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Ground-state properties of nanographite systems with zigzag edges
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A p-electron network in nanographite systems with zigzag edges exhibits strongly localized edge states,
which are expected to have peculiar properties. We study effects of electron-electron interactions on ground-
state properties of zigzag nanographite ribbons and open-ended zigzag nanotubes by means of the weak-
coupling renormalization group and the density-matrix renormalization-group method. It is shown that the
ground state is a spin-singlet Mott insulator with finite charge and spin gaps. We also find that the edge states
are robust against the electronic correlations, resulting in edge-effective spins that can flip almost freely. The
schematic picture for the low-energy physics of the systems is discussed.

DOI: 10.1103/PhysRevB.68.035432 PACS number~s!: 73.22.2f, 71.10.Hf, 75.75.1a
s
a
ti
th
o

ru
e

de

te
.

ul
hi
ar
ta
id

liz
bu
be
c

y

d
hi
rm
im
t
a

za
,
at
.
ra
z
za

in

b’s
he
ag
a-

gy

er-
sing

ion
p
he
D
of
the
ro-
ly-

ting
ron-
rgy

del
w

op-
a-
rgy
ng
ings
an
s
rge
The
s fi-
ex-

ym-
IV.

the
ps,

elec-
y to
I. INTRODUCTION

Since the discoveries of fullerenes1 and carbon nanotube
~CNTs!,2 the nature of ‘‘nanographites,’’ graphite-based m
terials with nanometer sizes, has attracted much atten
from both fundamental science and applications. One of
most striking features of the materials is a wide variety
properties they show depending on their geometrical st
ture, i.e., size, shape, surface condition, and so on. For
ample, CNT’s can be either metallic or semiconducting
pending on the wrapping superlattice vector.3 Such a
diversity of possible functions realized in nanographi
makes them promising candidates for nanoscale devices

Recently, it has been pointed out that ap-electron system
in nanographites with zigzag-shaped edges exhibits pec
electronic states strongly localized around the edges, w
are termed ‘‘edge states.’’4–6 Such a state does not appe
around armchair-shaped edges. The nature of the edge s
has been studied in the graphene sheet of nanometer w
named the ‘‘nanographite ribbon’’~NGR!. Applying a tight-
binding model for the NGR with zigzag edges, Fujitaet al.
have shown that the system has the electronic states loca
on the edges, which penetrate from the edges into the
decaying exponentially.4,5 The edge states are believed to
responsible for a paramagnetic behavior observed in a
vated carbon fibers, which are taken to be an assembl
nanographite particles.7,8

Since the edge states are characterized by almost flat
persions in a certain range of the momentum space, w
result in a sharp peak in the density of state at the Fe
energy, possible instabilities to various perturbations are
portant and have been investigated to date. Concerning
Peierls instability due to electron-phonon interactions, it h
been shown that no bond alternation occurs in the zig
NGR’s with realistic interaction strength.9 On the other hand
effects of electron-electron interactions on the edge st
have been investigated by a mean-field approximation4,10

The studies have shown that an infinitesimal on-site inte
tion causes a spontaneous spin polarization at the zig
edges. Similar results have been obtained for the zig
CNT’s by the density-functional theory.11,12 However, it is
0163-1829/2003/68~3!/035432~9!/$20.00 68 0354
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also known that the one-body approximation adopted
these approaches is not appropriate for one-dimensional~1D!
quantum systems such as NGR’s and CNT’s. In fact, Lie
theorem13 prohibits the spontaneous spin polarization for t
Hubbard model in the nanographite systems with zigz
edges. More detailed analyses with controlled approxim
tions are, therefore, desirable for clarifying the low-ener
properties of the nanographites.

In this paper, we study effects of electron-electron int
actions on the nanographite systems with zigzag edges, u
two powerful techniques: the weak-coupling renormalizat
group ~RG! and the density-matrix renormalization grou
~DMRG! method.14 These approaches allow us to treat t
strong quantum fluctuations in a controlled way for the 1
systems such as NGR’s and CNT’s. With the inclusion
electronic correlations, we show that the ground state of
zigzag NGR is a gapped spin singlet and the artificially b
ken symmetry of spin rotations in the mean-field type ana
sis is restored by quantum fluctuations. It is rather interes
that the edge states survive in the presence of elect
electron interactions and play a crucial role in the low-ene
regime.

