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Ground-state properties of nanographite systems with zigzag edges
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A m-electron network in nanographite systems with zigzag edges exhibits strongly localized edge states,
which are expected to have peculiar properties. We study effects of electron-electron interactions on ground-
state properties of zigzag nanographite ribbons and open-ended zigzag nanotubes by means of the weak-
coupling renormalization group and the density-matrix renormalization-group method. It is shown that the
ground state is a spin-singlet Mott insulator with finite charge and spin gaps. We also find that the edge states
are robust against the electronic correlations, resulting in edge-effective spins that can flip almost freely. The
schematic picture for the low-energy physics of the systems is discussed.
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[. INTRODUCTION also known that the one-body approximation adopted in
these approaches is not appropriate for one-dimensiabal

Since the discoveries of fullererfesnd carbon nanotubes quantum systems such as NGR’s and CNT's. In fact, Lieb’s
(CNT9),? the nature of “nanographites,” graphite-based ma-theorent® prohibits the spontaneous spin polarization for the
terials with nanometer sizes, has attracted much attentioHubbard model in the nanographite systems with zigzag
from both fundamental science and applications. One of thedges. More detailed analyses with controlled approxima-
most striking features of the materials is a wide variety oftions are, therefore, desirable for clarifying the low-energy
properties they show depending on their geometrical strucproperties of the nanographites.
ture, i.e., size, shape, surface condition, and so on. For ex- In this paper, we study effects of electron-electron inter-
ample, CNT'’s can be either metallic or semiconducting de-actions on the nanographite systems with zigzag edges, using
pending on the wrapping superlattice vectoBuch a two powerful techniques: the weak-coupling renormalization
diversity of possible functions realized in nanographitesgroup (RG) and the density-matrix renormalization group
makes them promising candidates for nanoscale devices. (DMRG) method'* These approaches allow us to treat the

Recently, it has been pointed out thatreelectron system strong quantum fluctuations in a controlled way for the 1D
in nanographites with zigzag-shaped edges exhibits peculiaystems such as NGR’s and CNT'’s. With the inclusion of
electronic states strongly localized around the edges, whicklectronic correlations, we show that the ground state of the
are termed “edge state$”® Such a state does not appear zigzag NGR is a gapped spin singlet and the artificially bro-
around armchair-shaped edges. The nature of the edge states symmetry of spin rotations in the mean-field type analy-
has been studied in the graphene sheet of nanometer widtkis is restored by quantum fluctuations. It is rather interesting
named the “nanographite ribborfNGR). Applying a tight-  that the edge states survive in the presence of electron-
binding model for the NGR with zigzag edges, Fuj@bal.  electron interactions and play a crucial role in the low-energy
have shown that the system has the electronic states localizeegime.
on the edges, which penetrate from the edges into the bulk The rest of this paper is organized as follows. The model
decaying exponentiallf® The edge states are believed to beis presented in the following section. In Sec. Ill, we show
responsible for a paramagnetic behavior observed in actresults of the weak-coupling analysis. We first discuss prop-
vated carbon fibers, which are taken to be an assembly arties of the tight-binding model of the NGR system. Ana-
nanographite particles® lytical eigen-wave functions and the corresponding energy

Since the edge states are characterized by almost flat dispectrum are shown. And then, by keeping the low-lying
persions in a certain range of the momentum space, whicbdge states only and taking the electron-electron couplings
result in a sharp peak in the density of state at the Ferminto account, we derive the low-energy effective Hamiltonian
energy, possible instabilities to various perturbations are imin the continuum limit. It is shown that all coupling terms
portant and have been investigated to date. Concerning thacluded in the Hamiltonian are relevant because of a large
Peierls instability due to electron-phonon interactions, it haglynamical exponent of the dispersion of the edge states. The
been shown that no bond alternation occurs in the zigzagnhanced density of states at the Fermi energy generates fi-
NGR’s with realistic interaction strengfOn the other hand, nite charge and spin gaps and, consequently, the system ex-
effects of electron-electron interactions on the edge statdsibits a spin-singlet ground state without spontaneous sym-
have been investigated by a mean-field approximdti@n. metry breaking. The DMRG results are presented in Sec. IV.
The studies have shown that an infinitesimal on-site interacWe find that in the presence of the Hubbard interaction the
tion causes a spontaneous spin polarization at the zigzaground state is a spin singlet with finite charge and spin gaps,
edges. Similar results have been obtained for the zigzagnd no spontaneous spin polarization appears. Besides, elec-
CNT'’s by the density-functional theofy:*? However, it is  trons around the zigzag edges correlate ferromagnetically to
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Yy A The definition of the site index is shown in Fig. 1. The
system size in the andy directions are denoted Hy, and

