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Possibility of flux expulsion and flux trapping in thick mesoscopic cylinders
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Persistent currents in mesoscopic nonsuperconducting rings and cylinders are a manifestation of quantum
coherence. In this paper the possibility of self-sustaining persistent currents in thick mesoscopic cylinders is
disscussed. The long-range magnetosfaticrent-currentinteractions are taken into account by the method of
self-consistent field. Axially symmetric solutions of the differential equations for the self-consistent flux are
found for geometry of a long hollow cylinder made of a set of a large number of cylindrical layers. The
conditions under which the system exhibits flux expulsion and quantization of trapped flux are formulated.
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[. INTRODUCTION persistent at lowl (Ref. 2 and, if their amplitude is high,
there exists a possibility of creating self-sustaining currents

It is well known that flux expulsion and flux trapping are that run even if we switch the external field 8ff.For sim-
one of the main features characterizing the superconductinglicity we consider a system of spinless fermions. The gen-
state being a hallmark of a phase coherence. eralization to the case with spin can be easily done. We also

In this paper we want to answer the question whetheassume a relatively clean samgleallistic regimg and we
these phenomena can be obtained in nonsuperconductimgglect the influence of disorder. The inclusion of weak dis-
structures such as metallic or semiconducting mesoscopierder, which is known to decrease the amplitude of persistent
systems. We found that under very special conditions fluxcurrents, does not change the results qualitatively.
expulsion and flux quantization may exist in the normal state In our previous papers we discussed persistent self-
as well. Let us consider a mesoscopic cylinder of lerigth sustaining currenté (fluxes in mesoscopic hollow cylinders
and wall thicknessl, of radiusR, lengthL, and a very small thicknes$ (d<R).

The considerations were based on the assumption that the

d=R,— Ry, (1) magnetic flux within the cylinder wall was practically con-

stant and equal t¢p=H7R?, whereR was an external ra-
(R, and R; are its outer and inner radii, respectively, dius of a cylinder. In such thin samples we were not able to
>R,) in the presence of a magnetic field parallel to theshow the flux expulsion and the full flux quantization, but
cylinder axis. Because in the presented model consideratior#ly some initial traces of it.
we do not invoke electron pairing to get a desired coherent In this paper we remove the restriction of a very thin
behavior, one has to impose strong geometry and materigylinder wall and consider cylinders withsmaller or of the
requirements. The main difficulty with the normal multichan- order ofR;. The single quantityp is then to be replaced by
nel structures is that, in general, different channels contributeé(r), measuring the flux contained within the radiusSolv-
with random sign to the response of the system. Thus, thing the differential equation fo(r) one can formulate the
main goal of this work was to find the realization in which conditions under which the mesoscopic system can exhibit
all (or majority off channels contribute with the same sign full flux expulsion and trapping of the quantized flux. The
giving rise to the coherent behavior. results of our earlier papers were preliminary and only this

In this paper we perform some model calculations showfaper gives the solution to the problem as the strong inho-
ing that flux expulsion and flux trapping can be obtained inmogeneity of the flux is accurately accounted for. Below we
mesoscopic cylinders of finite thickness with one-discuss these phenomena in systems with quasi-1D and
dimensional(1D) or two-dimensional2D) conduction. Ma- quasi-2D conduction. For simplicity we assurmie=0, the
terials with layered structure where the conduction takealidity of the obtained results for finit& will be discussed
place in the layers or in the chains and also multiwall carborin Sec. IV.
nanotubesMWNT) have the desired structure.

In mesoscopic systems the level quantization is mostly
not due to the magnetic fielgho Landau levels but due to
small sample dimensions. As a result, the wave function is
rigid with respect to the magnetic field and one can ob- Let us consider a mesoscopic 3D cylinder made of a ma-
serve large orbital magnetishCylindrical coordinates, 6, terial with layered structure under the influence of a static
andz shall be used, wheremeasures the distance from the magnetic fieldH. On the thicknesd of the cylinder we have
cylindrical axis, @ is the angle around it, ariis the distance M coaxial closely packed layersl€ Mgb, b is the distance
parallel to the axis. between layepsand the conduction takes place within the

Mesoscopic cylinders can exhibit diamagnetic or paradayers. Similar problem has been discussed in Ref. 5 for the
magnetic reaction to the small external magnetic field apmesoscopic system witti<R;, where the difference in the
plied parallel to the cylinder axis. The induced currents aragadii of the layers has been neglected.

