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Renormalization-group approach to the problem of conduction through a nanostructure
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We present a numerical renormalization-group computation of the zero-temperature conductance of a nano-
structure coupled to two metallic leads. In our model, the leads are represented by conduction bands of
noninteracting electrons and a single level containing up to two interacting electrons represents the nanostruc-
ture. The nanostructure energy is controlled by a gate potangialWe show that the frequency dependence of
the linear conductance through the nanostructure can be computed from the impurity spectral density of the
spin-degenerate Anderson model. We compute the latter numerically and detdinithe frequency-
dependent conductance for an illustrative valu® gf and(ii) the zero-frequency conductance as a function of
Vg.
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I. INTRODUCTION where the Fermi operatorg, (i=L,R) annihilate conduc-

tion electrons in the lefticL) and right {=R) leads. For
Recent progress in semiconductor lithographic techniquegriefness, we have left out the spin sums. The second term
has attracted much attention to the problem of electronign the right-hand side couples the conduction states to the
conduction through a nanostruct&r‘é.ln Spite of the exten- guantum dot; we assume that the Coup]ings to the two leads

sive recent theoretical literature on the subfecfew quan-  are identical. The electronic interaction inside the dot is con-
titatively reliable results have been obtained. Qualitatively, ittained in the last term on the right-hand side:

has long been understood that, due to the small capacitance
of the nanostructure, the energy increment associated with H got= €0CCo+UngiNg, (2
the transfer of a single electron to or from the quantum dot is "
very large, and that this energy barrier tends to block conWith No,=¢g,Co,, -
duction through the dot. Since the nanostructure potential Since the Hamiltonian is invariant under inversion, we
can be controlled by the application of a gate voltage, thidind it convenient to define parity conserving operators, i. e.,
notion can be explored experimentally in a variety of ar-even and odd operators
rangements. More recently, it was realized that at low tem-
peratures, the Kondo efféctcan hybridize different ground- Crg=(Ckr+ Ck)/ V2 ©)
state nanostructure occupancies and bypass this Coulo
blockade? a finding that has been much discus3égproxi-
mate calculations studying the temperature and frequency _ _
dependence as well as the nonlinearity of the current-voltage Cru= (G Ck")/\/z’ @
characteristics of simple realistic models have appeared irespectively.
print. Equation(1) then becomes

Here we present the first NRG computation of the
frequency-dependent linear conductance through a nano-
structure at zero temperature. Our results display the above- H :g( EkclpckpjL \E; Vk(cgcngrH'C'H Haot, (®)
described features. In particular, for gate voltages such that,
if the quantum dot were decoupled from the leads, its grounavhere the subscripp=g,u denotes parity. We see that the
state would accomodate an odd number of electrons, we finguantum-dot state, is decoupled from the odd stateg,;
that the Kondo effect allows conduction at low frequenciesthis allows us to write
For voltages such that the ground state would contain an
even number of electrons, by contrast, the conductance drops H=Hg+H,, (6)
to zero unless the frequency is sufficient to overcome th%vhere
Coulomb blockadé.

In our model, the left and the right leads are represented
by spin-degenerate conduction bands half-filled with nonin-  Hy= > €l Cig+ V22 Vi(CickgtH.C)+Heor, (7)
teracting electrons and described by the dispersion relation K K
€c. The quantum dot is mimicked by a single spin- hile
degenerate level associated with the Fermi opergfoirhe

model Hamiltonian is N
HUZEK: €kCy,Cku (8

H=2 echca+ > Vi(clei+He)+Hae, @O
K K is diagonal.
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This decoupling between the odd conduction states and
= 2 (e_EEn_e_EEm)
ZZﬁ ® mn

the quantum dot level has a number of important conse- RG(w)=
guences. In particular, the number of odd conduction elec-
trons is conserved, a feature that will substantially simplify
our analysis.

