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Kondo effect in a metal with correlated conduction electrons: Diagrammatic approach
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We study the low-temperature behavior of a magnetic impurity which is weakly coupled to correlated
conduction electrons. To account for conduction electron interactions a diagrammatic approach in the frame of
the 1N expansion is developed. The method allows us to study various consequences of the conduction
electron correlations for the ground state and the low-energy excitations. We analyze the characteristic energy
scale in the limit of weak conduction electron interactions. Results are reported for static projregiasty
valence, charge susceptibility, magnetic susceptibility, and specifi¢ ineéte low-temperature limit.
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I. INTRODUCTION lated conduction electrons. In this case, the first step, i.e., the

Metals with strongly correlated electrons exhibit highly treatment of the host, is a highly nontrivial problem which
complex phase diagrams at low temperatures reflecting a richas not yet been solved. Partial answers, however, can be
variety of possible ground states. Prominent examples are tfeund in limiting cases. Although the diagrammatic approach
well-known normal Fermi-liquid state as well as magneti-developed in the present paper is valid for a general conduc-
cally ordered, superconducting, and insulating phases whiction electron interactiofCEI), we focus on systems where
may coexist or compete within the same material. A key to ahe ground state and the low-energy excitations of the inter-
guantitative understanding of the unusual phases is therefoecting conduction electrons smoothly evolve from those of
a quantitative description of electronic correlations and theithe noninteracting reference system. This is in marked con-
observable consequences. trast to the specific behavior encountered in one-dimensional

The present paper focuses ¢dilute) magnetic alloys systems. Theoretical studies which have been performed for
with correlated conduction electrons, i.e., we consider hostarious models including both impurity spfhé and Ander-
metals with correlated conduction electrons containing aon impurities™! coupled to Luttinger liquids predict rich
small amount of magnetic ions. We investigate the questiophase diagrams. Adopting well-established models for the
how conduction-electron correlations affect the formation ofelectronic properties of the host, we calculate the evolution
a nonmagnetic Fermi-liquid ground state commonly referredf the characteristic energyy of the low-lying magnetic
to as the Kondo effect. The latter has been known to be thexcitations with the conduction-electron repulsion. In the
source of many anomalous properties in magnetic alloygase of uncorrelated conduction electrons the latter is usually
with noninteracting conduction electrons. In addition to itsmuch smaller than the typical energy scale of the conduction
relevance in magnetic alloys the Kondo effect is becomingslectrons set by the band widthand depends exponentially
important in the study of interacting mesoscopic systemsgn the inverse coupling between the localized electron and
Theoretical techniques which provide a detailed quantitavghe extended conduction states. This fact is a direct conse-
understanding of the physical properties of these systems aggience of the Fermi-liquid ground state realized in normal
hence highly desirable. To leading order in the low impurity metals. The diagrammatic approach allows us to explicitly
concentration the electronic properties of dilute magnetic alz g4 quantitatively study how the different consequences of

loys can be calculated in two steps. First one has to detefja tronic correlationémass renormalization, effective inter-
mine the electronic properties of the host which will not beactions eto. affect the Kondo effect

significantly affected by the addition of a small amount of The main scope of this paper is to analyze how CEI in-

impurities. In the second step the contribution of the Ma%%uence the contribution of magnetic impurities to measur-

netic ions has to be calculated. able properties in general and its scaling properties in par-
For a metal with uncorrelated conduction electrons the properties in g ! Ing properties in p

first part of the problem is solved by standard methods o]ticular. We calculate thermodynamic propertiémpurity

electronic structure calculation. The theory for the second@lence, charge susceptibily, magnetic susceptibility and
step is well establisheti The theoretical techniques avail- specific heatin the low-temperature limit to leading order in

able include exact solutions for equilibrium properties asthe inverse degeneracy. o o

well as approximate methods for dynamic properties. Of par- Recent calculations for a magnetic impurity in a metal
ticular importance in this context is the diagrammatic ap-With interacting conduction electrot{s adopted either the
proach based upon the large-degeneracy expansion. THRMFT approach’ or the NRG but for a very special
scheme can be generalized to the treat nonequilibrium prognodel™ The model calculations mentioned above predict
erties which makes it a very flexible method. nontrivial variation with the Coulomb repulsion of the char-

The central goal of the present paper to extend the largeacteristic temperaturéy .

degeneracy expansion for the normal-state properties of di- Generally, the modifications introduced by the
lute magnetic alloys to the case of host metals with correconduction-electron interaction€El) into the low-energy
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excitations arise from the subtle interplay of three differentcussions of the fourth-order hybridization coupling are in the
types of influences. First, the density of conduction states appendices. Some of the results appeared in the short unpub-
the Fermi level is changed. Second, the probability for vir-lished preprint?

tual transitions between impurity and conduction-states are

reduced by the on-site Coulomb interactibh Third, the Il. MODEL AND CALCULATIONAL SCHEME

effective spin coupling between the conduction and impurit . .
electrons is enhanced by the increased number of uncgmpgn- We' adopt a gem.-:‘rallzed. Anderson model for a magnetic
sated spins in the correlated conduction electron systerﬁr.np.'“'”ty cou_pled_ to interacting conduction electrons. The re-
Considering these facts, it is not surprising that model studg’UItIrlg Hamiltonian reads

ies accounting only for selected aspects arrive at rather con- _ _ _

troversial conclusions concerning the Kondo effect in metals H=Hoand Himp+ Humi. @)

with correlated electron€ 8 The Kondo spin model gener- where the three components describe the conduction elec-
alized to the case of the interacting conduction-electron hogtons, thef states, and a hybridization or mixing interaction
was discussed in Ref. 16 and it was shown there that twosetween the two,

particle Green’s functions of host electrofigertex correc-

tions) are an essential component of the theory which leads _ I

to an enhancement of thexponentialKondo scale for a Hba“d_% €GOk + Heer,

weakCEl. This enhancement may be traced to the third type

of effects caused by the CEI. The ground-state energy of the U

Anderson impurity forweak CEl was considered in the Himp= 2 €Nt > 2 MmN

frame of 1N expansiort! The same enhancement of the " m-m’

exponential Kondo scale, formally due to the renormaliza- R

tion increase of the hybridization width, appears in this Homix= > [Vimo(K) e+ H.CL. 2
work.!” In contrast to the above-mentioned findings a de- k,m,o

crease offx due to the CEl in the Hubbard model was re- The creation(annihilation operators for conduction elec-

ported in the papéf This decrease is a consequence of thetrons with momenturrk. band energyeg, and spino are
change in the single electron properties of conduction elec(-j d b’ (c: Th’ h hi ko I :
trons caused by the interactids (including the change of denoted by (Ck,). Throughout this paper, all energies are

