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Renormalization-group approach to the problem of conduction through a nanostructure

V. L. Campo, Jr. and L. N. Oliveira
Instituto de Fı´sica de Sa˜o Carlos, Universidade de Sa˜o Paulo, Caixa Postal 369, Sa˜o Carlos, 13560-970 SP, Brazil
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We present a numerical renormalization-group computation of the zero-temperature conductance of a nano-
structure coupled to two metallic leads. In our model, the leads are represented by conduction bands of
noninteracting electrons and a single level containing up to two interacting electrons represents the nanostruc-
ture. The nanostructure energy is controlled by a gate potentialVg . We show that the frequency dependence of
the linear conductance through the nanostructure can be computed from the impurity spectral density of the
spin-degenerate Anderson model. We compute the latter numerically and determine~i! the frequency-
dependent conductance for an illustrative value ofVg , and~ii ! the zero-frequency conductance as a function of
Vg .
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I. INTRODUCTION

Recent progress in semiconductor lithographic techniq
has attracted much attention to the problem of electro
conduction through a nanostructure.1–3 In spite of the exten-
sive recent theoretical literature on the subject,4–12 few quan-
titatively reliable results have been obtained. Qualitatively
has long been understood that, due to the small capacit
of the nanostructure, the energy increment associated
the transfer of a single electron to or from the quantum do
very large, and that this energy barrier tends to block c
duction through the dot. Since the nanostructure poten
can be controlled by the application of a gate voltage, t
notion can be explored experimentally in a variety of
rangements. More recently, it was realized that at low te
peratures, the Kondo effect13 can hybridize different ground
state nanostructure occupancies and bypass this Cou
blockade,4 a finding that has been much discussed.3 Approxi-
mate calculations studying the temperature and freque
dependence as well as the nonlinearity of the current-volt
characteristics of simple realistic models have appeare
print.

Here we present the first NRG computation of t
frequency-dependent linear conductance through a n
structure at zero temperature. Our results display the ab
described features. In particular, for gate voltages such t
if the quantum dot were decoupled from the leads, its gro
state would accomodate an odd number of electrons, we
that the Kondo effect allows conduction at low frequenci
For voltages such that the ground state would contain
even number of electrons, by contrast, the conductance d
to zero unless the frequency is sufficient to overcome
Coulomb blockade.4

In our model, the left and the right leads are represen
by spin-degenerate conduction bands half-filled with non
teracting electrons and described by the dispersion rela
ek . The quantum dot is mimicked by a single spi
degenerate level associated with the Fermi operatorc0. The
model Hamiltonian is

H5(
i ,k

ekcki
† cki1(

i ,k
Vk~c0

†cki1H.c.!1Hdot , ~1!
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where the Fermi operatorscki
( i 5L,R) annihilate conduc-

tion electrons in the left (i 5L) and right (i 5R) leads. For
briefness, we have left out the spin sums. The second t
on the right-hand side couples the conduction states to
quantum dot; we assume that the couplings to the two le
are identical. The electronic interaction inside the dot is c
tained in the last term on the right-hand side:

Hdot5e0c0
†c01Un0↑n0↓ , ~2!

with n0m5c0m
† c0m .

Since the Hamiltonian is invariant under inversion, w
find it convenient to define parity conserving operators, i.
even and odd operators

ckg5~ckR1ckL!/A2 ~3!

and

cku5~ckR2ckL!/A2, ~4!

respectively.
Equation~1! then becomes

H5(
p,k

ekckp
† ckp1A2(

k
Vk~c0

†ckg1H.c.!1Hdot , ~5!

where the subscriptp5g,u denotes parity. We see that th
quantum-dot statec0 is decoupled from the odd statescku ;
this allows us to write

H5Hg1Hu , ~6!

where

Hg5(
k

ekckg
† ckg1A2(

k
Vk~c0

†ckg1H.c.!1Hdot , ~7!

while

Hu5(
k

ekcku
† cku ~8!

is diagonal.
©2003 The American Physical Society37-1
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This decoupling between the odd conduction states
the quantum dot level has a number of important con
quences. In particular, the number of odd conduction e
trons is conserved, a feature that will substantially simp
our analysis.