The rest of this paper is organized as follows. The mo
is presented in the following section. In Sec. III, we sho
results of the weak-coupling analysis. We first discuss pr
erties of the tight-binding model of the NGR system. An
lytical eigen-wave functions and the corresponding ene
spectrum are shown. And then, by keeping the low-lyi
edge states only and taking the electron-electron coupl
into account, we derive the low-energy effective Hamiltoni
in the continuum limit. It is shown that all coupling term
included in the Hamiltonian are relevant because of a la
dynamical exponent of the dispersion of the edge states.
enhanced density of states at the Fermi energy generate
nite charge and spin gaps and, consequently, the system
hibits a spin-singlet ground state without spontaneous s
metry breaking. The DMRG results are presented in Sec.
We find that in the presence of the Hubbard interaction
ground state is a spin singlet with finite charge and spin ga
and no spontaneous spin polarization appears. Besides,
trons around the zigzag edges correlate ferromagneticall
©2003 The American Physical Society32-1
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HIKIHARA, HU, LIN, AND MOU PHYSICAL REVIEW B 68, 035432 ~2003!
compose effective spins, which are easily polarized by
plying an external field, while electrons in the bulk form
spin-singlet state, which are hardly magnetized. The effec
spins are localized around the zigzag edges even for a ra
strong coupling, showing that the localization character
the edge states persists robustly against the electron-ele
interactions. The schematic picture for the low-energy ph
ics of the systems is discussed. Finally, our results are s
marized in Sec. V.

II. MODEL HAMILTONIAN

In this paper, we consider ap-electron system at half
filling on a honeycomb lattice with zigzag edges, as shown
Fig. 1. The effect of electron-electron couplings is incorp
rated by introducing the on-site Hubbard interactionU. The
Hamiltonian is

H5H01HU , ~1!

H052(
r,r8

(
a5↑,↓

t~r,r8!@ca
†~r!ca~r8!1H.c.#, ~2!

HU5U(
r

n↑~r!n↓~r!, ~3!

where ca(r) @ca
†(r)# is the fermion annihilation~creation!

operator at the siter5(x,y) andna(r)[ca
†(r)ca(r). Within

tight-binding approximation, the hopping amplitudet(r,r8)
is assumed to bet between nearest-neighbor sites and oth
wise 0. The values oft reported in the literature range from
2.4 to 2.7 eV for CNT’s~Refs. 15–17! while t53.0 eV for
graphite.3 As for the on-site repulsion, on the other hand, t
value of U in polyacetylene was estimated to beU
56 –10 eV~Refs. 18 and 19! although the definite estimat
of U has not been made for nanographite systems as fa
we know. We may, therefore, expect that the ratio ofU to t in
the nanographite systems considered here is also of the o
of unity, i.e.,U/t;O(1). In this work, we treatt andU as
parameters.

FIG. 1. Honeycomb lattice of carbon atoms in the zigzag NG
and CNT’s. The open circles and gray squares represent carbon
of sublatticesA andB, respectively.
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The definition of the site index is shown in Fig. 1. Th
system size in thex andy directions are denoted byLx and
Ly , respectively. In thex direction, the open boundary con
dition is imposed for the zigzag NGR~Ref. 20! while the
periodic boundary condition is imposed for the zigzag CN
In they direction, the open boundary condition is imposed
the zigzag edges. We setLy to be even so that the syste
always has the reflection symmetry in they direction. All
carbon sites at the edges are assumed to be terminate
hydrogen atoms. We note that the system is bipartite and
number of sites in each sublattice is equal,NA5NB . At the
natural filling, with onep electron per site on average, th
system is particle-hole symmetric. Thus, one can ap
Lieb’s theorem13 to the system, which prohibits spontaneo
spin polarizations in the ground state.

III. RENORMALIZATION GROUP

A. Band structure

To study the system in the weak-coupling limitU!t, it is
natural to consider the case ofU50 and analyze the ban
structure first. We thus begin with diagonalizing the hoppi
HamiltonianH0. Since the Hamiltonian is translational in
variant along thex direction, we can perform the partial Fou
rier transformation,21,22

ca~kx ;y!5
1

ALx
(

x
exp@2 ikx~x1d!#ca~x,y! ~4!

where d51/2 for y50, 1 ~mod 4! and d50 for y52, 3
~mod 4!. By the transformation, the hopping HamiltonianH0
is mapped into bond-alternating chains decoupled from e
other,

H̃05(
kx

H̃0~kx!,

H̃0~kx!52 (
y51

Ly21

(
a

t̃ ~y!@ca
†~kx ;y11!ca~kx ;y!1H.c.#,

~5!

where t̃ (y)5t1[2t cos(kx/2) if y is odd, while t̃ (y)5t2[t
if y is even. It is important to note that the effective hoppi
t1 depends on the momentumkx and, consequently, the mo
tions in thex andy directions are entangled.

Each of the bond-alternating chains is composed of t
sublatticesA ~odd y) andB ~eveny). The hopping between
these two sublattices lead to the coupled Harper equatio

2t1f~yA!2t2f~yA12!5Ef~yA11!, ~6!