Il. TOTAL ENERGY AND THE DIFFERENTIAL
EQUATION FOR THE SELF-CONSISTENT FLUX
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The field is partially of external origin and partially due to

the currents in the system:

H=H+H;, (2

whereH, is the external magnetic field parallel to the cylin-
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d(r)=2mrA(r),

¢=det i, ®

¢ and ¢; are the external and internal fluxes, respectively.
It has been shownthat the long-range magnetostatic

der axis andH; is the magnetic field due to the currents in (current-current interactions when taken in the self-

the system.
Because the conduction takes place only in tagd)

planes, internal fieléH; produced by the electron motion and

consistent mean-field approximation result in an internal
magnetic fluxg; .
Making use of Eq(7) one can write down the formula for

the total fieldH=curlA are parallel to the axis and depend the energy stored in the magnetic fiddg(r):

only onr.

To study the coherent behavior of the system we use the

method similar to that developed by Bloch and Rorschazh
study persistent currents in superconducting cylinders.
The energy of an electron system is given by

Mgy

EerE 2

L 27
Nk~|~f dzf dowy | HeWy 3
= in o o o i'j i'j

where Nkj|j are the occupation numbers of electron states
(kl) in a jth layer described by the normalized wave func-

tion \Ifkj|j, H. is the Hamiltonian operator for an individual
particle

1/ e \?
He=%(—|hV—EA) : (4)

= 2 3

E; = Hi(r)d°r. (9)
Replacing the sum ovgrin Eq. (3) by an integral, the ex-
pression for the total enerdgy=E.+ E; after some algebra

takes the form

_ wL#A%n N

R
rdr
m JRl % N

L(ﬁc)ZJRzl(dqbi’)z
+—|— —| ——| dr,
4\ e R, M\ dr
where N is the number of electrons in a single layeér,
=l dy, Po=hcle, ¢ is the flux unit,n=1/a%b is the

electron densitya is the lattice constant in the conducting
planes. Notice that the flug’ shifts the energy levels con-

(I-¢)?
k2+ r—2‘|

(10

The state of an individual particle in a given layer can bepgcted with the angular momentum leading to unequal

characterized by the quantum numbkrand|, which, mul-
tiplied by #, represent the components parallel to #rexis

(asymmetri¢ occupation of*1 states.
Equation(10) now be used to obtain the formula for the

of linear and angular momentum, respectively. They arggi.consistent flux. Demanding that the eneEglias an ex-

guantized due to the periodic boundary conditions applied i

the 6 andz directions®

The corresponding wave function can be written in the

form
P :—ei(kzﬁ—le), (5)
kI (2’77'.)1/2
k=2sxl/L, 1=0,£1,%+2,....
Let ¢ be the flux inside thesth cylinder (s

=1,... My), s=1 for the cylinder ar=R;, s=Mq atr

=R,. The flux through the area between the+1)th and
sth cylinders is created by, andH;, whereH; is the field
created by the currentg¢) in the outer cylinders. We get

Mg

4ar
bsi1— Ps=2mr bl He+ — E

or 2, |(d9)|=2mrbH.

(6)

Let us assume thaps is a smooth function ok. One can
then transform Eq(6) into a differential equation

1 dg¢(n)

A= o —ar

()

where

Rremum against variation of the functia#f (r) and using the

standard Euler-Lagrange procedure we get the following
equation forg; (r):

il

4me’n

:_mczé

One can notice thag{ on the left side of Eq(11) can be
replaced byg’, because such a replacement merely adds a
term corresponding to the derivatives ¢f, which is 0 in
the region of space considered here.

