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One-dimensional chain with random long-range hopping
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The one-dimensiondlLD) tight-binding model with random nearest-neighbor hopping is known to have a
singularity of the density of states and of the localization length at the band center. We study numerically the
effects of random long-ranggower-law hopping with an ensemble average magnit{idig|)o|i —j| = in the
1D chain, while maintaining the particle-hole symmetry present in the nearest-neighbor model. We find, in
agreement with results of real-space renormalization-group techniques applied to the pavidpm chain
with power-law interactions, that there is a change of behavior when the power-law expormtomes
smaller than 2.
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[. INTRODUCTION renormalization-grougRG) scheme using the ratio of small
to large couplings for random spin systems employed by
The one-dimensiondllD) tight-binding model of nonin- several groups in the 1980s in the context of random quan-
teracting electrons with random nearest-neighbor hoppingum spin-1/2 chains'*? becomes asymptotically exact, and
has been extensively studied since Dyson’s exact solution tgields the correct low-temperatufenergy behavior. Thus
density of states of one-dimensional random harmonidhe correct form of the singularity at the band center is ob-
oscillators' which can be mapped to the random nearesttained for the Fermionic model from the asymptotically ex-
neighbor hopping model. Mertsching gave a node countingict RG. The same position space RG technique has been
scheme to study the density of states in a similar médel.used recently to study thXY spin chain with long-range
Since the early 1980s, supersymmetry methods have beépower-law exchangeJ(r)=r~".** The behavior found
used to study such problems with randomnisall these  there suggests that the strong disorder fixed point, which
studies show that there is a singularity in the one-electroletermines the functional form of low-temperature magnetic
density of statep(e) at the band center of the forp(e)  susceptibility in the spin problertfor nearest-neighbor hop-
~1/e|In €°. Concurrently, as a consequence of the Thoules®ing this is related to the density of states singularity in the
theorent, there is a logarithmic divergence of the localiza- Fermionic model survives for power-law exponents
tion length&~|In €. Thus this model exhibits a critical point above a critical value, which they determined to b@vizhin
at the band center, unlike the standard Anderson rfiadel their numerical accuracy of 5-10%
one dimension with on-site disorder, where all states are Jordan-Wigner transformation on the ¥ spin chain
known to be localizefifor any finite disorder. This is a con- With long-range couplings yields a particle-hole symmetric
sequence of the particle-hole symmetry that is maintained ifermion Hamiltonian; this Hamiltonian has terms such as
the model despite randomness in the hopping when only?expawzg;ilcﬁcn)cj S0 it is not a noninteracting fermion
nearest-neighbor hopping is present. Hamiltonian. Although our models do not include such
In this paper, we investigate whether these featureterms, thus thexactconnection between the Fermionic and
change if the nearest-neighbor hopping model is generalizespbin models is lost, we can nevertheless expect some simi-
to include long-range hopping. Since these properties arkrities between the two modelsx¥ random spin chain and
closely related to the particle-hole symmetry in the Hamil-free fermions with 1D random hopping—when the two have
tonian, we constrain the long-range hopping to a form whichexchanges/hoppings with a power-law falloff, at least for
preserves the particle-hole symmetf@perationally, this is large power-law exponents. The result for the long-range
done by allowing hopping only between sites separated by aspin model also motivates paying close attention to our mod-
odd number of lattice constantdHowever, the long-range el's behavior wherv is in the vicinity of 2.
hopping terms render analytic methods such as node count- The outline of our paper is as follows. In the next section,
ing theorem and Thouless theorehinapplicable; conse- we define the model Hamiltonian. The following section dis-
quently we perform numerical calculations to study thiscusses the methods and relevant formalisms used in compu-
problem instead. tation. We then present the results for the density of states,
The nearest-neighbor tight-binding model of noninteractdocalization length of eigenstates, and the spin-spin correla-
ing fermions can be mapped onto X spin chain with tion function for the equivalent magnetic model. We find that
nearest-neighbor random couplings via a Jordan-Wignethe density of states retains the singularity at the band center,
transformatiorf. (See, e.g., Ref. 9 for a recent discussion ofbut this singularity is gradually reduced by the long-range
the topic) The singularity in the density of states of the hopping. The eigenstates are not well described as exponen-
fermion problem at zero energy translates to a singular magtally localized states, but have power-law-like tails deter-
netic susceptibility at zero temperature in the spin problemmined byo. Finally, the spin-spin correlation function also
Fisher'® in particular, showed how a perturbative real-spaceshows power-law decay whereis not too small.
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Il. MODEL sites to odd sites, them' will consist of the hopping terms
from odd sites to even sites. The Safirger equation can