the chemical potential as the function bf). The vertex measured relative to the Fermi level. The conduction states
corrections influence which renormalizes both parameters di"® @ssumed to be orbitally nondegenerate. Their interaction
the Anderson impurity modéP e; andA are not considered IS accounted for by

in Ref. 18. At this point, we should like to mention that the

. . o 1 I,
r_oIe of the Coulomb interaction between the magnetic impu- HCEIZi ) 2 Uk+q,k' —q:k",K)
rity electron and conduction electrokk, was broadly dis- kk'.qo,0"
cussed. We do not discuss here the Coulomb interaction be- + + o
tween localized and conduction electrons which is X € goCkr — o Ok o Ckar ©)

considered in its various aspects in Ref. 20-24. It was ShoW}are | is the number of lattice sites. In the present paper,

that its effect atl¢.<U¢ may be fully absorbed by the renor- |, o approximateH g, by a Hubbard-type interaction,
malization of two parameters of the Anderson impurity

Ham_ilt_onian: th_e impurity electron_energy level and the U(K+q,K' —q:k",K)— U, 4)
hybridization widthA. In the following we assume that the
on-site impurity electron Coulomb repulsiod; is very  WhereU denotes the local Coulomb repulsion between two
large,U;— o, and we do not take into account explicitly the conduction electrons at the same lattice site. Another impor-
Uy, interaction. tant example which shall be studied in a forthcoming paper
The paper is organized as follows: In Sec. Il we beginare Fermi-liquid systems where the CEI renormalizes the
with a discussion of the Hamiltonian for an Anderson impu-quasiparticle dispersioag and also introduces a ‘residual’
rity embedded in a metallic host with correlated conductioninteraction among them.
electrons and the extension of the standard self-consistent The f () are the creatioriannihilation operators foif
large-degeneracy approximation to the case of CEl. Both thelectrons at the impurity site. They are characterized by the
interaction-induced changes in the single-electron spectrdbtal angular momenturd and a quantum numben which
function of interacting conduction electrons and their vertexdenotes the different statea=1,... N within the N-fold
function are included. In Sec. Il expressions for configura-degenerate ground-state multiplet with orbital eneegy
tional self-energies together with the NCA integral equationsThe Coulomb repulsiotJ; between twof electrons at the
are formulated for a general case of CEI. The expressions ammpurity site is assumed to be much larger than the other
evaluated in Sec. IV for a model where the Coulomb vertexenergy scales and therefore we mayUgt—. For simplic-
function is only weakly frequency-dependent. Thermody-ity we do not include here excited multiplet states, ignore
namic properties at zero temperature are presented in Sec.cvystal electric field splittings, and assume that the impurity
and Section VI contains discussions and summary. Technicélas only one electrofhole) in its magnetic configuration.
details related to the explicit evaluation of diagrams and disWe account for the large Coulomb interaction among fthe
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electronsU;—x by restricting the Hilbert space, i.e., by a) o, i (g V) b) i (@, - )
removing all states in which thieoccupancy exceeds unity.

The mixing between the two subsystems is conveniently 4\(/) @
characterized by the “hybridization widtH®

11 -
AE) =75 2 Vmo(WPE-€). (5 () : ,
kom A 1’

We are mainly interested in the regirng|> A ,(0) which is N’“"d\ — “”"’0\\"'
usually referred as “local moment regime.”

The central goal is to calculate the impurity contribution
to the low-energy properties of the dilute magnetic alloy. The d)
latter are given in terms of the Green’s functions for the
empty f state |0) (4f° configuration and the occupied >:< - X
stategm) (4f! configuration denoted byGy(z) andG(z),
respectively, FIG. 1. Self-consistent configuration self-energies and contri-
butions to the vertex. The solid, dashed, and wavy lines represent
Go(2)= . G (2)= ©6) the dressed propagators fqr conduction electrons, oc_cu_pied, and
0 z—24(2)’ m Z2—€e—2(2)° empty f states. The open circle denotes the bare hybridization
while open and filled squares are the bare on-site Coulomb repul-
They are coupled through _the config_urational sglf-energiegion and the two-particle verteR“X(1,2:3,4), respectively(a)
2o(2) and andX(2) for which we derive expressions pro- gty state self-energgqofiv,,). (b) Occupied state self-energy
ceeding in close analogy to the case of noninteracting cons (iq,). (c) Contribution to the effective hybridization vertesd)
duction electrons. Lowest-order correction.
The electronic properties of the metallic host are not af-
fected by the presence of a small amount of magnetic impuror, Figures 1c) and(d) describe vertex corrections. We shall
rities. To leading order in the small concentration they areshow below that under the assumptions ERJ.the infinite-
characterized by the one- and two-particle Green's functioyrder summation of these diagrams based on the self-
describing the single-particle excitations and the two-particle:onsistent approximation for the empty- and occufiestate
correlations of the interacting conduction electrons, respecyropagators can be considered as the leading-order contribu-

tively. _ , _ tion in the inverse degeneracyNL/ The remaining part of the
We assume that the single-electron Green’s function  present section is devoted to the justification of this conjec-
ture.
)= We start by briefly summarizing the basic facts on which
G,(k,2) = (7 . :
z—eg— 2 ,(k,2) the large-degeneracy expansion is based in the case of non-

) . interacting conduction electrons. The classification scheme
as well as the conduction-electron self-enelgy(k,z) do  exploits the fact that the bare conduction-electron propagator

not explicitly depend upon the wave veg:tBbut vary withk  1/(z— ;) depends upon the wave vecfothrough the bare
mainly through the bare band energy, i.e., band energy. As a consequence, the summations over internal

- _ . i k vectors can be decomposed into integrals over(bzee
Go(k2)=G,(ek,2); 2o(k2)=2,(e,2). ®  pand energies and averages over constant energy surfaces

This condition is always satisfied in the DMFT approdch according to

where the dominant many-body effects are included in a lo- 1 1

cal self-energy. As a consequence, also the genegpalticle - f - . :f

Green’s functions of the conduction-electron system dependL Ek - dEL Ek ole= &) deN(e)(---)e-

upon the wave vectors through the corresponding band ener- (9

gies. . . .

