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One-dimensional chain with random long-range hopping

Chenggang Zhou and R. N. Bhatt
Department of Electrical Engineering, Princeton University, Princeton New Jersey 08544, USA

~Received 15 January 2003; published 1 July 2003!

The one-dimensional~1D! tight-binding model with random nearest-neighbor hopping is known to have a
singularity of the density of states and of the localization length at the band center. We study numerically the
effects of random long-range~power-law! hopping with an ensemble average magnitude^ut i j u&}u i 2 j u2s in the
1D chain, while maintaining the particle-hole symmetry present in the nearest-neighbor model. We find, in
agreement with results of real-space renormalization-group techniques applied to the randomXY spin chain
with power-law interactions, that there is a change of behavior when the power-law exponents becomes
smaller than 2.

DOI: 10.1103/PhysRevB.68.045101 PACS number~s!: 71.10.Fd, 71.20.2b, 71.23.2k, 71.30.1h
in
n
n
s

tin
e
e

ro

es
a-
t
l
a
-
d
n

re
iz
a
il
ic

y a

u

is

ct

n
o
e
a
m
c

ll
by
an-
d

b-
x-
een

ich
tic

-
the

ric
as

ch
d
imi-

ve
for
ge
od-

n,
is-

pu-
tes,
ela-
at

nter,
ge
nen-
er-
o

I. INTRODUCTION

The one-dimensional~1D! tight-binding model of nonin-
teracting electrons with random nearest-neighbor hopp
has been extensively studied since Dyson’s exact solutio
density of states of one-dimensional random harmo
oscillators,1 which can be mapped to the random neare
neighbor hopping model. Mertsching gave a node coun
scheme to study the density of states in a similar mod2

Since the early 1980s, supersymmetry methods have b
used to study such problems with randomness.3,4 All these
studies show that there is a singularity in the one-elect
density of statesr(e) at the band center of the formr(e)
;1/eu ln eu3. Concurrently, as a consequence of the Thoul
theorem,5 there is a logarithmic divergence of the localiz
tion lengthj;u ln eu. Thus this model exhibits a critical poin
at the band center, unlike the standard Anderson mode6 in
one dimension with on-site disorder, where all states
known to be localized7 for any finite disorder. This is a con
sequence of the particle-hole symmetry that is maintaine
the model despite randomness in the hopping when o
nearest-neighbor hopping is present.

In this paper, we investigate whether these featu
change if the nearest-neighbor hopping model is general
to include long-range hopping. Since these properties
closely related to the particle-hole symmetry in the Ham
tonian, we constrain the long-range hopping to a form wh
preserves the particle-hole symmetry.~Operationally, this is
done by allowing hopping only between sites separated b
odd number of lattice constants.! However, the long-range
hopping terms render analytic methods such as node co
ing theorem2 and Thouless theorem5 inapplicable; conse-
quently we perform numerical calculations to study th
problem instead.

The nearest-neighbor tight-binding model of nonintera
ing fermions can be mapped onto aXY spin chain with
nearest-neighbor random couplings via a Jordan-Wig
transformation.8 ~See, e.g., Ref. 9 for a recent discussion
the topic.! The singularity in the density of states of th
fermion problem at zero energy translates to a singular m
netic susceptibility at zero temperature in the spin proble
Fisher,10 in particular, showed how a perturbative real-spa
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renormalization-group~RG! scheme using the ratio of sma
to large couplings for random spin systems employed
several groups in the 1980s in the context of random qu
tum spin-1/2 chains11,12 becomes asymptotically exact, an
yields the correct low-temperature~energy! behavior. Thus
the correct form of the singularity at the band center is o
tained for the Fermionic model from the asymptotically e
act RG. The same position space RG technique has b
used recently to study theXY spin chain with long-range
~power-law! exchangeJ(r )}r 2s.13 The behavior found
there suggests that the strong disorder fixed point, wh
determines the functional form of low-temperature magne
susceptibility in the spin problem~for nearest-neighbor hop
ping this is related to the density of states singularity in
Fermionic model!, survives for power-law exponentss
above a critical value, which they determined to be 2~within
their numerical accuracy of 5–10%!.

