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Spin Coulomb drag in the two-dimensional electron liquid
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We calculate the spin-drag transresistivityr↑↓(T) in a two-dimensional electron gas at temperatureT in the
random-phase approximation. In the low-temperature regime we show that, at variance with the three-
dimensional low-temperature result@r↑↓(T);T2#, the spin transresistivity of a two-dimensionalspin unpo-
larizedelectron gas has the formr↑↓(T);T2ln T. In the spin-polarized case the familiar formr↑↓(T)5AT2 is
recovered, but the constant of proportionality,A, diverges logarithmically as the spin-polarization tends to zero.
In the high-temperature regime we obtainr↑↓(T)52(\/e2)(p2Ry* /kBT) ~where Ry* is the effective Ryd-
berg energy! independentof the density. Again, this differs from the three-dimensional result, which has a
logarithmic dependence on the density. Two important differences between the spin-drag transresistivity and
the ordinary Coulomb-drag transresistivity are pointed out.~i! The lnT singularity at low temperature is
smaller, in the Coulomb-drag case, by a factore24kFd, where kF is the Fermi wave vector andd is the
separation between the layers.~ii ! The collective mode contribution to the spin-drag transresistivity is negli-
gible at all temperatures. Moreover, the spin-drag effect is, for comparable parameters, larger than the ordinary
Coulomb-drag effect.

DOI: 10.1103/PhysRevB.68.045307 PACS number~s!: 72.25.Dc, 72.10.2d
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I. INTRODUCTION

The problem of transporting an electronic spin polariz
tion from a place to another by means of an electrical curr
has attracted tremendous interest in recent years, both in
oretical and in experimental circles.1 A particularly challeng-
ing problem is that of injecting spin-polarized electrons fro
a ferromagnet into an ordinary nonmagnetic semicondu
such as GaAs. This is by no means easy, due to the l
impedance mismatch between the ferromagnetic injector
the semiconductor.2 However, the discovery that GaAs, whe
doped with magnetic Mn impurities, becomes ferromagne
with a Curie temperatureTc as large as 110 K~Ref. 3! has
raised hopes of realizing useful all-semiconductor sp
electronic devices in a near future.

In dealing with spin-polarized currents one must be p
pared to treat a situation in which electrons of opposite s
orientations travel, on the average, with different speeds.
example, the up-spin electrons injected from a ferromag
into a semiconductor might be drifting in one directio
while the down-spin electrons remain, on the average,
tionary. Whenever such a situation occurs, the existenc
Coulomb correlation between up spins and down spins
comes important, because it is a source offriction between
the two components. In our previous works4–6 we examined
the effect of up-down spin correlations on spin polariz
transport in a three-dimensional electron gas, and we in
duced the concept of spin Coulomb drag~SCD!:4 due to
Coulomb scattering, momentum is transferred between
spin populations, tending to equalize their average drift
locities. This process represents an actual drag exerted b
slower population on the faster and, in the absence of
external driving field, leads to a decay of the spin curr
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even in the absence of extrinsic impurities.7 Later, it was
shown that the SCD also limits the diffusion of a spin pac
in a doped semiconductor,5 adding to the conventional effec
of impurity scattering.

The quantitative measure of the SCD is the spin-d
transresistivityr↑↓(T), which is defined as the ratio of th
gradient of electrochemical potential for up-spin electronE↑
to the current of down-spin electronsj ↓ when the current of
up-spin electrons is zero:

E↑5r↑↓~T! j ↓ ~ j ↑50!. ~1!

In Ref. 4 we presented a calculation ofr↑↓(T) in a pure
three-dimensional electron gas in the random-phase app
mation ~RPA!. The calculation is analogous to that of th
more familiar Coulomb-drag effect,8 but, as we will show
below, some important differences exist between the two
fects.