The configurational self-energi&s, and2,, are derived I:Iere N(e) is the density of bare band energies. The
by means of a perturbation expansion in terms of Green'-averages(- - - ). which contain only combinations of the
functions for thef configurations, one- and two-particle hybridization matrix elements,

Green’s functions for the interacting conduction electrons, as 1 (1

well as(bare hybridization vertices. The rules for construct- ,\,x [ 7 U e *x (D ” .

ing and evaluating the empty- and occupied-state selfgvm”(k)vm/"(k»f N( )[L 2;’ Ving(K) Vi (k) (e Ek)]
energies in the restricted Hilbert space of the infinite-

U-Anderson model are summarized in Ref. 26. Typical con- ~V2(€)8mm (10)
tributions to thef-configurational self-energies are displayed m mm

in Fig. 1. These include the noncrossing diagrams Fig®. 1 provide them-selection rulé’ which simplifies the structure
and (b) where the conduction-electron interactions enterof the self-energy contributions and ultimately allows for a
through the fully renormalized conduction-electron propagaclassification with respect to the small parametét.1/
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From the preceding discussion it is apparent that the as- lll. CONFIGURATIONAL SELF-ENERGIES
sumption Eq.(8) guarantees the validity of theN/classifi- . . . _
cation scheme for all diagrams where the conduction- For ”°”'mefa°t;';,‘g conduction elec_:trpns, the .self
electron properties enter via the single-particle GreensconS|stent solutiof??® has three characteristic features: The
function. Within this subclass the contributions displayed in0ccupied f-spectrum shifts to peak at a valug=e;
Figs. 1a) and(b) (without vertex correctionsare the leading T Re€2m(ef), the dominant contribution to the level shift
ones with respect to the small paramete¥.1/ coming from the continuum of charge fluctuations. The reso-

To assess the validity of theN/expansion is more subtle Nance in the occupieéispectral function acquires a small
for the diagrams containing the two-particle Green’s func-width. Finally, the empty state spectral function exhibits a
tion. Here the simplifying assumptions E(B) imply (see ~ pronounced structure abo=€;— T which develops with
Sec. ll) that the hybridization matrix elements enter dia- decreasing temperature and which sets the scale for the low-
grams in Figs. da) and(c) and(b) and(c) in the combination temperature behavior. This feature is the direct manifestation

of the Kondo effect reflecting the admixture 8 contribu-

tions to the ground state and the low-energy excitations.

VEO(E 01,E20,;E303,E404) In this paper, we study the influence of the CEIl on this
nonperturbative feature. Of particular interest are the position
:i > 5[E1_6(E1)]5[E2_6(|22)] of the resonance energy, relative to the energy; of the
L3 &, Ky ks Ky 4f* configuration as well as the weight of the resonance.
. . Let us first neglect vertex corrections and focus on the
X 6 E3z—€e(k3)]0[Es—€(Kky)] modifications introduced by the CEI into the single-particle
excitations of the conduction-electron system. They are ac-
% E Vmul(kl)vm'az(kZ)V:103(k3)V:1'0-4(k4) counted fpr by |n'sert|ng the full Sqnductlon electron. propa-
m,m gator for interacting electronG ,(k,i w,) from Eq. (7) into
T the configurational self-energies Figgailand (b).
X " (katks—ki—ko). (1D The self-energy of the occupiddevel,
; 1 -
where the Laue function Esr?)(w): - E Vmo(k)J dE n(—E)
ko

Lo L1 I " CEWE (R
&* (Ky+Kp—ka=Ka) =1 2 expli(ky+ko—Ks—Ky)} X As(K,E)Go(w—E)Viys(K)
Rn

(12 =%JdEA%(E)nf(—E)GO(w—E), (13)

accounts for momentum conservation up to a reciprocallS diagonal inm as shown in the previous section. Here
lattice vector. n¢(E) denotes the Fermi function. The properties of the me-

In the Appendix we present a detailed model calculatiorf@llic host are reflected in the energy-dependent hybridization
for a rare-earth impurity hybridized with tight-binding Strength
s-band states. The results show that the new contributions to 1
2o and, areO(1) andO(1/N), i.e., of the same order of AOE)= = Voo (KALKE)VE (K), (14)
magnitude with respect to Ni/as their NCA counterparts. It L 7
is interesting to note that the dominant contribution&/{®y . .
are nonlocal coming from the coupling of thetates to the Where the conduction-electron spectral functiég(k,E)
conduction electrons at the neighboring sites. =—(1m)ImG,(k,E) depends upon the wave vectdr

To summarize, the configurational self-energies displayednainly through the band energy; [see Eq.(8)]. The self-
in Fig. 1 provide a consistent extension of the well-knownenergy of the empty state is treated in the same manner so
self-consistent large-degeneracy expansion to the case of ithe corresponding self-energy expressions reduce to
teracting conduction electrons. Actual calculations, however,
require the fully renormalized conduction-electron propaga-
tor as well as the Coulomb vertex. Since this problem still
remains unsolved for the Hubbard md@eéf we have to
adopt approximate expressions derived either from phenom- 1
enological considerations or from partial resummation of se- SO(w)= ;f dEAR(E)N(—E)Go(w—E) (15)
lected classes of diagrams.

General qualitative results can be derived in limitingin close analogy to the case of noninteracting electf8ns.
cases. Prominent among them is the case where the Coulomb The self-consistency equationg15) were solved
vertex can be considered as a static quantity which includesumerically’* for various well-established approximations to
the limit of weakly interacting conduction electrons as well the spectral function of interacting conduction electrons such
as the Fermi-liquid case. as the Hubbard Il mod& and the Roth approximatioti.

28°’<w>=%2 deAa?><E>nf(E>Gm<w+E>,
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The general results can be summarized as follows: It is obinteraction induces vertex corrections which are of the same
vious that for(weakly) interacting conduction electrons the order in the inverse degeneracyNlas the preceding single
dominant effect of hybridization on thef# configurational  electron contributions. They are an important ingredient of
spectrum is a shife;(U) — e;=Re3 ,(¢;) of the resonance the theory and must be included in the discussfor.

energy which is renormalized by the Coulomb repulsidn The explicit calculation requires the full Coulomb vertex
and its influence on the charge fluctuations. The quantity of (Y) of the conduction electrons as input which must be
interest, however, is the empty-state self-energy and its variadetermined consistently with the conduction-electron self-
tion with energy in the vicinity ofe; which can be deduced energy. We evaluate the vertex corrections by analytic con-
from rather simple considerations assuming that the CEI dtinuation from the Matsubara frequencies inserting the spec-
not introduce anomalies into the conduction-electron spectrdtal representation

function on the energy scale defined by the characteristic

temperatureTx. The smooth variation with energy of Gg(lz,iwm)=f dE

>¢A,(K,E) implies that in the metallic state the basic ana-

lytic structure of3{*)(w) is not altered as compared to the for the conduction electron propagators and following the

case of noninteracting conduction electrons, the characterigules specified in Ref. 26. The projection onto the relevant

tic feature being a logarithmic variation in the vicinity of the physical subspace is performed implicitly in the summation

f energy € . The prefac'[or, however, is proportiona| to the over the Matsubara frequencies where we retain only the

interaction-renormalized density of states at the Fermi levegontributions from the poles in the conduction-electron