Jordan-Wigner transformation on the 1DXY spin chain
with long-range couplings yields a particle-hole symmet
fermion Hamiltonian; this Hamiltonian has terms such
ci

†exp(ip(n5i
j21cn

†cn)cj so it is not a noninteracting fermion
Hamiltonian. Although our models do not include su
terms, thus theexactconnection between the Fermionic an
spin models is lost, we can nevertheless expect some s
larities between the two models—XY random spin chain and
free fermions with 1D random hopping—when the two ha
exchanges/hoppings with a power-law falloff, at least
large power-law exponents. The result for the long-ran
spin model also motivates paying close attention to our m
el’s behavior whens is in the vicinity of 2.

The outline of our paper is as follows. In the next sectio
we define the model Hamiltonian. The following section d
cusses the methods and relevant formalisms used in com
tation. We then present the results for the density of sta
localization length of eigenstates, and the spin-spin corr
tion function for the equivalent magnetic model. We find th
the density of states retains the singularity at the band ce
but this singularity is gradually reduced by the long-ran
hopping. The eigenstates are not well described as expo
tially localized states, but have power-law-like tails det
mined bys. Finally, the spin-spin correlation function als
shows power-law decay wheres is not too small.
©2003 The American Physical Society01-1
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II. MODEL

The model we have studied is built on a 1D bipart
lattice, consisting of odd and even sites along the chain.
Hamiltonian contains Fermionic hopping terms between
two sublattices consisting of the odd and even sites, res
tively, while hopping within the same sublattice is forbidde
Thus we have

H5(̂
i j &

t i j ~ci
†cj1cj

†ci !, ~1!

wherei andj are summed over members of the odd and e
sublattices, respectively. This bipartite property preserves
particle-hole symmetry and leads to singularities in the d
sity of states and localization length. The hopping parame
t i j are random with zero average, defined in terms of
distanceu i 2 j u and a Gaussian random variable, as descri
below. Two models with power-law falloff of̂ ut i j u& have
been studied. Model A allows hopping between every p
formed by picking one site from each of the two sublattic
while ^ut i j u& decreases with distance as a power law for e
pair (i , j ). Specifically, we take

t i j 5
wi j

u i 2 j us
,

wherewi j is a Gaussian random number with distribution

P~wi j !5
1

aA2p
expS 2

wi j
2

2a2D .

In model B, ^ut i j u& is constant, but the probability for
hopping term to be present decreases with the hopping
tance as a power law. Thus

t i j 5wi j M ~ u i 2 j u!,

wherewi j is a Gaussian random variable as in model A, a
M (u i 2 j u) is chosen randomly to be either 1~with probabil-
ity u i 2 j u2s) or 0 ~with probability 12u i 2 j u2s).

We expect these two models to exhibit some similariti
We have useda50.2 throughout this paper. In both mode
therefore we have only one parameters which characterizes
the model. A small value ofs produces longer-range hop
ping.

Our models are similar to the power-law random band
matrix ensembles studied by supersymmetry approach
Ref. 14. One difference is that our models have a buil
particle-hole symmetry, which has important consequenc

III. COMPUTATIONAL DETAILS

The Hamiltonian of this model is anN3N matrix for a
system ofN sites, with elementst i j 50 when u i 2 j u is a
multiple of 2. Because of this bipartite property, the Sch¨-
dinger equation can be written as two coupled equati
when number of sitesN is even. Letc i

odd be the wave func-
tion on the odd sublattice, andc i

even that on the even sublat
tice. If the matrixh represents the hopping terms from ev
04510
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sites to odd sites, thenh† will consist of the hopping terms
from odd sites to even sites. The Schro¨dinger equation can
then be written as two equations:

hceven5ecodd, ~2!

h†codd5eceven. ~3!

These equations lead to

h†hceven5e2ceven, ~4!

hh†codd5e2codd. ~5!

The above equations reduce the size of the matrix of
N3N Hamiltonian to N/23N/2. Further, from the above
equations, it is clear that the eigenvalues come in pairs6e,
and their eigenvectors are related by

ce
even5c2e

even , ~6!

ce
odd52c2e

odd . ~7!

A direct consequence of the above is that the density
states is symmetric for each realization of the disorder.
exploiting the particle-hole symmetry, we gain efficiency
our numerical calculation.