Under experimental conditions, it is virtually impossible
to construct leads that couple identically to the nanostructure.
One might want, therefore, to consider unequal couplings, . ) ]
i. e., a model that is asymmetric under inversion. Even inthat The conservation of particles in the odd channel guaran-
case, however, it is possible to decompose the conductioi§es that, for given eigenstatgs) and|n), at least one of
bands into two channels, one of which is decoupled from théhe matrix elementg¢m|cgci|n) and(mic,coln) will van-
dot. Inversion symmetry is therefore unessential to our apish. The right-hand side of E¢16) can therefore be divided
proach. It does, however, make our treatment simpler anthto two sums:
physically more appealing; for this reason, we prefer to con-
sider the symmetric model. For future reference, then, we
find it convenient to split the even-channel Hamiltonian in
three terms:

2
X Ek: Vk<m|c$cku—cluco|n) (hw—Emp).

(16)

e
Z2%%w

RG(w)= > (e FEn—e FEm)

m,n

X 2, Vid?K(mlegeialn) 28w — Eqe)

Hy=HZg+Hc+Hgor, ©)
where +2 (e_ﬁEn—e_ﬁEm)
m,n
Hig=2> fkclgckg, (10
. XEK |Vk|2|<m|CIuCO|n>|25(ﬁw_Emn) .
is the even conduction-band Hamiltonian, an
H.=2> Vi(clic,+H.c), 11 Next, we exc_hange the c_iummy.variabrasandnin the first
¢ \/—g (CoChq ¢) (1D sum on the right-hand side. This leads to

couples the quantum-dot to tieven channel of thecon-
duction band, and 4, is given by Eq.(2).

Our computation of the linear ac conductance starts ou
with an expression distilled from the Kubo formtfla

e’

)= 720 >, (e FEn—efEm)

m,n

RG(w

X|(m|Ng=N_[n)|?8(hw—Epy), (12

2

RG(w)= > (e FEn—e FEm)

a
t ZZﬁzw m,n

X 2, Vid?(mlegeiln) ?8(ho—Emy) (18)

+ 2 (e*ﬁEm_ efﬁEn)

m,

=

where theE,,,=E,,— E, are differences between eigenval- 2 + 2 _
ues ofH, andN, andNg are the electronic number operators x Zk Vid? (mlcoCiu[n)| “8(hw—Enm) 1
for the left and the right lead, respectively. The time deriva- (19
tives N, andNg are easily computed. We have that and hence to
. o 1 e’r
NR_NL_E[H'NR_NLL (13) mG(w):mE (e—ﬁEn_e—ﬁEm)|Vk|2
mnk
from which it follows that % |(m|CluCo|n>|2[5(ﬁw—Emn)
. . 1 —0(hw—E . 20
Ng—Ny=— > Vi(cler—clc) +He., (14 (o= Enm] 20
k
As follows from the decoupling between the even and the
or, as follows from Eq(4), odd channel in Eq(6), the eigenstatefm) of the model
Hamiltonian can be written agng)|m,), where|mg) and
) ) 2 ; Im,) are eigenstates of the even and the odd Hamiltonians,
Ng—N_= E; ViCoChy—H.C. (19  HyandH,, respectively. We thus have that

H|m)= (Eqy +En,)m), (21

The conductancgEq. (12)], becomes
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where Emg and Em, are the energies of the stategsy) and e 5 sho
Im,), respectively. The matrix elements on the right-hand 1C(@)= 577~ Ek Vil“f (e[ (7= D) (ho—€)
side of Eq.(16) can be simplified:

Xp(—hote)—(e Pro—1)f(—ho—e)

<m|cluco|n><mu|clu|nu><mg|00|ng>' (22) Xp(ﬁ(xﬂ‘ Ek)] (29)

Since thecy diagonalize the odd-channel Hamiltonian or

H,, the first matrix element on the right-hand side will van- e2r 1—e Bho
ish unlesgm,)=c; |n,), and then RG(w)= o e DV F(—e)f(—ho+e)
K
B, = En, T € (23 Xp(—ho+e) +f(e)f(~ho—e)phote)].
and (30
; At zero frequency, the two terms within the square brack-
(my[Cyyny)=1. (24 ets on the right-hand side become identical and we recover
the well-established expression for the dc conductérite.
With these simplifications, Eq20) becomes At zero temperature, the Fermi functions make the first
(secondl term within brackets on the right-hand side of Eq.
e2n (30) vanish unlesg w=€,=0 (0= ¢, = —fiw). Our expres-
_ 1 a—BE —B(E,, —€1) ;
RG(w)= > D e FEme AEn e sion for the conductance reduces to

ZZﬁzw mgngk my
2
_e_BEmg]|Vk|2|<mg|C0|ng>|2[5(ﬁw_Emgng_fk) RG(w)= em

ho
72a fo IVil2p(— o+ €)g(€e)de

—o(hw— Engmg+ €], (25

0
+J:h IVilp(hio+ €e)9(e)de|, (31)

where the primed sum includes only those odd eigenstates
|m,) in which thek state is occupied.