The ordinary Coulomb-drag~CD! effect involvestwo dis-
tinct quasi-two-dimensional electron layers that are spati
separated by an insulating barrier. By contrast, in the SC
we are dealing with asingle layer in which the two carrier
populations~distinguishable by the different spin! share the
same space and interact with the same impurities.9 It follows
that the SCD can be either a two-dimensional~2D! or a fully
3D effect, depending on the dimension of the space in wh
the electrons move. We have already shown that the 3D
transresistivity should be measurable in metals4 and becomes
larger in semiconductors,5,6 where it can be of the same orde
of magnitude as the usual Drude resistivity. In this paper
concentrate on the 2D case. Due to the absence of sp
separation between the two spin populations, the bare in
action between parallel and antiparallel spin electrons co
©2003 The American Physical Society07-1
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cides with the interaction between parallel spin electro
and its Fourier transform is simplyv(q)52pe2/qe, whereq
is the wave vector in the plane ande is the appropriate low-
frequency dielectric constant.10 By contrast, in the standar
CD case, the bare interaction between electrons in the
layers has the 2D Fourier transform v12(q)
52pe2e2qd/qe, whered is the distance between the layer
This ‘‘innocent’’ difference has two important consequenc
First, there is no acoustic-plasmon-mediated interaction
SCD, whereas the effect of acoustic plasmons on the t
perature dependence of the CD in separate layers is q
marked.11 Second, the effective interaction between up a
down spins in SCD remains sizable up to the values oq
comparable to the Fermi momentum: the presence of a
nificant interaction strength atq52kF is responsible for a
characteristic logarithmic singularity in the low-temperatu
transresistivity.

We provide analytical expressions forr↑↓ in both the low-
and high-temperature limits. At low temperature we der
analytically theT2ln T singularity; at high temperature, w
show thatr↑↓ becomes density independent. Both these l
its are significant for realistic metallic and semiconduc
parameters, respectively. We also draw a comparison
tween the spin Coulomb drag and the ordinary Coulo
drag. It is hoped that the theoretical results presented in
paper will stimulate experimental work aimed at a direct o
servation of the SCD and a comparison between SCD
CD.12

II. SPIN TRANSRESISTIVITY
IN THE 2D ELECTRON LIQUID

To leading order in the strength of the Coulom
interaction,13 the spin-drag transresistivity is given by E
~18! of Ref. 4, which, in the static case and after few simp
rearrangements, can be written as

r↑↓~T!52
\

e2

\

n↑n↓kBT

CD

~2p!D11E0

`

dq
qD11

D

3E
0

`

dv
ImQ0↑~q,v!ImQ0↓~q,v!

ue~q,v!u2sinh2~\v/2kBT!
. ~2!

HerekB is the Boltzmann constant,D is the number of spa
tial dimensions, andCD51, 2p, 4p for D51, 2, 3, respec-
tively. The dimensionless functionQ0s(q,v) is defined as

Q0s~q,v![v~q!x0s~q,v!, ~3!

where x0s(q,v) is the noninteracting density-density r
sponse function~the ‘‘Lindhard function’’! for spins5↑ or ↓
and v(q) is the Fourier transform of the Coulomb intera
tion. e(q,v)512Q0↑(q,v)2Q0↓(q,v) is the RPA dielec-
tric function of the electron liquid, andn↑ and n↓ are the
densities of up- and down-spin electrons. In both two a
three dimensions Imx0s can be expressed analytically. I
particular, in two dimensions, starting from the familiar e
pression
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Imx0s~q,v!52pE d2k

~2p!2 nk

3$d~\v1Ek2Ek2q!2d~\v2Ek1Ek2q!%,

~4!

with Ek5\2k2/2m* and nk51/„exp@(Ek2m)/kBT#11… (m*
is the effective mass!, we obtain

ImQ0s~q,v!52
kFsAT̄s

q2a*

3@F~e(ns2
2

2m̄s)/T̄s!2F~e(ns1
2

2m̄s)/T̄s!#.

~5!

Here a* 5\2e/me2 is the effective Bohr radius,kFs is the
Fermi wave vector ofs-spin electrons,T̄s5kBT/EFs and
m̄s5ms /EFs are the temperature and chemical potential
s-spin electrons expressed in units of thes-spin Fermi en-
ergy EFs , and

ns6[
v

qvFs
6

q

2kFs
, ~6!

wherevFs5\kFs /m* is thes-spin Fermi velocity.
The functionF in Eq. ~5! is defined as

F~z!5E
0

` dx

zex2
11

. ~7!