The model we have studied is built on a 1D bipartite . L
t6hen be written as two equations:

lattice, consisting of odd and even sites along the chain. Th
Hamiltonian contains Fermionic hopping terms between the

two sublattices consisting of the odd and even sites, respec- hyere= ey, 2
tively, while hopping within the same sublattice is forbidden.

Thus we have hfyodd= gyeven ®)

H=> tij(CiTCj+CJTCi)a (1)  These equations lead to
(5

wherei andj are summed over members of the odd and even hThyeven=e2yeven, (4)
sublattices, respectively. This bipartite property preserves the

particle-hole symmetry and leads to singularities in the den- hht yodd= 2 odd (5)

sity of states and localization length. The hopping parameters

tjj are random with zero average, defined in terms of the ) ) )
distanceli — j| and a Gaussian random variable, as described The above equations reduce the size of the matrix of the
below. Two models with power-law falloff 0(|tij|> have NXN_Hamllthman toN/2X N/2.. Further, from the apove
been studied. Model A allows hopping between every pai€duations, it is clear that the eigenvalues come in paies
formed by picking one site from each of the two sublattices@nd their eigenvectors are related by

while (|t;;|) decreases with distance as a power law for each

pair (i,j). Specifically, we take Y=y, (6)
W..
tij:.—l.JUa y200= — yodd, (7)
li=jl
wherew;; is a Gaussian random number with distribution A direct consequence of the above is that the density of
states is symmetric for each realization of the disorder. By

w? exploiting the particle-hole symmetry, we gain efficiency in
P(wij)=

1 F(
——&X . our numerical calculation.

5> 2
ay2m 2a The density of states can be obtained by directly diago-
In model B, (|t;;|) is constant, but the probability for a

nalizing large matrices. In this approach, the difficulty is that
hopping term to be present decreases with the hopping gidve have to use large matrices which do not have significant
tance as a power law. Thus

?i_nite-size effects. Since we are interested in the property of
the singularity at the band center, which by particle-hole
ty; =wiM(|i—j|), symmetry lies ats=0,_ we neeq to get enough statistics near
the band center. We identify finite-size effects by comparing
wherew;; is a Gaussian random variable as in model A, ancthe results of different sizes.
M(]i—j|) is chosen randomly to be either(With probabil- The other approach to calculating the density of states is a
ity |i—j|~“) or O (with probability 1—|i—j| ™). recursive method. First, the dense matrix is cut off at a range
We expect these two models to exhibit some similaritieslarge enough, so that the remaining part is an acceptable
We have useé=0.2 throughout this paper. In both models approximation for the original matrix of arbitrary sizd=or
therefore we have only one parametewhich characterizes finite range hopping, this method gives no approximation at
the model. A small value of- produces longer-range hop- this stage, but for long rang@ower-law hoppingthis is a
ping. different cutoff scheme, with a somewhat different finite-size
Our models are similar to the power-law random bandedeffect] Then the matrixH — € is transformed into diagonal
matrix ensembles studied by supersymmetry approach iform by a similarity transformation, which rotates certain
Ref. 14. One difference is that our models have a built-incolumns and rows to eliminate off-diagonal terms. The re-
particle-hole symmetry, which has important consequencesmaining diagonal elements are not eigenvalues, but they re-
tain the signature of the matrix, i.e., a positive element im-
IIl. COMPUTATIONAL DETAILS plies an eigenvalue satisfyinf;>¢, a negative element
corresponds to an eigenvalue satisfylBg<e. By counting
The Hamiltonian of this model is aNX N matrix for a  the number of positive or negative diagonal elements we can
system ofN sites, with elements;;=0 when|i—j| is @  optain the integrated density of states. This process can be
multiple of 2. Because of this bipartite property, the Sehro continued for arbitrary length with no finite-size effect as in
dinger equation can be written as two coupled equationgjrect diagonalization, until the statistical error of the inte-
when number of sitebl is even. Let/?°" be the wave func- grated density of states is smaller than our requirement. For
tion on the odd sublattice, angf*°" that on the even sublat- nearest-neighbor model, the recursion equation for diagonal
tice. If the matrixh represents the hopping terms from evenelement is