It is now a simple matter to evaluate a partial trace, ove
the odd-channel states. This leads to

vahereg(e) denotes the conduction-band density of stafes.
In the Kondo limit, a universal expression for the spectral
density has been available for over a dedade?!

e’w i
. - - 2 [ il
RG(w)= 7o D>, [€ PEn, =) — e FEmy] _Z ke
ZQZﬁ w mgngk ° ¢ Fp(e) ’]TER €+|FK ’ (32)
X Vi 2[{mg|colng)| *f (&) wherel'=27g(0)|V,.|? is the width of the dot level, due to
X[8(hw—Epp ~ €~ 8(ho—Ep m +e)]. its coupling to the even conduction states, and the Kondo

resonance widtl'y is proportional to the Kondo temperature
(26)  Ty,?T=kgTk/0.2067.
This is expression is valid for energi@smuch smaller
HereZ, is the even-channel partition function afi@) is the  than the conduction bandwidth. For energies in the same

Fermi function. _ _ o range, we can substitute E®2) for the spectral densities on
Compare, next, the rlght-hand side to the definition of thehe right-hand side of Eq:31), neglect the momentum de-
dot-level spectral density, pendence of the coupliny— V., and neglect the energy

1 dependence of the density of conduction statgée)

p(e)== E (e PEm, 4 e~ FEny) —>g(eFEO_). The re_sulting integ_rals are simple and lead to
Zg mgng the following analytical expression for the zero-temperature
frequency-dependent conductance:
X|<mg|C0|ng>|25(€_Engmg)y (27)
e? \/ 2
which we prefer to write RG(w)=— . (33
mh N 14+ 1+ (holTy)?
f(_e)p(f):(Hefﬁe)i > e FEm, As an illustration, following a procedure discussed in a
g Mgng number of paper®€2°2we have carried out a numerical

renormalization-group computation of the dissipative con-

ductance. To calculate the conductance, we have derived an
expression that is more practical, for numerical purposes,
Substitution in Eq(26) then yields than computing the spectral density and then carrying out the

X [(mglcolng) [28(e~Enm).  (28)
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integration on the right-hand side of E®1). Since the real whereEq=D(1+ A ?)/2, and form>0, the discrete ener-
part of the conductance is an even function of the frequencygies areE,,=DA ™1 Z(1+ A" 1)/2 (m=1,2,...).
it is sufficient to obtain that expression fer>0. Under this

restriction, at zero temperature, Eg6) reduces to . LANCZOS TRANSFORMATION
2 . g
e Applied to the HamiltoniarHgz in Eq. (37), a Lanczos
_ 2 2
RG(w>0)= 2720 r;k Vi T {mg| ol ) [ *O( € transformation defines a new orthonormal basis constituted
¢ by Fermi operator$,, (n=0,1, .. .). Toconstruct this exact
XS8(hw—E, —€)+ |(mg|cg|Qg)|20( —€) transformation, one requires that the even conduction Hamil-
’ tonian take the tridiagonal form

x&(hw—Emg+ek)]. (34
Here|Q) is the even-channel ground state, from which the Heg= Z ta(fifns 1t H.C), (38)
energiesEmg are measured. The momentum sum on the n=0
right-hand side is readily carried out and we find that with appropriate coefficients,, and the following definition

for the operatoff
2

RG(w) = 5g D" [[(Mylcol ) 20( ) [V |2
W)= 75— €
T o gl Colilg k+ )| Vit fOE(lN); ViCig. (39

+[(mgleh| Q)12 g e ) Vi |21, (35

[(mglcol2g)l7lal e )IVic- 73 where the mean-squared couplivier \/EKVE in the denomi-
where the conduction energieg, and e, are given by nator on the right-hand side normalizs The codiagonal
€.=—¢€,=hw—E, , andk, andk_ are the correspond- coefficientst;; must be found numerically; for large none-

ing momenta, respectively, and the prime restricts the sum tEneless, one finds an approximate expression
those eigenstatdsn,) with energies smaller thatw. 2 _ _