N(e;). The low-energy scal@, i.e., the distance between Propagators. The empty state self-ene¥d’(w) [see Figs.

the pole in the empty f-state Green’s function and ttié 4 1(a) and(c)] can be written as

peak, depends on the renormalized parameters in the usual 1

exponential way. Especially the above is clear for the case SW(w)==> f dEA(E, 0)n¢(E)G(w+E),

when the CEI leads to the spectral function of the quasipar- T 'm '

tical type,AU(IZ,E) = S(E— €g) with a new dispersiory . (17)
Would the single-electron contribution present the wholewhere the Coulomb contribution to the hybridization strength

story the CEI case would be relatively simple. The Coulombis given by

A,(K,E)

ion,—E

(16)

1 .1 -
AgEJ,g(E,w):wEZ A,KE)= X | dn(—E+Q)A, (ki,E-Q)Go(0+0) X X > | dE' Gp(w+E' +Q)
ko kyoq koop k'o" m’

X{As, (K2, E" + Q)N{(E' + Q)G (K, E') + A, (K E)N(E")G, (Ko, E' +Q)}

x[vm(,l(El)vm,”Z(Rz)v;(,(ﬁ)vm,,,/(lz')*r“i) , (K E—Q,KE" + Q;KE,K'E’) +c.c] 8% (Ky+ Ko— K—K').

(18)
|
Here and elsewherg(’) ., (1,2;3,4) is the Coulomb ver- " 1 v
tex corrections with indices 1,2 for in- and 3,4 for outgoing (@)= ;J' dEAmm(E @)ni(—E)Go(w—E)
particles. A similar expression is found for the hybridization (19
strength entering the occupied-f-states selfenerfses, Fig.
1(b), (0] with

1 .1 N
Aﬁ,ﬁ{,)n(E,w)=wEZ AKE) = X 2 | dO n(E-Q)A, (K, E-Q)Gp(0-0) > > | dE' Go(w—E' - Q)
ko

kyoq m’ kyop k'o'
X{A,, (Ko, E" +Q)n(—E' = Q)G (K" ,E") + A, /(K" E')Ne(—E")G, (ko ,E' + )}
X[Ving(K)\Vinr o7 (K )V (KD o (kTS (KEK'E'TKIE = Q,KoE + Q) +c.c16% (Ky +ko—K—K").

(20
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Note that the self-consistency equatidt$) generalized by A, (K,E)— S[E—e(K)]. (23)
including the vertex correction contributions from E¢&8) 7
and(20) in the integrands of Eq15) read The central focus of the present paper is the lowest pgle
of the emptyf state Green’s function,
So(w)= f dE[AL(E) +AS(E, ) Ing(E) wo— 3 we)— S (we) =0, (24)

and its variation with the Coulomb repulsith

XCm(w+E), The Coulomb repulsion contributes to the configurational
1 self-energies via the effective hybridization strengths Egs.
S ()= _f dE(AQE)+ AWM (E,w))ni(—E) (18) and (20) where the full Coulo_mb vertex is replaced by
™ ’ the bare local nonretarded repulsi@mee Fig. 1d)]
XGol@—E). @D Y (KE-Q,KE +QKEK'E")

U'(J' (J'U'

Equations(18) and(20) are general in the sense that they
do not assume any specific form of conduction-electrons

1
) . - —U5(10y) 6,0 (10y) g0 (25
spectral functions, vertex corrections, etc. In the case vihen Yoo myee
dependences in conduction-electron propagators enter as g} ihe case Oﬁ(U) and

Eq. (8) only via the conduction electrons dispersig(tk) Eq.

(18) may be casted in the form F(U) (KE,K'E";K,E—Q,k,E'+Q)
AN(E,0)= f do,dw,dwsd 1. -
(B w)= w10wydwzdwy —U E('Uy)oal(|0y)a'a2 (26)
X D V90,010,000, 0503, 0404) for the case of\(Y) , accordingly.
01020304 We elaborate on the self-energies expressions, @d5.

and (19), for the case of amwrbitally nondegenerate Ander-
son model. In this case the hybridisation matrix element re-

Here V) denotes the four-order hybridization coupling duces toV o (K) = 8y V(K) and the occup|edi-state propa-
given epr|C|tIy in Eq. (1) while F.(E,@ 0.0, gator does not depend upon timeindex>*
0,0,,0303,0,w,) IS readily obtained by using Eq8). Inserting Eqs(23), (25), and(26) into the vertex correc-
Equation (22) is simplified enormously in the case when tions Eqgs.(18) and(20), correspondingly, we obtain
conduction-electrons spectral functions may be approxi-
mated by the quasiparticle spectra. A similar couphrgy Af)unz(E,w)ZWUf dE,dE,dE ny(—E,)
may be introduced for tha (Y)(E,w). For a model calcula- :

XFm(E,0,0101,0205,0303,0,404). (22

tion of the four-order hybridization coupling’?) see the X Gy +E—Ey)
Appendix.
To summarize, we generalized the self-consistent large 2ReV*(E,,E,,E,E")
degeneracy expansion to the case of correlated conduction X ; {Gm(w+Ez)N¢(Ey)
electrons. The modifications due to the interaction enter via
the spectral function of the conduction electrons as well as an ~Gp(w+E"+E—E{)n{(E")} (27

effective renormalized hybridization vertex. The explicit

evaluation hence requires these quantities for a system &nd

interacting conduction electrons. In the subsequent sections,

we shall consider the influence of the Coulomb repuldibn A(U) ) (E,0)= Uf dE'dE3 dE4n¢(E3)G_(w+E3z—E)
on the effective hybridization strengths which depend upon mm

both E and w. In particular, we shall discuss the analytic 2ReVW(E,E’ Eq,EL)

structure of the self-energies for weakly interacting electrons % Rk {Go(w—E,)

and discuss the modifications in observable properties in the E;+E,—E—-FE’

low-temperature limifT—0. , ,
P Xny(—E4)—Go(w+E;—E—E")ny(—E")}.
IV. WEAK CONDUCTION-ELECTRON INTERACTION (28)