045101-2



ONE-DIMENSIONAL CHAIN WITH RANDOM LONG-RANGE . .. PHYSICAL REVIEW B 68, 045101 (2003

H?2 guage, all correlation functions have the same dependence on
nn—1 . o .
{hn=—€— 7 , distance, so here it is adequate to calculateztheorrelation
n-1 function to get the spacial dependence. The four-fermion

where H,,_; is the only off-diagonal term in the Hamil- term can be expanded into a Hartree term and a Fock term,
tonian, ¢, is the remaining diagonal element after the trans-

formation. Supposé, has a distributior({) asn—oe, then Tt Ay Fos t . .
F(?) is given by the integral equation (cjeicicy) n,m,o%upied (D) (D) () ()
+ _ T/ T . .
Fo= [ of crer F PooF @, PO YD),

Here the sum is over all occupied states, i.e.N#H states

where P(X) is the distribution function OH%nfl' A|th0ugh with negative energy. The Hartree term .Can be evaluated di-
this equation is similar to Dyson’s approakcth,has not been rec_:tly to be 1/4 because the wave functlons_ are orth_ono_rmal
solved analytically due to the peculiar argument of #e USINg Eqgs.(6) and (7). Therefore the co[relatl_on function is
function. The numerical approach is just to generate a sediven by the Fock term only. Further, ifandj are on the
quence ofZ,, and calculate its distribution. same sublattice, we see from E¢$) and(5) that (i) and

To take care of the finite-size effect introduced by the¥n(i) (n is amongN/2 occupied statesare both eigenvec-
cutoff, we compare results using different cutoffs. Such aors of eitherh™h or hh', and consequently orthogonal to
procedure allows us to ascertain the range of energies fdtach other. Thus, wherandj are on the same sublattice, the
which the integrated density of states has converged: theorrelation function is exactly zero. In the numerical results
lower the energy, the longer the cutoff requirébe cutoff presented below, we only display the spin-correlation func-
required varies roughly logarithmically with enejgyFor a  tions between two sublattices, ar@(i,j) is replaced by
fixed cutoff, the energy variation of the integrated density ofC(X) where X+ 1=[i—jl,
states obtained by this method mimics that of the nearest
neighbor, i.e., finite range model—this sets the lower bound - TV (i i i
of gnergies close to thegband center for which this method is ct0 m,n,o%upied Yn(D¥n()¥m(1)gm(D). (A1)

applicable for that cutoff. . . . . i
Once we have obtained the eigenfunctions by direct di_'I'h|s expression can be evaluated directly, but since the com

e . ; 1puting time for evaluatind>(x) is even more than that re-
agonalization, we can calculate the correlation function of” ". ) o :
quired for diagonalization, the system sizes we use are

the corresponding spin model. The Jordan-Wigner . S
transformatiofi transforms théY-spin chain in zero external smaller than for diagonalization. The data presente@{o)

field to a half filled band of fermions, because the following are all optamed from sysf[ems of 256 sites. However, we are
identity: able to discern the behavior reasonably well from the data for

C(x) subject to this limitation.

EI S= EI clci—N/2. tS) IV. DENSITY OF STATES
, ) ) Our results on model A show that the density of states
The ground state fills thdl/2 states with negative energy yemains singular at the band center when the long-range hop-
which we can get by diagonalizing the Hamiltonian. We can ings are present. Figure 1 shows the density of siates
further calculate the spin correlation fuqction on the ground,piained by diagonalization as a function of eneeggn a
state. We compute thez part of the spin-spin correlation e |ogarithmic plot for both the nearest-neighbor model,
function defined by and for the long-range model for different values of the
cli j)=@ ) power-law exponend. As can be seen, the singularity at the
’ 1= band center §=0) persists at least for large, though its
(---) denotes the expectation value in the ground statemagnitude clearly decreases. The inset of Fig. 1 compares
while the bar on top denotes ensemble average over the dithe data for the nearest-neighbor model along with the data
order. WithS?=cc;— %, andi#j, the correlation function for the lowest power law£=0.6) on a linear scale, which