Now we want to determine the occupation numbi(s
for the lowest-energy state. As our calculations are per-
formed atT=0, we assume that electrons occupy the lowest
quantized energy levels. Thus, the occupation numbers are
chosen to be

1,
N“:[O
(12

The Euler-Lagrange equatidfil) now takes the form

Ny

~-¢). @y

Fribarm

for(kl)below the Fermi surfaced=S)=(kl)¢c
otherwise.

d

1de'(r)
rdr r

r dr

1
F—F[ip((b’)—(ﬁ'(r)]. (13

where
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1  4me’n 14 *
A2 mé
\ is the parameter containing only the material constants,
known as a penetration depth, 0
> |
. o (kD)
ip(d))=—x (15)
0 1
It is easy to see that the right-hand sides) of Eq. (13) is FIG. 1. Two shapes of the Fermi surface for which coherent
proportional to the current in a single cylindrical layer, behavior can be observed: rectangular and rectangular with rounded
where corners.
efiN PO § 'FE“' _(ketD@etD)
1= [ip(¢)~¢']. 1§ ipe)=y = =l
27mr? P P N &= Zke 1= S N

18
This current screens the magnetic field and when it is strong 18
it can lead to flux expulsion and trapping of the quantized Such cylinders exhibit a diamagnetic reaction to srgall
flux. | is composed of the paramagnetic and diamagneti€urrent(16) is a sowtooth function with paramagnetic jumps
parts. The diamagnetic reaction, described by the term lineat half integer¢’ and diamagnetic in between. In fact, the
in ¢’ exhibits a strong flux expulsion. However, the total numberl’ is the number of flux quantén units of ¢)
reaction tog’ depends also on a paramagnetic téggp’),  inside the cylindrical layer.
which is a monotonic(nondecreasing steplike function. In the second cagbe FS lies on the last occupied state
When it is such that it cancels almost exactly the diamagthe Ith direction. In this case-1g+1" andlg+1" states are
netic responsénarrow and low stepsve end up with a very only partially occupied and
small net current. When, on the other hang¢’) has wide R
and high steps, then the net current becomes substantial and I"=[¢"]+z, (19)
we get a strong reaction @'. i.e., the cylinders react with the paramagnetic jump at integer
¢' being diamagnetic in between.
IIl. FLUX EXPULSION AND FLUX TRAPPING The Euler-Lagrange equation for the rectangular FS reads
It is well knowr?*? that persistent currents in mesoscopic d/1d¢’ 1
2D cylinders depend strongly on the correlation of currents iy T) =-—"=¢"). (20
. . N
from different channels labeled kyyi.e., on the shape of the
FS. The most favorable situation is when the FS is flat, perEquation(20) is valid when all layers forming a thick cylin-
pendicular to the angular momentum, the currents then adder exhibit the saméiamagnetic or paramagnetieaction
coherently and the resulting current is the strongest. Witho small¢’. The discussion of this condition is given in Sec.
increasing curvature of the FS the current becomes smallery,
The following subsections deal with the solutions of Eq.  To solve Eq.(20) we denote
(13) for several special cases.

Br)=¢'(r)—1", (21
A. Rectangular FS B(r) is proportional to the curreritfrom Eq. (16).
We consider two different cases. Further we assume that in the considered range tbe

In the first casehe FS lies in the middle of the gap be- value ofl’ is constant. This assumption is justified for the
tween the last occupied and the first unoccupied statee ~ Magnetic fields for whichg(r)|<1/2.
(th) direction in the reciprocalk(l) space. It is shown as a ~ Equation(20) takes now the form
dashed line in Fig. 1 fop’ <1/2. For a giveng’ the fol-

lowing momentum states below the FS are occupied, ri Ed,@(r) :ilg(r)_ (22)

:_kF,_kF+1,...,kF, and |:_|F+I,,_IF+I, dr r dr )\2

L. Jerl’, wherel " is given by By introducing a new variable, r=\x, and a function
, , x), where B(r)=Axy(x), Eqg. (22) can be reduced to a
| :[d, +%]’ (17) ]3:/0(”% B( ) y( ) q ( )

[x] is the integer part ok. 42 d

For a such Fermi surface the sums okand! in Eq. (15) xz—y+x—y—(x2+1)y:O. 23
are independent and dx? = dx
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It has well-known solutionsy(x)=c4l1(x)+c,K.(X) in
terms of the modified Bessel functions of the first kin¢x)

PHYSICAL REVIEW B8, 035320 (2003

Thus, the total flux contained in the cylinder is quantized,
but the effective magnitude of the flux quantudue tod

and the second kin&,(x), c¢; andc, are constants. The <\) is less than its full valuep,.®

general solution of Eq22) is thus of the form

r

X . (24

B(r)=r

Cqlq

r
+CZK1(X

The constantg,; andc, are to be found from the boundary

conditionsB(R;)=¢'(R))—I"', (i=1,2), wheres(R;) is the

flux at the inner and outer wall of the cylinder, respectively.
In the limit R;,R,>\, the Bessel functions can be well
approximated by exponentials and soluti@4) reduces to a

simpler analytical form

1

(25

+Ajex e
2exXf —— |-

We shall discuss now solutidi5) in two limiting cases.