As a first example, we consider the limit of weakly inter- T0 derive these expressions we used @4), performed the
acting electrons, i.e., we assume the Coulomb repuldiom ~ o-Summations and the relevant integrations. _
be much smaller than the bandwidth To leading order in The hybridization matrix elementg; vary smoothly with
the small ratiod/D<1 we can neglect changes in the spec- |k| and, as a consequencén)(El,Ez E;,E,) is a smooth
tral function of the conduction electrons which we assume tdunction of the energieg€; i=1,...,4. It can beapproxi-
be given by mated by(see the Appendix
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A N(0)A\? A |2 contributions from the charge fluctuatiohg.(®), | mic(®)
(D(Eq,Ey,E3,Ey) ~\2.0/ (29 (further all paramerers and variables are in units of the band
half width D),
whereA is the hybridization width. In the following we shall
adopt a flat density of states extending over the energy range 21
(—D,D) and use for th&/{? the last expression in E€9). n
f dx f dy o

_w+€f+X+y
—wtetx+ty+1l

We start by discussing the configurational self-energiedoic(®)= XY (ot etx)’ (33
for T=0 where the Fermi function can be replaced by the
step functiom;(x) = #(—x) and we insert the free propaga- —wtx+1]\ 2
tor for the occupied-state Green’s functioh, -
—w+X
(o= | [ax 22 (g
0 (_U)+ Ef‘l‘X)
Gn(0) = o= (30
The self-energied {’ and= () can be expressed in terms of |03C(a,)_f dxf dyf dz2 In— "= xtytz+l [(—w+x+y)
three integraldy; andl,,;, 1=1,2,3, respectively, Xty+z
o 1 A2 X(—o+e+X)(—o+e+x+y+2)] L (35
%y (w)=—U —)
0 272 \D —w+X+y
n —
w— € (w)—f dXJ dy —wtx+y+1
X| ~lo(@)In|=———5|+ 1o @)+ loz(@) mic —w+X)(—o+e+x+y)’
31) (36)
and | —wt+etX 2
, (@) fld M=o+ 1+ e+x -
1 A » m2cl @)= X ;
Wip)=— ——ul=] | = 0 (—w+Xx)
S (w) 4W2U(D) ( Imi(w)In w—D}
X+y+z+1
I mac(w)= f dxf dyf dz2 In——— Y [(—w+X)
+|m2(w)+|m3(w) . (32) X+y+z

_ _ -1
Further we discuss the half filling cadeThis particular X(-otetxty)(-otx+y+2)] (39

choice of the band filling, however, does not affect the anaand from spin fluctuations integralgs; andl ,ss. The latter
lytic behavior in the energy range of interest, i.e., #r integrals are obtained from their charge fluctuations counter-
= €. parts by the substitutiom— w — wy. The charge fluctuations
We should like to emphasize that the integrigisand| i integrals have no singularities far<e;<0 and it is evident
in Egs. (31) and (32) depend upon the full empty state jyst from their inspection thalty;s,1,nc<0 and other inte-
Green’s functiorGy(w). This fact |mpI|es that the Coulomb  grals are positive.
contribution to the self-energy{”)(w), has to be deter- ~ The spin fluctuations integrals are of analogical properties
mined self-consistently from Eq31) in principle. In the  put for w<w,. The infinitesimal imaginary partsi0, in
present paper, we employ an iterative scheme and adoptdenominators of the integrands in E¢®3)—(38) are omitted
convenient parametrization of the spectral functidggw) because they do not contribute fer<e;. Note that forn;
and. Before presenting the results, let us briefly summarizec1 integralsl g , 10is have to be inserted in Eg31) being
our procedure. In the first step, we insert the free empty statgultiplied by n; or 1—n; correspondingly. The contributions
propagator, i.e.Aq(w)— §(w) into the right-hand side of from the spin fluctuations to the Coulomb renormalization of
Eq. (31). The resulting self-energy{”(w) yields a Green's  the occupied-state vertdy,s; are neglected. The Coulomb
function Gy(w) which has a Kondo-type pole atg.(U) contributions to the occupied-state self-energy vary rather
<wo(U=0)<e; with rather small weight £ n;,(U). The  smoothly withw in the vicinity of ¢; .
index ¢ denotes the fact that only the charge fluctuation con- They give rise to a rather small shift of the effectifre
tribution was included in the self- energS/OC)(w) In the level which can be estimated from the integrigls.(es) dis-
next iteration, we account for the low-energy peak in theplayed in Fig. 2 and the real part of the self- enefd#’(ef)
spectral function which we model by tw@ functions As we shall see below, we need not explicitly account for the

Ag(w)—[1—n;(U)]8] 0 — woc(U) ]+ Nt (U) 6(w). In-  shift in the determination of the many-body low-energy
cluding the low-energy spin fluctuations furthers shifts thescale.

threshold wo(U) to lower energy, i.e., we findwg(U) Let us now turn to the empty state self-energy. Following
<woe(U)<wo(U=0)<es. the iterative procedure we include the charge fluctuations in

Modeling the spectral functioA(w) by a combination the first step. The variation with energy of the integrals
of & functions allows us to decompose the integrals intolgic(w) is displayed in Fig. 3.
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f FIG. 4. Variation with energy of the real part of the full empty

FIG. 2. Contributions to the occupied-state self-energy from thestate self-energy RB{()(w) from NCA plus Coulomb correction to
Coulomb correction to the effective hybridization vertex: Occupied-the hybridization vertex foe;=—2/3, A=0.2, andu=0.1
s ksl Cotlomh repuiion among th conducion clecrons
the eg)yef ' g 9 For a first qualitative understanding of the variation with

' the Coulomb repulsion of the threshold enekgy one may

A detailed analysis shows that in the energy range of in\S€ the “on-shell” approximatiofi? Within thjs appri)xima-
terest the integrals vary approximately likéy(w)  tion, the empty state self-energyy(w)=(24/m)In[&~w]
~AqIn|o—¢g|+B; and 1g(w)~ (AsInjo—el+By)? where has the samew dependence as in the norllnteractlng
A;>A,. The resulting real part of the empfystate self- case but with renormalized parametersA=A[1
energy varies like- (In|e;— w|)? in the vicinity of the(renor- = (U/dm) Al (o) T ‘€= €~ (UA227?)[ | g @)
malized f Ieyel. As a consequence, the correspondmgﬂosc(wo)] With we=we(U=0) here. We see thak > A
Green's functionGy(w) always exhibits a pole aby(U) ~ . . . .
< wo(U=0)<e;. For not too small values of the hybridiza- "9 |€i|>]e. If the impurity valence is close to integer
tion width they are well described by the linear dependenc h|c_hllea_d to a ando regime the renormahzayon of the

ybridization coupling prevails the renormalization of the
f-level energy resulting in an effective enhancement of the
(39) Kondo energy scale. The simplified approach, however, can-
not be used for quantitative estimates. Unfortunately the
variation with U of the corresponding Kondo-type pole is
Jo wg systematically underestimated ( is overestimatedas can
é)e easily seen from the slopes

ReX () (wp)
&ReE(()O)(w)

wo(U)=wo(U=0)+

The change in the pole is seen to be proportional to th

weight of thef® configuration in the ground state times the ~ g,0nshell 5, 1
U U ﬁAz[lozc(wo)"‘ lozc(@0)]<0.