Under experimental conditions, it is virtually impossib
to construct leads that couple identically to the nanostruct
One might want, therefore, to consider unequal couplin
i. e., a model that is asymmetric under inversion. Even in t
case, however, it is possible to decompose the conduc
bands into two channels, one of which is decoupled from
dot. Inversion symmetry is therefore unessential to our
proach. It does, however, make our treatment simpler
physically more appealing; for this reason, we prefer to c
sider the symmetric model. For future reference, then,
find it convenient to split the even-channel Hamiltonian
three terms:

Hg5HCB
g 1Hc1Hdot , ~9!

where

HCB
g 5(

k
ekckg

† ckg , ~10!

is the even conduction-band Hamiltonian,

Hc5A2(
k

Vk~c0
†ckg1H.c.!, ~11!

couples the quantum-dot to the~even channel of the! con-
duction band, andHdot is given by Eq.~2!.

Our computation of the linear ac conductance starts
with an expression distilled from the Kubo formula14

RG~v!5
e2p

Z4v (
m,n

~e2bEn2ebEm!

3u^muṄR2ṄLun&u2d~\v2Emn!, ~12!

where theEmn5Em2En are differences between eigenva
ues ofH, andNL andNR are the electronic number operato
for the left and the right lead, respectively. The time deriv
tives ṄL and ṄR are easily computed. We have that

ṄR2ṄL5
1

i\
@H,NR2NL#, ~13!

from which it follows that

ṄR2ṄL5
1

i\ (
k

Vk~c0
†ckR2c0

†ckL!1H.c., ~14!

or, as follows from Eq.~4!,

ṄR2ṄL5A 2

i\(
k

Vkc0
†cku2H.c. ~15!

The conductance@Eq. ~12!#, becomes
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RG~v!5
e2p

Z2\2v (
m,n

~e2bEn2e2bEm!

3U(
k

Vk^muc0
†cku2cku

† c0un&U2

d~\v2Emn!.

~16!

The conservation of particles in the odd channel guar
tees that, for given eigenstatesum& and un&, at least one of
the matrix elementŝmuc0

†ckuun& and ^mucku
† c0un& will van-

ish. The right-hand side of Eq.~16! can therefore be divided
into two sums:

RG~v!5
e2p

Z2\2v H(
m,n

~e2bEn2e2bEm!

3(
k

uVku2u^muc0
†ckuun&u2d~\v2Emn!

1(
m,n

~e2bEn2e2bEm!

3(
k

uVku2u^mucku
† c0un&u2d~\v2Emn!J .

~17!

Next, we exchange the dummy variablesm andn in the first
sum on the right-hand side. This leads to

RG~v!5
e2p

Z2\2v H(
m,n

~e2bEn2e2bEm!

3(
k

uVku2u^muc0
†ckuun&u2d~\v2Emn! ~18!

1(
m,n

~e2bEm2e2bEn!

3(
k

UVkU2U^muc0
†ckuun&U2d~\v2Enm!J ,

~19!

and hence to

RG~v!5
e2p

Z2\2v (
mnk

~e2bEn2e2bEm!uVku2

3u^mucku
† c0un&u2@d~\v2Emn!

2d~\v2Enm!#. ~20!

As follows from the decoupling between the even and
odd channel in Eq.~6!, the eigenstatesum& of the model
Hamiltonian can be written asumg&umu&, where umg& and
umu& are eigenstates of the even and the odd Hamiltonia
Hg andHu , respectively. We thus have that

Hum&5~Emg
1Emu

!um&, ~21!
7-2
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whereEmg
and Emu

are the energies of the statesumg& and

umu&, respectively. The matrix elements on the right-ha
side of Eq.~16! can be simplified:

^mucku
† c0un&^muucku

† unu&^mguc0ung&. ~22!

Since thecku
diagonalize the odd-channel Hamiltonia

Hu , the first matrix element on the right-hand side will va
ish unlessumu&5cku

† unu&, and then

Emu
5Enu

1ek ~23!

and

^muucku
† unu&51. ~24!

With these simplifications, Eq.~20! becomes

RG~v!5
e2p

Z2\2v (
mgngk

( 8
mu

e2bEmu@e2b(Eng
2ek)

2e2bEmg#uVku2u^mguc0ung&u2@d~\v2Emgng
2ek!

2d~\v2Engmg
1ek!#, ~25!

where the primed sum includes only those odd eigenst
umu& in which thek state is occupied.

It is now a simple matter to evaluate a partial trace, o
the odd-channel states. This leads to

RG~v!5
e2p

Zg2\2v (
mgngk

@e2b(Eng
2ek)2e2bEmg#

3uVku2u^mguc0ung&u2f ~ek!

3@d~\v2Emgng
2ek!2d~\v2Engmg

1ek!#.