The density of states can be obtained by directly dia
nalizing large matrices. In this approach, the difficulty is th
we have to use large matrices which do not have signific
finite-size effects. Since we are interested in the property
the singularity at the band center, which by particle-ho
symmetry lies ate50, we need to get enough statistics ne
the band center. We identify finite-size effects by compar
the results of different sizes.

The other approach to calculating the density of states
recursive method. First, the dense matrix is cut off at a ra
large enough, so that the remaining part is an accept
approximation for the original matrix of arbitrary size.@For
finite range hopping, this method gives no approximation
this stage, but for long range~power-law hopping! this is a
different cutoff scheme, with a somewhat different finite-si
effect.# Then the matrixH2e is transformed into diagona
form by a similarity transformation, which rotates certa
columns and rows to eliminate off-diagonal terms. The
maining diagonal elements are not eigenvalues, but they
tain the signature of the matrix, i.e., a positive element i
plies an eigenvalue satisfyingEi.e, a negative elemen
corresponds to an eigenvalue satisfyingEi,e. By counting
the number of positive or negative diagonal elements we
obtain the integrated density of states. This process can
continued for arbitrary length with no finite-size effect as
direct diagonalization, until the statistical error of the int
grated density of states is smaller than our requirement.
nearest-neighbor model, the recursion equation for diago
element is
1-2
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zn52e2
Hnn21

2

zn21
,

where Hnn21 is the only off-diagonal term in the Hamil
tonian,zn is the remaining diagonal element after the tra
formation. Supposezn has a distributionF(z) asn→`, then
F(z) is given by the integral equation

F~z!5E
2`

1`

dS z1e1
x

j D P~x!F~j!dxdj,

whereP(x) is the distribution function ofHnn21
2 . Although

this equation is similar to Dyson’s approach,1 it has not been
solved analytically due to the peculiar argument of thed
function. The numerical approach is just to generate a
quence ofzn and calculate its distribution.

To take care of the finite-size effect introduced by t
cutoff, we compare results using different cutoffs. Such
procedure allows us to ascertain the range of energies
which the integrated density of states has converged:
lower the energy, the longer the cutoff required~the cutoff
required varies roughly logarithmically with energy!. For a
fixed cutoff, the energy variation of the integrated density
states obtained by this method mimics that of the nea
neighbor, i.e., finite range model—this sets the lower bou
of energies close to the band center for which this metho
applicable for that cutoff.

Once we have obtained the eigenfunctions by direct
agonalization, we can calculate the correlation function
the corresponding spin model. The Jordan-Wign
transformation8 transforms theXY-spin chain in zero externa
field to a half filled band of fermions, because the followi
identity:

(
i

Si
z5(

i
ci

†ci2N/2. ~8!

The ground state fills theN/2 states with negative energ
which we can get by diagonalizing the Hamiltonian. We c
further calculate the spin correlation function on the grou
state. We compute thezz part of the spin-spin correlation
function defined by

C~ i , j !5^Si
zSj

z&. ~9!

^•••& denotes the expectation value in the ground st
while the bar on top denotes ensemble average over the
order. WithSi

z5ci
†ci2

1
2 , and iÞ j , the correlation function

can be written as

C~ i , j !5^cj
†ci

†cicj&2
1

4
~10!

where we have used the fact^ci
†ci&5 1

2 due to half filling.
The Jordan-Wigner transformation contains a phase fa
due to the anticommutation relation of fermion operators
different sites, but the phase factor coming from differe
fermion operators cancels each other in our expressio
C( i , j ). In the random singlet phase4 appropriate for describ
ing the nearest-neighbor only model in the spin operator
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guage, all correlation functions have the same dependenc
distance, so here it is adequate to calculate thezzcorrelation
function to get the spacial dependence. The four-ferm
term can be expanded into a Hartree term and a Fock te

^cj
†ci

†cicj&5 (
n,m,occupied

cn
†~ i !cn

†~ i !cm~ j !cm~ j !

2cn
†~ i !cn

†~ j !cm~ j !cm~ i !.