500

The results for the Kondo pole change only slightly upon
iteration. Inclusion of the spin-fluctuation contribution to the
Coulomb correction yields a rather small shift in the self-
energy which further stabilizes the Kondo ground state. This
can be seen from the calculated variation with energy of the
integrals|gisi(w). The full self-energy y(w) is shown in
Fig. 4.

The characteristic energy scale for low-energy excitations,
i.e., the Kondo temperature, is now calculated as the differ-
ence between the ground-state energy—the threshold
wg—and the energy of thelevel ¢;,

L | 1 | L | 1
2000 ke Tk=€;— wq. (40)

-0.68 -0.675 -0.67 -0.665 -0.66
® At this point we should like to add a comment concerning

FIG. 3. Charge fluctuation contribution to empty-state self-the choice ofe;. This quantity enters Eq40) explicitly as
energy integrald gi.(w) for e,=—2/3, A=0.2, U=0.1. For w well as implicitly throughwg. If we were to account for the
> ¢; the real part is shown. Coulomb renormalization we would have to do it consis-
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1.5 - T - T - T - T - on the thermodynamic properties of dilute magnetic alloys.
oo Charge fluctuations Of particular interest are the low-temperattirealencen;,
e—e Charge + spin fluctuations " the f-charge susceptibilityy., the f-spin susceptibilityys,
and the magnetic contribution to the linear coefficient of the
5 specific heaty. Previous calculations based on the symmet-
e ric Anderson model yield a rather strong depression with
&= i of thef magnetic susceptibility’ Data for theU dependence
5 of the f valencen; and thef charge susceptibility., how-
e ever, could not be obtained from these model studies since
& particle-hole symmetry pins; to unity. For a first quantita-
tive estimate we approximate the empty state self-enErgy
by
L0 01 0z 03 04 05 e Rt (42
Y keeping only the charge fluctuation contribution. This proce-

dure should be justified in the Kondo limit where the devia-
tion from integerf valence is small. The pole of the corre-

sponding Green’s functionn, can be interpreted as the

tently. This means we would have to consider the differencground state of the system. It yields the dominant low-
€+ 0e;— wo(€s+ deg) =€ — wo+ def(1—n¢). The correc- temperature contribution to the partition function, and the
tion from the Coulomb contribution is hence proportional tothermodynamic properties follow by straightforward

Se;(1—n;) which is rather small in our case because thedifferentiation®

shift ReX () is very small.

FIG. 5. Enhancement of the Kondo temperature dpr —2/3
andA=0.2. Charge fluctuations are dominant.

To conclude, we can calculatg Ty from Eq. (40) using _dwg
the the bard-level energy ak; . The results displayed in Fig. nf_a_ef' (43)
5 show the enhancement of the Kondo temperature due to
the Coulomb interaction among the conduction electrons. Py
Following up the iteration procedure the spectral function Xc=— 7 (44
€
Ao(w)z—ilm(w—zg")—zg%’)‘l (41) 2
m . " wq
is inserted in to Eq(31). It comes from calculations that X ,LITO gH? )’ 49
including the spin fluctuation peak at=wy(U) does not
significantly alter the empty state self-ene®§’ (w) in the 1 dwg(T)
Kondo regime. The spin fluctuations lower the energy of the 7:T|im0( T AT ) (46)

pole in the Green’'s functiols,(w) and therefore further

stabilize the Kondo ground state. This can be seen from Fig:inally we shall discuss the Sommerfeld-Wilson ragid.e.

5. The data suggest the charge fluctuation contribution ale ratio of the zero-temperature spin susceptibility and the
ready gives a rather good estimate of the Coulomb CoITectiogpecific-heat coefficient

to the low-temperature properties to leading order in the in-

verse degeneracy. -
The main feature of the above calculations is the factor- 33X
ization of the ‘NCA-bubble’ self-energig(w) in the right- R=——, (47)
hand side of Eq.(31) for the empty state self-energy M
3(V(w). This factorization is due to the possibility, as it was 37

shown for the orbital degeneracy case in the Appendix, to h 2y 5
neglect the momentum conservation in the integrals of thé/Neres; =i +1)(gus)".

V@ coupling, Eq.(11). Therefore results of this section are Our main interest is in the linear id corrections to the
also valid for the degenerate case if one replace in(&t experimental quantities. These contributions can be easily

A—(N—=1)A. So the renormalization of the parameters ofobtained from the linear ik corrections to the ground-state

the Anderson impurity Hamiltonian is self-consistent, in the€NErgy as given by Ec(39)_. Wg specify the interac.ti(.)n re-
spirit of the NCA. lated enhancement/reduction in terms of the coefficients

~n(0) (1)
V. THERMODYNAMIC PROPERTIES ni(U)=ni7(1+Uni™),

AT ZERO TEMPERATURE 0) (1)
Xc(U)=xc"(1+Uxc),

The results of the preceeding section allow us to assess 0) (1)
the influence of the conduction electron Coulomb repulsion Xs(U)=xs'(1+Uxs"),
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y1(U) =01+ U V), which which closely parallel their counterparts in the ab-
sence of an external magnetic fidlg(w). Keeping only the
R(U)=RO(1+UR®), (48)  charge fluctuation contribution yields

which depend upon thilevel positione; and the hybridiza- 1
tion width A, and, concomitantly, on the Kondo energy EBU)(w)=E —ZUAZ[—Im(w;a)
kg T of the reference system with noninteracting conduc- o Am
tion electrons.