L, Ly, respectively. In thex direction, the open boundary con-
Ly—17 dition is imposed for the zigzag NGRRef. 20 while the
L,-24 periodic boundary condition is imposed for the zigzag CNT.
L,-31 In they direction, the open boundary condition is imposed on

the zigzag edges. We skf, to be even so that the system
always has the reflection symmetry in tiedirection. All
carbon sites at the edges are assumed to be terminated by

g hydrogen atoms. We note that the system is bipartite and the

5 number of sites in each sublattice is equdy,=Ng. At the

1 natural filling, with onew electron per site on average, the
> system is particle-hole symmetric. Thus, one can apply
X Lieb’s theorent® to the system, which prohibits spontaneous

FIG. 1. Honeycomb lattice of carbon atoms in the zigzag NGR'sSP"N polarizations in the ground state.

and CNT's. The open circles and gray squares represent carbon sites
of sublatticesA and B, respectively. IIl. RENORMALIZATION GROUP
compose effective spins, which are easily polarized by ap- A. Band structure
plying an external field, while electrons in the bulk form a  To study the system in the weak-coupling lirbitt, it is
spin-singlet state, which are hardly magnetized. The effectiv@atural to consider the case bf=0 and analyze the band
spins are localized around the zigzag edges even for a rathstructure first. We thus begin with diagonalizing the hopping
strong coupling, showing that the localization character oHamiltonian’H,. Since the Hamiltonian is translational in-
the edge states persists robustly against the electron-electrgariant along thex direction, we can perform the partial Fou-
interactions. The schematic picture for the low-energy physrier transformatiorf*?

ics of the systems is discussed. Finally, our results are sum-
marized in Sec. V.

1 .
Calkyy)=—= g exl — ik (x+ ) ]ca(x,y)  (4)

Ly
where 6=1/2 for y=0, 1 (mod 4 and §=0 for y=2, 3
n(mod 4. By the transformation, the hopping Hamiltoniafy

Is mapped into bond-alternating chains decoupled from each
other,

1. MODEL HAMILTONIAN

In this paper, we consider @-electron system at half-
filling on a honeycomb lattice with zigzag edges, as shown i
Fig. 1. The effect of electron-electron couplings is incorpo-
rated by introducing the on-site Hubbard interactionThe
Hamiltonian is

H:H0+ HU y (1) kx

, , _ Ly*l 5
HO:_E a;m treaNer+Hel, @ Fyk)=- y§=:1 2 Tyleatkay+Dea(kyiy) +Hel,
5

Hy=U2 my(nn,(n), ) WhereT(y)=t,=2t cosk/2) if y is odd, whileT(y)=t,=t

if yis even. It is important to note that the effective hopping
where c(r) [cl(r)] is the fermion annihilatior(creation  t; depends on the momentuky and, consequently, the mo-
operator at the site=(x,y) andn,(r)=c!(r)c,(r). Within  tions in thex andy directions are entangled.
tight-binding approximation, the hopping amplitutie,r’) Each of the bond-alternating chains is composed of two
is assumed to bebetween nearest-neighbor sites and othersublatticesA (oddy) andB (eveny). The hopping between
wise 0. The values df reported in the literature range from these two sublattices lead to the coupled Harper equations,
2.4 to 2.7 eV for CNT's(Refs. 15—1Y while t=3.0 eV for

graphite® As for the on-site repulsion, on the other hand, the —t1d(ya) —tad(yat2)=Ed(yat1), (6)
value of U in polyacetylene was estimated to Hé
=6-10 eV(Refs. 18 and 1Palthough the definite estimate —top(Yya—1)—t 1 d(yat+ 1) =Eh(ya), (7)

of U has not been made for nanographite systems as far as

we know. We may, therefore, expect that the ratiJdbtin ~ wherey,=1,3,5...,L,—1 are the lattice points of sublat-
the nanographite systems considered here is also of the ordgte A. The open boundary condition in tlyedirection re-

of unity, i.e.,U/t~O(1). Inthis work, we treat andU as  quires¢(L,+1)=0 and¢(0)=0. From the coupled Harper
parameters. equations, the wave functions of the eigenstates and the cor-
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responding energy spectrum can be obtained in an analytical E(k,)
form. For the chains witht;>t, (|k,|<2%/3), the wave
function is given by

e )=( n,(Ya) :<rsir[pyyA+<p<py>])
IV g (yat )] T sinpy(yar ] )

8
) ® - 0 T K
where the extra phase, chosen to be in the range 0 x

< ¢(py) <m/2, depends on the magnitude of momentoym

Jti—t

e(py)=tan” . (9)

2
tanp
2 y

Finiteness ofL, causes the quantization pf,, which satis-
fies the following constraint: FIG. 2. Band structure of the zigzag NGR with=12. The

bold lines represent dispersions around the Fermi pkijat, .