can be written as gives a clearer view of the extent of this decrease. For quan-
titative purposes, it is better to plot the same data as
= 1 [p(e)€]”® vs Ine. On such a plot, shown in Fig. 2, the
C(i,j)=(cjeicic)— 4 (10 nearest-neighbor model is supposed to lie on a straight line,
which it clearly does.
where we have used the fa@t/c;)=3 due to half filling. Further, the curves show little deviation from the nearest-

The Jordan-Wigner transformation contains a phase factareighbor model as long as>3. The deviation for smalles

due to the anticommutation relation of fermion operators orare consistent with the singularity being gradually weakened
different sites, but the phase factor coming from differentas o decreases; if we fit the data wig{e) ~ 1/¢|In € then
fermion operators cancels each other in our expression affheno=2, the best fitw is about 5. Asc becomes lower
C(i,j). In the random singlet phabappropriate for describ- than 1, direct diagonalization is almost incapable of reveal-
ing the nearest-neighbor only model in the spin operator laning any detail of the singularity: We only see a large value at
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FIG. 1. Density of states of model A for different values of the  FIG. 3. Finite-size effects on density of states, which appear at
power-law exponent, shown on a double logarithmic plot, show- the low energy end of these curves. Data are density of states for
ing the singularity at the band center£0). The inset shows the four different size systems with the same=2.5, with length vary-
data on a linear scale. The singularity becomes very weak when ing from N=128 to 1024.
is less than 2, and is not discernible for the sizes studied whisn
below 1. ensure that the data shown are not corrupted by finite-size

effects. Figure 3 shows an example of a finite-size effect,
the band center, and the density of states approaches tiéich appears as a size-dependent rounding of density of
Wigner semicirclé?® This can actually be proved using the states at low energy. All the data plotted correspondNto
supersymmetry method in Ref. 11. Nevertheless, the thermo= 1024 sites unless stated otherwise, and do not suffer sig-
dynamic limit remains well defined up to=0.5, below nificant finite-size effects. The results of model B are very
which the bandwidth starts to increase with system size, i.egimilar to model A, except that the smallastfor a proper
we need to scale the hopping magnitude with system size thermodynamic limit to exist is 1.
have a sensible thermodynamic limit. This critical valuerof Figure 4 shows our results for the density of states ob-
can be predicted by writing the model in path-integral form,tained using the recursive method. Here, one obtains the in-
using either replica technique or supersymmetry, and averagegrated density of stateNl(e) (from O to €). For the
ing over the random variables. Such an approach gives Bearest-neighbor model, the exact asymptotic form is given
four-fermion term proportional t& |i —j| ~27, wherei andj by
are site indices, therefore whenis less than 0.5, the sum

N 14— ; — —
will diverge. L .. |
. . . . . Y .
We have diagonalized several different sizes of samples tc 1230 ., — Nearest Neighbor | |
SN
1.6 T T T 10
- . — Nearest Neighbor | ] -
b AN -- 0=4 S g
e g=3 ':
1.2 - 0=25 - w
- O'f2.25 Z 6
= g=2 =
T
2081 4
&
~ 2
04+ ] . | . ] . ] .
i 0 -4 -3 -2 -1
log, &
0.0 |6 = T 5 0 FIG. 4. Integrated density of states, computed by the recursive
log, ¢ method, with cutoff at 100th neighbor. Within the displayed energy