Here the sum is over all occupied states, i.e., allN/2 states
with negative energy. The Hartree term can be evaluated
rectly to be 1/4 because the wave functions are orthonor
using Eqs.~6! and ~7!. Therefore the correlation function i
given by the Fock term only. Further, ifi and j are on the
same sublattice, we see from Eqs.~4! and~5! thatcn( i ) and
cn( j ) (n is amongN/2 occupied states! are both eigenvec-
tors of eitherh†h or hh†, and consequently orthogonal t
each other. Thus, wheni andj are on the same sublattice, th
correlation function is exactly zero. In the numerical resu
presented below, we only display the spin-correlation fu
tions between two sublattices, andC( i , j ) is replaced by
C(x) where 2x115u i 2 j u,

C~x!52 (
m,n,occupied

cn
†~ i !cn

†~ j !cm~ j !cm~ i !. ~11!

This expression can be evaluated directly, but since the c
puting time for evaluatingC(x) is even more than that re
quired for diagonalization, the system sizes we use
smaller than for diagonalization. The data presented forC(x)
are all obtained from systems of 256 sites. However, we
able to discern the behavior reasonably well from the data
C(x) subject to this limitation.

IV. DENSITY OF STATES

Our results on model A show that the density of sta
remains singular at the band center when the long-range
pings are present. Figure 1 shows the density of statesr(e)
obtained by diagonalization as a function of energye on a
double logarithmic plot for both the nearest-neighbor mod
and for the long-range model for different values of t
power-law exponents. As can be seen, the singularity at th
band center (e50) persists at least for larges, though its
magnitude clearly decreases. The inset of Fig. 1 comp
the data for the nearest-neighbor model along with the d
for the lowest power law (s50.6) on a linear scale, which
gives a clearer view of the extent of this decrease. For qu
titative purposes, it is better to plot the same data
@r(e)e#1/3 vs lne. On such a plot, shown in Fig. 2, th
nearest-neighbor model is supposed to lie on a straight l
which it clearly does.

Further, the curves show little deviation from the neare
neighbor model as long ass.3. The deviation for smallers
are consistent with the singularity being gradually weaken
ass decreases; if we fit the data withr(e);1/eu ln euv then
whens52, the best fitv is about 5. Ass becomes lower
than 1, direct diagonalization is almost incapable of reve
ing any detail of the singularity: We only see a large value
1-3
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CHENGGANG ZHOU AND R. N. BHATT PHYSICAL REVIEW B68, 045101 ~2003!
the band center, and the density of states approaches
Wigner semicircle.15 This can actually be proved using th
supersymmetry method in Ref. 11. Nevertheless, the ther
dynamic limit remains well defined up tos50.5, below
which the bandwidth starts to increase with system size,
we need to scale the hopping magnitude with system siz
have a sensible thermodynamic limit. This critical value ofs
can be predicted by writing the model in path-integral for
using either replica technique or supersymmetry, and ave
ing over the random variables. Such an approach give
four-fermion term proportional toSu i 2 j u22s, wherei and j
are site indices, therefore whens is less than 0.5, the sum
will diverge.

We have diagonalized several different sizes of sample

FIG. 1. Density of states of model A for different values of t
power-law exponents, shown on a double logarithmic plot, show
ing the singularity at the band center (e50). The inset shows the
data on a linear scale. The singularity becomes very weak whes
is less than 2, and is not discernible for the sizes studied whens is
below 1.

FIG. 2. The same data as in Fig. 1, plotted in a different way
motivated in the text. As expected, the density of states of
nearest-neighbor model asymptotically falls on a straight line. T
upwards bending of the curves with decreasings, evident fors
,3 shows the weakening of the density of states singularity by
long-range hopping.
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ensure that the data shown are not corrupted by finite-
effects. Figure 3 shows an example of a finite-size effe
which appears as a size-dependent rounding of densit
states at low energy. All the data plotted correspond toN
51024 sites unless stated otherwise, and do not suffer
nificant finite-size effects. The results of model B are ve
similar to model A, except that the smallests for a proper
thermodynamic limit to exist is 1.

Figure 4 shows our results for the density of states
tained using the recursive method. Here, one obtains the
tegrated density of statesN(e) ~from 0 to e). For the
nearest-neighbor model, the exact asymptotic form is gi
by

s
e
e

e

FIG. 3. Finite-size effects on density of states, which appea
the low energy end of these curves. Data are density of state
four different size systems with the sames52.5, with length vary-
ing from N5128 to 1024.

