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Fluxons and their interactions in a system of three stacked Josephson junctions
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Fluxon dynamics in a system of three coupled driven damped sine-Gordon equations is investigated. Bunch-
ing of fluxons is observed. It is shown that fluxon-fluxon-fluxon bound states exist in a certain interval of the
fluxon velocity. Attraction between fluxons occurs as a result of indirect fluxon-fluxon interaction mediated by
Swihart waves. To tackle the problem analytically a piece-wise linear approach is developed. The analytical
approximations show good agreement with the results obtained by direct numerical simulations.
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I. INTRODUCTION

The fluxon dynamics in stacked long Josephson juncti
have been investigated in detail during the last decade1–8

The possibility of comparing theoretical predictions with e
perimental measurements increases the interest of these
tems. The potential applications of the vertical stacked
sephson junctions cover several interesting fields such a
design of devices for storage and transmission of electro
signals and high-frequency radiation emission and detec
devices.

When two layers of superconducting material are se
rated by an insulating layer and overlap between Coo
pairs wave functions occurs, then Cooper pairs~as well as
electrons! can cross the insulating barrier due to the tunn
ing effect. The dynamics of the phase differencew between
the wave functions in the two superconducting layers is g
erned by the perturbed sine-Gordon equation.

The sine-Gordon equation emerges from many differ
physical fields in the study of nonlinear wave phenomen9

Special care has to be taken in the study of stacked junct
as compared to a single junction due to the interaction ef
between the stacked junctions. This interaction was fi
studied in the case of two junctions by Mineevet al.10 and
later it was widely investigated.11–26The symmetry between
the two equations in the case of two junctions may hide so
important aspects of the fluxon motion. In order to inves
gate the general properties of a system of an arbitrary n
ber of junctions we study the case of three junctions. I
important to note the difference in the motion of fluxons
interior junctions, as 2 in Fig. 1, which receive interacti
from their two neighboring junctions, 1 and 3, while the tw
exterior junctions only receive interaction from one neig
boring junction. By simple arguments the topological d
similarity between junctions is most important forn53. In
the limit n5` all junctions are again similar topologically

Our starting point is the model described by Sakai, Bod
and Pedersen2 where a theory describing the interaction b
tween a general system ofN junctions is deduced from th
Maxwell, London, and Josephson equations. The equat
for the particular case of three junctions are
0163-1829/2003/68~3!/035415~10!/$20.00 68 0354
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J15
1

122S2
@w1,xx2Sw2,xx1S2~w3,xx2w1,xx!#,

J25
1

122S2
@w2,xx2S~w1,xx1w3,xx!#, ~1!

J35
1

122S2
@w3,xx2Sw2,xx1S2~w1,xx2w3,xx!#,

where Ji5w i ,tt1aw i ,t1sinwi1gi , i51,2,3. The electro-
magnetic interaction between adjacent junctions is expres
by a coupling constantS, and its physical value2 belongs to
the interval 20.5,S<0. The constanta i represents the
damping andg i represents the driving force in thei th junc-
tion. Realistically due to physical requirements, the drivi
forces introduced into each junction must be the same,
g i5g, i 51,2,3, as shown in Fig. 1.

The Lagrangian of Eq.~1! for the undamped system,a
50, is

FIG. 1. Structure of the stack of four superconductors and th
intermediate junctions~1,2,3!. Unidirectional external bias is ap
plied along the system.
©2003 The American Physical Society15-1
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L5(
i 51

3 E F1

2
w i ,t

2 2
1

2~122S2!
w1,x

2 211cosw i Gdx

1E S

~122S2!
w2,x~w1,x1w3,x!dx2(

i 51

3 E gxw i ,xdx.

~2!

The uncoupled and unperturbed system,S5a5g50 in
Eq. ~1!, reduces to three identical equations which allow
simple single soliton solution given by the expression

w~x,t !54 arctanFexpsS x2vt2x0

A12v2 D G , ~3!

where v is the velocity of the wave. It is called a fluxo
(s51) or an antifluxon (s521), depending on the polar
ity. The maximum speed for one single equation (n51) is
the velocity of light in the junction, the so-called Swiha
velocity,27 c, which is used for normalization in the follow
ing. Several perturbation methods have been develope
study this model in detail.28,29