B(r):AleX% -

1. Thin cylinder wall (d<\)

We can expandB(r) in powers of x/\, where x=r
—R;. One obtains up to quadratic terms

NG X
1+ —|+D=
2\?

o (26

B=A

where A and D are determined by the magnetic fiett{r
=R;)=H; andH(r=R,)=H,.

From Eqgs.(7) and (26) we obtain the relations foH,
andH,,

_ﬁc D )
1= eR, N’ 27
B fic [Ad b 08
2T eRA N TP (28)

We will consider now the case of trapped flux in the ab-

sence of an external magnetic fietthb. From H,=0 one
getsA=—D\/d and inserting it into Eq(26) one finds

2

eR\
,8(x=0)=—ﬁ—CdH1. (29

Making use of the relationb’ (R;)=7R2H;/¢o, one ob-
tains from Eq.(29) a self-consistent equation fe¥' (R;),

!

¢ (Ry)= HT (30)
Rid
wherel’ fuffills the condition|l’|<(1+Rd/2\2)/2.
In an analogous way we can calculate
d
1" 1+ =
! 1 !

¢'(Rp)=——517=¢'(Ry) (d<Ry). (3D

1+ R_ld

Equation(30) has a simple interpretation. Let us take, for
example, the case with integer[Eq. (17)]. The inner layers
carry current that creates a self-sustaining flux. However, for
a very thin cylinder, ifRd/2\?<1/2, onlyl’ =0 fulfills Eq.

(30) and we cannot trap a flux, because the number of current
carrying layers is too small. Formu(&0) for the flux trapped

in mesoscopic thin cylinders has been earlier obtained by
us*® by a different method valid only for thin cylindefsve
neglected the dependence of the fljix

The investigations presented in this paper allow us to dis-
cuss the behavior of flux also in thick cylinders.

2. Thick cylinder wall (d=>2\, R{>N\)

Inserting Eq.(25) into Eq. (7) one can express the con-
stantsA; andA, in terms ofH; andH,. After some algebra
one obtains

2m\
B(r)Ed)/ —|'= _(_RlHle—(r—Rl)/)\+ Rsze(r_RZ)”‘).

bo
(32)

One can see that this expression is appreciable only within
distances of ordex from the boundaries of the cylinder and
approaches 0 in its interior. As a result
o=, (33

i.e., the quantized flux is trapped within the interior of the
system.

Having solution forB(r) one gets from Eq(7) the for-
mula forH(r),

¢o dp(r)
(r)_27-rr dr - (34

If we assumeH;=H, andl’ =0 the exponential decay of
B(r) andH(r) in the interior of the cylinder is equivalent to
the flux expulsion, i.e., to the Meissner-like effect.

Figures 2—4 shows(r) and H(r) for different sets of
parametersX,R;,R,).

In our model calculations we neglect tunneling between
the sheets and, therefore, in metallic systems we assume
>a. In MWNT, although the distance between the walls is
b=3.4 A, tunneling is negligible because electrons are very
strongly bound inside the walfs.

Assuming, e.g.a=3 A, b=19.1 A one finds from Eq.
(14 A=694 A and by assuming the densityas for multi-
wall carbon nanotubes one gets- 160 A.