In Fig. 1 we present the behavior ofr↑↓(T) calculated
from Eq. ~2! andD52 for three different values of the car
rier density with the values of the effective mass and diel
tric constant appropriate for InAs (m* 50.026me , me being
the free electron mass, ande513.6!. As pointed out in Refs.
4,6, the spin transresistivity increases with decreasing de
ties. As a function of temperature,r↑↓ vanishes atT50,
reaches a maximum about the Fermi temperatureTF , and
decreases for largeT. As shown in Fig. 1, the overall scale o
the effect, at its largest, is set by\/e2.4.1 kV. This is quite
a large value and should definitely be observable.

FIG. 1. Spin transresistivityr↑↓ as a function of temperature
~rescaled byTF) for InAs parameters (m* 50.026me , e513.6!.
Each curve corresponds to a different density as labeled.
7-2
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We now derive and discuss the degenerate and nonde
erate limits of Eq.~2!.

III. THE DEGENERATE LIMIT

In the limit T!TF the calculation ofr↑↓(T) can be car-
ried out analytically. The temperature dependence ofr↑↓ , in
this regime, is entirely determined by the denomina
sinh2(\v/2kBT), which restricts the integral in Eq.~2! to
frequencies of the order ofkBT. We can therefore neglect th
temperature dependence of ImQ0s and replace this function
by its zero-temperature limit

ImQ0s~q,v!52
kFs

q2a*
@Q~12ns2

2 !A12ns2
2

2Q~12ns1
2 !A12ns1

2 #. ~8!

The behavior of ImQ0s(q,v) for small v depends crucially
on the value ofq. As shown in the upper panel of Fig. 2

FIG. 2. Parameter space for the existence of a nonz
ImQ0s(q,v) at T50. ~Upper panel! Paramagnetic case (kF↑ /kF↓
51). The three curves correspond to the set of points in which
or both of the arguments of the Heaviside functions in Eq.~8! are
equal to zero: (q/kF)2/21q/kF ~solid curve!, 2(q/kF)2/21q/kF

~dashed curve!, and (q/kF)2/22q/kF ~dotted curve!. ImQ0s(q,v)
is different from zero in the region between the solid and the do
curve. The points labeled byA–D correspond, respectively, t
qAs(v) –qDs(v) for \v/2EFs50.2. ~Lower panel! Spin-polarized
case (kF↑ /kF↓51.5). The solid curve defines the parameter sp
corresponding to ImQ0↑(q,v), the dashed curve the one related
ImQ0↓(q,v). The points labeled asB↓ andC↓ correspond toqB↓
andqC↓ , respectively, and delimit the interval relevant to the c
culation of Eq.~14!.
04530
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r

there are three distinct regions in which ImQ0s(q,v) is dif-
ferent from zero:

~ I! qAs[kFsF211A11
2v

kFsvFs
G

,q,kFsF12A12
2v

kFsvFs
G[qBs ,

ImQ0s~q,v!.2
kFs

q2a*
A v

kFsvFs
. ~9!

~ II ! qBs[kFsF12A12
2v

kFsvFs
G

,q,kFsF11A12
2v

kFsvFs
G[qCs

ImQ0s~q,v!.2
kFs

q2a*

v/~kFsvFs!

A12~q/2kFs!2
, ~10!

~ III ! qCs[kFsF11A12
2v

kFsvFs
G

,q,kFsF11A11
2v

kFsvFs
G[qDs ,

ImQ0s~q,v!.2
kFs

q2a*
A v

kFsvFs
112

q2

4kFs
2

. ~11!

Let us first consider the paramagnetic casen↑5n↓ , kF↑
5kF↓ etc. In region~I! the product ImQ0↑ImQ0↓ is propor-
tional to v, while the integration region in theq space is a
shell of thickness proportional tov2. The netq dependence
of the integrand@taking into account the fact thate(q,0)
.112/(qa* ), ue(q,0)u2;1/(qa* )2] is }q, giving an extra
factorv/vF . Since\v;kBT, the contribution of this region
to r↑↓ is at least of orderT4 and will be disregarded herea
ter.