The aim of this paper is to investigate the trajectories a
stability in (x,t) space and time of the single fluxons
antifluxons in each junction to determine stable modes.
stability analysis of the system of two junctions was stud
by means of perturbation analysis of the antiphase lin
mode by Gro”nbech-Jensenet al.14,15 Assuming fluxon-type
solutions in each junction, the coupling effect leads to rep
sion between the center portion of the fluxons of identi
polarity and attraction between the fluxons of opposite po
ity. This conclusion is obtained investigating the minimum
the potential energy of the system. The basic ideas for
case were first established by Mineevet al.10 and later sev-
eral investigations, making use of the symmetry of this ca
were performed.11,13,17,19,21,30On the other hand, a unidirec
tional g force drives the fluxon and antifluxon in opposi
directions.28

In the case of two stacked Josepson junctions, stable
herent in-phase zero-field steps in the current-voltage c
acteristic were observed experimentally in Refs. 17 and
An experimental finding of different cavity resonanc
~Fiske modes! in three stacked junctions was presented
Ref. 32. So far direct observation of coherent in-phase flu
motion in three and more Josepson junctions has not b
reported.33

Of physical interest are the modes where the waves
cited in the top and bottom junctions are identical. Sta
bunching of solitons are shown in Secs. II and III. Thus
will restrict our analysis to the fluxon-antifluxon-fluxon~f-a-
f!, s151, s2521 in Eq. ~3!, and fluxon-fluxon-fluxon~f-f-
f!, s15s251, cases.

In Sec. II we develop piecewise linear approximatio
~PWLA’s! of the fully nonlinear equations, substituting th
sinwi term by linear approximations. In the f-a-f case t
threshold between the driving and the coupling parame
for the bunched state is deduced. Otherwise the locked s
of fluxons in the f-f-f case is possible only for a certain ran
of high speeds above the Swihart velocity27 where oscillating
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tales are created in the fluxons.11,13,15These oscillations are
successfully represented by the PWLA’s and the thresh
for bunching in the driving-damping parameter space is
tained for each value of the coupling constant with a go
degree of accuracy. In one junction bunching only occurs
the presence of surface current loss.34–39

In Sec. III the method used for the numerical simulatio
is described. The solutions are shown for different para
eters of the equation and compared to the analytical pre
tions. In Sec. IV the conclusions about the work are summ
rized.

In Appendix A, a collective coordinates approach is fo
mulated. This method gives qualitatively good results wh
the fluxons are driven with low velocities and successfu
predicts the bunching of different polarity fluxons but fails
predict the bunching of equal polarity ones. In Appendix
the particular symmetric configuration of two identical jun
tions is studied by the PWLA method. It is found that th
fluxon-fluxon mode is stable above Swihart velocity and
cillating tales do not appear.

II. PIECEWISE LINEAR APPROXIMATION

The two modes~f-a-f! and~f-f-f ! have physical relevance
because they are the only ones which can be excited
stacked coupled Josephson junctions by a uniform bias
rent. Bunched states of fluxons may exist in both modes
the dynamics is completely different.

It is well known that bias current drives the fluxons a
the antifluxon, Eq.~1! with s51 ands521, respectively,
in opposite directions.28 For the case of a~f-a-f! mode it was
shown quite recently26 that in the framework of the collec
tive coordinates approach the balance between the separ
tendency due to driving force and the fluxon-antifluxon
traction may lead to a bunched state. In contrast to this
bunched state on the~f-f-f ! mode does not exist.

As it has been shown6,11,13,15,17,40bunching of fluxons in
the case of two Josephson junctions may be explained
yond the collective coordinates approach. High amplitu
radiation, which is attractive for the fluxons of neighborin
junctions, is created when these fluxons move in the rang
velocity, v, between the Swihart velocities,c2,v,c1 ,
wherec651/(16A2S)1/2 are the asymptotic phase veloc
ties of the small amplitude linear plasma waves.8,41,42

General solutions for the fully nonlinear coupled syste
Eqs.~1!, are not known. We are interested in traveling-wav
type solutions,w i(x,t)5w i(z), wherez5x2vt. Taking into
account that in both modes,~f-a-f! and~f-f-f !, fluxons in the
first and the third junctions are identical, the set of Eqs.~1!
can be reduced to the following two equations:23,24

~m22v2!w19~z!1avw18~z!2sinw1~z!22Sm2w29~z!2g50,

~m22v2!w29~z!1avw28~z!2sinw2~z!2Sm2w19~z!2g50,
~4!

wherem251/(122S2)5c2
2
•c1

2 .
We cannot solve Eqs.~4! analytically. Therefore to pro-

vide some insight into the physical mechanism of flux
interaction, we use PWLA’s,P(w i), for the nonlinear terms
sinwi , in order to linearize Eqs.~4! in a piecewise fashion.
5-2
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Here we present two choices,Pa andPm, for the operator
P,

Pa~w!5H aw, for 0<w,p,

a~w22p!, for p<w,2p,
~5!

and

Pm~w!5H w, for 0<w,p/2,

p2w, for p/2<w,3p/2,

w22p, for 3p/2<w,2p,

~6!

respectively.
The first one,Pa@w(z)#, is the simpler. As seen in Fig

2~a! it provides a good representation of the fluxon tails
w→0 or 2p. However, it is discontinuous atw5p. The free
parametera (0,a<1) controls the slopes of the approx
mating straight lines and may be used to adapt the appr
mation.