FIG. 4. Integrated density of states, computed by the recur
method, with cutoff at 100th neighbor. Within the displayed ene
range, these curves are checked to be free of effects due to the
cutoff in the hopping range. Note that the curves are smoother
the results obtained from straight diagonalization. The near
neighbor model is expected to asymptotically fall on a straight l
with a slope equal to21. Curves fitted by the formulaN(e)
;1/u ln euv, yield v somewhat larger than the value 2 appropriate
the nearest-neighbor model, fors below 3.
1-4
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N~e!;
1

u ln eu2 .

Figure 4 plots the inverse square root ofN(e) versus lne; for
the nearest-neighbor model, the expected straight line be
ior is seen. For power-law hopping, the data shows mea
able curvature certainly fors52.5. For largers it is difficult
to see whether the data suggest curvature, or simply a ch
ing slope with decreasings. While it is tempting to fit these
curves with a form likeN(e);u ln eu2l , which will lead to a
singularity in the density of states liker(e);1/(eu ln eul11),
the data are better fit with severall. This suggests that cor
rections to the asymptotic form may be important for pow
law hopping.

In Figs. 5 and 6, we show the accuracy of this recurs
method. Figure 5 shows a direct comparison of the t

FIG. 5. Comparison between the recursive method and the
rect diagonalization method for the density of states. The s
curve is by direct diagonalization, while the points are density
states obtained by taking the difference of integrated density
states from the recursive method.s54 is used. The agreemen
between the curves is good, and no systematic errors are foun

FIG. 6. Convergence of the recursive method exhibited us
different cutoff parameters for the hopping. Small values of
cutoff lead to deviations starting from higher energies.s54 is
used.
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methods.The recursive method agrees with the diagona
tion results before the finite-size effect sets in. Figure
shows the convergence of the recursive method as the r
of cutoff is increased.~Below a certain energy, which corre
sponds to distances beyond the cutoff length, the recur
method will behave like the nearest model, since the w
function spreads out of the range of hopping.!

The density of states allows us calculate the specific h
and spin susceptibility for this model of noninteracting fe
mions. Using the standard formulas,16 we can see that the
specific-heat prefactor (g, wherecv5gT) and susceptibility
(x) at low temperature are singular at the center of the ba
Thus in the vicinity of the band center the zero temperat
susceptibility is the form

x;
1

Tu ln Tuv21

if the singularity in density of states is 1/eu ln euv. A similar
formula holds forg.

V. LOCALIZATION LENGTH

The nearest-neighbor model is known to have a singu
ity in the localization length (j) at center of the band. Its
asymptotic form is

j;u ln eu. ~12!

This singularity can be deduced from the singularity of de
sity of states using the Thouless theorem.5 However, in the
long-range hopping model, the theorem does not apply,
our numerical calculation suggests that the behavior of
two models is rather different.

All states with nonzero energy are found to decay from
central maximum in both models, and the decay becom
slower as the band center is approached, as in the nea
neighbor model. However, two models have differe
asymptotic behavior at long distance.

In the case of model A which has genuine long-ran
~power-law! behavior of the hopping parametert i j , the tail
of the wave functions actually decays in a power-law ma
ner, c(x);x2s. This form is obviously determined by th
power-law long-range hopping term. If we apply the usu
method of looking at the asymptotic behavior to determ
localization length, the localization length is infinite for an
power-law exponent!

In the case of model B, the wave function is found to
decaying exponentially at long distances, like the near
neighbor model, and the localization length can be obtai
by several methods, which agree with the theoretical pre
tion.

