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Elasticity theory connection rules for epitaxial interfaces
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Elasticity theory provides an accurate description of the long-wavelength vibrational dynamics of homoge-
neous crystalline solids, and with supplemental boundary conditions on the displacement field can also be
applied to abrupt heterojunctions and interfaces. The conventional interface boundary conditions, often referred
to as “connection rules,” require that the displacement field and its associated stress field be continuous
through the interface. We argue, however, that these boundary conditions are generally incorrect for epitaxial
interfaces, and we give the general procedure for deriving the correct conditions, which depend essentially on
the detailed microscopic structure of the interface. As a simple application of our theory we analyze in detail
a one-dimensional model of an inhomogeneous crystal, a chain of harmonic oscillators with an abrupt change
in mass and spring-stiffness parameters. Our results have implications for phonon dynamics in nanostructures
such as superlattices and nanoparticles, as well as for the thermal boundary resistance at epitaxial interfaces.
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I. INTRODUCTION The condition(2) implies that the two materials are attached

Continuum elasticity theory was developed in the 18thand do not separate. The second condition follows from mo-
and 19th centuries—prior to the wide acceptance of thenentum conservation and requires that the force density be
atomic view of matter—to describe the mechanics of elasticontinuous,
solids® Modern applications of elasticity theory abound L
throughout science and engineering, from providing a long- T4 n'=Tgn'. 3
vyavelength d.escrip.tion of th.e dynamics of cryst'alline Iat'HereT” is the stress tensor, defined by the continuity equa-
tices, to the inversion of seismological data to image the[ion
three-dimensional structure of the Earth’s interior.

The fundamental degree of freedom in a nonpolar elastic gl +0,TI=0 (4)
medium is the displacement fieldr), the deviation of the . . .
medium at point from its position in mechanical equilib- for momentum densitfl=pau, andn is the unit normaf.
rium. When applied to composite media consisting of layerdn an isotropic elastic medium, it follows from Edl) that
or regions of different materials, characterized by differentthe stress tensor is given by
elastic parameters, a question naturally arises: What bound- --
ary conditions should be imposed on the displacement field T'=—\(V-U)&;—2pu; ®)
at the interfaces?

An example of such a composite system is shown sche-
matically in Fig. 1. Alternating layers of typ& andB mate-  where
rials, each characterized by different elastic constants and
mass densities, are separated by abrupt interfaces. Within Cijkl =\ 8ij O + (S j1 + 631 Sji) (7)
each region the displacement field satisfies an appropriaﬁ
equation of motion. For an isotropic continuum with mass
densityp, the field equation is Ui = (d,U; + d;u;)/2 (8)

= = Cjjk Ukl » (6)

& the elastic tensor for a linear isotropic solid, and where

P2u=v2V(V-u)—v2V XV Xu, (1) s the strain tensor.

The purpose of this paper is to point out that these bound-
wherev,= (A +2u)/p andv,=+/ulp are the longitudinal ary conditions(2) and (3), while quite appropriate for the
and transverse bulk sound velocities, respectively, deter-
mined by the Lameoefficients\ andu. The solution of the
set of second-order equations of the foihy, or their gener-
alization to anisotropic media, requires boundary conditions
onu and (h-V)u, wheren is a unit vector normal to the
interface.

The conventional boundary conditions applied in this situ-
ation (assuming fully bonded materialsre as follows:®
First, the displacement field is assumed to be continuous
across an interface

FIG. 1. Superlattice consisting of layers of dissimilar elastic
Up=Ug. (2)  mediaA andB.
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geophysical application mentioned above, are generally in-
correct when applied to long-wavelength vibrational dynam-

ics in crystals with abrupt, epitaxidtrystalline interfaces. ka ki kIJ ks ks

The reason is because in the latter application, elasticity AAASAAA AN SAAA SAAN &

theory is only an approximate long-wavelength description may my My, My mg Mg

for the underlying microscopic lattice dynamics—which nec- 3 2 - 0 1 2

essarily depends on the detailed atomic structure of the i__ime face

interface—whereas Eq$2) and (3) make no reference to '