(Ly+ 1)py+‘P(py)=m7Ta (10 o )

. . . B. Renormalization group analysis
wheremis an integer. The energy spectrum for these states is ) _ o
given by Now, we are ready to treat the interacting Hamiltonian

Hy . After the partial Fourier transformation, the interacting
E(Ky,py)=* \/t§+t§+ 2t,t,c092py). (12) Hamiltonian is written as
Here we emphasize that the momentum in yhéirection, U Ly
Ky, is no longer a good quantum number due to the open HU=L— E E 5(kx1—kx2+ kx3_kx4)
boundaries. However, the magnitude of the momen x {logh y=1
remains a good one and would be quite helpful for identify-
s a9 would be quite helpful for identity X cl(ky iy)C (K, Y)CT (ke sy)C (Kyiy) . (15)

ing dominating interactions later. Since the wave function,

Eq. (8), is extended into the bulk sites, we call the statesThe § function represents the momentum conservation in the
‘extended states.” x direction. The Hamiltonian can be rewritten in terms of the

For the chains witht;<t, (|k,|>2/3), peculiar local- ; T ;
ized states show up. One finds that there are dnly 2 g:gggﬁgtgzggo by expanding the electron operator on the
extended states in E¢B). The missing two states are linear ’
combinations of localized states near the edges with complex
momentumk,= + 7/2+iy. The wave functions for these ca(kx;y)=§p‘, Do(Y) ¥palKy), (16)
edge states are
whereX, is taken for all the extended statps-p, and, if

Esin y(Ly+1-ya)] ever, the edge statgs= + y. The resultant Hamiltonian is

sinf y(yat+1)]

~ U
The imaginary part of the momentusn# 0 is the inverse of Ho={" {kE} {2} O(Ky, — Ky, T Ky, —Ky,)
localization length of the edge states and satisfies the con- X Hoqr AP
straint

W(ky;ya) =€ ”“’2( ) . (12

X ; [65,(Y) bo, (V) 55 (Y) bp, ()]
. (13

ty+t
(Ly+1)y=tanh ¥ — ﬁ tanhy : )
12 X l/fplT(kxl) ’#pzT(kxz) (/fpsl(kx:,,) ¢p4l(kx4)- (17)

It is clear that the nonzero solution of only exists when : : .
L In general,p; are incommensurate and the dominant contri-
t,<t,. The energy spectrum for these edge states is given bB/ution comes from the pairwi lverti .
pairwise equalvertices while other
4 22 kinds of vertices only occur in a limited tiny phase space.
Bk y)== \/t1+t2 2t cost2y). a4 This great reduction of dominant interactions enables us to
We thereby obtain the whole band structure of the tight-classify them into three categories.
binding Hamiltonian, Eqgs(11) and(14). The band structure (i) The interactions involving only the edge states: Since
for L,=12 is shown in Fig. 2, as an example. It is worth the normalized wave function of the edge states is of order 1
noticing that the energy spectrum of the edge states is alway¥ar the edge and vanishingly small in the bulk, the wave
lower than those of the extended states. It means that tH&inction product of¢,, (y) in Eqg. (17) after summation over
edge states would dominate the low-energy physics in thg is of order 1. Thus the edge-edge interaction remains
weak-coupling limit, while the extended states in the bulk doO(U).
not play a crucial role because all of them are suppressed by (ii) The interactions involving a pair of the extended states
a finite gap of ordet/L, . and a pair of the edge states: Due to the spreading of wave
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function in the extended state, the summation of the wavdy the Fourier transformation, which requires the change of

function product in Eq.(17) is roughly |¢>py(1)|2~ L. order between the summation overand the integral over
The edge-bulk interaction is, therefore, ord(U/L,) and  Kx. However, since the edge states wkih= are localized
becomes smaller as the width of the NGR grows. near the edges, it is reasonable to adapt the “sharp-edge”

(i ) The interactions involving only the extended states:@PProximation, which assumes that all the wave functions of
From the similar argument to the case of the edge-bulk inthe edge states take the simple form askpr , i.e.,
teraction, the bulk-bulk interaction turns out to G¥U).

The effect of this interaction in the bulk systein () has b (y)= i(é +5,, ) 22)
been studied in Refs. 21 and 23 by the weak-coupling analy- * V2 y1= Syl
sis. It has turned out that the interaction opens a finite energ

gap even if the noninteracting Hamiltonidt, includes gap- %;\/ithin the sharp-edge approximation, the relation between
less chains withc. = + 27/3 the lattice and the field operators becomes very simple:
= .