In region~II ! the product ImQ0↑ImQ0↓ is proportional to
v2, while the integration region in theq space is a shell of
thickness;2kF . This would give a contribution of orderT2

~as in 3D! were it not for the square root divergence
ImQ0s when q approaches 2kF @see Eq.~10!#. Due to the
‘‘piling-up’’ of two square-root singularities, one gets an a
ditional ln(v) from the upper limit (q;2kF) of the integra-
tion interval. Thus the total contribution of this region tor↑↓
is of orderT2ln T. Notice that this logarithmic contribution
would be severely suppressedin the case of the ordinary
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IRENE D’AMICO AND GIOVANNI VIGNALE PHYSICAL REVIEW B 68, 045307 ~2003!
Coulomb drag, since the Fourier transform of the Coulo
interaction between electrons in different layers decrea
with increasingq, ase2qd.

Finally, in region~III !, the product ImQ0↑ImQ0↓ is again
proportional tov, but the integration region in theq space is
now a shell of thickness;v/vF centered about 2kF . The
contribution of this region is therefore of orderT2.

Combining the contributions of regions~II ! and ~III ! to-
gether, after some calculations, we arrive at the follow
expression:

r↑↓~T! '
T!TF

2
\

e2

2p2r s
2

3~A21r s!
2
S kBT

EF
D 2F f S r s

A2
D 2

1
2

lnS kBT

EF
D

1 ln2112
3

p2E
0

` y2ln y
sinh2y

dyG , ~12!

where r s51/Apna* is the dimensionless Wigner-Seitz r
dius,*0

`(y2ln y/sinh2y)dy520.55981, and the functionf (x)
is defined as

f ~x!ª
1

x21 F11
x211

x21
lnS 11x

2x D G . ~13!

Thus, in the paramagnetic casethe spin transresistivity be
haves asT2ln T rather thanT2.

This is no longer true if the electron gas is spin polariz
Let us assumen↑.n↓ so thatkF↑.kF↓ . For a finite polar-
ization and at sufficiently low temperatures such thatkBT
!EF↑ and kBT!EF↓ , ImQ0s(q,v) can be approximated
with its zero-temperature expression and the region of in
gration inq coincides with the region in which ImQ0↓(q,v)
differs from zero~see lower panel of Fig. 2!. As in the para-
magnetic case, it is then possible to divide theq-integral
into regions in which ImQ0s takes values given by Eqs
~9!–~11!. At the upper limit of region~II ! for down spins
@Eq. ~10!#, q52kF↓2v/vF↓ , ImQ0↓(q,v) diverges as
1/A12(q/2kF↓)2. However, ImQ0↑(q,v) remains regular.
Therefore, the logarithmic divergence leading to the lT
singularity in the transresistivity is cut off.

Our final result takes the form

r↑↓~T! '
T!TF

2
\

e2

p2r s
2

3~12j2!3/2
S kBT

EF
D 2

g~r s ,j!, ~14!

where functiong is defined as

g~r s ,j!5E
0

1

dx
x

Fx1
r s

A2~12j!
G 2

A~12ax!~12x!

,

~15!

j5(n↑2n↓)/(n↑1n↓) is the degree of spin polarization an
a[A12j/A11j. Notice thatg(r s ,j) diverges logarithmi-
cally for j→0, in agreement with our previous findings.

Figure 3 focuses on the paramagnetic degenerate reg
it presents a comparison between the numerical evaluatio
r↑↓ from Eq. ~2! ~curve labeledC) and its analytical ap-
proximation Eq.~12! ~curve labeledB). The curve labeled as
04530
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D is obtained neglecting theT2ln T term in Eq. ~12!: by
comparing theD curve with theB curve, the importance o
the T2ln T correction becomes evident: without it, the sp
drag is strongly underestimated. TheA curve represents the
result obtained using in Eq.~2! the zero-temperature limit fo
ImQ0s(q,v). As expected, Fig. 3 shows that in this range
temperatures, the analytical approximation (B curve! is very
close to such a result.

IV. THE NONDEGENERATE LIMIT

In the nondegenerate limitkBT@EF , the dimensionless
chemical potentialm̄s of Eq. ~5! is given by the classica
formula m̄s5T̄sln(\22pns /m*kBT). Since2m̄s /T̄s→` we
can replace the functionF(z) @Eq. ~7!# by its limiting form
F(z)→Ap/2z for z→`.