~26!

HereZg is the even-channel partition function andf (e) is the
Fermi function.

Compare, next, the right-hand side to the definition of
dot-level spectral density,15

r~e!5
1

Zg
(

mgng

~e2bEmg1e2bEng!

3u^mguc0ung&u2d~e2Engmg
!, ~27!

which we prefer to write

f ~2e!r~e!5~11e2be!
1

Zg
(

mgng

e2bEmg

3u^mguc0ung&u2d~e2Engmg
!. ~28!

Substitution in Eq.~26! then yields
03533
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RG~v!5
e2p

2\2v (
k

uVku2f ~ek!@~eb\v21! f ~\v2ek!

3r~2\v1ek!2~e2b\v21! f ~2\v2ek!

3r~\v1ek!# ~29!

or

RG~v!5
e2p

2\

12e2b\v

\v (
k

uVku2@ f ~2ek! f ~2\v1ek!

3r~2\v1ek!1 f ~ek! f ~2\v2ek!r~\v1ek!#.

~30!

At zero frequency, the two terms within the square bra
ets on the right-hand side become identical and we reco
the well-established expression for the dc conductance.4,16

At zero temperature, the Fermi functions make the fi
~second! term within brackets on the right-hand side of E
~30! vanish unless\v>ek>0 (0>ek>2\v). Our expres-
sion for the conductance reduces to

RG~v!5
e2p

2\2vF E
0

\v

uVku2r~2\v1ek!g~ek!dek

1E
2\v

0

uVku2r~\v1ek!g~ek!dekG , ~31!

whereg(e) denotes the conduction-band density of state17

In the Kondo limit, a universal expression for the spect
density has been available for over a decade13,18–21:

Gr~e!5
2

p
RHA iGK

e1 iGK
J , ~32!

whereG52pg(0)uVkF
u2 is the width of the dot level, due to

its coupling to the even conduction states, and the Kon
resonance widthGK is proportional to the Kondo temperatur
TK ,22 GK5kBTK/0.206p.

This is expression is valid for energiese much smaller
than the conduction bandwidth. For energies\v in the same
range, we can substitute Eq.~32! for the spectral densities o
the right-hand side of Eq.~31!, neglect the momentum de
pendence of the coupling,Vk→VkF

, and neglect the energ

dependence of the density of conduction states,g(e)
→g(eF[0). The resulting integrals are simple and lead
the following analytical expression for the zero-temperat
frequency-dependent conductance:

RG~v!5
e2

p\
A 2

11A11~\v/GK!2
. ~33!

As an illustration, following a procedure discussed in
number of papers,18,20,23 we have carried out a numerica
renormalization-group computation of the dissipative co
ductance. To calculate the conductance, we have derive
expression that is more practical, for numerical purpos
than computing the spectral density and then carrying out
7-3
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integration on the right-hand side of Eq.~31!. Since the real
part of the conductance is an even function of the freque
it is sufficient to obtain that expression forv.0. Under this
restriction, at zero temperature, Eq.~26! reduces to

RG~v.0!5
e2p

2\2v (
mgk

uVku2@ u^mguc0uVg&u2u~ek!

3d~\v2Emg
2ek!1u^mguc0

†uVg&u2u~2ek!

3d~\v2Emg
1ek!#. ~34!

Here uVg& is the even-channel ground state, from which t
energiesEmg

are measured. The momentum sum on
right-hand side is readily carried out and we find that

RG~v!5
e2p

2\2v ( 8
mg

@ u^mguc0uVg&u2g~ek1!uVk1u2

1u^mguc0
†uVg&u2ug~ek2!uVk2u2#, ~35!

where the conduction energiesek1 and ek2
are given by

ek1[2ek2[\v2Emg
, andk1 andk2 are the correspond

ing momenta, respectively, and the prime restricts the sum
those eigenstatesumg& with energies smaller than\v.