2t2f~yA21!2t1f~yA11!5Ef~yA!, ~7!

whereyA51,3,5, . . . ,Ly21 are the lattice points of sublat
tice A. The open boundary condition in they direction re-
quiresf(Ly11)50 andf(0)50. From the coupled Harpe
equations, the wave functions of the eigenstates and the

s
ites
2-2
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GROUND-STATE PROPERTIES OF NANOGRAPHITE . . . PHYSICAL REVIEW B 68, 035432 ~2003!
responding energy spectrum can be obtained in an analy
form. For the chains witht1.t2 (ukxu,2p/3), the wave
function is given by

C~kx ;yA![S fpy
~yA!

fpy
~yA11!D 5S 6sin@pyyA1w~py!#

sin@py~yA11!#
D ,

~8!

where the extra phasew, chosen to be in the range
<w(py),p/2, depends on the magnitude of momentumpy ,

w~py!5tan21F t12t2

t11t2
tanpyG . ~9!

Finiteness ofLy causes the quantization ofpy, which satis-
fies the following constraint:

~Ly11!py1w~py!5mp, ~10!

wherem is an integer. The energy spectrum for these state
given by

E~kx ,py!56At1
21t2

212t1t2cos~2py!. ~11!

Here we emphasize that the momentum in they direction,
ky , is no longer a good quantum number due to the o
boundaries. However, the magnitude of the momentumpy
remains a good one and would be quite helpful for identi
ing dominating interactions later. Since the wave functi
Eq. ~8!, is extended into the bulk sites, we call the sta
‘‘extended states.’’

For the chains witht1,t2 (ukxu.2p/3), peculiar local-
ized states show up. One finds that there are onlyLy22
extended states in Eq.~8!. The missing two states are linea
combinations of localized states near the edges with com
momentumky56p/26 ig. The wave functions for thes
edge states are

C~kx ;yA!5eipyA/2S 6sinh@g~Ly112yA!#

sinh@g~yA11!#
D . ~12!

The imaginary part of the momentumgÞ0 is the inverse of
localization length of the edge states and satisfies the
straint

~Ly11!g5tanh21F2
t11t2

t12t2
tanhgG . ~13!

It is clear that the nonzero solution ofg only exists when
t1,t2. The energy spectrum for these edge states is give

E~kx ,g!56At1
21t2

222t1t2 cosh~2g!. ~14!

We thereby obtain the whole band structure of the tig
binding Hamiltonian, Eqs.~11! and~14!. The band structure
for Ly512 is shown in Fig. 2, as an example. It is wor
noticing that the energy spectrum of the edge states is alw
lower than those of the extended states. It means that
edge states would dominate the low-energy physics in
weak-coupling limit, while the extended states in the bulk
not play a crucial role because all of them are suppresse
a finite gap of ordert/Ly .
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B. Renormalization group analysis

Now, we are ready to treat the interacting Hamiltoni
HU . After the partial Fourier transformation, the interactin
Hamiltonian is written as

H̃U5
U

Lx
(
$kxi

%
(
y51

Ly

d~kx1
2kx2

1kx3
2kx4

!

3c↑
†~kx1

;y!c↑~kx2
;y!c↓

†~kx3
;y!c↓~kx4

;y!. ~15!

Thed function represents the momentum conservation in
x direction. The Hamiltonian can be rewritten in terms of t
eigenstates ofH̃0 by expanding the electron operator on t
diagonal basis,

ca~kx ;y!5(
p

fp~y!cpa~kx!, ~16!

where(p is taken for all the extended statesp5py and, if
ever, the edge statesp56g. The resultant Hamiltonian is

H̃U5
U

Lx
(
$kxi

%
(
$pi %

d~kx1
2kx2

1kx3
2kx4

!

3(
y

@fp1
* ~y!fp2

~y!fp3
* ~y!fp4

~y!#

3cp1↑
† ~kx1

!cp2↑~kx2
!cp3↓

† ~kx3
!cp4↓~kx4

!. ~17!

In general,pi are incommensurate and the dominant con
bution comes from the pairwise equalpi vertices while other
kinds of vertices only occur in a limited tiny phase spac
This great reduction of dominant interactions enables us
classify them into three categories.

~i! The interactions involving only the edge states: Sin
the normalized wave function of the edge states is of orde
near the edge and vanishingly small in the bulk, the wa
function product offpi

(y) in Eq. ~17! after summation over
y is of order 1. Thus the edge-edge interaction rema
O(U).

~ii ! The interactions involving a pair of the extended sta
and a pair of the edge states: Due to the spreading of w

FIG. 2. Band structure of the zigzag NGR withLy512. The
bold lines represent dispersions around the Fermi point,kx5p.
2-3
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HIKIHARA, HU, LIN, AND MOU PHYSICAL REVIEW B 68, 035432 ~2003!
function in the extended state, the summation of the w
function product in Eq.~17! is roughly ufpy

(1)u2;1/Ly .