In order to evall?;te the summand, we need the eigenval- th=Dn+1 AT+ ODA™Y), (40
ues and eigenvectors of the even-channel Hamiltokigh  where
which is equivalent to thésingle-channelAnderson impu-
rity Hamiltonian and is hence easily diagonalized by the 1+A°12
NRG proceduré*?® Briefly described, that procedure com- Dn=D
prises the following steps:

A1 (41)

For increasingn, the codiagonal coefficients thus decrease

rapidly, a feature that paves the road to the truncation defined

Sec. IV. Before coming to that, however, we remark that
Assuming the band is half-filled, let it extend from definition (39) allows us to rewrite Eq(1l) as

e,=—D to ¢,=D. For parameterd\ andz, subject to the

II. DISCRETIZATION OF THE CONDUCTION BAND

restrictions A>1 and 0<z=<1, but otherwise arbitrary, He=2V(clfo+H.c). (42)
two infinite sequences of intervalsm+>ek>em++l and
—€m 11> 6=—€, (M.=0,1,...) aredefined, where IV. INFRARED TRUNCATION

€=D andey =DA'"*"™ (m=12,...). Foreach inter- To calculate the ac conductance, we must compute the
val, a normalized Fermi operatar. is defined as the linear right-hand side of Eq(35) as a function of the frequenay.
combination of the conduction operatarg, in that interval  Tg this end, we have to diagonalit,, given by Eqs(38)
that is most localized around the quantum dot sde,  and(40). For givenw, we can neglect those codiagonal ele-
=N, ZiCxg, Where the prime restrics the sum to theth  mentst, that are much smaller than. We therefore choose
interval. The basis of the discrete operatarsis incomplete  a small numbewr<1 and find the smallest integé\ satis-
with respect to that of the,’s, but the calculated conduc- fying the inequality

tances converge so rapidly to the continuum lirkit>1 that

even computations carried out with= 10 yield an excellent Dy<aw, (43
approximatk_)ns to the conFinugm. When the even channel q}zvith Dy, defined as in Eq(41). Sincety~Dy<w, we can
the conduction band Hamiltonian, truncate the sum on the right-hand side of E88) at n

=N:
H%B:Ek €ChCrg- (36) No1
N . . Heg~ 2 [ta(fifaratH.C), (44)
is projected onto that basis, we find that n=0
o an approximation referred to as thdrared truncation This
HY = Efa a, —al a. 1, 3 considered, to prepare a renormalization-group transforma-
cB mz=0 ol8m. 8m. ~am_an-] 37 tion, we define the scaled, truncated Hamiltonian
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N_l 0‘15 IIIIIII T lIIIIIII T lIIIIIII LU L T TTTIIT LU
_ i
H%_ nZO [tﬁ(fnfn-#l"_H-C-)] r G, = 262/h 7
| E, = —0.025D i
+12V(clfot H.c)+ Hyor /DN. (45) I |
U = 0.0D
0.1 -
Here we have substituted the right-hand side of @) for | I'= 0.0036D |
the couplingH. between the dot and the conduction band.
From Eq. (45), the even-channel model Hamiltonian is Q i i
formally recovered as &) - T
AHlN*)OC
Moreover, Eq. (45 leads to a renormalization-group -
transformation, that is, a transformation that, given a se-
guence of energies with a minimui,,;,,, adds to it a L
Sma”er energﬁr{nln< Em'n and Scales up the entire Sequence 0 IIIIIII 141 IIIII| 1 al IIIIII 1 U1 IIIII| L) IIIII| 11 IIIII| L1110
by the factorE,;,/Ein, SO that the minimum of the result- 10 10 10* 10" 10* 107! 1
ing sequence bE,,;,, equal to the minimum of the original hw/D
sequence. Specifically, the renormalization-group transfor- )
mation associated with E@45) is defined by FIG. 1. Real part of the conductance as a function of frequency
for the indicated dot energ, and widthI", for the uncorrelated
T,[HN—J_]EHN=A1/2HN71+(thllDN)(foNfl'i_ H.c). model. The squares show the numerical results of the NRG proce-

(47 dure described in the text. The solid line represents the analytical
expression for the conduction. The agreement is representative of
As Eg.(41) shows, for increasindy, the factor multiply- the accuracy of all numerical results in this paper.