The second one,Pm@w(z)#, is more accurate. It wa
used43 to describe fluxon dynamics in a single junction wi
a surface loss term. As seen in Fig. 5~a! below Pm(w) pro-
vides a good approximation to the fluxon tails asw→0 or
2p and also to the center portion of the fluxons atw'p. In
contrast toPa , Pm is continuous.

The analytical solutions obtained by substituting sinw by
Pm(w) are more accurate than usingPa but also more cum-
bersome. In the following sections the reasons for choos
between the two approximations are given.

A. Fluxon-antifluxon-fluxon

Here we describe the~f-a-f! bunching taking into accoun
fluxon shape modification. Because we are interested in
low velocity case, wherev is much smaller than the lowes
Swihart velocity,c2 , we may use the PWLA,Pa , given by
Eq. ~5!.

The identical bias term,g, in all junctions, Eq.~1!, drives
the fluxons in one direction and the antifluxon in the oppos
s

i-

g

he

e

one. On the other hand due to coupling between junctions
fluxons and the antifluxon attract each other.11,13,21,22As a
result of the competition between driving and interaction
junction coupling the fluxons and the antifluxon are se
rated by the distance,d. For g.0 the antifluxon is behind
the fluxons and the distance between them,d, increases with
the driving force. Thus in the framework of the PWLA on
should distinguish the following three intervals as shown
Fig. 2~b!:

~ I! z<0⇔2p>w2.p,

~ II ! 0,z<d⇔w2<p, w1,p, ~7!

~ III ! d,z⇔p<w1<2p.

Inserting solutions of the typew i(z)5Die
lz2g/a in the lin-

ear system of the ODE, Eq.~4! with P5Pa , the correspond-
ing fourth-order characteristic equation is obtained to be

F S 1

122S2
2v2D l21avl2aG 2

5
2S2

~122S2!2
l4. ~8!

The roots of Eq.~8! are

l1,252p16Ap1
2 1aq1, l3,452p26Ap2

2 1aq2,
~9!

where the termsp6 andq6 are

p65
av

2~c6
2 2v2!

, q65
1

~c6
2 2v2!

. ~10!

The eigenvectors (D1 ,D2) associated to the solution of th
linear system will be (1,A2)T and (1,2A2)T, corresponding
to the in-phase and antiphase modes. For low velocit
uvu,c1 , l1,3 are positive andl2,4 are negative. The expres
sions for the bounded solutions of the piecewise lineari
version of Eq.~4! in each one of the three regions, I, II an
III, become
~ I!H ŵ1~z!5H1el1z1H2el3z2
g

a
,

ŵ2~z!5A2~H1el1z2H2el3z!12p2
g

a
,

~11!

~ II !H ŵ1~z!5G1el1z1G2el2z1G3el3z1G4el4z2
g

a
,

ŵ2~z!5A2~G1el1z1G2el2z2G3el3z2G4el4z!2
g

a
,

~12!

~ III !H ŵ1~z!5K1el2z1K2el4z12p2
g

a
,

ŵ2~z!5A2~K1el2z2K2el4z!2
g

a
.

~13!

035415-3
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FIG. 2. ~a! Piecewise linear approximation
Pa@w(z)# ~dashed curve! of the sinw(z) function
~full curve! with a50.7. ~b! w15w3 are dis-
placed ahead a distanced from w2, forced by the
bias current,g.
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The eight constants (H1 ,H2 ,G1 ,G2 ,G3 ,G4 ,K1 ,K2) are de-
termined by the ten matching conditions at the pointsz50
andz5d,

ŵ2
I ~0!5ŵ2

II ~0!5ŵ1
II ~d!5ŵ1

III ~d!5p,

ŵ1
I ~0!5ŵ1

II ~0!, ŵ2
II ~d!5ŵ2

III ~d!, ~14!

dŵ i
I~0!

dz
5

dŵ i
I I ~0!

dz
,

dŵ i
I I ~d!

dz
5

dŵ i
I II ~d!

dz
, i 51,2,

where the superscripts (•••) I , (•••) II , and (•••) III indicate
the regions I, II, or III, respectively, in which the function
evaluated and the apostrophe indicates differentiation w
respect toz.