This leads to the result

ImQ0s~q,v! '
T@TF 1

a*
EFs

kBT
Am* p

2kBT

3
v
q2 e2m* v2/2kBTq2

e2\2q2/8m* kBT, ~16!

identical to the 3D case. The Gaussian factore2\2q2/8m* kBT

on the right-hand side of this equation tends to 1 in
classical limit ~i.e., for \→0) for any finite wave vector.
However, we cannot set\50, because the integral extend
to arbitrarily large wave vectors, and the classical appro
mation fails at large enough values ofq. The Gaussian facto
assures the convergence of the integral in Eq.~2! by cutting
off the integral at values ofq such that\2q2/2m* ;kBT.

Using the classical expression for the dielectric const
e(q,v)'11kD /q, with kD52pe2n/ekBT, after simple
manipulations, we finally obtain

FIG. 3. Degenerate regime: Comparison betweenr↑↓ ~curve la-
beledC), its analytical approximation Eq.~12! ~curve labeledB),
the approximation obtained using the zero-temperature form
ImQ0s(q,v) in Eq. ~2! ~curve labeledA), and the analytic one
obtained by neglecting theT2ln T term in Eq.~12! ~curve labeled
D). The curves are plotted vs temperature~rescaled byTF) for n
51010 cm22 and InAs parameters.
7-4
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r↑↓~T! '
T@TF

2
\

e2
p3/2Ry*

kBT
E

0

`

dx
Axe2x

~Ax1l!2
~17!

'
l→0

2
\

e2
p2 Ry*

kBT
, ~18!

where l[(23/2/r s
2)(Ry* /kBT)3/2 and Ry* 5m* e4/2e2\2 is

the effective Rydberg.
Remarkably, the last result~corresponding tokBT@Ry*

or r s@1) is independent of the electronic density. It differs
from the analogous result in three dimensions, which sc
as 1/T3/2ln(T) and has a weak~logarithmic! dependence on
the electronic density.6

The limiting form of the transresistivity Eq.~18! is shown
in Fig. 4 ~dashed-dot line! along with the results obtaine
from Eq. ~2! for the same choice of carrier densities as
Fig. 1. We stress that this curve delimits the region of
(n,T) plane occupied by the family of curvesr↑↓(n,T) and
is approached at lower and lower temperatures for decrea
densities~see Fig. 4!. The inset of Fig. 4 shows the compar
son betweenr↑↓ calculated forn51010 cm22 ~solid line!
and its limiting behaviors, Eqs.~17! ~dashed line! and ~18!
~dashed-dot line!. It is interesting to notice that, because
the low Fermi temperatures and at variance with the 3D c
in 2D the nondegenerate behavior of the spin transresist
could be observed experimentally, since it corresponds,
reasonable densities, to temperatures as low as 100 K~see
inset in Fig. 4!. We also notice that the nondegenerate lim
Eq. ~17!, is in reality a good approximation even for tem
peratures as low as fewTF .

V. DISCUSSION AND SUMMARY

A few comments are now in order. As Eq.~12! shows, in
the degenerate regime, the 2D spin transresistivity beha
as T2(A1Bln T), in contrast to the 3D case in whichr↑↓
;T2 ~see Ref. 4!. The additional logarithmic correction i

FIG. 4. Nondegenerate regime: Comparison betweenr↑↓ ~solid
line! and its universal limiting behavior~dash-dotted line! Eq. ~18!
vs temperature for different carrier densities and InAs parame
Inset: Comparison betweenr↑↓ ~solid line! and its approximations
@Eq. ~17! ~dashed line! and Eq. ~18! ~dashed-dotted line!#. The
curves are calculated forn51010 cm22 and plotted vs temperatur
~rescaled by the Fermi temperature!.
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due to the fast variation of ImQ0s(q,v) for q'2kFs , so
that the high-q regime dominates the low-temperature beha
ior of r↑↓ . This correction is also present, in principle, in th
more familiar Coulomb-drag transresistivity between tw
separate electron layers. However, in that case, due to
presence of the insulating barrier of thicknessd, the Fourier
transform of the interlayer Coulomb interaction is given
2pe2e2qd/eq and decays exponentially for largeq. Thus, in
CD the influence of the logarithmic term on the behavior
r↑↓ in the degenerate regime is negligible.