The solutions given by Eq24) are marked by the solid
line and those given by Ed25) are marked by the dashed
line. In Fig. 2 they almost coincide, whereas in Fig. 4 merely
Eqg. (24) is valid. We see that the magnetic field penetrates
only to the depth of a few and is fully screened inside the
cylinder wall if it is thick enough. This is the situation in Fig.
2 whered>\ and we get full flux expulsion and flux quan-
tization ¢’ =1".
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FIG. 2. Magnetic fluxg and magnetic fieltH as a function of FIG. 3. Magnetic flux and magnetic fieltH as a function of
for R,=5x10° A, R,=13x10* A, A=694 A. for R,=478 A, R,=2500 A, \=694 A.
In Figs. 3 and 4 we observe only a partial flux expulsion in(¢))=fl", (36)

due to the smaller width of the considered samples. The pa- )
rameters in Fig. 4 are taken in the range typical for multiwalwheref=M; /M, f<1, andM is the number of channels

carbon nanotubes. in the flat sectionM = (2kg+1).
Equation(20) is now replaced by
B. Circular Fermi surface d(1de’ 1 , ,
In the case of the circular FS, currei) in each single Yar\y ar | T )\—fz(l —¢'), 37

sheet is very smallthe paramagnetic and diamagnetic terms
cancel almost exactlyand the rhs of Eq(13) can be well where)\f2=)\2/f>)\2. Equation(37) is of the same type as
approximated by 0, Eqg. (20), but due to smaller number of coherent channels
(M;|<M), the screening is weaker, which results in the
d/1de'(r)| larger penetration depth.
"ar\ v dr =0. The discussion following Eq20) is also valid in this case
with \; replacingA.
The solution of Eq(35) is ¢’ (r)=Hmr?/ ¢, i.e., H(r) For decreasing the FS tends to the circular FS and the
=H. In this case there is no flux expulsion, and the fieldeffect disappears for negligible
penetrates into the mesoscopic cylinder.

(39

IV. DISCUSSION

C. Flat Fermi surface with rounded comers We have considered a 3D mesoscopic cylinder made of a

The FS denoted by solid line in Fig. 1 contains two pairsmaterial with layered structure where the conduction takes
of flat regions. place within the layers. If we apply the magnetic fi¢td

The sum over differert channels in Eq(11) can be split  parallel to the cylinder axis, persistent currents are induced in
into the part coming from the flat section and that of thethe layers. The total magnetic field is then compose#i of
rounded portion of the FS. In our considerations we neglecand the internal fieldH; coming from the currents itself. The
now the contribution to the current coming from the roundedorigin of H; is the magnetostatic current-current interaction.
part of the FS, as it is smalsee above We then calculate As we consider the systems without electron pairing it was
ip(¢") coming from the channels in the flat section only. Wechallenging to see what are the replacement conditions that
obtain have to be imposed to get the required coherent behavior.
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- condition we suppose that the interactions in the system can
0.073 ] lead to such state if it minimizes the total energy. For ex-
- ] ample, the energy of the current-current interaction of the
-7 adjacent sheets is the smallest if the currents run in parallel.
- ] Such considerations would need to take into account many
o = mechanisms togethdmcluding tunneling and are outside
-7 ] our simple model calculations. This problem is interesting
- for further study.

R ] For the circular FS the system exhibits a very weak reac-
ceone | ] tion to ¢ followed by flux penetration and the absence of

. ‘ . ‘ . quantization.

We then considered the system whose FS has flat regions
on its opposite sides. Such FS’s are often met in low-
w00 : : : : : dimensional system®, e.g., in highT, superconductors, in
H[G] [~ e organic materials, bcc and body-centered tetragonal crystals
ol S e close to half filling, and in hole-doped carbon nanotubes.

- - We have shown that systems will>2\ and largd, i.e.,
““““ with large number of channels in the flat section of the FS
exhibit full flux expulsion and trapping of the quantized flux.

These coherent phenomena decrease with decreasing the
thicknessd of the cylinder, leading to partial flux expulsion
and trapping of the quantized flux, but the effective magni-
tude of the flux quantum is then less than its full vaJ&g.

(30)].

The decrease ifleads to longer penetration depths.

The presented model calculations has been performed for
simplicity atT=0. However, they are also valid for tempera-

FIG. 4. Magnetic flux3 and magnetic fieltH as a function of turesT<T* =hv,:/2772R2 for which persistent currents can
for R =300 A, R,=600 A, A =160 A. be created in mesoscopic systems. The temperature depen-

dence of persistent currents is given, e.g., in Refs. 2 and 4.