range, these curves are checked to be free of effects due to the finite
FIG. 2. The same data as in Fig. 1, plotted in a different way asutoff in the hopping range. Note that the curves are smoother than
motivated in the text. As expected, the density of states of thehe results obtained from straight diagonalization. The nearest-
nearest-neighbor model asymptotically falls on a straight line. Theneighbor model is expected to asymptotically fall on a straight line
upwards bending of the curves with decreasingevident foro with a slope equal to—1. Curves fitted by the formuld(e)
<3 shows the weakening of the density of states singularity by the-1//In €, yield v somewhat larger than the value 2 appropriate for
long-range hopping. the nearest-neighbor model, forbelow 3.
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6 T T T T methods.The recursive method agrees with the diagonaliza-
. — Direct diagonalization tion results before the finite-size effect sets in. Figure 6
R « « Recursive, use difference| | shows the convergence of the recursive method as the range
4t ™ i of cutoff is increased(Below a certain energy, which corre-
sponds to distances beyond the cutoff length, the recursive
2 | method will behave like the nearest model, since the wave
% 2F function spreads out of the range of hoppjng.
& The density of states allows us calculate the specific heat
and spin susceptibility for this model of noninteracting fer-
ok mions. Using the standard formulsye can see that the
specific-heat prefactory, wherec,= yT) and susceptibility
(x) at low temperature are singular at the center of the band.
_2: Thus in the vicinity of the band center the zero temperature
susceptibility is the form
log &
FIG. 5. Comparison between the recursive method and the di- X~ ;
rect diagonalization method for the density of states. The solid T|In T|“”1

curve is by direct diagonalization, while the points are density of. . - . . ® .
states obtained by taking the difference of integrated density or the singularity in density of states iselln ¢[*. A similar

states from the recursive method=4 is used. The agreement ormula holds fory.

between the curves is good, and no systematic errors are found.
V. LOCALIZATION LENGTH

N(e)~ 1 The nearest-neighbor model is known to have a singular-
[Ine]?” ity in the localization length §) at center of the band. Its
asymptotic form is

Figure 4 plots the inverse square rootNife) versus Irg; for
the nearest-neighbor model, the expected straight line behav- é~Inel. (12
ior is seen. For power-law hopping, the data shows measu
able curvature certainly far=2.5. For largewr it is difficult
to see whether the data suggest curvature, or simply a chan
ing slope with decreasing. While it is tempting to fit these
curves with a form likeN(e)~|In ¢ , which will lead to a
singularity in the density of states like(e)~1/(¢|In ¢**Y),
the data are better fit with several This suggests that cor-

This singularity can be deduced from the singularity of den-
sity of states using the Thouless theoreowever, in the
%‘ng—range hopping model, the theorem does not apply, and
our numerical calculation suggests that the behavior of the
two models is rather different.

All states with nonzero energy are found to decay from a
. . ] central maximum in both models, and the decay becomes
rections to the asymptotic form may be important for pOWer-gio ver as the band center is approached, as in the nearest-

law hopping. neighbor model. However, two models have different

In Figs. 5 and 6, we show the accuracy of this recursweasymptotic behavior at long distance.

method. Figure 5 shows a direct comparison of the two In the case of model A which has genuine long-range
(power-law behavior of the hopping parametgy, the tail

L L of the wave functions actually decays in a power-law man-
Z_ Cutoff = 100 ner, (x)~x"?. This form is obviously determined by the
2F |- cutoff = 25 7 power-law long-range hopping term. If we apply the usual
| Cutoff = 12 method of looking at the asymptotic behavior to determine
_ localization length, the localization length is infinite for any
> power-law exponent!
o In the case of model B, the wave function is found to be
= decaying exponentially at long distances, like the nearest-
neighbor model, and the localization length can be obtained
3l by several methods, which agree with the theoretical predic-
M 7 tion.
Figure 7 shows a double-logarithmic plot of the averaged
10" _'8 : _'6 : _'4 : probability density(wave function amplitude squarge|?)

as a function of the distance from the center of the wave
function, averaged over typically 512 states, as a function of
FIG. 6. Convergence of the recursive method exhibited using2nergy away from the band center for model A. At long
different cutoff parameters for the hopping. Small values of thedistances, the behavior is clearly linear on this double loga-
cutoff lead to deviations starting from higher energies=4 is  rithmic plot, implying a power-law decay at long distances.
used. Fitting the data shows clearly that the decay is related to