The exponential decay of the interlayer interaction is
sponsible for another main difference between the Coulo
drag and the spin Coulomb drag. As can be seen in Ref.
for T&TF the transresistivity is dominated by the plasm
modes~especially the acoustic one!, which enhance the con
tribution of small wave vectors. In the 2DSCD, however, t
acoustic mode, in which the two electron populations os
late out of phase, is absent. Figure 5 shows how the func
I (v,q) [ exp(22dq)Im Q0↑(q,v)Im Q0↓(q,v)/@4ue(q,v)u2
3sinh2(\v/2kBT)], behaves for small~upper panel! and
intermediate~lower panel! values of q in the paramag-
netic regime. Ford50, I (v,q) corresponds to the inte
grand of Eq. ~2!; in the figure, however, the interactio
between the two spin populations is taken asv↑↓
5(2pe2/q)exp(2qd) and the RPA dielectric function a
e(q,v)5@12v(q)x0↑(q,v)#@12v(q)x0↓(q,v)#
2v↑↓x0↑(q,v)x0↓(q,v). Different curves correspond to
different values ofd (0<d/kF<9, as labeled!. Let us first
focus on the upper panel in whichq50.1kF : for d50 the

rs.

FIG. 5. Behavior of I (v,q)[exp
(22dq)ImQ0↑(q,v)ImQ0↓(q,v)/4ue(q,v)u2sinh2(\v/2kBT) vs the
rescaled frequency\v/2EF for fixed q and temperature but differ
ent values ofd (0<d/kF<9). Upper panel: small-q behavior (q
50.1kF). Each curve corresponds to a different value ofd/kF as
labeled. Lower panel: intermediate-q behavior (q50.5kF). Curves
are labeled with the corresponding value ofd/kF ~as in the upper
panel!.
7-5
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IRENE D’AMICO AND GIOVANNI VIGNALE PHYSICAL REVIEW B 68, 045307 ~2003!
main contribution to the integral comes from the single-p
excitation continuum. In this case the only possible coll
tive mode@corresponding to the zeros ofe(q,v)] is the in-
phase optical mode, whose contribution~the spike labeled as
0) is in any case negligible. As the exponential factor in
interactionv↑↓ is turned on~i.e., as the scattering rate be
tween the two spin populations is decreased!, the strength of
the integrand is transferred from the single-pair excitat
continuum to the collective modes and the out-of-ph
acoustic plasmon appears~see the two maxima labeled wit
9, corresponding tod59kF).

The lower panel of Fig. 5 presentsI (v,q) for q
50.5kF : already at this intermediate value, the contributi
to r↑↓ becomes negligible whend.0. In fact I (v,q) scales
asv↑↓

2 ;exp(22qd).
We would like to emphasize a more general point: as F

5 clearly shows, due to the absence of the exponential fa
e2qd in the Fourier transform of the Coulomb potential, t
drag effect in the SCD is definitely larger than in the ordina
CD. In other words, in SCD, the two electron populatio
can transfer momentum to one another more effectively.

The plasmon enhancement is absent in 3D as well. In
case, however, this is due to a combination of three differ
effects:~i! the 3D plasmon frequencyvp(T) is finite at any
temperature@vp(T)>A16pna* 3Ry* /\#; ~ii ! due to the
sinh2(\v/2kBT) term in the denominator, the integrand
Eq. ~2! is significantly large only for\v&kBT, while it
decreases exponentially for higher temperatures; and~iii ! the
plasmon linewidth increases with temperature. Points~i! and
~ii ! imply that for small temperatures the integrand has
ready vanished whenv'vp(T); on the other side, becaus
of point ~iii !, for temperatures such thatkBT&vp(T), the
strength of the plasmon is negligible.

Let us now examine some issues concerning the exp
mental observation of the SCD.

First of all, it must be clear that the SCD is an intrins
many-body effect, and, therefore, it is possible to design
experiment to measure it directly and independently of
ordinary diagonal part of the resistivity tensor. Such an
periment has been described in Refs. 4,6.