The edge-bulk interaction is, therefore, onlyO(U/Ly) and
becomes smaller as the width of the NGR grows.

~iii ! The interactions involving only the extended stat
From the similar argument to the case of the edge-bulk
teraction, the bulk-bulk interaction turns out to beO(U).
The effect of this interaction in the bulk system (Ly→`) has
been studied in Refs. 21 and 23 by the weak-coupling an
sis. It has turned out that the interaction opens a finite ene
gap even if the noninteracting HamiltonianH̃0 includes gap-
less chains withkx562p/3.

Let us move on to deriving the low-energy effectiv
Hamiltonian in the continuum limit. In the weak-couplin
limit, the effective theory is dominated by the low-lying edg
states nearkx'p because all other bands in the bulk a
gapped. Thus, we may keep only the edge states and ne
all the gapped modes. That is to say, only the kinetic ene
of the edge modes and the edge-edge interaction term
be considered in the limit. It is useful to construct the an
bonding and bonding fieldsc6a(x) from the field for the
edge states defined in Eq.~16!:

c6a~x!5E
2L

L dkx

2p
eikxxc6a~kx1p!, ~18!

c6a~kx!5
1

A2
@c1ga~kx!6c2ga~kx!#, ~19!

whereL is a momentum cutoff. Furthermore, we appro
mate the energy spectrum nearkx'p to the lowest nonvan-
ishing orderE6(k).6c(kx2p)z, where the6 signs stand
for the antibonding and bonding edge modes and the
namical exponentz5Ly21. The kinetic energy can then b
expressed in terms of the fieldsc6a(x) in the continuum
limit

H̃05E dx (
P56

PcPa
† ~x!~2 i ]x!

zcPa~x!, ~20!

where the constantc is set to unity for notation simplicity.
While it is rather straightforward to write down the k

netic terms in the form of Eq.~20!, expressing the edge-edg
interaction in terms of the field operators is far from trivia
Our strategy to go from lattice to continuum limit is to e
press the lattice operator for electrons in the edge sta
c̃a(x,y), in terms of the field operatorc6a(k) and relate it
to c6a(x) by the Fourier transformation. To achieve th
goal, we need to expressc̃a(x,y) in the eigenbasis ofH̃0:

c̃a~x,y!5E dkx

2p
eikxx (

P56
fP~y!cPa~k!. ~21!

Here a difficulty comes from the entanglement of summat
over kx andP. Sinceg depends on the longitudinal mome
tum kx as in Eq.~13!, the wave functionfP(y) also has an
implicit dependence onkx . As a result, the lattice operato
c̃a(x,y) is not simply related to the continuous fieldc6a(k)
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by the Fourier transformation, which requires the change
order between the summation overP and the integral over
kx . However, since the edge states withkx.p are localized
near the edges, it is reasonable to adapt the ‘‘sharp-ed
approximation, which assumes that all the wave functions
the edge states take the simple form as forkx5p, i.e.,

f6~y!5
1

A2
~dy,16dy,Ly

!. ~22!

Within the sharp-edge approximation, the relation betwe
the lattice and the field operators becomes very simple:

c̃a~x,1!5
eipx

A2
@c1a~x!1c2a~x!#, ~23!

c̃a~x,Ly!5
eipx

A2
@c1a~x!2c2a~x!#, ~24!

c̃a~x,y!50 ~2<y<Ly21!. ~25!

By substituting Eqs.~23!–~25! into the edge-edge interactin
Hamiltonian

Hee5U(
r

c̃↑
†~x,y!c̃↑~x,y!c̃↓

†~x,y!c̃↓~x,y!, ~26!

we obtain its continuum counterpart,

H̃ee5gc~J1
2 1J2

2 !1grJ1J22gsJ1•J2

1
gu

2
~ I 1I 2

† 1I 2I 1
† !. ~27!

Here theSU(2) invariant currents are defined as

JP[
1

2
cPa

† cPa , ~28!

JP[
1

2
cPa

† sabcPb , ~29!

I P[
1

2
cPa

† eabcPb , ~30!

wheres andeab denote the Pauli matrices and an antisy
metric tensor, respectively. The bare values of these c
plings generated by the on-site interactionU are gc5gr

5gs5gu5U. We note that Eq.~27! is the most genera
form of the interacting Hamiltonian that includes fou
fermion interactions with preserving theU(1)3SU(2) sym-
metry and the momentum conservation. In fact, one can
Eq. ~27! to consider more complicated short-range inter
tion, which would generate a different set of bare couplin

Finally, the low-energy field theory of the zigzag NGR
the continuum limit is described by Eqs.~20! and~27!. At the
tree level, the scaling dimensions of the all four-fermion
teractions ared(g)5z21 by simple dimension counting
Since the dynamical exponent is greater than 1 for the NG
2-4
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GROUND-STATE PROPERTIES OF NANOGRAPHITE . . . PHYSICAL REVIEW B 68, 035432 ~2003!
all the couplingsgc ,gr ,gs , and gu are relevant under the
RG transformation. However, we note that relevance of th
couplings does not necessarily warrant excitation gaps in
energy spectrum. To identify the ground state, it is neces
to apply another approach such as the bosonization t
nique. We will discuss it in the following subsection.