The explicit evaluation requires the generalizatiorE@Ll‘)
to low but finite temperatures and to small external magnetic (50)
fields. The former is easily achieved by starting from Eg. . N 5
(27) and proceeding in close analogy to the zero-temperature Olc(w;o-):f dxf dy
case keeping the Fermi functions instead of the step func- o Jo T (-otxty)(-ot+etohtx)
tions. The derivatives with respect to temperature are calcu-

XIn|es—oh—w|+ 1o w;0)+ g5 w;0)],

lated from a Sommerfeld expansion. An external magnetic % In —ote—ohtxty ' (51)
field, on the other hand, lifts the the degeneracy offtlesel —wte—oh+x+y+1
according t3° - - -
loac(w;0) =l ga(w;0) | (w;— ) goe( @; ),
€i— €+ oh. (49 0% 0z 0%
. . . 1 _
The NCA contrlbut|0n20(w)=(A/7T)E,_,In[_sf+a_h—w] is |ozc(w;0)=J dx 1 n w+1+X |
directly read off. The Coulomb contribution is now ex- 0o (—otetoh+x) —w+X
pressed in terms of three spin-dependent intedgds; o) (52
|
x+y+z+1
| _ 1 1 1 X+y+z
°3°(“"U)_f dxf dyf a2 Y (—ot et ohix)(—ote—ohixiyta) 53
o Jo “Jo ( y)( f ( f y

At low temperatures, we find a finite temperature-is reduced by the conduction-electron interactions. The re-
independent Pauli-like spin susceptibility and a linear speduction determined here is comparable to the value obtained
cific heat indicating a nonmagnetic Fermi-liquid ground by Hofstetteret al® Its actual values, however, exhibit de-
state. The results are displayed in Figga)6and (b). The viations from universal scaling with the inverse Kondo tem-
coefficient y¢ of the linear specific heat is reduced by the perature Iy reflecting the importance of quasiparticle in-
conduction electron interactions reflecting the enhancemertéractions. This is to be expected from the explicit expression
of the Kondo temperature. The scalig~ 1/T¢ can be seen for the spin susceptibility calculated to leading order in the
from from Fig. Gc).* Similarly, the magnetic susceptibility conduction-electron interaction

7230 J3 V) 3.8
U ©=1 9, Ih? ST Jw . oh? (54
xs(U)/ xs EP) j (920(65 K B Iz 62280)
9 d
® o® h=0 @ 440 h=o oh? o9 =0

The interaction correction to the spin susceptibility con-Kondo scaling. The second term which results from the
sists of two terms where the first one is proportional to thevariation withh of the interaction corrections tends to further
change in the Kondo temperature. As its coefficient varieseduce the spin susceptibility. Within the spirit of Landau’s
proportional to T«(0)™? we expect this contribution to Fermi-liquid theory it gives rise to a positive Landau param-
dominate in the close to integer valence limit wha@ig0) eterF® .
becomes small. In this limit we should recover the typical The deviation from simple scaling is also reflected in the
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_ tribution to the specific heat varies linearly with temperature,
% -0.05 C¢~T, and that the magnetic susceptibilify is finite atT
=0. Even in the lowest order in the inverse degeneracy, the
low-temperature properties are not universal in the sense that
_0'18.15 020 5 0.25 their variation withU cannot be accounted for by properly

adjusting the Kondo temperature.

FIG. 6. Reduced thermodynamical coefficients from Eq. 48 as

functions of A for e;=—2/3 (diamonds$ and e;=—0.7 (circles. V1. DISCUSSION

(@: 975 () x5 ©: ¥IITY (@: R, We formulated here the NCA equations for an Anderson

i ) . . impurity coupled to interacting conduction electrons. Due to

Sommerfeld-Wilson ratio  which is reduced by the s CE| an energy-dependent effective hybridization vertex
conduction-electron Coulomb interactidsee Fig. &)].  apnears in the usual NCA equations. The case of weak CEI

Since was investigated in detail here including calculations of mea-

surable thermodynamical properties of a dilute magnetic im-

RM =y — D, (55  purities system. The results for a rigid, i.e., energy-

) ) _ independent vertex can serve as a guideline for the case of a
this quantity allows us to estimate the Landau parametefagnetic impurity embedded in a Fermi liquid where the
RW=—F. central quantity is the quasipartidienatrix>°

The deviations from the universal scaling wilfx are For weak electron-electron interaction the increas& of
most strongly evident in thevalencen; and in thef-charge  may be understood as resulting from the reduced probability
susceptibilityy. displayed in Fig. 7. Thévalence is slightly  of finding doubly occupied and empty lattice sites in the
decreased by the conduction-electron Coulomb repulsion asorrelated conduction electron systems. The increased num-
can be seen from the coefficient” displayed in Fig. 7).  ber of uncompensated conduction electron spins finally leads
This behavior reflects two competing effects, i@),the in-  to the enhancement of the effective hybridization coupling.
crease in characteristic energy as demonstrated in Fig. Bhe analogy between the Kondo spin model and the Ander-
which is partially compensated by) the enhancement of son impurity model in its local moment regime is not com-
the effective hybridization. plete in the case of correlated conduction electri@es also

The f-charge susceptibilityy. is affected more dramati- Ref. 16. In the former casdk will increase monotonously
cally as suggested by the coefficie(ﬁ) in Fig. 7(b). Inthe  with U because of the enhancement of the exchange interac-
Kondo regime, it is enhanced by the Coulomb interaction oftion. In the latter case the process is two staged, it involves
the conduction electrons. This enhancement, however, dehe formation of a local moment and its interaction with the
creases as we approach the mixed-valent regime. In this paenduction electrons. As we show here CEI influence ther-
rameter regime, however, the adopted approximatibharge  modynamical quantities in a nontrivial fashion: the specific
fluctuation contribution to self-energy onlyceases to be heat coefficienty(U) scales withTy(U) like in the nonin-
valid. teracting case while the magnetic susceptibijityU) does

To summarize, the low-temperature properties of a dilutenot. That may be understood because the latter quantity de-
magnetic alloy are significantly modified by the Coulomb pends not only on the low-energy excitations spectrum as the
repulsion of the conduction electrons. The local Fermi-liquidformer but also on the matrix element which is influenced by
properties are preserved in the sense that the magnetic coBEI.
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There is some controversy about the scaling WigfU) between the conduction states and the strongly correlated
of xs(U). In a somewhat artificial model of Ref. 15 the local orbital (,m) is given by the canonical structure con-

scaling ofxs(U) with Ty (U) is preserved for not too large stant Sy, (K) (Refs. 41 and 4Rof the atomic sphere ap-
values ofU. In Ref. 13 this question is not discussed eXp“C-proximation(ASA) to the linear muffin-tin orbita(LMTO)

itly but it may be judged from the relevant plots in Ref. 13 method. Herg and m refer to the azimuthal and magnetic
that their results do not show the usual scaling behavior ofuantum number of the impurity orbital under consideration.
Xs(U) but rather resemble our results. Let us neglect spin-orbit interaction for a first qualitative

The present results are based on the separation of energy. . .ssion. The hybridization matrix elemev, (IZ) does
scales. In so far as the vertex correction does not produce@ot depend upowr. It is given by i

new low-frequency scale or does not dominantely contribute S \ 41
to the empty statéempty f statg self-energy we anticipate Vma(lz):VO(flz)z eik.Rj[miYm( @j)]* ( |§ l) ,
Rj j

no qualitative changes when using more sophisticated ap-

proximations for the verticeEff%(l,Z;3,4)[Fig. 1(c)] appro- (A1)
riate for the strong correlation regime. We may expect that - . .