that microscopic structure. For example, the correct bound- XI X
0

ary conditions must depend on the effective force constants

between typeA and B atoms in Fig. 1, as well as that be- FIG. 2. Model of an atomically sharp interface in a one-

tween atoms of the same type. dimensional crystal.
There are numerous applications of elasticity theory to
solid state systems with heterostructures, where the use of  ||. CONNECTION RULES IN ONE DIMENSION

the conventional boundary conditions would lead to quanti- . ) )

tatively incorrect results. Examples include phonons in nano- hWe turr;] now fto an ana_l;r/]sus of the or_ler;glmin&gnal case,
structures such as quantum ddtsquantum welld, ~ Where achain of atoms with nearest-neighbor bonds are con-
superlattice$;® surfaces with overlayersand nanoparticles ;ﬁ?é?f?o;%itrﬂgi\:lidon a line. The vibrations in this case are
embedded in host materidi%:*?A correct use of boundary An abrupt interface is introduced at positian, To the
conditions might be especially important for nanometer-scal(feft of x. the mass of each atom 8. and the.eﬁective

. . . _ . 0 A
elastic media SQCh ashonomcband. gap ma_tenal’é. AIS.‘O’ spring constant of the nearest-neighbor bonds,isthe cor-
the thermal resistance of a heterojunction is determined by

: : X . “Yesponding parameters on the right sidemmgeandkg. The
phonon scattering at the interface and is therefore sensitive @crength of the bond connecting the typeand B atoms
the connection rules d8 matrix* ’

X X ) which is generally different fronk, andkg, is denoted by
Finally, we would like to point out a strong analogy be- |~ The |attice constant on both sides is equalatoThe
tween this work and the problem of determining the approynodel we consider is illustrated in Fig. 2.
priate interface boundary conditions for the envelope func- According to elasticity theory, which is valid for vibra-
tions in effective mass theo}?ln this case, effective mass tional Wave|engths |arge Compared Wahthe regions to the
theory serves as the appropriate long-wavelength approximaeft and right of the interface are described by the wave equa-
tion to the full Schrdinger equation that contains the micro- tions
scopic periodic potential of the crystalline lattice, and con-
nection rules are required to join envelope functions through (af—vfai)u.=0, vi=avk/m, [|=AB. 9
an interface between crystals with different effective mass.

The microscopic theory of these connection rules was first "€ elasticity theory description of a homogeneous chain is
developed by Kroemer and ZA&%” and our work may be reviewed in the Appendix. To proceed, the wave equations
regarded as an elasticity theory analog of Refs. 16 and 17. If?) must b,e supplemented with boundary conditions on
their seminal work on phonons in heterostructures, Akera!(Xo) andu’(xo). _ _
and Andd® analyzed the vibrational connection-rule problem A general linear homogeneous interface boundary condi-
from this point of view, and the boundary conditions we tion may be expressed in the form
derive are consistent with those of Ref. 18. However, these
authors did not realize that the small off-diagonal elements
in the connection matri¥defined below in Eq.(10)] do
in fact change the boundary conditions from the conven-
tional ones:® We will show very clearly that using the con- WhereM is a 2x2 matrix. The connection rule matrix im-
ventional boundary conditions can give an incorrect vibraplied by the boundary condition®) and(3) is
tional spectrum.

In the next section we give a detailed derivation of the 1 0
connection rules for the case of a simple one-dimensional M= 0 Kkalkg)
model of an inhomogeneous crystal, a chain of harmonic
oscillators with an abrupt change in mass and spring stiffnes8 common application of Eq(11) is to an elastic string with
parameters, and in Sec. Ill we compare the results of usingn abrupt change in mass density, but no change in
both our connection rules and the conventional connectioelasticity?’?! in this case Eq(11) reduces to the identity
rules to exact results obtained by numerical diagonalizatiortnatrix.22
In Sec. IV we relate the connection rule problem to that of It is simple to demonstrate th&ll) is the only matrix
calculating theS matrix for plane-wave scattering from the consistent with condition$2) and (3): First, continuity re-
interface. The problem of determining the interface boundarguires thatM ;=1 andM ;,=0. To find the other elements,
conditions between three-dimensional solids is discussed iwe note that in one dimension th& component of the stress
Sec. V, and our conclusions are summarized in Sec. VI.  tensor of Eq.(5) is T"*= — pv2d.u. The stress immediately

u(Xo)
u’(Xp)

u(Xo)

u’(Xop) (19

B A

11)
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to the left of the interface is therefofié*= —kaua(Xo), and
that to the immediate right i¥5‘= —kgug(Xg). Now, Eq.
(10) requires that