ing the parentheses on the right-hand side becomes indepen-
dent of N, so that the smallest energy scaleHr, is not  The discretization of the conduction baft. (37)], which
significantly affected by the transformation. E40) defines is controlled by the discretization parameter (ii) the infra-
a renormalization-group transformation that scales up enefed truncatior{Eq. (38)], controlled by the parameter, and
gies by A.?° An energy-scale invariant Hamiltonian is not the ultraviolet truncation, controlled by the parametgt, ,
affected by7=7"'2 and is called a fixed poinfNotice that, ~are the only approximations involved in the NRG procedure.
one cannot expect ' to have fixed points, fof ' scales up The control over each approximation makes the procedure
energies byyA, while any two successive energies in the €ssentially exact.
discretized conduction-band Hamiltoni§B6) are separated

by a factorA.] VI. COMPUTATION OF THE Zz-DEPENDENT
CONDUCTANCE

V- ITERATIVE DIAGONALIZATION At iteration N, the numerical diagonalization of the model

Hamiltonian (45) is diagonalized iteratively. FON=0,  Hamiltonian yields eigenvalues that, in units DBfy [Eq.
the first term on the right-hand side vanishes, and the sum d##1)], range from unity tce;;,, . For frequencies satisfying
two remaining can be diagonalized analytically. If, on thethe inequality X% w/Dy<e¢y,, the sum on the right-hand
other hand, the eigenvalues and eigenvector) of HY_,  side of Eq.(35) can be computed. By following the iterative
are known, the stategn), fLH In), fLH In), and procedure fromN=1 to N=N.4, we calculate(the real
gt i ! 7 art of the conductance for frequencies in the interval

n+11fns1,/N) constitute a new basis onto whighy canbe P _ q _

projected. Charge and spin conservation reduce that proje@n,ax/#<@<D. By choosingNpm,,=21, with A =10, for
tion to a block-diagonal matrix that can be diagonalized nu4nstance, we can reach frequencies as low as
merically. =10 1%D/#, well below the characteristic energies of typi-

Thus, starting withN=0, one can diagonalizéd,,  cal model Hamiltonians.

H,, . ... Since the number of states generated in each itera-
tion N is four times larger than that in the previous iteration,
computer memory limitations force us to truncate the basis.
For each iteration witiN>5, only the eigenvectors associ-  The discretization of the conduction band is an approxi-
ated with the eigenvalues below a paramefgf are com-  mation. In order to justify it, one must insure that calculated
puted in the numerical diagonalization, and those provide thehysical properties converge rapidly to the continuum limit
seed from which the basis is constructed in the subsequeas A —1. The computation of dynamical properties, in par-
iteration. To distinguish this approximation from the one de-ticular, requires a special precaution: inspection of the right-
fined in Sec. IV, we refer to it as thdtraviolet truncation.  hand side of Eq(35) shows that for anyA >1 and fixedz,

VII. AVERAGING OVER z
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FIG. 2. Real part of the conductance as a function of frequency F!G. 3. Real part of the conductance as a function of frequency
for the indicated dot energg,, width ' and Coulomb repulsioby. for the indicated dot enerdy,, width I' and Coulomb repulsiol.
SinceU=E,, for I'=0 the dot states with occupancies-1 and ~ With U=2|E,|, the model becomes particle-hole symmetric and its
n=2 would be degenerate. The coupling to the conduction bandPW-energy physics is dominated by the Kondo effect. The two
breaks that degeneracy and allows transitions between the grouf@nductance peaks are associated with resonances in the dot-level

state and the resulting excited state, which enhance the spectri&Pectral density. The peak at higher energies, WHEOL re-
density and give rise to the peak in the conductancé @at-6 flects the resonance associated with the transition betweengthe

% 1073D. The inset shows the dc conductance as a function of the= 1 and theno=0 andn,=2 occupations of the dot level. The peak
dot energyE,; the cross indicates the— 0 limit of the main plot. ~ at zero frequency is due to the Kondo resonance, as confirmed by
the excellent agreement with the exact refhl. (32)], here repre-

the restricted sum over discrete energies will give rises tgented by the solid line. The inset shows the zero-frequency con-

discontinuities in the calculated conductam@&(w,z). In duc_tance as a function &;,. The cross indicates the dc limit of the

order to eliminate this artifact of the discretization, we must™2" plot.

averageRG(w,z) over the second discretization parameter.