For different experimental setups, however, it might
important to know how the spin drag resistivity compares
the familiar Drude resistivityrD . This information is pro-
vided in Fig. 6 for doped layers of InAs (m* 50.026me , e
513.6) and GaAs (m* 50.067me , e512) at two different
densities. Since it is customary to express the resistivity
doped semiconductor samples in terms of their mobility,
the upper panel we plot the quantitym↑↓521/ner↑↓ as a
function of temperature.m↑↓ has the dimensions of a mobi
ity, and its value should be compared to that of the ordin
mobility mD of the sample : if, at a given temperature,m↑↓
,mD the spin drag resistivity is larger than the ordina
Drude resistivity. It is evident from this figure that for appr
priate but realistic parameters,m↑↓ andmD can be quite com-
parable. The significant numerical difference between
InAs and GaAs results is primarily due to the larger effect
mass and, to a lesser extent, to the smaller dielectric con
of GaAs. The impact of these two parameters on the s
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drag resistivity is easily understood. Keeping in mind th
the SCD is a consequence of Coulomb scattering betw
different spin populations, a smaller dielectric consta
means stronger Coulomb scattering, and a larger effec
mass implies a higher density of states available for sca
ing. Notice that the minimum value ofm↑↓ decreases with
increasing density.

In the lower panel of Fig. 6, we plot the ratior↑↓ /rD
~which is proportional to the sample mobility! versus tem-
perature for a mobilitymD533103 cm2/V s. The same pa-
rameters and materials of the upper panel have been cho
As the figure shows, for reasonable temperatures and re
tic parameters,r↑↓ can be a large fraction ofrD .

A peculiar signature of the two-dimensional SCD, whi
would be interesting to observe, is the nondegene
density-independent behavior given by Eq.~18!. As shown in
the inset of Fig. 4, a sample would display such a behavio
T@TF , i.e., in the high temperature/low-density regim
Since, for densities of the order ofn51010 cm22, TF is as
low as 4 K in GaAs and 11 K in InAs, this regime should b
observable in these materials for temperature consider
lower than room temperature.

Our calculations did not include the finite width of a r
alistic sample. The response of a quasi-2D sample would
somewhere in between our 3D and 2D results, depending

FIG. 6. Upper panel: Spin-drag mobilitym↑↓[21/r↑↓ne vs
temperature~rescaled byTF) for n51011 cm22 ~dashed curve! and
n51012 cm22 ~solid curve!. Each couple of curves corresponds to
different material: InAs (m* 50.026me , e513.6) and GaAs (m*
50.067me , e512), as labeled. Lower panel: Ratior↑↓ /rD as a
function of temperature forn51011 cm22 ~dashed curve! and n
51012 cm22 ~solid curve! and sample mobility m53
3103 cm2/V s. Each couple of curves corresponds to a differe
material~InAs and GaAs, as labeled!.
7-6
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how well the idealized two-dimensional approximation
fulfilled. In both the 2D and 3D cases however, we see t
the ratior↑↓ /rD remains of the same order of magnitude f
the same material and mobility and comparable density~see
Fig. 6, lower panel, and Ref. 6, Fig. 2!. Moreover, even in
the fully three-dimensional case, the nondegenerate regim
only weakly ~logarithmically! dependent on the carrier den
sity. The above observations imply that a modest finite-s
correction would not modify significantly the relative impo
tance of the predicted effect, or its nondegenerate behav

In summary, we have discussed the effect of dimensi
ality on the spin-transresistivity and shown that in two,
well as in three5,6 dimensions, the spin Coulomb drag can
a sizeable effect. We have discussed the differences betw
Coulomb drag and spin Coulomb drag effects showing h
, s
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in the degenerate regime, the different form of the Four
transform of the Coulomb interaction determines a quant
tively different behavior of the spin transresistivity in com
parison to the CD transresistivity. We have also explain
why, in general, the spin Coulomb drag is expected to
larger than the ordinary Coulomb drag. Finally we have de
onstrated that, in the nondegenerate two-dimensional reg
the spin transresistivity displays a universal densi
independent behavior. Such a behavior could be, in princi
observed experimentally for realistic system parameters.
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