log, €
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FIG. 7. Double logarithmic plot of the probability density in real FIG. 9. Atypical wave function of model A away from the band
space for individual eigenstates plotted from the center of eacleenter(largere) on a log-linear plot. The tail shows clear curvature
state, averaged over eigenstates with a given enefgy model A on this plot, implying a functional form that decays slower than
with 0=3.5. Small values ot correspond to states near the band exponential.
center. We can see as the energy approaches the band center, the
states become more delocalized. In the tail, for all energies, théhe tail of band, they look clearly different—model B shows
profile of the wave function actually decreases in a power-law fashstraight exponential decdgee Fig. 1Ddown to 50 orders of
ion, with an exponent exactly determined by the value-oBimilar  magnitude for| |, while model A(see Fig. 9 shows clear
plots for other values of in model A show the same feature. The ypwards concave curvature in the tail, characteristic of a

inset with the probability density on a semilog plot, shows distincts|ower decaying functior(like a power law at long dis-
curvature in the tail, unlike an exponentially localized state. tances.

the power-law behavior df;; — the tail of |¢|? decays as
[x—(x)| 2. This tells us that we cannot use the localization V1. SPIN-CORRELATION FUNCTION

length, as defined by Thouless for an exponentially decaying We now present results for the spin-spin correlation func-
state here. However, we may usefully define moments of théon for the associated model in terms of the spin operators
wave function to compute, for example, inverse participationobtained by a Jordan-Wigner transformation. The motivation
ratios™’ is to compare the results with those obtained for the long-
The problem of defining the localization length in model range random antiferromagneti¢y spin chaint®> We reiter-
A is not shared by model B, where we find that the waveate that because of long-range hopping, our model contains
functions always decay exponentially. To show this differ-terms in addition to those in the pure power-15% model
ence, in Figs. 8-11 we have plotted typical wave functionsstudied by Houck and Bhatt; however, because of the exis-

for model A and model Ron a log-linear plot of probability  tence of the same long-range dependence in both studies,
density versus distangeear the center and in the tail of the there may be several points in common.

band. The difference between the two models near the center Figure 12 shows the average correlation functi®fx)
of the band is not obvious due to the large fluctuations, but in

0
O T T
|[— e=863374x107 20+
6 .
~_ -40F
~ =
=z &
w? -12- — = 60
2
18 -80}
_ I 1 . !
‘ , . 100g 200 400 600 800 1000
_240 500 1000 Number of lattice sites

Number of lattice sites . .
FIG. 10. A typical wave function of model B away from the

FIG. 8. Atypical wave function of model A near the band centerband center. A clear exponential decay of the wave function ampli-
(small €) shown on a log-linear plot. tude over 50 decades is seen, as in the nearest-neighbor model.
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FIG. 11. A typical wave function of model B near the band  FIG. 13. Spin-spin correlation function, as in Fig. 12, plotted on
center. Despite strong fluctuations, the main profile is basically exa linear scale. Forr<1 C(x) decays very slowly, and seems to
ponential, as in the nearest-neighbor model. approach a constant value at large distances.

obtained by averaging 256 samples of model A each havin§e formC(x) =a/x" givesv =1.79 forc=1.8, v =1.44 for

256 sites plotted on a double logarithmic plot. All the valueso = 1.5, andv =1.12 for o= 1.3.] Our numerically exact re-

of C(x) are negative(corresponding to antiferromagnetic Sults thus show that the model's magnetic counterpart is
correlations. Our results suggest that there are three regiondkely to change its low-energy behavior for power-law ex-
of distinct behavior, which can be summarized as given beponentso below 2. This is the value around which Houck
low: and Bhatt® found that the perturbative real-space RG proce-

For fast power-law decay§.e., exponentss=>2), the dure appears to break down, perhaps signaling a change of
long-distance behavior of the correlation function remaingPhase.
unchanged from the nearest-neighbor model. Thus in Fig. 12, Below o~1, the deviations ofC(x) from the nearest-
the curves are para”e] to each other at |axgm|ues, con- neighbor model become rather significant. To exhibit this
sistent with the result for the nearest neighbor model, foimore clearly, we show a linear plot in Fig. 13(x) seems to
which a slope of 2 is predicted.(For example, a best fit of decay very slowly, and our data are consistent with it ap-
C(x) for x within the intervall 10,30, ¢=2.2 yields a slope Proaching a finite(negative value, implying antiferromag-
of 1.97). netic order(For example, the curve far=0.7 is well fitted

When o gets below 2, the slope begins to change. &or by a/x’+d, with v=0.49) We caution, however, that for
close to but less than 2, the s|0pe appears to be g|Vam by such low power-law decays, finite-size effects can be large,
itself, implying C(x) ~x . [A least-squares fit t€(x) of ~ and more detailed calculations with larger system sizes and
more samples is necessary before this result can be stated
with certainty from numerical studies.