C. Mott insulating ground state

In this subsection, we consider what we can derive fr
the low-energy effective Hamiltonian obtained in the prec
ing subsection. One clue is the fact that the effective Ham
tonian has a form strikingly similar to the usual effecti
theory for 1D systems except for the large dynamical ex
nent z.1. Hence, we discuss the analogy between
NGR’s and a one-chain system to derive the ground-s
properties of the NGR. On the other hand, the spectrum
the low-lying edge states in the NGR can be viewed a
two-chain system, whose bonding and antibonding ba
touch the Fermi energy at one Fermi point as discussed
low. Therefore, it is also useful to consider the NGR in t
analogy with the two-chain system. We will see that both
analyses give the same conclusion: the NGR has a s
singlet ground state with finite charge and spin gaps.

Let us start with the first approach, i.e., considering
NGR in the analogy to a one-chain system at half filling.
this analogy, the fieldc1a (c2a) is regarded as a right
~left-! moving field operator. Since the dispersion of t
fields c6a(x) is not linear, the rigorous mapping from th
fermionic theory to the bosonic one is not possible. Howev
it is likely that the large dynamical exponentz just serves to
make all interactions relevant and we can still use
bosonization techniques to clarify physical properties of
ground states qualitatively. That is to say, we can treat
dynamical exponentz511e as a perturbation and still us
the conventional bosonization rules to study the phys
properties of the NGR’s. Under the assumption, we foll
conventional bosonization steps and introduce two pairs
bosonic fields

c6a~x!.Arei [fa(x)6ua(x)]/2, ~31!

wherefa(x) andua(x) are, respectively, the phase and d
placement fluctuations, which obey the commutation re
tion,

@fa~x!,ua8~x8!#522p i @11sign~x2x8!#daa8 . ~32!

Furthermore, we switch to the charge and spin basis defi
by

~fr,s ,ur,s!5
1

A2
@~f↑ ,u↑!6~f↓ ,u↓!#. ~33!

The effective interaction that is relevant to gap formation
Eq. ~27! can be written down in terms of these bosonic fiel

H̃ee5gscos~A2us!2gu cos~A2ur!. ~34!

The absence of their dual fieldsfr andfs in the interactions
comes from the charge and spin conservations. For the
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site interaction, bothgs andgu are positive and grow unde
RG transformation. Consequently, the corresponding bos
fields are pinned at specific values up to fluctuations

A2us.p, A2ur.0. ~35!

The signs of the couplings are of crucial importance he
Expanding the cosine term around the pinned values,
system acquires finite gaps in both charge and spin sec
Therefore, the ground state is a Mott insulator with bo
charge and spin gaps. The formation of the charge gap is
surprising because the electron density is commensurate
the underlying lattice structure. The finite spin gap indica
that the spin rotational symmetry is not broken sponta
ously and the ground state is a spin singlet, as predicted
Lieb’s theorem. The result differs from the mean-field theo
predictions where the quantum fluctuations are ignored.
believe that the strong fluctuations in 1D systems would
validate the mean-field approach and restore the symm
that is broken at the mean-field level.

It is worth noting that for the usual weakly coupled 1
system with linear energy spectrum, the bosonic fields ne
get pinned at the values listed in Eq.~35! because it is not
stable in the RG flow. However, the new phase here is sta
due to the large dynamical exponent that corresponds to
van Hove singularity in the density of states. We summar
the pinned values for each phase in Table I. To differenti
this new phase from the familiar charge density wave or
dimer phase, one needs to compute the order parameters
charge density modulationCs and bond dimerizationD de-
fined as

Cs[~21!x^aa
†~x!aa~x!&

.^c1a
† c2a&1^c2a

† c1a&, ~36!

D[
~21!x

2
^aa

†~x!aa~x11!1aa
†~x11!aa~x!&

.2 i ^c1a
† c2a&1 i ^c2a

† c1a&, ~37!

whereaa(x) is the lattice operator in the one-chain syste
and related to the fields asaa(x).eikFxc1a(x)
1e2 ikFxc2a(x) with kF5p/2. Using the relations

c1↑
† c2↑. ie2 iur /A2e2 ius /A2, ~38!

c1↓
† c2↓. ie2 iur /A2e1 ius /A2, ~39!

and substituting the pinned values of the bosonic fields,
obtain the expectation values of the order parameters.