As z runs from zero to unity, the energi€&s, on the right-

hand side of Eq(36) sweep the entire conduction band and  Figure 1 shows the calculated conductance b+ 0,

thus recover the continuous distribution of conduction enerwith dot energye,= —0.025D and widthI'=0.0036D. The

gies. conductance peaks nedE,|, as the external frequency
For fixedz, the discontinuity in Eq(35) arises because for yjelds the electrons on the left lead sufficient energy to over-

given frequencyw one occasionally finds a stajeg) with  come the barrier separating the quantum dot from the two

an energyEn,q slightly larger thani o, which does not con-  electron gases. The coupling to the electron gases broadens

tribute to the sum on the right-hand side; in that casewfor  the resonance to a width approximately equal'toThe cal-

slightly smaller thanw, the energyE o will be smaller than  culated conductances are in excellent agreement with the

hw' and the stat¢m) will contribute to the sum, which is  analytical expression easily derived in the absence of corre-

therefore discontinuous #&tw=E,,. It is easy to see, how- |[ation,

ever, that if for givenz one hasE,((z) =% w+e€, then for

VIIl. RESULTS

somez’ >z one will have thatE,4(z') <fiw, so that when r ho+ ey ho— €

the sum on the right-hand side of E§5) is integrated over RG(w) = e arctar( T +arctar6 T ) ,

z the statelmg) will contribute to the conductance, and the (49)
discontinuity will be washed out. We therefore expect the

z-integrated conductance represented by the continuous line.

While correlation makes it impossible to determine ana-
lytical expressions for the frequency-dependent conductance,
the special precautions taken in the NRG approximations
make that approach uniformly accurate in parametrical
to be a continuous function of the frequency that convergespace; we hence expect the resultsat 0 to be as accurate
rapidly to the continuum limit ad — 1. This is borne out by as those in Fig. 1. As an illustration, Fig. 2 shows the calcu-
the numerical results. lated conductance for the dot energy and width in Fig. 1 and

RG(w)= f:me(w,z)dz, (49)
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U=|Ey|=0.025D. A comparison with Fig. 1 shows that the (degeneratedoubly occupied and empty dot-level configu-
correlation displaces the peak to a lower energy and raisestions. At lower frequencies, the calculated points are in
the dc conductance. Both effects are easy to understand écellent agreement with E§32), represented by the con-
one considers that, fad =0, the decoupled-dot ground state tinuous line. Again, the dc conductance extracted from the
would be doubly occupied, while fdd =|E|, the doubly ground-state occupandppen squares in the ingeagrees
and singly occupied configurations would be degeneratevery well with the zero-frequency limit of the main plot
One might therefore expect free current flow at low energies(cross.

since that degeneracy would allow unassisted transitions be-

tween the dot and the neighboring gases. The cougdling IX. CONCLUSIONS

breaks the degeneracy, so that only virtual transitions be-

come possible at zero frequency, and the conductance peaksln summary, we have shown that the NRG approach gives
at the resonance associated with the broken degeneracy. quantitatively reliable results for the frequency dependence

An additional check on the accuracy of our procedure iSof the (real part of the conductance through a nanostructure.

provided by the insert, which shows the dc conductance xS indicated by Figs. 1 and 3, the agreement with exact

tracted from the ground-state occupancy of the quantum d gsults, where the latter are available, is excellent. This test
by means of the Friedel sum rule as a function of the do ighlights the adequacy of the NRG approach for the calcu-

energyE,. The results, shown as open squares, are in ver tion of transport properties in devices dominated by the

good agreement with the zero-frequency limit of the main oulomb blockade. Qf particular ?nte_rest is the computation
plot, represented by the cross of the current resulting from subjecting the electrodes to a

For U=2|E,|, the model acquires particle-hole symme- noninfinitesimal potential difference. This arrangement poses

try. This forces the dot occupation to bg=1. It follows a substantially more difficult problem than the one with

from the Friedel sum rule that the dot density of states at th(\eNh'Ch we have dealt. Nonetheless, inroads for

i i lization-group analyses of nonequilibrium problems
Fermi level is equal to 2/T',* and from Eq.(31) that o o ma : :
MG (w)=2€/#, which is just the dc limit of Eq(32). have been constructédl,and the above reported analysis

Figure 3 shows numerical results for the frequency depenIrnay encourage additional efforts.

dence of the conductance for the symmetric model. The peak
near Aw=0.025D is due to the enhancement in the
guantum-dot spectral density at energy |E,|, associated This work was supported by the Brazilian agencies
with transitions from the singly occupied ground state to theCAPES, CNPq and FAPESP.
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