Let us move on to deriving the low-energy effective -~
Hamiltonian in the continuum limit. In the weak-coupling T (x1)=— )+ ()], (23)
limit, the effective theory is dominated by the low-lying edge ol V2 [+ o) % o))
states neak,~m because all other bands in the bulk are
gapped. Thus, we may keep only the edge states and neglect _ gl mx
all the gapped modes. That is to say, only the kinetic energy ColX,Ly)= ﬁ[iﬁm(x)— - o(X)], (24

of the edge modes and the edge-edge interaction term must
be considered in the limit. It is useful to construct the anti-

bonding and bonding fieldg. ,(x) from the field for the Co(x,y)=0 (2<ys<L,—1). (25)
edge states defined in ECL6): By substituting Eqs(23)—(25) into the edge-edge interacting
Hamiltonian
A dk,
lrlji a(x) = f _elkxxlr/ji Dt( kx+ 7T)! (18)
—A 21 ~ ~ ~t ~
Hee= U2 ClxY)C (X Y)E](xy)C (xY), (20
1 L .
Do (k) = E[m (k)= a(k)], (19  we obtain its continuum counterpart,

T 2 2 _ )
where A is a momentum cutoff. Furthermore, we approxi- Hee=0e(J5 +I) 49, J- =95 - -

mate the energy spectrum ndge= 7 to the lowest nonvan- Ju : )

ishing orderE . (k)= = c(k,— )%, where the+ signs stand 5 (1), (27
for the antibonding and bonding edge modes and the dy-

namical exponerne=L,—1. The kinetic energy can then be Here theSU(2) invariant currents are defined as
expressed in terms of the fields. ,(x) in the continuum

limit 1
Ip=5 Vbatlpa (28)
Flo= [ 0x 3 PUbO0(-i00 0, (20 )
. . o Io=5 UbaCaptipp. (29
where the constant is set to unity for notation simplicity.
While it is rather straightforward to write down the ki- 1
netic terms in the form of E|20), expressing the edge-edge | p= —llfT €. p (30)
interaction in terms of the field operators is far from trivial. 2 PataTRE

Our strategy t_o go from lattice to continu'um limit is to ex- whereo and e,z denote the Pauli matrices and an antisym-

press the lattice operator for electrons in the edge stateg, oy tensor, respectively. The bare values of these cou-

Co(X,y), in terms of the field operatop. ,(k) and relate it pjings generated by the on-site interactibhare g.=g

to . ,(x) by the Fourier transformation. To achieve the =g,=g,=U. We note that Eq(27) is the most genepral

goal, we need to express,(X,y) in the eigenbasis of{,: form of the interacting Hamiltonian that includes four-
fermion interactions with preserving th&(1) X SU(2) sym-

21) metry and the momentum conservation. In fact, one can use
Eq. (27) to consider more complicated short-range interac-

o _ tion, which would generate a different set of bare couplings.

Here a difficulty comes from the entanglement of summation  Eingly, the low-energy field theory of the zigzag NGR in

overk, andP. Sincey depends on the longitudinal momen- the continuum limit is described by Eqg0) and(27). At the

tum k, as in Eq.(13), the wave functionpp(y) also has an  tree |evel, the scaling dimensions of the all four-fermion in-

i~mplicit dependence oR,. As a result, the lattice operator teractions ared(g)=z—1 by simple dimension counting.

c.(X,y) is not simply related to the continuous figld. (k) Since the dynamical exponent is greater than 1 for the NGR,

~ dk,
CalX,y) = f 278 2 be(y)pa(k).
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all the couplingsgc,gp,g(r, andg, are relevant under the TABLE |. Comparison between different phases.
RG transformation. However, we note that relevance of these
couplings does not necessarily warrant excitation gaps in the Phase (26, .720,) Cs D
energy spectrum. To identify the ground state, it is necessary

to apply another approach such as the bosonization tech- New (m,0) 0 0
nigue. We will discuss it in the following subsection cbw (0.m) # 0 0
: ' Dimer (0,0) 0 #0

C. Mott insulating ground state

In this subsection, we consider what we can derive fronsite interaction, botly, andg, are positive and grow under
the low-energy effective Hamiltonian obtained in the preced-RG transformation. Consequently, the corresponding bosonic
ing subsection. One clue is the fact that the effective Hamilfields are pinned at specific values up to fluctuations
tonian has a form strikingly similar to the usual effective
theory for 1D systems except for the large dynamical expo- \/50,,2 m, N2 0,=0. (39
nent z>1. Hence, we discuss the analogy between the . . .