Figure 7 shows a double-logarithmic plot of the averag
probability density~wave function amplitude squareducu2)
as a function of the distance from the center of the wa
function, averaged over typically 512 states, as a function
energy away from the band center for model A. At lon
distances, the behavior is clearly linear on this double lo
rithmic plot, implying a power-law decay at long distance
Fitting the data shows clearly that the decay is related

i-
d
f
of

g
e

1-5
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the power-law behavior oft i j — the tail of ucu2 decays as
ux2^x&u22s. This tells us that we cannot use the localizati
length, as defined by Thouless for an exponentially decay
state here. However, we may usefully define moments of
wave function to compute, for example, inverse participat
ratios.17

The problem of defining the localization length in mod
A is not shared by model B, where we find that the wa
functions always decay exponentially. To show this diff
ence, in Figs. 8–11 we have plotted typical wave functio
for model A and model B~on a log-linear plot of probability
density versus distance! near the center and in the tail of th
band. The difference between the two models near the ce
of the band is not obvious due to the large fluctuations, bu

FIG. 7. Double logarithmic plot of the probability density in re
space for individual eigenstates plotted from the center of e
state, averaged over eigenstates with a given energye for model A
with s53.5. Small values ofe correspond to states near the ba
center. We can see as the energy approaches the band cent
states become more delocalized. In the tail, for all energies,
profile of the wave function actually decreases in a power-law fa
ion, with an exponent exactly determined by the value ofs. Similar
plots for other values ofs in model A show the same feature. Th
inset with the probability density on a semilog plot, shows disti
curvature in the tail, unlike an exponentially localized state.

FIG. 8. A typical wave function of model A near the band cen
~small e) shown on a log-linear plot.
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the tail of band, they look clearly different—model B show
straight exponential decay~see Fig. 10! down to 50 orders of
magnitude forucu, while model A~see Fig. 9! shows clear
upwards concave curvature in the tail, characteristic o
slower decaying function~like a power law! at long dis-
tances.

VI. SPIN-CORRELATION FUNCTION

We now present results for the spin-spin correlation fu
tion for the associated model in terms of the spin opera
obtained by a Jordan-Wigner transformation. The motivat
is to compare the results with those obtained for the lo
range random antiferromagneticXY spin chain.13 We reiter-
ate that because of long-range hopping, our model cont
terms in addition to those in the pure power-lawXY model
studied by Houck and Bhatt; however, because of the e
tence of the same long-range dependence in both stu
there may be several points in common.

Figure 12 shows the average correlation functionC(x)

h

the
e
-

t

r

FIG. 9. A typical wave function of model A away from the ban
center~largere) on a log-linear plot. The tail shows clear curvatu
on this plot, implying a functional form that decays slower th
exponential.

FIG. 10. A typical wave function of model B away from th
band center. A clear exponential decay of the wave function am
tude over 50 decades is seen, as in the nearest-neighbor mod
1-6
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obtained by averaging 256 samples of model A each hav
256 sites plotted on a double logarithmic plot. All the valu
of C(x) are negative~corresponding to antiferromagnet
correlations!. Our results suggest that there are three regi
of distinct behavior, which can be summarized as given
low:

For fast power-law decays~i.e., exponentss.2), the
long-distance behavior of the correlation function rema
unchanged from the nearest-neighbor model. Thus in Fig.
the curves are parallel to each other at largex values, con-
sistent with the result for the nearest neighbor model,
which a slope of 2 is predicted.10 ~For example, a best fit o
C(x) for x within the interval@10,30#, s52.2 yields a slope
of 1.97!.

Whens gets below 2, the slope begins to change. Fos
close to but less than 2, the slope appears to be given bs
itself, implying C(x);x2s. @A least-squares fit toC(x) of

FIG. 11. A typical wave function of model B near the ban
center. Despite strong fluctuations, the main profile is basically
ponential, as in the nearest-neighbor model.

FIG. 12. Spin-spin correlation function in the ground stateT
50), for the corresponding spin model obtained using a Jord
Wigner transformation. The bold straight line, which decays
1/x2, is a guide for the eye. We see that whens is above 2, includ-
ing nearest-neighbor model,C(x) exhibits this inverse square be
havior. Belows52, C(x) is better fitted by 1/xs. More sample
averaging is necessary to smooth the noisy tail at long distanc
04510
g
s

s
-

s
2,

r

the formC(x)5a/xv givesv51.79 fors51.8, v51.44 for
s51.5, andv51.12 fors51.3.# Our numerically exact re-
sults thus show that the model’s magnetic counterpar
likely to change its low-energy behavior for power-law e
ponentss below 2. This is the value around which Houc
and Bhatt13 found that the perturbative real-space RG pro
dure appears to break down, perhaps signaling a chang
phase.