KgUp(Xo) =Kg[ M2 Ua(Xg) + Mgz UA(X0) ], (12
which implies
TE'=—My; KgUa(Xg) +M kg /ka) TR (13

Therefore, the conditioni3) requires thatM ;=0 and M,
= kA/kB .

PHYSICAL REVIEW B8, 035431 (2003

We now proceed with our derivation of the correct bound-Which, upon comparison with E¢10), identifies

ary condition matrixM for the model shown in Fig. 2. The

coordinates,(t) of the atoms are written as

Xa(t)=Xp+&n(t),  Xp=na. (14
The equation of motion for atom is
Mnén=K:(énr1— &) —ki(€n—En-1), (15)

wherek, is the stiffness of the spring to the right of mass
m,, andk, is that to the left. Assuming harmonic time de-
pendence we have, for the atoms immediately to the feft (

=—1) and right 6=0) of the interface
—0?Mpé_1=Ky(Eo—E_1) —Ka(é_1—E-5)  (16)
and
— w’mgé&o=Kg(&1— &) —Ky(&o—€-1). (17)

Next we introduce the displacement fialdx) as a smooth
interpolating function between thg,, such that

u(xp) =4, (18)
and use the following relations:

3 3

£ ,=Up Xo~ 54 ~UA(X0)_§aUA(Xo), (19
1 1

£ 1=Up Xo~ 54 ”UA(XO)—EaUA(Xo), (20
1 1

€o=Ug| Xt 5@ *UB(XO)‘FEaUB(Xo), (21)
3 3

£1=Ug| Xt 5a *UB(X0)+§aUB(X0)- (22

1
Kk -
v gk u(o)
1 u’(x '
—k, a kB——kJ) (%)l
2
1
Kk _z
) alka ZKJ) u(Xop)
- 1 u’(xg) |, (23
0
_kJ EakJ A
1 -1 1
kJ EakJ kJ a kA_EkJ)
1
_kJ a kB_EkJ) _kJ EakJ
(24)

as the connection rule matrix. Therefore we obtain, for the
model shown in Fig. 2, the connection rules

1
1 a kAkB—EkJ(kA-I—kB) /K;3Kg

(29
0 ka/Kg

Several remarks are in order. First, the correct connection
rules clearly depend on the microscopic structure of the in-
terface, including the stiffnedg of the interface bond, which
is generally different thak, andkg. The boundary condi-
tions cannot be deduced by conservation laws that do not
make reference to the microscopic structure. Second, the ma-
trix (25) is generally off diagonal, implying a connection
between the displacement fialdbn one side of the interface,
with the strainu’, as well as the displacement, on the other.
Third, the displacement field is generalhot continuous
through the interface, in contrast with the conventional
assumptiorf? This discontinuity, however, does not imply
that the two sides are separated. It simply means that the
atomic displacements,, when extrapolated from each side
to the “mathematical interface” aty, do not meet. Fourth,
we note that in the limia— 0 the boundary conditiondl1)
and (25) agree. However, this limit is not meaningful in a
real crystal. Fifth, Eqs(11) and(25) also become equivalent
in the event thak, has the special value} given by

1 1

1 1

K2 (29
J

Sixth, although we have assumed that the lattice structure is

Because the interface boundary conditions involve the disthe same at the interface as in the bulk, the method we used
placement field and its first derivative only, second andwould apply to a relaxed interface as well, once that relaxed
higher-order gradients are neglected here. Furthermore, &ructure is known. And finally, although the connection rules

the frequencyw is formally of the order of a gradierte-

call the bulk dispersion relatiom=uv|k|), for consistency
we also neglect the terms proportional ¢& in Eqgs. (16)

and(17).%

themselves may depend on the arbitrary choice of interface
positionx,, observable quantities do not. For example, if the
interface position is moved fromy to x5 and the vibrational
spectrum is computed with the shifted connection raled