NGR's and a one-chain system to derive the ground-stat&h® Signs of the couplings are of crucial importance here.
properties of the NGR. On the other hand, the spectrum of*XPanding the cosine term around the pinned values, the
the low-lying edge states in the NGR can be viewed as &YStEM acquires finite gaps in both charge and spin sectors.
two-chain system, whose bonding and antibonding bandd€refore, the ground state is a Mott insulator with both
touch the Fermi energy at one Fermi point as discussed bé:_harg'e' and spin gaps. The formatlon'of.the charge gap is n'ot
low. Therefore, it is also useful to consider the NGR in theSUTPrising because the electron density is commensurate with
analogy with the two-chain system. We will see that both the"€ underlying lattice structure. The finite spin gap indicates
analyses give the same conclusion: the NGR has a spifitdt the spin rotational symmetry is not broken spontane-
singlet ground state with finite charge and spin gaps. O_USI}’ and the ground state ISaspin singlet, as predlcted by

Let us start with the first approach, i.e., considering the"'eb.S t'heorem. The result differs from the mean-fleld theory
NGR in the analogy to a one-chain system at half filling. InPredictions where the quantum fluctuations are ignored. We
this analogy, the fieldy ., (¢ ,) is regarded as a right- bel_|eve that the stro_ng fluctuations in 1D systems would in-
(left-) moving field operator. Since the dispersion of thevalldate the mean-field approach and restore the symmetry

fields ¢~ ,(x) is not linear, the rigorous mapping from the that is broken at the mean-field level.

fermionic theory to the bosonic one is not possible. However, It is quth_noting that for the usual weakly _com_JpIed 1D
it is likely that the large dynamical exponenjust serves to system with linear energy spectrum, the bosonic fields never

make all interactions relevant and we can still use theget pinned at the values listed in E@S) because it is not

bosonization techniques to clarify physical properties of the>taPl€ in the RG flow. However, the new phase here is stable

ground states qualitatively. That is to say, we can treat thdu€ 0 the large dynamical exponent that corresponds to the

dynamical exponent=1+ ¢ as a perturbation and still use van Hove singularity in the density of states. We summarize

the conventional bosonization rules to study the physica}he pinned values for each phase in Table I. To differentiate

properties of the NGR’s. Under the assumption, we foIIOWthis new phase from the familiar charge density wave or the

conventional bosonization steps and introduce two pairs o‘fl'mer phase, one needs to compute the order parameters, i.e.,

bosonic fields charge density modulatio@, and bond dimerizatio® de-

fined as
L ()= peil#a9= 6,00172, (31)
' b . . Co=(—1)(al(x)a.(x))
where ¢ ,(x) and 6,(x) are, respectively, the phase and dis-
placement fluctuations, which obey the commutation rela- =L N+ ), (36)
tion,
. . (=" . £
[P (X),0,(X)]=—2mi[1+SigNX—=X")]64e - (32 D= 5 (aj(x)ay(x+1)+a,(x+1)a,(x))
Furthermore, we switch to the charge and spin basis defined ot ot
by :_I<ltb+a¢,—a>+l<lr//7al/,+a>! (37)
wherea,(x) is the lattice operator in the one-chain system

1 ’ ikeX
(b, 0.0, 0)=—=[(d1,0,) (b, ,0))]. (33 and related to the fields asa,(x)=e"F ,(X)
pee V2 P10 b +e ke Xy (x) with kg= /2. Using the relations

The effective interaction that is relevant to gap formation in

T —ipi0,1\20=10,1\2
Eq.(27) can be written down in terms of these bosonic fields, Yiqp-g=1e Tre , (38

Hee=0,C08120,)—g, cod126,). (34 A O (39

The absence of their dual fields, and¢,, in the interactions  and substituting the pinned values of the bosonic fields, one
comes from the charge and spin conservations. For the ombtain the expectation values of the order parameters. The
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(@ E(k,) (b)

FIG. 3. Schematic picture of the band structurg@fthe two-
chain system witht,ng/tieig—2, and(b) the same system with the
momentum shiftQ= = for the antibonding field. The bold lines
represent dispersions around the Fermi points.
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nor local order parameter. This Mott-insulating phase re-
sembles the peculiar phase we discussed above by making
analogy to the one-chain case. Thus, both approaches support
that the ground state of the NGR's is a spin singlet with finite
charge and spin gaps.

The two-chain analogy also gives us information about
the spin-spin correlation. It is known that the two-chain sys-
tem has magnon excitations with sgs=1 and momentum
P=(mr,7). The momentum shif@Q in the x direction shifts
the low-lying magnon toP=(0,7). This means that the
spin-spin correlation functions in the NGR’s are ferromag-
netic within the same edge and antiferromagnetic between
opposite edges. This result is consistent with the fact that the
sites in the same edge belong to the same sublattice, while

results are listed in Table I. It is clear that there is no long-those in opposite edges belong to different sublattices.
range order or symmetry breaking for the ground state of the

zigzag NGR’s.