In summary, the numerical results on the spin-correlation
function from the long-range fermion modglhich we can
solve numerically exactlysupports the earlier observations
on the XY chain with random long-range couplings using
st neighbor perturbative numerical RG methotfsthat the random sin-
glet phase is unstable for power-law couplings with expo-
nents less than 2. However, unlike the numerical RG study,
which sees this as a breakdown of the RG scheme, we are
able to go into the new phase, which appears to be charac-
terized by continuously varying exponents, like a critical
phase. We also find evidence for a possible transition to long-
range order at still smaller. It should, however, be borne in
mind that these observations are from numerical calculations
in finite systems, and subject to statistical errors due to finite

FIG. 12. Spin-spin correlation function in the ground stafe ( Sampling of the quenched random variable.
=0), for the corresponding spin model obtained using a Jordan-
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Wigner transformation. The bold straight line, which decays as VIl. SUMMARY
1/x?, is a guide for the eye. We see that wheiis above 2, includ- . )
ing nearest-neighbor modeZ(x) exhibits this inverse square be-  In this paper, we have presented results of a numerical

havior. Belowo=2, C(x) is better fitted by M°. More sample Study of a one-dimensional lattice model of noninteracting
averaging is necessary to smooth the noisy tail at long distances.fermions with random long-rangépower-lawy hopping,
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which maintains particle-hole symmetry of the nearest- By transforming the fermion model back to a spin model
neighbor model by allowing hopping only between even andising Jordan-Wigner transformation, we calculated the spin-
odd sites(i.e., no hopping allowed between odd sites, orcorrelation function in the ground state. Based on the data,
between even sitgsWe have studied two models—one with three different phases may be possiliethe random singlet
genuine power-law hopping, and the other with long-rangghase, which seems to be stable for power-law exponents
hopping with a power-law falloff of the probability of such a gown tos=2; (ii) a critical type phase with a continuously
hopping to be present. The results on density of states, localmrying exponent of the power law characterizing the spin-
ization, and spin-correlation function of the two models havespin correlation function between=2 ando=1: and(iii) a
been presented and analyzed. . ~ possibly long-range ordered phase fox 1.

For the density of states, we observe that the singularity at \ye conclude with a discussion of some related models
the center of the band, present for the nearest-neighbayydied in the literature. Reference 14 studies a model similar
model, is weakened by long-range hoppimgodel A. The 4 our model A. Both models founa=2 (2« in Ref. 14 to
change is gradual, and at least for power-law exponents pe a critical exponent, although our model has a built-in
greater than 3, is consistent with a change in the prefactor Cﬁarticle-hole symmetry. A model of quantum percolation
the singularity. Fow less than 3, though, the numerical datayjth power-law dilution has been studied previou€lyyhich
for the density of states in the range available appear to fifa5 several significant differences from our mode(iBThis
better with a somewhat different power of the logarithm of j,gdels allows hopping between any pair of sites, conse-
the energy. Beyond=1, the data are consistent with van- quently it does not have the particle-hole symmetry of our
ishing singularity being present, un#t<0.5, when the ther- - models; (i) a small on-site disorder is added in the Hamil-
modynamic limit becomes ill defined. Similar results aretonjan; andiii) The hopping amplitude is not random. Under
seen in model B, except that the thermodynamic limit besuch conditions, a localization-delocalization transition is ob-
comes ill defined atr=1. served in the region €o<1.5. Very recently after the

The two models exhibit rather different behavior of the completion of this work, an analytical study of the Anderson
electronic wave functions. Model B is conventional, in that{ansition in a one-dimensional model with nonrandom

its wave functions are exponentially localized, just as theyower-law hopping has appeartd.

eigenstates of nearest-neighbor model. In model A, however,

the wave functions are actually localized in a power-law

manner rather than exponential. Consequently, the usual ACKNOWLEDGMENT
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