The resulting coupled equations can be put in the form the new interface position, the spectrum remains unchanged
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(within the accuracy of elasticity theogryWe have therefore 0.8 ' ' ' ez
chosen the simplest interface position. 7
/.
24
IIl. NUMERICAL STUDIES OF VIBRATIONAL SPECTRA 06 | / |

When k; differs from kj , the influence of the off-
diagonal element in Eq(25) can become substantial. To
demonstrate this we use elasticity theory with both E#y$. Boal
and (25) to predict the normal-mode frequencies of a one-
dimensional inhomogeneous crystal of finite lengithand
compare both with the exact spectrum obtained numerically.
The interface is placed af=L/2. 02

The elasticity theory spectrum is obtained byumeri-
cally) searching for frequencies such that the three conditions

u(0)=0, u(L)=0, and Eq(10), are satisfied. The appropri- 0 , , ,
ate solution of the wave equation to the left of the interface, 0 5 10 15 20
on the interval G=x<x,, is n

FIG. 3. Vibrational spectrum withkg/ka=5.0 and k;j/ka

Ua(X)=sin(wx/va), 27 =0.20.
and to the right to<x<L) is with the exact spectrum, whereas the spectrum calculated
_ : with Eq. (11) does not. At higher frequencies both elasticity
Ug(X) = acod wx/vg) + fSiN(wX/vg). (28) theory spectra deviate from the exact spectrum because the
« and B are uniquely determinetht each frequengyby the  wavelength becomes shorter.

requirement that Eq10) be satisfied. This leads to The final set of spectra we present, shown in Fig. 5, cor-
responds to a homogeneous ch&j=k,, with a weakly

u(Xo) a u(Xop) bonded interfac&;=0.20k, . The spectrum calculated with
U (%) =C 8 M x| (29 Eq.(25) agrees well with the exact spectrum. The elasticity
0/l 0/ 1A theory spectrum calculated with Eql1l) misses the fine
where structure present in the exact spectrum because (EL.
makes no reference to the valuelgf.
( cog wlL/2v3) sin(wL/2vg) ) These examples are meant demonstrate our point that the
= . . conventional boundary conditions are, as a matter of prin-
~(wlvg)sin(wl/2vg) (wlvg)Codwl/2v) ciple, incorrect. However, a particular heterojunction may
(30 turn out to have boundary conditions close to the conven-
From Eq.(29) we obtaina(w) and B(w) as tional ones.
[a Sin(wL/2v,) IV. S MATRIX
=C M : (31 _ _ _
B (wlvp)cos wl/2v,) An alternative but physically equivalent way of express-

and the normal mode frequencies follow from the remainingmg the interface boundary conditions is throughSamatrix.

boundary conditiorug(L)=0. 0.8 . . . -
The exact spectrum is obtained by expressing the coupled 7
equations of motior(15) for a chain ofN atoms, with the Sy
first and last atoms held fixed, as a nonsymmetric eigenvalue L
problem. The system size is then given by Na. For the 08 /
results presented below, we uSe-101.
Representative results are shown in Figs. 3-5. In each
case the angular frequenay of moden is given in units of So4al 1
mualL. Figures 3 and 4 the show vibrational spectra of two
inhomogeneous chains, both wkh=5.0k, . The curves in
these figures are independent of the masseandmg ; the
only mass dependence is in the energy s@alg/L. In each
case the solid line is the exact spectrum, the dotted line is the
elasticity theory spectrum calculated with the conventional
connection ruleg11), and the dashed line is the elasticity 0 . .
theory spectrum calculated with the connection rs. In 0 5 H 15 20
Fig. 3,k;=0.20k,, and the three spectra are similar. In Fig.
4, wherek;=0.05k, , the two sides are only weakly bonded  FIG. 4. Vibrational spectrum withkg/ka=5.0 and k;/kp
together, and the spectrum calculated with E2p) agrees =0.05.
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FIG. 5. Vibrational spectrum witky=kg andk;/k,=0.20.