IV. NUMERICAL RESULTS

Now we take another perspective and view the NGR as a

system of two chains coupled via an interchain hopping. Fig-

In this section, we present numerical results for the

ure 3a) shows the band structure of the two-chain system for7-€lectron systentl) at half filling. Hereafter, we seit=1.

the special point,ng/tieg=2, Wheret, g (tieg) is an ampli-

Using the DMRG method with improved algorithth?* we

tude of the interchairintrachain hopping. As the hoppings have calculated various energy gaps and correlation func-
are tuned at the special value, the chemical potential ctfons. The number of kept states is upnte= 1200 per block.

through the bondingantibonding band at single Fermi point
k,= 7 (k,=0) with vanishing Fermi velocity -— 0, rather

Numerical errors due to the truncation of the DMRG calcu-
lation are estimated from the difference between the data

than two pairs of the Fermi points in general. On the otheMith differentm's. We have checked the convergence of
hand, both the bonding and antibonding bands of the lowthe data and found that the adoptedis large enough to

lying edge states in the NGR's have single Fermi pdint

obtain sufficiently accurate results: For example, the trunca-

= with ve—0. Hence, in the low-energy limit, the pecu- tion error of the energy gaps of the NGR's and CNT's are
liar band structure in the NGR’s can be viewed as a twolypically less than 10° and 10 °, respectively. We discuss
chain system with shifting the momentum of the antibondingth® results for the zigzag NGR'’s and the zigzag CNT's in the

field k,— k,+ 7 [see Figs. 2 and(B)]. One might worry that
the dynamical exponent in the NGRs=L,— 1 may be dif-

ferent from that in the two-chain systers- 2. However, the
dynamical exponerzin this limit only affects how the Fermi

following subsections.

A. Zigzag nanographite ribbons
In this subsection, we show results on the zigzag NGR'’s.

velocity approaches 0 and should not give rise to qualitativgyse first discuss the results fer,=4. In all the cases calcu-

difference.

lated, we have found that the ground state belongs to the

In the weak-coupling limit, the lattice electron operator g pspace okl =0, whereM is the total magnetization in the
aj,(x) in theith chain of the two-chain system can be de-gystem. In Fig. 4, we show the data of the charge and spin

scribed by two pairs of chiral fields

i X

ala(x)=ﬁ[ma(xwei%w(x)]. (40)

i X

aza(x)=ﬁwm(x)—e‘%w(xn. (42)

gaps defined as

A—l E N+1N +E N lN 2E N N)
3| Fol 3713 "Bl 3 1g) "%l 505 |
(42)
w < (NN N N
AV =Eo| 5+ M, 5 =M |=Eo| 5. 5/, (43)

whereQ= 7 is the momentum difference between the FermiwhereEq(N;,N)) is the lowest energy in the subspace\gf
points of bonding and antibonding bands in the two-chairup-spin andN,; down-spin electrons, and is the total num-
system. The relation of lattice operators to the field operatorber of sites. Fot =4, both the energy gaps are extrapolated

for the two-chain system in Eq&40) and(41) are strikingly
similar to those for the NGR in Eq&23) and(24), except the

to nonzero values dt,—~. The U dependence of the ex-
trapolated gaps suggests that both of the gaps start to open

momentum shiftQ. This enables us to translate the excita-from infinitesimalU, i.e., U.=0. We thus conclude that for
tions and correlations in the two-chain system directly intoarbitrary U>0, the ground state of the zigzag NGR’s is a

those for the NGR's.

spin singlet with finite charge and spin gaps, being consistent

For on-site repulsive interaction, the ground state of thewith the weak-coupling analysis.
two-chain system is the Mott insulator with finite charge and To see how the spin polarizations are distributed in real
spin gaps. In addition, there exists neither broken symmetrgpace, we have calculated the local spin polarization
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i FIG. 6. Ground-state spin-spin correlation functions in the

NGR'’s with Ly=4 andL,=20. The circle, square, and triangle
represent the data fad =1, 2, and 4, respectively. The error bars
represent the numerical error due to the DMRG truncation.