TABLE I. Comparison between different phases.

Phase (A2us ,A2ur) Cs D

New (p,0) 0 0
CDW (0,p) Þ 0 0
Dimer (0,0) 0 Þ 0
2-5
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results are listed in Table I. It is clear that there is no lon
range order or symmetry breaking for the ground state of
zigzag NGR’s.

Now we take another perspective and view the NGR a
system of two chains coupled via an interchain hopping. F
ure 3~a! shows the band structure of the two-chain system
the special pointt rung/t leg52, wheret rung (t leg) is an ampli-
tude of the interchain~intrachain! hopping. As the hoppings
are tuned at the special value, the chemical potential
through the bonding~antibonding! band at single Fermi poin
kx5p (kx50) with vanishing Fermi velocityvF→0, rather
than two pairs of the Fermi points in general. On the ot
hand, both the bonding and antibonding bands of the lo
lying edge states in the NGR’s have single Fermi pointkx
5p with vF→0. Hence, in the low-energy limit, the pecu
liar band structure in the NGR’s can be viewed as a tw
chain system with shifting the momentum of the antibond
field kx→kx1p @see Figs. 2 and 3~b!#. One might worry that
the dynamical exponent in the NGR’sz5Ly21 may be dif-
ferent from that in the two-chain systemz52. However, the
dynamical exponentz in this limit only affects how the Ferm
velocity approaches 0 and should not give rise to qualita
difference.

In the weak-coupling limit, the lattice electron operat
aia(x) in the i th chain of the two-chain system can be d
scribed by two pairs of chiral fields

a1a~x!5
eipx

A2
@c1a~x!1eiQxc2a~x!#, ~40!

a2a~x!5
eipx

A2
@c1a~x!2eiQxc2a~x!#, ~41!

whereQ5p is the momentum difference between the Fer
points of bonding and antibonding bands in the two-ch
system. The relation of lattice operators to the field opera
for the two-chain system in Eqs.~40! and~41! are strikingly
similar to those for the NGR in Eqs.~23! and~24!, except the
momentum shiftQ. This enables us to translate the exci
tions and correlations in the two-chain system directly in
those for the NGR’s.

For on-site repulsive interaction, the ground state of
two-chain system is the Mott insulator with finite charge a
spin gaps. In addition, there exists neither broken symm

FIG. 3. Schematic picture of the band structure of~a! the two-
chain system witht rung/t leg→2, and~b! the same system with th
momentum shiftQ5p for the antibonding field. The bold line
represent dispersions around the Fermi points.
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nor local order parameter. This Mott-insulating phase
sembles the peculiar phase we discussed above by ma
analogy to the one-chain case. Thus, both approaches su
that the ground state of the NGR’s is a spin singlet with fin
charge and spin gaps.

The two-chain analogy also gives us information abo
the spin-spin correlation. It is known that the two-chain sy
tem has magnon excitations with spinS51 and momentum
P5(p,p). The momentum shiftQ in the x direction shifts
the low-lying magnon toP5(0,p). This means that the
spin-spin correlation functions in the NGR’s are ferroma
netic within the same edge and antiferromagnetic betw
opposite edges. This result is consistent with the fact that
sites in the same edge belong to the same sublattice, w
those in opposite edges belong to different sublattices.

IV. NUMERICAL RESULTS

In this section, we present numerical results for t
p-electron system~1! at half filling. Hereafter, we sett51.
Using the DMRG method with improved algorithm,14,24 we
have calculated various energy gaps and correlation fu
tions. The number of kept states is up tom51200 per block.
Numerical errors due to the truncation of the DMRG calc
lation are estimated from the difference between the d
with different m’s. We have checked them convergence of
the data and found that the adoptedm is large enough to
obtain sufficiently accurate results: For example, the trun
tion error of the energy gaps of the NGR’s and CNT’s a
typically less than 1023 and 1026, respectively. We discus
the results for the zigzag NGR’s and the zigzag CNT’s in
following subsections.

A. Zigzag nanographite ribbons

In this subsection, we show results on the zigzag NGR
We first discuss the results forLy54. In all the cases calcu
lated, we have found that the ground state belongs to
subspace ofM50, whereM is the total magnetization in the
system. In Fig. 4, we show the data of the charge and s
gaps defined as

Dc5
1

2 FE0S N

2
11,

N

2 D1E0S N

2
21,

N

2 D22E0S N

2
,
N

2 D G ,
~42!

Ds
(M )5E0S N

2
1M ,

N

2
2M D2E0S N

2
,
N

2 D , ~43!

whereE0(N↑ ,N↓) is the lowest energy in the subspace ofN↑
up-spin andN↓ down-spin electrons, andN is the total num-
ber of sites. ForLy54, both the energy gaps are extrapolat
to nonzero values atLx→`. The U dependence of the ex
trapolated gaps suggests that both of the gaps start to
from infinitesimalU, i.e., Uc50. We thus conclude that fo
arbitrary U.0, the ground state of the zigzag NGR’s is
spin singlet with finite charge and spin gaps, being consis
with the weak-coupling analysis.