?or sufficiently Iarggu the virtual trgnsition from{hé Etate where the argumer of the_ spherical harmonlﬁfm de-

to the conduction state will cost too much energy inhibitingnOteS the 'umt Ve?“’f pointing from the |mpur|.ty to the

the T increase and leading eventually to the change in th&€arest-neighbor sitd?; . The overall length scal8is usu-

trend*?*® For a quantitative treatment of this problem there@lly chosen as the average atomic radius wiig¢e;) is an

are two visible approaches. One is to introduce summation gtnergy-dependent real prefactor. _

the infinite subseries of the ring, the ladder, and the particle- Starting from this form of the hybridization we shall first

particle type starting with the second-order self-enerfies. derive an expression for the second-order term which is sub-

The other way is to approximate the vertex correction bysequently compared to the fourth-order average.

response function&dynamic susceptibilities The other vis- The sum

ible development of the theory of the Kondo effect for elec- . .

tronic correlated system in general and hifgheuprates in % Vine(K)Ving (k") (A2)

particular is the use of the antiferromagnon dynamic

susceptibility® or other phenomenological models which de-is easily evaluated using the addition theorem for spherical

velop a short-range order with the virtual breaking of singlet-harmonics,

triplet degeneracy in the conduction-electron systerme ¢ . A 200+1 .

also Ref. 12 In addition, the influence of conduction- > [Yem(RDT*Yem(Rj) =———P«(R;-R;/)
electron interactions on the spectral properties of magnetic m=—¢ 4m

impurities and their dependence upon the doping are also N

interesting topics for future investigations. =—P€(|§j . ﬁej,), (A3)

In conclusion, the NCA theory of an Anderson impurity 4
embedded in a metal with correlated conduction electrons ighereN=2¢ + 1 is the degeneracy of the impurity level. For
developed and general NCA equations for the interacting, simple cubic lattice with
conduction electrons are obtained. It is shown that due to the IR
renormalization of the hybridization interaction the charac- Rj-Rj:=drr; ~ OR, -R;s (A4)
teristic energy is |ncreas_ed by the vv_eak interactions. Th(\aNe obtain forf =3
influence of weak conduction-electron interations on thermo-

dynamic properties of magnetic impurities is discussed. ” Wi R R
ynamic properti gnetic imptirines 15 discu 2 Vio(K)Vino (K)ol &) Vol e )N
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APPENDIX: FOURTH-ORDER TERM <2 |vm(,(IZ)|2> :|Vo(e)|2N<2 (1—cos 22-§j)>
m R
] €

€

We estimate the variation with the orbital degenerslayf
the vertex-corrected boson self-enef&jg. 1(c)] assuming a s o
simple band structure for the metallic host. The orbitally de- =|Vo(e)|>N2 2 sirfk- R
generate conduction bands are modeled by tight-binding R €
bands, the dispersion being determined by hopping between _ 2 :
nearest-neighbor sites on a simple cubic lattice. The mag- [Vo(e)l*2zN(sirrk). (A6)
netic impurity sitting at the origin is surrounded by six near-is proportional to the degenerabdl=2¢ +1 and the number
est neighbors. The wave-vector dependence of the couplingf nearest neighbbors with=6 for simple cubic lattice. The
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average over the constant energy surface which has to be ¢ R R
ngmerically evaluated is of qrder unity and varies ;moothly Z Im(,l(Rn ,El)lﬁws(Rn,Eg,)
with the energye. To summarize: The noncrossing diagrams m=-¢

involve the combination

=V0(E1)Vo(Es)92 <ei|21.(;ij+§n)>El

NA(e)=NN(e)|Vo(e)|?22(sirrk,).. (A7) Ry R
The contributions from the Coulomb-corrected vertex, on L ¢ - -
the other hand, require the fourth-order term from 8d): ><(e"k3'(RJ’+Rn)>E347rm:2_€ Yam(R) Yan(R; )
(4) L
% Vm (ElyEz,Eg,E4) :NVQ(El)Vo(Eg) 2 <e|kl.(Rj+Rn)>El
R;#0
=— > e —E)der,~Ep)d(er,~Ey) X ((e71kaR) —elkaRy)e(TlkaRu)) e (A12)
L= Ky kp kg Ky

The local termﬁj vanishes identically due to the symmetry
of the constant energy surface. For finRg, the averages
over the constant energy surfaces decay with increaéjng

o\ ” A due to the oscillatory behavior of the integrand. The leadin
x %; Vin'a,(K2) Vi, (Ka) 07 (kg ko —Ka—ka), contribution to the Iz;/ttice sum involves thg nearest-neighbogr

(A8) term, e.g.,lin:(l,0,0). In the subsequent summation over

the nearest neighboR; , the nonvanishing contributions are
%iven byR;j=(—-1,0,0) andR;=(1,0,0) yielding

X 8(€,~Ea) 20 Ving, (k)i (K3)
m,m’

wheres* (K, +k,— ks —k,) is the Laue function, Eq12). If

we were to neglect momentum conservation this expressio

would vanish identically. o .
Inserting the explicit expressions for the hybridization {1—cos Kye (1-cos 2kX)E2—4<sm2kx>E1(sm2kx)E2.

matrix elements Eq(Al) reduces to a sum of local contri- (A13)

ion . —_—
butions, The leading contribution to the fourth-order tekff) hence

factorizes according to
2 VI(’T?)(ElIE21E31E4)
m
1
] L N 2 V(ELEz Eq Ey)
=2 2 oy (R En) v, (Ro, E2) 1y (Re Es) m
R, mm’ 4
5 =zN] | N(E;)Vo(E,)2(sirky)e . Al4
XI;rU4(anE4)- (A9) z rljl (Er)Vo(Ep)2(si ><>Er (A14)

where the averages The average &irtk,)g is of order unity as mentioned above.

2 > kR If we neglect the dependence of the density of statesvgnd
— ik-Rp
Imo(Rn,B) = N(E){Vmg (k)€™ Tr)e ALD) on the energyE we find for the averaged value of
are given by VA(E, ,E,,E3,Ey),

Z - (A15)

- . ~ 2
(R E)=N(E)V(E)(—)VAT 2, Yin(R)) V<4>:E(M) _
Rj
iK-R; Ak R,
X et e, (AL1) In conclusion, we showed that in the leading approxima-
In the next step, we sum over the magnetic quantum numbet#on of the hybridization matrix element expansion, Eal),
mandm’, the ratioV/[ AN(e;)/m]?=N/z, i.e., of the order of unity.
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