) Ly=4. As seen in the figure, the magnetization appears al-

FIG. 4. TheL, dependence of the energy gaps in the NGR's formost only at the edge sites. This suggests that the electrons in
U=1; (a) the charge gap., (b) the spin gapr{". The solid and  the edge states are polarized by an external field more easily
open circles represent the data for=4 andL,=6, respectively.  pan those in the bulk. We note that the localization character
The numerical errors due to the DMRG truncation are smaller tharbf the magnetization seems to persist even for a rather large
symbols, The gaps fdr,=4 are extrapolategl by fitting the data to couplingU=4. In other words, the edge states survive ro-
a.‘POIVnom'al forma (L) =A(%) +a/Lc+ b/Ly , wherea andb are bustly against the electron-electron interactions eveb) if
fitting parameters(c) The U dependence of the extrapolated gaps becomes larger than the hopping amplitade
for Ly=4. In Fig. 6, we show the spin-spin correlation functions in

1 the edge sites,
SHr)y=={(n:(r)—n (1N, 44
(SMm=5(n(N=n (D) (44) SR DS D s
\(/ev:eerrgif ;siézglir??r?gfjbtsr;)il:;l\%?\(;\IIZtIr?gvga:‘lcl)fnIdn tgje\? ilr?meeSt'To reduce boundary effects, the correlations are calculated
X o . between the sites of the same distance from the center of the
ground state the local spin polarizatitBr(r))u o is 0 at all GR. The correlations turn out to be always positive, sug-
sites within the numerical error, supporting that the ground\lestiﬁg a ferromagnetic coupling between the sites ’in the
state is spin singlet. There is no spontaneous spin polariz ame edge. We have also found that the spin correlation be-
“0.”- F_igur_e %a) shows th_e distribution of the local spin po- tween the .sites in opposite edges is always negative, i.e.,
larization in the magnetized state M=1 for U=1 and o omagnetic. These behaviors are consistent with the
(@)L, =4, U-=1 expectation from the two-chain analogy discussed above.
yo The correlations decay exponentially for all's reflecting
the finite spin gap> and are enhanced &sincreases.

Finally, we discuss the dependence of low-energy proper-
ties of the zigzag NGR’s on the width, . Since the low-
energy physics of the NGR'’s is dominated by the edge states,
which are strongly localized around the zigzag edges, it is
likely that the singlet-triplet spin gap("), which corre-
sponds to the energy scale required to magnetize the edge
spins, comes from the antiferromagnetic effective coupling
between the electrons in the edge states of opposite sides.
Thus, it is natural to expect that the spin gap decreases as the

FIG. 5. Distribution of local spin polarizatiofS(r))y -1 in the W'dth Ly increases. To see t?ols, we have perfqrme_d calcula-
NGR's with (&) L,=4 and(b) L,=6. The Hubbard coupling and tions for the NGR with.,=6.""As can be seen in Fig.(b),
the total magnetization até=1 andM =1. Open and gray circles, the spin polarizations in the magnetized statevbt1 are
respectively, represent the positive and negative values of the spi®und to be strongly localized at the zigzag edges, suggesting

polarization while the areas of them are proportional to the magnithat the edge states exist also foj=6. Furthermore, we
tude. can clearly see in Fig. 4 that the spin gap for the same
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Yy and (b) M=2. Open and gray circles, respectively, represent the

positive and negative values of the spin polarization, while the areas

FIG. 7. Charge gap. and spin gapa (" andA{) of the CNT's o~ proportional to the magnitude.

with L,=2 forU=1, 2, and 4 as functions of the length of CNT’s,

L, . The numerical errors due to the DMRG truncation are smaller. . .
y
than symbols. The dotted lines are guides for eye. ized at the ends of the zigzag CNT. This demonstrates the

robustness of the localization character of the edge states
against the coupling). In the state oM =2, on the other

O et s s oag) 19555, 2 £ hand, he Gstuton oS0, s 1 b a superpo-
!O not I. ) N h){’ bt iyn the extrapolated géfﬁpi sition of the edge magnetization and magnetization excited
S nhotfarge enougn to obta € extrapoate (Lx .. in the bulk sites. We have found similar distributions of
— o), Calculations for larger systems are desirable to clarify,

e o (S(r))yw for U=2 and 4.
the situation for the NGR's with larger, . The results on the spin gaps and the local spin polariza-

tions lead us to the conclusion that there are two different
B. Zigzag nanotubes with open edges energy scales in magnetic excitations in zigzag CNT’s: the
For the zigzag CNT’s with open ends, we can apply ba-£N€ray to magnetize electrons in the edge states and that to
sically the same argument as that for the zigzag NGR’s. ThE'agnetize the bulk electrons. As the length of the CNT in-
difference between the two systems is merely the fact that i"€2Ses, the former decays exponentially while the latter con-
the CNT's the momentum along thedirection is quantized Verdes to a finite value, the spin gap of the bulk system. This
ask,=2mn/L, due to the finite circumference,. To see Sudgests that one can regard the edge states and the bulk
what happens, we have done calculations for the zigzag cné§lectrons as two almost independent objects. The edge states
with L,=2. In this case, there is one edge state at each'e essentially decoupled from the bulk singlet state in spite
X . 1 .
zigzag open end. Although the width of the CNT is quite©f the presence olJ=O(t). Very recently, it has been
narrow, we will show that characteristic magnetic propertieg?inted out from a weak-coupling analysis that thicker
expected for general zigzag CNT’s already appear. CNT’s mcludln_g_more than one edge states at each open
We have found that the ground state always belongs to thg"dS aiso exhibit such a decoupling of the edge and bulk
subspace o1 =0 for all values ofU>0. In Fig. 7, we show sta_te§. We, therefore, expect that the conclusion above is
the data of the charge gab, and the spin gapﬁgl) and Vvalid for general CNT's with zigzag open edges.