To see how the spin polarizations are distributed in r
space, we have calculated the local spin polarization
2-6
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^Sz~r!&M5
1

2
^n↑~r!2n↓~r!&M , ~44!

where ^•••&M denotes the expectation value in the lowe
energy state in the subspace ofM. We have found that in the
ground state the local spin polarization^Sz(r)&M50 is 0 at all
sites within the numerical error, supporting that the grou
state is spin singlet. There is no spontaneous spin pola
tion. Figure 5~a! shows the distribution of the local spin po
larization in the magnetized state ofM51 for U51 and

FIG. 4. TheLx dependence of the energy gaps in the NGR’s
U51; ~a! the charge gapDc , ~b! the spin gapDs

(1) . The solid and
open circles represent the data forLy54 andLy56, respectively.
The numerical errors due to the DMRG truncation are smaller t
symbols. The gaps forLy54 are extrapolated by fitting the data
a polynomial formD(Lx)5D(`)1a/Lx1b/Lx

2 , wherea andb are
fitting parameters.~c! The U dependence of the extrapolated ga
for Ly54.

FIG. 5. Distribution of local spin polarization̂Sz(r)&M51 in the
NGR’s with ~a! Ly54 and~b! Ly56. The Hubbard coupling and
the total magnetization areU51 andM51. Open and gray circles
respectively, represent the positive and negative values of the
polarization while the areas of them are proportional to the ma
tude.
03543
-

d
a-

Ly54. As seen in the figure, the magnetization appears
most only at the edge sites. This suggests that the electro
the edge states are polarized by an external field more e
than those in the bulk. We note that the localization chara
of the magnetization seems to persist even for a rather la
coupling U54. In other words, the edge states survive
bustly against the electron-electron interactions even ifU
becomes larger than the hopping amplitudet.

In Fig. 6, we show the spin-spin correlation functions
the edge sites,

^Sz~x,1!Sz~x8,1!&M50 . ~45!

To reduce boundary effects, the correlations are calcula
between the sites of the same distance from the center o
NGR. The correlations turn out to be always positive, su
gesting a ferromagnetic coupling between the sites in
same edge. We have also found that the spin correlation
tween the sites in opposite edges is always negative,
antiferromagnetic. These behaviors are consistent with
expectation from the two-chain analogy discussed abo
The correlations decay exponentially for allU ’s reflecting
the finite spin gap,25 and are enhanced asU increases.

Finally, we discuss the dependence of low-energy prop
ties of the zigzag NGR’s on the widthLy . Since the low-
energy physics of the NGR’s is dominated by the edge sta
which are strongly localized around the zigzag edges, i
likely that the singlet-triplet spin gapDs

(1) , which corre-
sponds to the energy scale required to magnetize the e
spins, comes from the antiferromagnetic effective coupl
between the electrons in the edge states of opposite s
Thus, it is natural to expect that the spin gap decreases a
width Ly increases. To see this, we have performed calc
tions for the NGR withLy56.20 As can be seen in Fig. 5~b!,
the spin polarizations in the magnetized state ofM51 are
found to be strongly localized at the zigzag edges, sugges
that the edge states exist also forLy56. Furthermore, we
can clearly see in Fig. 4 that the spin gap for the sameLx

r

n

in
i-

FIG. 6. Ground-state spin-spin correlation functions in t
NGR’s with Ly54 and Lx520. The circle, square, and triangl
represent the data forU51, 2, and 4, respectively. The error ba
represent the numerical error due to the DMRG truncation.
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decreases as the width of the ribbonLy increases, as ex
pected. Unfortunately, the system size calculated forLy56
is not large enough to obtain the extrapolated gapDs

(1)(Lx

→`). Calculations for larger systems are desirable to cla
the situation for the NGR’s with largerLy .

B. Zigzag nanotubes with open edges

For the zigzag CNT’s with open ends, we can apply b
sically the same argument as that for the zigzag NGR’s.
difference between the two systems is merely the fact tha
the CNT’s the momentum along thex direction is quantized
as kx52pn/Lx due to the finite circumferenceLx . To see
what happens, we have done calculations for the zigzag C
with Lx52. In this case, there is one edge state at e
zigzag open end. Although the width of the CNT is qu
narrow, we will show that characteristic magnetic propert
expected for general zigzag CNT’s already appear.