In order to evaluate the summand, we need the eigen
ues and eigenvectors of the even-channel HamiltonianHg ,
which is equivalent to the~single-channel! Anderson impu-
rity Hamiltonian and is hence easily diagonalized by t
NRG procedure.24,25 Briefly described, that procedure com
prises the following steps:

II. DISCRETIZATION OF THE CONDUCTION BAND

Assuming the band is half-filled, let it extend from
ek52D to ek5D. For parametersL and z, subject to the
restrictions L.1 and 0,z<1, but otherwise arbitrary
two infinite sequences of intervalsem1

>ek.em111 and

2em211.ek>2em2
(m650,1, . . . ) aredefined, where

e05D and em6
5DL12z2m (m51,2, . . . ). Foreach inter-

val, a normalized Fermi operatora6 is defined as the linea
combination of the conduction operatorsckg in that interval
that is most localized around the quantum dot site,a6

5Nm6
(k8ckg , where the prime restrics the sum to them6th

interval. The basis of the discrete operatorsa6 is incomplete
with respect to that of theck’s, but the calculated conduc
tances converge so rapidly to the continuum limitL→1 that
even computations carried out withL510 yield an excellent
approximations to the continuum. When the even channe
the conduction band Hamiltonian,

HCB
g 5(

k
ekckg

† ckg , ~36!

is projected onto that basis, we find that

HCB
g 5 (

m50

`

Em@am1

† am1
2am2

† am2#, ~37!
03533
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whereE05D(11L2z)/2, and form.0, the discrete ener
gies areEm5DL2m112z(11L21)/2 (m51,2, . . . ).

III. LANCZOS TRANSFORMATION

Applied to the HamiltonianHCB
g in Eq. ~37!, a Lanczos

transformation defines a new orthonormal basis constitu
by Fermi operatorsf n (n50,1, . . . ). Toconstruct this exact
transformation, one requires that the even conduction Ha
tonian take the tridiagonal form

HCB
g 5 (

n50

`

tn~ f n
†f n111H.c.!, ~38!

with appropriate coefficientstn , and the following definition
for the operatorf 0:

f 0[~1/V!(
k

Vkckg , ~39!

where the mean-squared couplingV5A(kVk
2 in the denomi-

nator on the right-hand side normalizesf 0. The codiagonal
coefficientstn

z must be found numerically; for largen, none-
theless, one finds an approximate expression23

tn
z5Dn11L12z1O~DL2n!, ~40!

where

Dn[D
11L21

2
L2(n21)/2. ~41!

For increasingn, the codiagonal coefficients thus decrea
rapidly, a feature that paves the road to the truncation defi
Sec. IV. Before coming to that, however, we remark th
definition ~39! allows us to rewrite Eq.~11! as

Hc5A2V~c0
†f 01H.c.!. ~42!

IV. INFRARED TRUNCATION

To calculate the ac conductance, we must compute
right-hand side of Eq.~35! as a function of the frequencyv.
To this end, we have to diagonalizeHg , given by Eqs.~38!
and~40!. For givenv, we can neglect those codiagonal el
mentstn that are much smaller thanv. We therefore choose
a small numbera!1 and find the smallest integerN satis-
fying the inequality

DN,av, ~43!

with DN defined as in Eq.~41!. SincetN'DN!v, we can
truncate the sum on the right-hand side of Eq.~38! at n
5N:

HCB
g ' (

n50

N21

@ tn~ f n
†f n111H.c.!#, ~44!

an approximation referred to as theinfrared truncation. This
considered, to prepare a renormalization-group transfor
tion, we define the scaled, truncated Hamiltonian
7-4
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HN
g 5H (

n50

N21

@ tn
z~ f n

†f n111H.c.!#

1A2V~c0
†f 01H.c.!1HdotJ Y DN . ~45!

Here we have substituted the right-hand side of Eq.~42! for
the couplingHc between the dot and the conduction band

From Eq. ~45!, the even-channel model Hamiltonian
formally recovered as

Hg5 lim
L→1

lim
N→`

DNHN . ~46!

Moreover, Eq. ~45! leads to a renormalization-grou
transformation, that is, a transformation that, given a
quence of energies with a minimumEmin , adds to it a
smaller energyEmin8 ,Emin and scales up the entire sequen
by the factorEmin /Emin8 , so that the minimum of the result
ing sequence beEmin , equal to the minimum of the origina
sequence. Specifically, the renormalization-group trans
mation associated with Eq.~45! is defined by

T 8@HN21#[HN5L1/2HN211~ tN21 /DN!~ f N
† f N211H.c.!.

~47!