Agz). It can be seen in the figure that all the gaps take non- .
zero values in all the case &f>0 andL, calculated. We, C. Picture of the low-energy states

therefore, conclude that the grOUnd state of the Zigzag CNT's From the above resu|ts1 we can deduce a schematic pic-
with finite L, is a spin-singlet Mott insulator, same as the tyre to represent the low-energy physics of the zigzag NGR’s
NGR'’s. An interesting observation here is that the spin gagnd CNT’s. In this picture, ther-electron system consists of
A{Y decays exponentially as, increases, whileA{”) con-  two parts: the electrons in the bulk forming a spin-singlet
verges to finite values dt,—. Hence, for large enough state and those in the edge states at each zigzag edge. The
Ly, the magnetizatioM =1 can be induced by applying an electrons in the same edge are correlated ferromagnetically
infinitesimal field, whereas a finite field is needed to magnewith each other to compose a large effective spin. The effec-
tize the system t1=2. tive spins interact via an effective antiferromagnetic coupling
Next, we discuss how the spin polarizations are distrib-across the bulk singlet state. Hence, the ground state of the
uted in real space. Same as the NGR’s, the local spin polasystem is a spin singlet in total. The effective coupling be-
ization in the ground state is O at all sites. Figure 8 shows theomes smaller as the distance between the effective spins
distribution of the local spin polarizatio(S*(r))y in mag-  becomes larger, and finally, when the distance becomes large
netized states foJ=1. The data clearly show that in the enough, the effective spins can flip freely, giving a paramag-
state ofM =1 the induced magnetization are strongly local-netic response. The bulk electrons remain forming a spin
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singlet unless a field corresponding to the bulk spin gap isnethod may underestimate effects of strong quantum fluc-
applied. We note that the picture above is basically consisteritiation in the nanographite systems. To clarify the situation,

with that discussed in Refs. 10 and 27. analyses with controlled approximations are needed. Another
issue is stacking effects. Nanographite materials often take a
V. DISCUSSION stacking form, e.g., nanographite particles composed by a

] ) ) few graphene sheets and multiwall CNT’s. Hence, it is im-
In this paper, we have studied low-energy properties ohrtant for applications to study effects of interlayer interac-
nanographite systems with zigzag edges in the presence §fns. For nanographite particles, it has been shown that their
on-site Hubbard interactionts, using the weak-coupling RG  magnetic properties change drastically depending on types of
and the DMRG method. We have analyzed the Hubbardiscking geometr$? In multiwall CNT’s, the difference of
model on the zigzag NGR's and the zigzag CNT's. We findyagjus and chirality between inner and outer layer is expected
that in both systems the ground state -0 is a spin- g affect not only the edge states but also the bulk properties

singlet Mott insulator with finite charge and spin gaps. It isin 3 complicated way. Further extensive studies are desirable
also found that the localization property of the edge statgg tackle the issue.

persists even for a rather large valuelf resulting in the
effective spins localized around the zigzag edges.

Finally we wish to touch upon further extensions of this
study. One issue to be studied is effects of further hoppings
and long-range electron-electron interactions. As for magne- We are grateful to K. Wakabayashi and A. Tanaka for
tism, these long-range terms violate the assumptions dfuitful discussions. T.H. thanks S. Okada for sending a pre-
Lieb’s theorem and open the possibility of exotic magneticprint before publication. T.H. and X.H. are supported by the
states. However, it is also expected that the spin gap obMinistry of Education, Culture, Sports, Science and Technol-
served in the present study tends to stabilize the spin-singlegy, Japan, under the Priority Grant No. 14038240. H.H.L.
ground state against perturbations. Very recently, it has beesnd C.Y.M. acknowledge the financial support from National
pointed out by the density-functional thebhthat zigzag Science Council in Taiwan through Grant Nos. 91-2112-
CNT'’s with a finite length can exhibit a high-spin ground M007-040 (H.H.L.), 91-2120-M-007-00H.H.L.) and 91-
state depending on the circumferentg, although the 2112-M007-049C.Y.M.).
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