We have found that the ground state always belongs to
subspace ofM50 for all values ofU.0. In Fig. 7, we show
the data of the charge gapDc and the spin gapsDs

(1) and
Ds

(2) . It can be seen in the figure that all the gaps take n
zero values in all the case ofU.0 andLy calculated. We,
therefore, conclude that the ground state of the zigzag CN
with finite Ly is a spin-singlet Mott insulator, same as t
NGR’s. An interesting observation here is that the spin g
Ds

(1) decays exponentially asLy increases, whileDs
(2) con-

verges to finite values atLy→`. Hence, for large enough
Ly , the magnetizationM51 can be induced by applying a
infinitesimal field, whereas a finite field is needed to mag
tize the system toM>2.

Next, we discuss how the spin polarizations are distr
uted in real space. Same as the NGR’s, the local spin po
ization in the ground state is 0 at all sites. Figure 8 shows
distribution of the local spin polarization̂Sz(r)&M in mag-
netized states forU51. The data clearly show that in th
state ofM51 the induced magnetization are strongly loc

FIG. 7. Charge gapDc and spin gapsDs
(1) andDs

(2) of the CNT’s
with Lx52 for U51, 2, and 4 as functions of the length of CNT’
Ly . The numerical errors due to the DMRG truncation are sma
than symbols. The dotted lines are guides for eye.
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ized at the ends of the zigzag CNT. This demonstrates
robustness of the localization character of the edge st
against the couplingU. In the state ofM52, on the other
hand, the distribution of̂Sz(r)&M52 seems to be a superpo
sition of the edge magnetization and magnetization exc
in the bulk sites. We have found similar distributions
^Sz(r)&M for U52 and 4.

The results on the spin gaps and the local spin polar
tions lead us to the conclusion that there are two differ
energy scales in magnetic excitations in zigzag CNT’s:
energy to magnetize electrons in the edge states and th
magnetize the bulk electrons. As the length of the CNT
creases, the former decays exponentially while the latter c
verges to a finite value, the spin gap of the bulk system. T
suggests that one can regard the edge states and the
electrons as two almost independent objects. The edge s
are essentially decoupled from the bulk singlet state in s
of the presence ofU.O(t). Very recently, it has been
pointed out from a weak-coupling analysis that thick
CNT’s including more than one edge states at each o
ends also exhibit such a decoupling of the edge and b
states.26 We, therefore, expect that the conclusion above
valid for general CNT’s with zigzag open edges.

C. Picture of the low-energy states

From the above results, we can deduce a schematic
ture to represent the low-energy physics of the zigzag NG
and CNT’s. In this picture, thep-electron system consists o
two parts: the electrons in the bulk forming a spin-sing
state and those in the edge states at each zigzag edge
electrons in the same edge are correlated ferromagnetic
with each other to compose a large effective spin. The eff
tive spins interact via an effective antiferromagnetic coupl
across the bulk singlet state. Hence, the ground state of
system is a spin singlet in total. The effective coupling b
comes smaller as the distance between the effective s
becomes larger, and finally, when the distance becomes l
enough, the effective spins can flip freely, giving a param
netic response. The bulk electrons remain forming a s

r

FIG. 8. Distribution of local spin polarization in the CNT’s wit
Lx52 for U51 andLy514. The total magnetization is~a! M51
and ~b! M52. Open and gray circles, respectively, represent
positive and negative values of the spin polarization, while the ar
of them are proportional to the magnitude.
2-8
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GROUND-STATE PROPERTIES OF NANOGRAPHITE . . . PHYSICAL REVIEW B 68, 035432 ~2003!
singlet unless a field corresponding to the bulk spin gap
applied. We note that the picture above is basically consis
with that discussed in Refs. 10 and 27.

V. DISCUSSION

In this paper, we have studied low-energy properties
nanographite systems with zigzag edges in the presenc
on-site Hubbard interactionsU, using the weak-coupling RG
and the DMRG method. We have analyzed the Hubb
model on the zigzag NGR’s and the zigzag CNT’s. We fi
that in both systems the ground state forU.0 is a spin-
singlet Mott insulator with finite charge and spin gaps. It
also found that the localization property of the edge st
persists even for a rather large value ofU, resulting in the
effective spins localized around the zigzag edges.

Finally we wish to touch upon further extensions of th
study. One issue to be studied is effects of further hoppi
and long-range electron-electron interactions. As for mag
tism, these long-range terms violate the assumptions
Lieb’s theorem and open the possibility of exotic magne
states. However, it is also expected that the spin gap
served in the present study tends to stabilize the spin-sin
ground state against perturbations. Very recently, it has b
pointed out by the density-functional theory12 that zigzag
CNT’s with a finite length can exhibit a high-spin groun
state depending on the circumferenceLx , although the
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