Below s;1, the deviations ofC(x) from the nearest-
neighbor model become rather significant. To exhibit t
more clearly, we show a linear plot in Fig. 13.C(x) seems to
decay very slowly, and our data are consistent with it a
proaching a finite~negative! value, implying antiferromag-
netic order.~For example, the curve fors50.7 is well fitted
by a/xv1d, with v50.49.! We caution, however, that fo
such low power-law decays, finite-size effects can be lar
and more detailed calculations with larger system sizes
more samples is necessary before this result can be s
with certainty from numerical studies.

In summary, the numerical results on the spin-correlat
function from the long-range fermion model~which we can
solve numerically exactly! supports the earlier observation
on the XY chain with random long-range couplings usin
perturbative numerical RG methods,13 that the random sin-
glet phase is unstable for power-law couplings with exp
nents less than 2. However, unlike the numerical RG stu
which sees this as a breakdown of the RG scheme, we
able to go into the new phase, which appears to be cha
terized by continuously varying exponents, like a critic
phase. We also find evidence for a possible transition to lo
range order at still smallers. It should, however, be borne in
mind that these observations are from numerical calculati
in finite systems, and subject to statistical errors due to fin
sampling of the quenched random variable.

VII. SUMMARY

In this paper, we have presented results of a numer
study of a one-dimensional lattice model of noninteract
fermions with random long-range~power-law! hopping,

x-

n-
s

.

FIG. 13. Spin-spin correlation function, as in Fig. 12, plotted
a linear scale. Fors,1 C(x) decays very slowly, and seems t
approach a constant value at large distances.
1-7
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which maintains particle-hole symmetry of the neare
neighbor model by allowing hopping only between even a
odd sites~i.e., no hopping allowed between odd sites,
between even sites!. We have studied two models—one wi
genuine power-law hopping, and the other with long-ran
hopping with a power-law falloff of the probability of such
hopping to be present. The results on density of states, lo
ization, and spin-correlation function of the two models ha
been presented and analyzed.

For the density of states, we observe that the singularit
the center of the band, present for the nearest-neigh
model, is weakened by long-range hopping~model A!. The
change is gradual, and at least for power-law exponents
greater than 3, is consistent with a change in the prefacto
the singularity. Fors less than 3, though, the numerical da
for the density of states in the range available appear to
better with a somewhat different power of the logarithm
the energy. Beyonds51, the data are consistent with va
ishing singularity being present, untils,0.5, when the ther-
modynamic limit becomes ill defined. Similar results a
seen in model B, except that the thermodynamic limit b
comes ill defined ats51.

The two models exhibit rather different behavior of t
electronic wave functions. Model B is conventional, in th
its wave functions are exponentially localized, just as
eigenstates of nearest-neighbor model. In model A, howe
the wave functions are actually localized in a power-l
manner rather than exponential. Consequently, the u
definition of localization length in terms of the logarithm
the long-distance behavior of the wave function is inval
however, several inverse participation ratios can still be
fined.
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By transforming the fermion model back to a spin mod
using Jordan-Wigner transformation, we calculated the sp
correlation function in the ground state. Based on the d
three different phases may be possible:~i! the random singlet
phase, which seems to be stable for power-law expon
down tos52; ~ii ! a critical type phase with a continuous
varying exponent of the power law characterizing the sp
spin correlation function betweens52 ands51; and~iii ! a
possibly long-range ordered phase fors,1.

We conclude with a discussion of some related mod
studied in the literature. Reference 14 studies a model sim
to our model A. Both models founds52 (2a in Ref. 14! to
be a critical exponent, although our model has a built
particle-hole symmetry. A model of quantum percolati
with power-law dilution has been studied previously,18 which
has several significant differences from our model B:~i! This
models allows hopping between any pair of sites, con
quently it does not have the particle-hole symmetry of o
models;~ii ! a small on-site disorder is added in the Ham
tonian; and~iii ! The hopping amplitude is not random. Und
such conditions, a localization-delocalization transition is o
served in the region 1,s,1.5. Very recently after the
completion of this work, an analytical study of the Anders
transition in a one-dimensional model with nonrando
power-law hopping has appeared.19
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