By using any eight from the ten matching conditions, E
~14!, the eight constants (H1 ,H2 ,G1 ,G2 ,G3 ,G4 ,K1 ,K2)
may be expressed as functions of the parametersS, g, a, and
v. The remaining two conditions give the dependence of
distance between solitons,d, and the relation between th
velocity, v, and the driving force,g. After some algebraic
calculations we get simple expressions for these two rem
ing conditions as a function of the coefficientsG1 and G3
given by Eqs.~14! to be

S l1

l2
21Del1dG152p, S l3

l4
21Del3dG352p.

~15!

FIG. 3. The gray shaded area indicates the region in
(S,g)-parameter space in which bunching of the~f-a-f! occurs in
the numerical simulations. The dashed curve draws the contou
the region in which the PWLA of the~f-a-f! leads to bunching for
the free parametera50.5.
03541
th
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When the coupling parameter,S, is large enough to counter
act breakup induced by the driving force,g, Eqs.~15! have
finite solutions for the velocity,v, and distance,d. This
means that the bunched state of the~f-a-f! mode exists. The
corresponding phase diagram in the (S,g) space is presente
in Fig. 3.

The PWLA, Eq. ~11!, reproduces quite accurately th
shape of the fluxons for the weak bias current,g, where the
bunching of the~f-a-f! occurs, as is shown in Fig. 4. On th
other hand at high bias current,g, when the fluxons move
with velocity close to the lowest Swihart velocity,c2 , the
shape of the fluxons are more sensitive to variations44 and
this simple discontinuous PWLA, Eq.~5!, is not sufficiently
accurate. It reproduces accurately the behavior of fluxon
the tails but is not correct at the center portion of the fluxo
which significantly contribute to the fluxon interaction. I
this case we need the more accurate approximation give
Eq. ~5! to obtain the bunched~f-f-f ! state in the following
section.

B. Fluxon-fluxon-fluxon

In the framework of the collective coordinates approa
the bunched state of three fluxons is unstable~see Appendix
A!. Fluxons repel each other and the potential energy
interaction,Uint , decreases when the distance between fl
ons increases. However, as it follows from the results
numerical simulations11,13,15,23,24,45 ~see also below! the
bunched state does exist when the driving force exce
some critical value. It is also quite remarkable that an
pearance of bunched states isalwaysaccompanied by cre

e

of FIG. 4. Bunched fluxons and antifluxon from the numeric
simulation ~full curve! and PWLA ~dashed curve!. S520.49, a
50.1, g50.2, anda50.5 have been used.
5-4



FLUXONS AND THEIR INTERACTIONS IN A SYSTEM . . . PHYSICAL REVIEW B68, 035415 ~2003!
FIG. 5. ~a! Piecewise linear approximation
Pm@w(z)# ~dashed curve! of the sinw(z) function
~full curve!. ~b! Fluxon,w2, forwarded a distance
d from the fluxon,w1, due to the interaction from
its two neighbors.
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ation of oscillatory tails of fluxons. The bunched state
equal polarity fluxons in coupled Josephson junctions is
ways related to these oscillatory tales unless there are
two junctions with the same physical properties. The sy
metry of this configuration, which may be considered as
generate, provides a fluxon-fluxon solution without oscil
tions as is deduced in Appendix B. Therefore to descr
fluxon bunching one should use an approach which ta
into account the change of shape of fluxons and appear
of oscillating tails. This can be done in the framework of t
PWLA. The approximationPa given by Eq.~5! is too crude
in the central portion of the fluxon to provide the bunch
state. Instead the more accuratePm , given by Eq.~6! and
shown in Fig. 5~a!, is used. We assume that the fluxon in t
interior junction,w2, travels slightly ahead by a distanced
with respect to the fluxons of junctions 1 and 3,w15w3, as
shown in Fig. 5~b!.

As in the previous section we distinguish three interv
for the PWLA,

~ I! z<0⇔0,w1<
p

2
,

~ II ! 0,z<d⇔w1.
p

2
, w2<

3p

2
, ~16!

~ III ! d,z⇔ 3p

2
,w2<2p.

Inserting solutions of the typew i(z)5Die
lz6g (2 in

regions I and III and1 in region II! into the linear system o
the ODE obtained from Eq.~4! substituting sinwi→Pm(wi)
we get the characteristic equations
03541
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F S 1

122S2
2v2D l21avl71G 2

5
2S2

~122S2!2
l4. ~17!