20

Whereas the matri¥ gives the linear relation between the
displacement fieldi(x,) and its derivativeu’ (xy) on sideA
to that on sideB, the S matrix relates the amplitudes of

waves incident on the interface, from both sides, to the cor-

responding outgoing waves. In this case we tafeo be at
the origin and we write the elasticity theory solution€’as

UA(X):A+ ein/UA+A_e_in/DA (32)

and

UB(X):B+eiwxlvB+ B_e_i“’X/”B, (33)
whereA. andB.. are complex coefficients giving the am-
plitudes of the plane waves shown in Fig. 6.

The Smatrix relates the coefficients in Eq82) and(33),
and is defined by

A_ Al
B, =S B | (34
From Eq.(10) we obtain
B. Al
B =M A (35
and therefore
—_— = _— =
A_ B_
- -

FIG. 6. Incoming and outgoing waves related by Smatrix.
The interface is ak=0.

PHYSICAL REVIEW B8, 035431 (2003

o= L Ma 2 ) 36)
,/\/l22 detM Mlz
where
1 1o\t 1 1
Mz(iwlvB —iw/UB) M(iwlu/_\ —iw/vA>'
(37

Here detM is the determinant ofM. A useful expression
for M may be obtained by combining Eq4.1) and(25) as
1 My

0 Kkalkg/'
whereM ,, is either equal to zero or to the off-diagonal ele-

ment a[kakg— 3 Ky(ka+kg)1/kskg in Eq. (25). Using this
representation foM we obtain

M= (39)

kAUB . w AUB w
1 1+ kgo +IM12U— 1- kaA—I 12,
M=3

2 1 kAU B . M 14 kAU B . M w

kgv ! 12y Kgv I 12&
(39

and

dethkAUB/kBUA. (40)

Note that the complex terms in tlf&matrix come from the
off-diagonal element in Eq25).

The S matrix provides a simple and direct way to obtain
transmission and reflection amplitudieandr for scattering
from the interface. From Eq36) we observe that the trans-
mission and reflection amplitudes for a wave of unit ampli-
tude incident from the leftA,. =1 and B_=0) are

det/\/l 2kAUB
t= = . (41
Mzz kAvB+ kBUA_lM lZka
and
M k -k —iM k
S 21 KaUp™ Kpla 120Kp (42)

Mzz_ kAUB+ kBUA_ iM lz(,()kB ’

In the limit ky=kg=k;, where the mass density is discon-
tinuous but the elasticity is continuous, these amplitudes re-
duce to

2v B Up—Ua
t— and r————, (43
Ug + Ua Ug +v A
the well-known results for scattering from a mass

discontinuity?* It can be shown that the transmission and
reflection coefficientsT and R defined as the fraction of
transmitted and reflected energy flux, are determined from
Egs.(41) and(42) according to

vakg

T:
vgKa

12 and R=|r|2 (44)
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In addition to relating the connection rule matiik to  face. In contrast, the condition that the stress be continuous
observable quantities, this scattering theory formulatiorfollows from momentum conservation and is always
serves to reemphasize the main thesis of this paper, that therrect?®
connection rules must depend on the microscopic structure It is tempting to approach the interface boundary condi-
of the heterojunction and cannot be determined by “fartion problem by using elasticity equations generalized to the

field” information alone. case of a compositionally graded crystal, characterized by a
position-dependent mass density and elastic parameters, and
V. BEYOND ONE DIMENSION then take the limit of an abrupt composition change. But this

too is incorrect, for elasticity theory is intrinsically a long-
In this section we give a brief discussion of the generali-wavelength description and can be formulated only for
zation of our method to three-dimensional epitaxial heteroslowly graded systems, making the required limit invalid.
junctions. To allow for both longitudinal and transverse elas- For example, the generalized wave equation describing
tic waves one must work with a>66 connection matrix the long-wavelength vibrational dynamics in a one-