As Eq. ~41! shows, for increasingN, the factor multiply-
ing the parentheses on the right-hand side becomes inde
dent of N, so that the smallest energy scale inHN is not
significantly affected by the transformation. Eq.~40! defines
a renormalization-group transformation that scales up e
gies by L.25 An energy-scale invariant Hamiltonian is n
affected byT5T 82 and is called a fixed point.@Notice that,
one cannot expectT 8 to have fixed points, forT 8 scales up
energies byAL, while any two successive energies in t
discretized conduction-band Hamiltonian~36! are separated
by a factorL.#

V. ITERATIVE DIAGONALIZATION

Hamiltonian ~45! is diagonalized iteratively. ForN50,
the first term on the right-hand side vanishes, and the sum
two remaining can be diagonalized analytically. If, on t
other hand, the eigenvaluesen and eigenvectorsun& of HN21

g

are known, the statesun&, f N11↑
† un&, f N11↓

† un&, and
f N11↑

† f N11↓
† un& constitute a new basis onto whichHN can be

projected. Charge and spin conservation reduce that pro
tion to a block-diagonal matrix that can be diagonalized
merically.

Thus, starting with N50, one can diagonalizeH1 ,
H2 , . . . . Since the number of states generated in each it
tion N is four times larger than that in the previous iteratio
computer memory limitations force us to truncate the ba
For each iteration withN.5, only the eigenvectors assoc
ated with the eigenvalues below a parametere l im are com-
puted in the numerical diagonalization, and those provide
seed from which the basis is constructed in the subseq
iteration. To distinguish this approximation from the one d
fined in Sec. IV, we refer to it as theultraviolet truncation.
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The discretization of the conduction band@Eq. ~37!#, which
is controlled by the discretization parameterL, ~ii ! the infra-
red truncation@Eq. ~38!#, controlled by the parametera, and
the ultraviolet truncation, controlled by the parametere l im ,
are the only approximations involved in the NRG procedu
The control over each approximation makes the proced
essentially exact.

VI. COMPUTATION OF THE z-DEPENDENT
CONDUCTANCE

At iterationN, the numerical diagonalization of the mod
Hamiltonian yields eigenvalues that, in units ofDN @Eq.
~41!#, range from unity toe l im . For frequenciesv satisfying
the inequality 1,\v/DN,e l im , the sum on the right-hand
side of Eq.~35! can be computed. By following the iterativ
procedure fromN51 to N5Nmax, we calculate~the real
part of the! conductance for frequencies in the interv
DNmax /\,v,D. By choosingNmax521, with L510, for

instance, we can reach frequencies as low asv
510210D/\, well below the characteristic energies of typ
cal model Hamiltonians.

VII. AVERAGING OVER z

The discretization of the conduction band is an appro
mation. In order to justify it, one must insure that calculat
physical properties converge rapidly to the continuum lim
asL→1. The computation of dynamical properties, in pa
ticular, requires a special precaution: inspection of the rig
hand side of Eq.~35! shows that for anyL.1 and fixedz,

FIG. 1. Real part of the conductance as a function of freque
for the indicated dot energyE0 and widthG, for the uncorrelated
model. The squares show the numerical results of the NRG pr
dure described in the text. The solid line represents the analy
expression for the conduction. The agreement is representativ
the accuracy of all numerical results in this paper.
7-5
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the restricted sum over discrete energies will give rises
discontinuities in the calculated conductanceRG(v,z). In
order to eliminate this artifact of the discretization, we mu
averageRG(v,z) over the second discretization paramet
As z runs from zero to unity, the energiesEm on the right-
hand side of Eq.~36! sweep the entire conduction band a
thus recover the continuous distribution of conduction en
gies.

For fixedz, the discontinuity in Eq.~35! arises because fo
given frequencyv one occasionally finds a stateumg& with
an energyEmg slightly larger than\v, which does not con-
tribute to the sum on the right-hand side; in that case, forv8
slightly smaller thanv, the energyEmg will be smaller than
\v8 and the stateumg& will contribute to the sum, which is
therefore discontinuous at\v5Emg . It is easy to see, how
ever, that if for givenz one hasEmg(z)5\v1e, then for
somez8.z one will have thatEmg(z8),\v, so that when
the sum on the right-hand side of Eq.~35! is integrated over
z the stateumg& will contribute to the conductance, and th
discontinuity will be washed out. We therefore expect t
z-integrated conductance

RG~v!5E
0

1

RG~v,z!dz, ~48!

to be a continuous function of the frequency that conver
rapidly to the continuum limit asL→1. This is borne out by
the numerical results.