The upper sign (2) corresponds to regions I and III and th
lower sign (1) to region II. The roots of Eq.~17! in regions
I and III are

l̄1,252p16Ap1
2 1q1, l̄3,452p26Ap2

2 1q2,
~18!

wherep6 andq6 are given by Eq.~10!. For speeds highe
than the Swihart velocity,v.c2 , the roots l̄3,4 become
complex and they are responsible for the emergence of
cillatory tails of the fluxons. For convenience we deno
l̄3,45l̄ r6 i l̄ l , wherel̄ r52p2 and l̄ l5A2(p2

2 1q2) are
real. In region II the roots are

l̄5,652p16Ap1
2 2q1, l̄7,852p26Ap2

2 2q2.
~19!

The rootsl̄7,8 are real whilel̄5,6 are complex; for conve-
nience we denotel̄5,65l̄m6 i l̄h , wherel̄m52p1 and l̄h

5A2(p1
2 2q1) are real. In the three regions the eigenv

ues corresponding to the solution of the characteristic eq
tions are (D1 ,D2)5(1,A2) and (D1 ,D2)5(1,2A2) for the
in-phase and the antiphase modes, respectively. The bou
solutions of the linearized version of Eq.~4! in regions I, II,
and III become
~ I!H ŵ1~z!5H̄1el̄1z1el̄rz~H̄2cosl̄ lz1H̄3sinl̄ lz!2g,

ŵ2~z!5A2@H̄1el̄1z2el̄rz~H̄2cosl̄ lz2H̄3sinl̄ lz!#2g,
~20!

~ II !H ŵ1~z!5el̄mz~Ḡ1cosl̄hz1Ḡ2sinl̄hz!1Ḡ3el̄7z1Ḡ4el̄8z1p1g,

ŵ2~z!5A2@el̄mz~Ḡ1cosl̄hz1Ḡ2sinl̄hz!2Ḡ3el̄7z2Ḡ4el̄8z#1p1g,
~21!

~ III !H ŵ1~z!5K̄1el̄2z12p2g,

ŵ2~z!5A2~K̄1el̄2z!12p2g.
~22!
5-5
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The eight constants (H̄1 ,H̄2 ,H̄3 ,Ḡ1 ,Ḡ2 ,Ḡ3 ,Ḡ4 ,K̄1) are de-
termined by the ten matching conditions at the pointsz50
andz5d, and the corresponding equations are

ŵ1
I ~0!5ŵ1

II ~0!5
p

2
, ŵ2

II ~d!5ŵ2
III ~d!5

3p

2
,

ŵ2
I ~0!5ŵ2

II ~0!, ŵ1
II ~d!5ŵ1

III ~d!, ~23!

dŵ i
I~0!

dz
5

dŵ i
I I ~0!

dz
,

dŵ i
I I ~d!

dz
5

dŵ i
I II ~d!

dz
, i 51,2.

The remaining two conditions can be written in the followin
way as functions ofḠ1 andḠ4 obtained previously by Eqs
~23!:

S el̄md

cosl̄hd
D Ḡ15S l̄m1

l̄2

A2

l̄h

2tanl̄hdD S g2
p

2 D ,

S l̄8

l̄7

21D el̄8dḠ45S 12
1

A2
D S g2

p

2 D . ~24!

From Eqs.~24! the values of the distance between fluxonsd,
and the velocity,v, are fixed as function of the parametersS,
a, andg. Solving Eqs.~24! for each coupling constant,S,
we obtain the region in the (a,g)-parameter space wher
bunching in the~f-f-f ! mode exists. Figure 6 shows this r
gion calculated numerically between the Swihart velociti
c2,v,c1 , where bunching exists. The bottom contour
this region may be approximated by the PWLA, while t
top contour of the region cannot be approximated by
PWLA, due to creation of new pairs of fluxon-antifluxon
above this contour. The PWLA, Eqs.~20!–~22!, reproduces
quite accurately the shape of the fluxons for low values
the driving force,g, where the bunching of the~f-a-f! takes
place, as shown in Fig. 7.

FIG. 6. The gray shaded area indicates the region in the pa
eter space (a,g) for S520.2, where bunching of the~f-f-f ! occurs
in the numerical simulations. The bottom contour of this region
approximated by the PWLA~dashed line! but the top contour can
not be found by this approach.
03541
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III. NUMERICAL SIMULATIONS

A symmetric central finite difference method of seco
order for both space and time has been implemented for
numerical simulations. The total length of the junctions
L540 and the spatial mesh size isDx50.05. We have cho-
sen periodic boundary conditions,w i(L/2)5w i(2L/2)12p
and w i ,x(L/2)5w i ,x(2L/2), i 51,2,3, corresponding to an
annular geometry to avoid ambiguities due to reflection fr
edges.