It turned out that they are quite strong—the system has tqaking, e.g.,v=1.57x 10fcm/s andR,=1um we getT*
exhibit quasi-1D or quasi-2D conduction and @i majority  =0.6K.
of) the sheets have to react with the safparamagnetic or One can also estimate the upper magnetic fléfd for
diamagnetit current to the small magnetic field. which the above considerations are valid. It can be calculated

We have estimated the geometric condition for which itfrom the condition3(R,)=1/2. By making use of Eq32)
happens. Ifo=na/m, nis an integer, then all sheets react one gets

with the samegle.g., diamagnetjccurrent to the small field.
This is shown in Fig. 5 for the rectangular FS and for the FS

250 400 450 500 s50 a0

rih

with rounded corners. The inhomogeneity of the current H* = %o (38)
(flux) inside the cylinder is also seen. Besides the geometric 4R\’
8ot~ T T T T 1 T The same formula foH* can also be obtained if we equate
7,0x10

the energy loss due to flux expulsion and the energy gain due
to quantized flux(per single cylindrical shegtAssuming,
e.g., R,=1um, A\=694 A, one finds from Eq(38) H*
=48 Gs.
Notice that bothT* andH* decrease with increasirig,
and tend to O in the macroscopic samples. Thus, the pre-
sented phenomena can occur in samples of mesoscopic size.
In the presented model calculations we did not take ex-
plicitly into account the Coulomb interaction. It was recently
600" shown that it does not influence persistent currents in clean
00 S S S S S systems? whereas it enhances the currents in the diffusive
00 o1 02 03 04 B°'[f'r] o o7 08 09 10 ragimel®In a work by Pascaud and Montambaux the experi-
ments that permit to test the role of Coulomb interaction
FIG. 5. The current as a function of magnetic fielg for the ~ have been suggestétiOne should also stress that although
Fermi surfaces from Fig. 1 for five subsequent sheets withR,  in the system considered by us the conduction is quasi-1D or
+sb, s=0,1,...,4R,=478 A a=3 A, b=19.1 A. Dashed line -2D, the Coulomb interaction in such systems is 3D, which
is for rectangular FS and solid line for FS with rounded corners. makes a nontrivial difference from the purely 1D case. The

6,0x10"
5,0x10"
4,0x10
3,010
2,0x10"
1,0x10"

0,0
A0x10* |
2,0x10"
-3,0x10*
-4,0x10"
-5,0x10"

IA]
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Coulomb interaction hampers the fluctuations, which mayauthor also shows that at lowwand at small magnetic field
destroy the ordering in a similar way as in bulk 3D the nonsuperconducting system can show the quantized flux.

systems>16 Azbel considered a ring made of a bulk metal and to get
Mesoscopic cylinders with layered structure can also beoherent behavior he had to have very large cyclotron radius,
obtained by, e.g., lithographic metholds. and as a result his theory is valid at a magnetic field much

MWNT consisting of a set of concentric sheets nestedsmaller than in our case.

inside each other have also the desired cylindrical structure.

However, in MWNT produced nowadays different sheets

may have, in general, different chiralities, and thus different V. CONCLUSIONS
electric and magnetic k_)ehavior. Therefore, the assumption We have presented the model considerations that exhibit
e e s o a1 mesoscopi cale feaures Simiar o hal of a supercon-
MWNT that oniy some of thenfe.g.. every third shepex- cﬁ]uctm_g state, such as the flux expul_spn and trapping of the

. : o uantized flux although electron pairing was not invoked.

hibit strong persistent currents of the same type, whereas t

4 i L Tae - flux unit in the model ispo=ch/e.
others having different chiralitié$give rise to the negligible ¢ oo .
current. The?1 the effective distgnce between theg ‘%ctive" Quantum coherence is related here to both the small size

sheets would be larger, but the idea remained the same. of the samplequantization due to the Quantum Size Effect

The phenomena discussed in the presented paper are%gr;%t%ﬁgtron correlations coming from the magnetostatic

the moment a theoretical prediction. However, with the rapiqln
development of the nanotechnology used to fabricate low-
dimentional structures, there is a hope that such materials
will be fabricated in the future.

The Meissner-type effect and the orbital magnetism in  This work was supported by Polish Committee for Scien-
clean cylindrical ring withL,d<<R have also been predicted tific ResearciKBN) Grant No. 5P03B0320. One of the au-
in Ref. 19. Although the geometry of the system and thethors(M.L.) thanks the Foundation for Polish Scie&&P)
approximations used are different, in the presented paper tHer financial support.
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