FIG. 2. Real part of the conductance as a function of freque
for the indicated dot energyE0, width G and Coulomb repulsionU.
SinceU5E0, for G50 the dot states with occupanciesn51 and
n52 would be degenerate. The coupling to the conduction b
breaks that degeneracy and allows transitions between the gr
state and the resulting excited state, which enhance the spe
density and give rise to the peak in the conductance at\v;6
31023D. The inset shows the dc conductance as a function of
dot energyE0; the cross indicates thev→0 limit of the main plot.
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VIII. RESULTS

Figure 1 shows the calculated conductance forU50,
with dot energye0520.025D and widthG50.0036D. The
conductance peaks nearuE0u, as the external frequenc
yields the electrons on the left lead sufficient energy to ov
come the barrier separating the quantum dot from the
electron gases. The coupling to the electron gases broa
the resonance to a width approximately equal toG. The cal-
culated conductances are in excellent agreement with
analytical expression easily derived in the absence of co
lation,

RG~v!5
G

2\v FarctanS \v1e0

G D1arctanS \v2e0

G D G ,
~49!

represented by the continuous line.
While correlation makes it impossible to determine an

lytical expressions for the frequency-dependent conducta
the special precautions taken in the NRG approximati
make that approach uniformly accurate in parametri
space; we hence expect the results forUÞ0 to be as accurate
as those in Fig. 1. As an illustration, Fig. 2 shows the cal
lated conductance for the dot energy and width in Fig. 1 a

y

d
nd

tral

e

FIG. 3. Real part of the conductance as a function of freque
for the indicated dot energyE0, width G and Coulomb repulsionU.
With U52uE0u, the model becomes particle-hole symmetric and
low-energy physics is dominated by the Kondo effect. The t
conductance peaks are associated with resonances in the dot
spectral density. The peak at higher energies, near\v5uE0u, re-
flects the resonance associated with the transition between thn0

51 and then050 andn052 occupations of the dot level. The pea
at zero frequency is due to the Kondo resonance, as confirme
the excellent agreement with the exact result@Eq. ~32!#, here repre-
sented by the solid line. The inset shows the zero-frequency c
ductance as a function ofE0. The cross indicates the dc limit of th
main plot.
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U5uE0u50.025D. A comparison with Fig. 1 shows that th
correlation displaces the peak to a lower energy and ra
the dc conductance. Both effects are easy to understan
one considers that, forU50, the decoupled-dot ground sta
would be doubly occupied, while forU5uE0u, the doubly
and singly occupied configurations would be degener
One might therefore expect free current flow at low energ
since that degeneracy would allow unassisted transitions
tween the dot and the neighboring gases. The couplinG
breaks the degeneracy, so that only virtual transitions
come possible at zero frequency, and the conductance p
at the resonance associated with the broken degeneracy

An additional check on the accuracy of our procedure
provided by the insert, which shows the dc conductance
tracted from the ground-state occupancy of the quantum
by means of the Friedel sum rule as a function of the
energyE0. The results, shown as open squares, are in v
good agreement with the zero-frequency limit of the m
plot, represented by the cross.

For U52uE0u, the model acquires particle-hole symm
try. This forces the dot occupation to ben051. It follows
from the Friedel sum rule that the dot density of states at
Fermi level is equal to 2p/G,18 and from Eq. ~31! that
RG(v)52e2/\, which is just the dc limit of Eq.~32!.

Figure 3 shows numerical results for the frequency dep
dence of the conductance for the symmetric model. The p
near \v50.025D is due to the enhancement in th
quantum-dot spectral density at energye'uE0u, associated
with transitions from the singly occupied ground state to
ys

s

03533
es
if

e.
s,
e-

e-
aks

s
x-
ot
t

ry

e

n-
ak

e

~degenerate! doubly occupied and empty dot-level config
rations. At lower frequencies, the calculated points are
excellent agreement with Eq.~32!, represented by the con
tinuous line. Again, the dc conductance extracted from
ground-state occupancy~open squares in the inset! agrees
very well with the zero-frequency limit of the main plo
~cross!.

IX. CONCLUSIONS

In summary, we have shown that the NRG approach gi
quantitatively reliable results for the frequency depende
of the ~real part of! the conductance through a nanostructu
As indicated by Figs. 1 and 3, the agreement with ex
results, where the latter are available, is excellent. This
highlights the adequacy of the NRG approach for the cal
lation of transport properties in devices dominated by
Coulomb blockade. Of particular interest is the computat
of the current resulting from subjecting the electrodes to
noninfinitesimal potential difference. This arrangement po
a substantially more difficult problem than the one w
which we have dealt. Nonetheless, inroads
renormalization-group analyses of nonequilibrium proble
have been constructed,26 and the above-reported analys
may encourage additional efforts.
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