As shown in previous sections, in the antiphase mo
~f-a-f! the fluxons and the antifluxons are attracted by
coupling between junctions while a bias current of the sa
sign in all fluxons,g, drives them in opposite directions
When the coupling is strong enough to overcome the flux
antifluxon separation caused by the bias term the two flux
and the antifluxon will travel bunched, as is shown in F
8~a!, while a higher driving force will lead to a split in the
fluxons, as is shown in Fig. 8~b!. The bunching in the~f-a-f!
mode takes place foruvu,c2 .

The numerical simulations have been made under fi
values of the coupling constant,S, and the dissipation,a,
and varying the driving,g. A numerically found dependenc
of the bias current vs fluxon velocities is plotted in Fig. 6

The ~f-f-f ! mode presents a more complex scenario th
the ~f-a-f!. Here the bunching is possible for speeds betwe
the lowest and the highest Swihart velocities,c2,v,c1 .
Thus the simulations have been made for a high driv
force, g. Three types of fluxon motion have been detect
When g is lower than a threshold value the bunched st
does not exist. Fluxons in external junctions split from t
fluxon in the internal junction@see Fig. 9~a!# and they propa-
gate with different velocities.

Increasing the bias parameter,g, we find the range of
values where bunched states exists. This bunching inte
depends on the couplingS and the dissipationa. When
bunching takes place the fluxons move their centers with
same velocity,v, belonging to the interval (c2 ,c1), and
their centers are separated by a small distance, as is show
Fig. 9~b!. The emergence of oscillating tails in the numeric
solution of Eq.~1! for this high velocity,v, induces the three

m-

s FIG. 7. Bunched fluxons from the numerical simulation~full
curve! and as result of the PWLA~dashed curve!. The parameters
are S520.2, a50.2, andg50.6. The velocity isv51.1.c2 .
One can see good agreement between both results.
5-6
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fluxons to bunch. For a too high bias@g50.69 in Fig. 9~c!#
the equilibrium of bunching is broken by the creation of
new pair of fluxon-antifluxon.46

It is worth mentioning that fluxon splitting is an irrever
ible process. For example, having initially a bunched sta
one can destroy it by decreasing the bias term,g, and cross-
ing the bottom contour in Fig. 5. As a result exterior fluxo
and the interior one split off and start to move with differe
velocities. It is impossible to rebunch these fluxons by
creasing the driving force,g.

The bias current versus the numerically found fluxon
locities~i.e., theI -V curve with voltage replaced by velocity!
are plotted in Fig. 10. When the fluxons move more slow
than c2 , they split and travel with different velocities,w1
5w3 with v1 andw2 with v2, wherev1,v2. Bunching state
branches are observed in narrow ranges of velocities betw
c2 andc1 .

As was mentioned above we used a uniform driving for
g. Therefore during the simulations we did not observe
mode corresponding to a fluxon in the first junction, nothi
in the second, and an antifluxon in the third, which w
proved to be stable in the no-bias, no-damping case.

IV. CONCLUSIONS

We have investigated a theoretical model of three coup
Josephson junctions taking into account identical fluxo
w15w3, in exterior junctions and a fluxon or antifluxon i
the interior one,w2. In the case of~f-a-f! the interaction
between the fluxons leads to repulsion between the ce
portion of the fluxons and antifluxon while the bias term,g,
drives them in opposite directions. The combination of th
two factors gives rise to bunching or unbunching depend
on the balance betweenS and g. The simple analytical

FIG. 8. Three-dimensional graphics of the behavior in time
the ~f-a-f! mode. ~a! The ~f-a-f! mode splits for coupling,S5
20.2 and bias current,g50.1. ~b! The ~f-a-f! bunched mode for
couplingS520.2 and bias currentg50.09.
03541
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PWLA used, sinw→Pa(w), gave successful results in the a
proximation of the shapes of the solutions as well as in
determination of the region in (S,g) phase space wher
bunching occurs. This method gives better results than
collective coordinates approach because it works well e
when the range of velocities is not restricted to slow on
uvu@0.

The behavior of the waves in the~f-f-f ! mode is notori-

FIG. 9. Behavior of fluxonsw1 ~full curve! and w2 ~dashed
curve! for coupling S520.2, dampinga50.1, and bias current
~a! g50.43 fluxons split with velocitiesv150.868 forw1 and v2

50.88 for w2; ~b! g50.44 bunched fluxons with velocityv15v2

51.118;~c! g50.69 creation of a new fluxon-antifluxon pair due
excess energy.