M ;p satisfying dimensional crystal with lattice constaaf mass density
_ _ _ ) p(x), and stiffnesk(x), can be shown to béee the Ap-
Ux(Xo) Ux(Xo) pendix
Hy(Xo) (o) 92— adk(X)dJu(x,t) =0 4
uz(XO) uz(XO) [p(X) t ady (X) X]U(X, )_ . ( 7)
Ug(Xo) | Msp Uy (Xo) (45 Integration of Eq.(47) shows thati(x) andk(x) u’(x) are
U’ (Xo) U’ (Xo) continuous, consistent with the conventional boundary con-
yi7o yi7o ditions of Eq.(11). However, Eq.(47), which neglects stiff-
u;(Xo) B u,(Xo) A ness gradients higher order th&h(x), is not valid in the
i i i i abrupt limit.
Hereu/=n-Vu;, with n a unit vector normal to the inter- Having made the case that the conventional interface

face, and =x,y,z. The procedure for obtainingl 5 is iden-  boundary conditions given in Eg&) and(3) do not apply to
tical to that described in Sec. Il; however, in general it will epitaxial interfaces, we must emphasize again that we have
be necessary to include atomic bonds beyond those connectot provided generally applicable conditions to replace Egs.
ing nearest-neighbor atoms. (2) and(3). The connection rules in E@25) are only valid

To obtain quantitatively accurate connection rules ondor the simple one-dimensional interface model shown in
would need to determine the atomic structure of the particuFig. 2. We also emphasize that for some heterojunctions, the
lar interface and the required force constants. This can bactual boundary conditions may be very close to the conven-
accomplished using first-principles electronic structure caltional ones.
culation methodgfor example, those based on density func- In closing, we would like to speculate about the reason
tional theory, although a full treatment of a three- the subject of this paper has been, to the best of our knowl-
dimensional heterojunction would be very demandingedge, overlooked in the solid state physics literature. Histori-
computationally. cally, elasticity theory was developed as a self-contained
branch of mechanics that made no reference to a possible
underlying atomic structure, and much of the theory was
developed before the general acceptance of the atomic view

We have shown that the conventional interface boundarpf matter. The conventional boundary conditiq@2s and (3)
conditions used in elasticity theory, requiring that the dis-are certainly correct within elasticity theory proper. How-
placement field and its associated stress field be continuougyer, within solid state physics, elasticity theory is regarded
are generally incorrect for epitaxial interfaces. The correcas a long-wavelength description with a well-defined but
boundary conditions are nonuniversal and depend on the démited regime of validity, and we believe that the connection
tailed microscopic structure of the heterojunction. rules in question were applied to heterostructures without

The conventional boundary conditions are incorrect be<onsidering that regime of validity.
cause the displacement fialdr) is generally discontinuous.
However, this discontinuity doe®otimply that the two sides

VI. DISCUSSION
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is simply a function giving the displacement of atamat

each equilibrium lattice poinﬂ. A discontinuity inu(r) at a
“mathematical” interface between layers of atoms implies
that the atomic displacements—r® on each side of an in- Here we record the long-wavelength theory of the homo-
terface do not meet when smoothly interpolated to that intergeneous harmonic oscillator chain with massesspring

APPENDIX: HOMOGENEOUS CHAIN
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constants, and lattice constard. In this case the equation is the scalar stress. As expected, E&p) is identical to the

of motion leads to xx component of the stress tensor of Ef). Similarly, the
K energy density= 3 p[ (6,u)?+v?(9,u)?] satisfies the con-
d2u(x,t)— E[u(er a,t)—2 u(x,t)+u(x—a,t)]=0. tinuity equation
(A1) HE+ dyje=0, (AB)
Taylor expanding Eq(Al) leads to the one-dimensional h
wave equation where
(20292 u(x,1)=0, (A2) je=—pv®audu (A7)
with sound velocity is the energy current.
The long-wavelength description of a harmonic oscillator
v=avk/m. (A3) chain with spatially varying masses and spring constants fol-

. , .. _lows from the appropriate gradient expansion of
Next we derive the momentum conservation condition

satisfied by the displacement fialdThe momentum density m(x)22u(x,t)
carried by a longitudinal elastic wave in one dimension is e

IT=pod;u, wherep is the mass density. In the absence of a
external forces, Eq(A2) shows thafll satisfies the continu- =k| x+ > [u(x+a)—u(x)]
ity equation
a
oI+, T=0, (A4) —K| x— E)[u(x)—u(x—a)]. (A8)
where

Neglecting gradients beyorid (x) leads to Eq(47) quoted
T=—pv2d,u (A5) in Sec. VL.
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