﬂe(zgﬁfgu%ﬁéggr?C:ot%llec(;?Cur(g::tgifrg:;ﬁ%ldtoa
Ea. (2) is SIinflcan'gly large .only forh w=<KgT, \_N.h.”e I different material: InAs n* =0.026n,, ¢=13.6) and GaAsr0*
decreases exponentially for higher temperatures;(@ndhe —0.067,, e=12), as labeled LovSer anel- Ratio. /o as a
plasmon linewidth increases with temperature. Pdintand ' e: € ' ) panel: Ralin, /pp

T ) function of temperature fon=10" cm 2 (dashed curyeand n
(i) imply that for small temperatures the integrand has al-_; 2 o2 (solid curve and sample mobility w=3

ready_ var_1_|_shed whem~w,(T); on the other side, because 13 cn/v's. Each couple of curves corresponds to a different
of point (iii), for temperatures such thagT=wp(T), the  material(inAs and GaAs, as labelgd
strength of the plasmon is negligible.

Let us now examine some issues concerning the experdrag resistivity is easily understood. Keeping in mind that
mental observation of the SCD. the SCD is a consequence of Coulomb scattering between
First of all, it must be clear that the SCD is an intrinsic different spin populations, a smaller dielectric constant
many-body effect, and, therefore, it is possible to design ameans stronger Coulomb scattering, and a larger effective
experiment to measure it directly and independently of themass implies a higher density of states available for scatter-

ordinary diagonal part of the resistivity tensor. Such an exing. Notice that the minimum value qi,, decreases with
periment has been described in Refs. 4,6. increasing density.

For different experimental setups, however, it might be In the lower panel of Fig. 6, we plot the ratio; /pp
important to know how the spin drag resistivity compares to(which is proportional to the sample mobilityersus tem-
the familiar Drude resistivitypp . This information is pro-  perature for a mobilityup=3x10* cnm?/V's. The same pa-
vided in Fig. 6 for doped layers of InNAs7(* =0.026n;, €  rameters and materials of the upper panel have been chosen.
=13.6) and GaAsr*=0.067n,, e=12) at two different As the figure shows, for reasonable temperatures and realis-
densities. Since it is customary to express the resistivity ofic parametersp;| can be a large fraction qfp, .
doped semiconductor samples in terms of their mobility, in A peculiar signature of the two-dimensional SCD, which
the upper panel we plot the quantity; = —1/nep; as a would be interesting to observe, is the nondegenerate
function of temperatureu, | has the dimensions of a mobil- density-independent behavior given by Etf). As shown in
ity, and its value should be compared to that of the ordinanthe inset of Fig. 4, a sample would display such a behavior at
mobility up of the sample : if, at a given temperatuge, | T>Tg, i.e., in the high temperature/low-density regime.
<up the spin drag resistivity is larger than the ordinary Since, for densities of the order af=10'°cm 2, T¢ is as
Drude resistivity. It is evident from this figure that for appro- low as 4 K in GaAs and 11 K in InAs, this regime should be
priate but realistic parameteys; | andup can be quite com- observable in these materials for temperature considerably
parable. The significant numerical difference between thdower than room temperature.
InAs and GaAs results is primarily due to the larger effective  Our calculations did not include the finite width of a re-
mass and, to a lesser extent, to the smaller dielectric constaalistic sample. The response of a quasi-2D sample would be
of GaAs. The impact of these two parameters on the spinsomewhere in between our 3D and 2D results, depending on

/Vs)
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how well the idealized two-dimensional approximation isin the degenerate regime, the different form of the Fourier
fulfilled. In both the 2D and 3D cases however, we see thatransform of the Coulomb interaction determines a quantita-
the ratiop, /pp remains of the same order of magnitude fortively different behavior of the spin transresistivity in com-
the same material and mobility and comparable derisi¢ ~ parison to the CD transresistivity. We have also explained
Fig. 6, lower panel, and Ref. 6, Fig).2Moreover, even in  why, in general, the spin Coulomb drag is expected to be
the fully three-dimensional case, the nondegenerate regime larger than the ordinary Coulomb drag. Finally we have dem-
only weakly (logarithmically dependent on the carrier den- onstrated that, in the nondegenerate two-dimensional regime,
sity. The above observations imply that a modest finite-sizéhe spin transresistivity displays a universal density-
correction would not modify significantly the relative impor- independent behavior. Such a behavior could be, in principle,
tance of the predicted effect, or its nondegenerate behavioobserved experimentally for realistic system parameters.

In summary, we have discussed the effect of dimension-
ality on the spin-transresistivity and shown that in two, as
well as in thre2® dimensions, the spin Coulomb drag can be
a sizeable effect. We have discussed the differences between We gratefully acknowledge support from NSF Grant No.
Coulomb drag and spin Coulomb drag effects showing howPMR-0074959.
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