FIG. 10. Bias current,g, versus fluxon velocity,v, for coupling
for S520.2. Full~dashed! curves represent velocity versus bias f
a50.1 (a50.3). Belowc2 , fluxons split and two different veloc-
ity branches are observed forw1 andw2. Fluxon bunching occurs in
a velocity interval betweenc2 andc1 .

f

5-7



io
ed

t
a
n
f
a

p
he
ph
-
on
x
te

-
no
c
e

ng

he
n
th

y

e

or

a
n

rd

o

o

Eq.

ne-

e
a-

ith

la-

ua-

are

tion
el

C. GORRIAet al. PHYSICAL REVIEW B 68, 035415 ~2003!
ously different than the previous one. Here the interact
coupling induces repulsion between the fluxons for spe
below the lowest Swihart velocity,v,c2 . In the high ve-
locity regime,c2,v,c2 , the fluxon bunching may exis
only for a certain range of velocities due to the creation of
oscillating tales mirror symmetric in the fluxons of adjace
junctions. These oscillations provide the internal energy o
local minimum when the fluxons are separated by a sm
distance,d. Under these conditions the changes of the sha
of the fluxons are very sensitive to small variations of t
parameters and that is why we have chosen the more so
ticated PWLA, sinw→Pm(w). The analytical solutions ob
tained by this method approximate accurately the soluti
given by the numerical simulations and also give appro
mately the lower velocity threshold for the bunched sta
This result cannot be obtained by the classical method
collective coordinates~see Appendix A! because the oscillat
ing tales, which are fundamental for the bunching, are
taken into account in the classical fluxon type of trial fun
tions. I -V curves have been calculated numerically in ord
to clarify the behavior of the fluxons inside the bunchi
interval of the parameter space (S,g), as well as outside this
interval.
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APPENDIX A: COLLECTIVE COORDINATES

In this Appendix the attraction between the center p
tions of the fluxon and the antifluxon in the~f-a-f! mode and
the repulsion between the fluxons in the~f-f-f ! mode is in-
vestigated. The standard procedure is to study the minim
the potential energy,W, as a function of the distance betwee
the waves in the different junctions.

In the collective coordinate approach generalized coo
nates defined byqW (t)5@q1(t), . . . ,qn(t)# are used. They
determine the position of the particles at timet. The energy
of the system given by Eq.~1! may be written in terms of
these coordinates,q, and their derivatives with respect t
time, q̇. The potential energy,W, will depend only onq,
while the kinetic energy,T, will depend onq and q̇. Using
the standard procedure47,48 we obtain from the Lagrangian
~2! the equations of motion for each of the generalized co
dinates,qi(t),

]L

]qj
2

d

dt

]L

]q̇ j

52a(
i 51

3 E w i ,t

]w i

]qj
dx. ~A1!
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The natural choice of the generalized coordinates for
~1! is qW (t)5XW (t)5@X1(t),X2(t),X3(t)#, where Xi is the
center of thei th fluxon,w i , andui[Ẋi is the velocity of the
center. The fluxon solutions of the unperturbed single si
Gordon equation are used as trial functions,

w i~x,t !54 arctanH exps iFx2Xi~ t !

l i
G J , ~A2!

wherel 5A12ui
2(t) is the width of the waves, in accordanc

with the Lorentz contraction. In order to simplify the equ
tions of motion, we assume identical widths,l i5 l , as is in-
deed the case for traveling waves with low velocities,uui u
!1.

All the contributions except the terms which involvew j
vanish from the partial derivatives of the Lagrangian w
respect toXj and Ẋj ,

]L

]Xi
2

d

dt

]L

]Ẋi

5E S 2aw i ,t

]w i

]Xi
2gx

]w i ,x

]Xi
Ddx. ~A3!

Substituting the expression of the fluxons, Eq.~A2!, into Eq.
~A1! and solving the integrals involved in Eq.~A3! we ob-
tain the equations of motion forX1 andX2. The repulsion or
the bunching effect will be determined by checking the re
tive distance between the center portion of the solitons.11,13,22

This magnitude is defined asY5(X12X2)/ l . Using symme-
try arguments to calculate the involved integrals, the eq
tion of motion for the distance,Y, is calculated in the same
manner as26

Ÿ12aẎ5
3s1s2S

122S2

d

dY S Y

sinhYD1
p lg

4
~s12s2!.

~A4!

1. Fluxon-antifluxon-fluxon „s1ÄÀs2Ä1…

Choosing the mode~f-a-f! the potential of Eq.~A4! leads
to

V~Y!5
3S

122S2

Y

sinhY
2

p lgY

2
. ~A5!

The zeros of the derivative of the potential,dV(Y)/dY, de-
termine the stationary points of the system, and they
located at the roots of the nonlinear equation,

3S

122S2 S 1

sinhY
2

Y coshY

sinh2Y
D 2

p lg

2
50. ~A6!

A high value of the coupling parameter,S, compared with the
driving force,g, provide two extremes,y1,y2, for the po-
tential. The first one,y1, is a minimum~stable state! and the
second one,y2, is a maximum~unstable state!. This means
that the collective coordinates approach predicts attrac
between the solitons of different polarities. They trav
slightly separated by a distancey1, which depends on the
coupling parameter,S, and the driving force,g.
5-8
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2. Fluxon-fluxon-fluxon „s1Äs2Ä1…

The potential corresponding to the wave configuration~f-
f-f ! can be reduced to

V~Y!5
3S

122S2

Y

sinhY
. ~A7!

There is only one finite zero ofdV(Y)/dY at y050,
which is a maximum of the potential. There are two zer
y1,256`, which are minima. The consequence is that
system reaches stationary states only when the fluxons
infinitely separated. Thus, the collective coordinates
proach predicts the repulsion between the solitons of
same polarity.

APPENDIX B: PIECEWISE APPROXIMATION OF THE
„F-F… MODE IN TWO JUNCTIONS

The particular case of two junctions with one fluxon tra
eling in each of them has been studied in detail in sev
publications.11,13,15,23,24Whenever the coupling parameterS
is the same in both junctions, the equations of motion
both junctions are identical,

~m̃22v2!w i9~z!1avw i8~z!2sinw i~z!2Sm̃2w j9~z!2g50,
~B1!

where i 51,j 52 or i 52,j 51 and m̃251/(12S2). Due to
symmetry of the system, Eq.~B1!, both the in-phase mod
w15w2 and the antiphase modew152w2 are solutions with
maximum limit velocitiesc̃251/A12S and c̃151/A11S,
d
a

at
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respectively.
In the numerical simulations the stability of the bunch

state of the in-phase mode for a certain range of velocitie
observed in the same manner as in the case of three j
tions, which has been analyzed above. The particula
arises from the fact that in the case of two junctions w
identical coupling, oscillating tales no longer appear. We
ply the PWLA to Eq.~B1! in the same manner as in previou
section. The roots of the corresponding characteristic eq
tions for solutions of the typew i(z)5Die

lz and velocities
higher thanc2 are

l̃1,252 p̃16Ap̃1
2 1q̃1,

l̃3,452 p̃26Ap̃2
2 1q̃25l̃ r6 i l̃ l ,

l̃5,652 p̃16Ap̃1
2 2q̃15l̃m6 i l̃h ,

l̃7,852 p̃26Ap̃2
2 2q̃2, ~B2!

where

p̃65
av

2~ c̃62v2!
, q̃65

1

~ c̃62v2!
. ~B3!

The eigenvectors, (D1 ,D2), are (1,1) and (1,21) for the
in-phase and antiphase modes, respectively.

Three regions, I, II and III, are distinguished inz space
and the expressions of the fluxons in each region read
~ I!H ŵ1~z!5H̃1el̄1z1el̃rz~H̃2cosl̃ lz1H̃3sinl̃ lz!2g,

ŵ2~z!5H̃1el̃1z2el̃rz~H̃2cosl̃ lz2H̃3sinl̃ lz!2g,
~B4!

~ II !H ŵ1~z!5el̃mz~G̃1cosl̃hz1G̃2sinl̃hz!1G̃3el̃7z1G̃4el̃8z1p1g,

ŵ2~z!5el̃mz~G̃1cosl̃hz1G̃2sinl̃hz!2G̃3el̃7z2G̃4el̃8z1p1g,
~B5!

~ III !H ŵ1~z!5K̃1el̃2z12p2g,

ŵ2~z!5K̃1el̃2z12p2g.
~B6!
ur

p-
he
er-
ree
The matching conditions which provide continuity an
differentiability to the piecewise solutions are the same
Eqs. ~23!. Solving eight of this conditions we realize th
some coefficients vanish,

H̃25H̃35G̃35G̃450. ~B7!

Two conclusions are obtained from Eq.~B7!. The first is
s
that the two fluxons are identical,ŵ15ŵ2, and the second is
that there are no oscillating tales,Ḣ25Ḣ350.

It is important to note that the cancellation of the fo
coefficients, Eq.~B7!, arises from the fact that Eq.~B1!
does not change with the choice ofi and j subindexes. Oth-
erwise if any one of the physical quantities, coupling, dam
ing, or dissipation, change in one of the junctions t
solutions given by piecewise approximations produce diff
ent fluxons, and oscillating tales exist in the case of th

junctions.
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