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Kondo effect in a metal with correlated conduction electrons: Diagrammatic approach
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We study the low-temperature behavior of a magnetic impurity which is weakly coupled to correlated
conduction electrons. To account for conduction electron interactions a diagrammatic approach in the frame of
the 1/N expansion is developed. The method allows us to study various consequences of the conduction
electron correlations for the ground state and the low-energy excitations. We analyze the characteristic energy
scale in the limit of weak conduction electron interactions. Results are reported for static properties~impurity
valence, charge susceptibility, magnetic susceptibility, and specific heat! in the low-temperature limit.
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I. INTRODUCTION

Metals with strongly correlated electrons exhibit high
complex phase diagrams at low temperatures reflecting a
variety of possible ground states. Prominent examples are
well-known normal Fermi-liquid state as well as magne
cally ordered, superconducting, and insulating phases w
may coexist or compete within the same material. A key t
quantitative understanding of the unusual phases is there
a quantitative description of electronic correlations and th
observable consequences.

The present paper focuses on~dilute! magnetic alloys
with correlated conduction electrons, i.e., we consider h
metals with correlated conduction electrons containing
small amount of magnetic ions. We investigate the ques
how conduction-electron correlations affect the formation
a nonmagnetic Fermi-liquid ground state commonly refer
to as the Kondo effect. The latter has been known to be
source of many anomalous properties in magnetic all
with noninteracting conduction electrons. In addition to
relevance in magnetic alloys the Kondo effect is becom
important in the study of interacting mesoscopic syste
Theoretical techniques which provide a detailed quantit
understanding of the physical properties of these systems
hence highly desirable. To leading order in the low impur
concentration the electronic properties of dilute magnetic
loys can be calculated in two steps. First one has to de
mine the electronic properties of the host which will not
significantly affected by the addition of a small amount
impurities. In the second step the contribution of the m
netic ions has to be calculated.

For a metal with uncorrelated conduction electrons
first part of the problem is solved by standard methods
electronic structure calculation. The theory for the seco
step is well established.1–5 The theoretical techniques avai
able include exact solutions for equilibrium properties
well as approximate methods for dynamic properties. Of p
ticular importance in this context is the diagrammatic a
proach based upon the large-degeneracy expansion.
scheme can be generalized to the treat nonequilibrium p
erties which makes it a very flexible method.

The central goal of the present paper to extend the la
degeneracy expansion for the normal-state properties o
lute magnetic alloys to the case of host metals with co
0163-1829/2003/68~3!/035114~14!/$20.00 68 0351
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lated conduction electrons. In this case, the first step, i.e.,
treatment of the host, is a highly nontrivial problem whic
has not yet been solved. Partial answers, however, can
found in limiting cases. Although the diagrammatic approa
developed in the present paper is valid for a general cond
tion electron interaction~CEI!, we focus on systems wher
the ground state and the low-energy excitations of the in
acting conduction electrons smoothly evolve from those
the noninteracting reference system. This is in marked c
trast to the specific behavior encountered in one-dimensio
systems. Theoretical studies which have been performed
various models including both impurity spins6–8 and Ander-
son impurities9–11 coupled to Luttinger liquids predict rich
phase diagrams. Adopting well-established models for
electronic properties of the host, we calculate the evolut
of the characteristic energyTK of the low-lying magnetic
excitations with the conduction-electron repulsion. In t
case of uncorrelated conduction electrons the latter is usu
much smaller than the typical energy scale of the conduc
electrons set by the band widthD and depends exponentiall
on the inverse coupling between the localized electron
the extended conduction states. This fact is a direct con
quence of the Fermi-liquid ground state realized in norm
metals. The diagrammatic approach allows us to explic
and quantitatively study how the different consequences
electronic correlations~mass renormalization, effective inte
actions, etc.! affect the Kondo effect.

The main scope of this paper is to analyze how CEI
fluence the contribution of magnetic impurities to meas
able properties in general and its scaling properties in p
ticular. We calculate thermodynamic properties~impurity
valence, charge susceptibiliy, magnetic susceptibility a
specific heat! in the low-temperature limit to leading order i
the inverse degeneracy.

Recent calculations for a magnetic impurity in a me
with interacting conduction electrons12,13 adopted either the
DMFT approach14 or the NRG but for a very specia
model.15 The model calculations mentioned above pred
nontrivial variation with the Coulomb repulsion of the cha
acteristic temperatureTK .

Generally, the modifications introduced by th
conduction-electron interactions~CEI! into the low-energy
©2003 The American Physical Society14-1
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excitations arise from the subtle interplay of three differe
types of influences. First, the density of conduction state
the Fermi level is changed. Second, the probability for v
tual transitions between impurity and conduction-states
reduced by the on-site Coulomb interactionU. Third, the
effective spin coupling between the conduction and impu
electrons is enhanced by the increased number of uncom
sated spins in the correlated conduction electron syst
Considering these facts, it is not surprising that model st
ies accounting only for selected aspects arrive at rather
troversial conclusions concerning the Kondo effect in me
with correlated electrons.16–18The Kondo spin model gener
alized to the case of the interacting conduction-electron h
was discussed in Ref. 16 and it was shown there that t
particle Green’s functions of host electrons~vertex correc-
tions! are an essential component of the theory which le
to an enhancement of theexponentialKondo scale for a
weakCEI. This enhancement may be traced to the third ty
of effects caused by the CEI. The ground-state energy of
Anderson impurity forweak CEI was considered in the
frame of 1/N expansion.17 The same enhancement of th
exponential Kondo scale, formally due to the renormali
tion increase of the hybridization widthD, appears in this
work.17 In contrast to the above-mentioned findings a d
crease ofTK due to the CEI in the Hubbard model was r
ported in the paper.18 This decrease is a consequence of
change in the single electron properties of conduction e
trons caused by the interactionU ~including the change o
the chemical potential as the function ofU). The vertex
corrections influence which renormalizes both parameter
the Anderson impurity model,19 e f andD are not considered
in Ref. 18. At this point, we should like to mention that th
role of the Coulomb interaction between the magnetic im
rity electron and conduction electronsU f c was broadly dis-
cussed. We do not discuss here the Coulomb interaction
tween localized and conduction electrons which
considered in its various aspects in Ref. 20–24. It was sh
that its effect atU f c!U f may be fully absorbed by the reno
malization of two parameters of the Anderson impur
Hamiltonian: the impurity electron energy levele f and the
hybridization widthD. In the following we assume that th
on-site impurity electron Coulomb repulsionU f is very
large,U f→`, and we do not take into account explicitly th
U f c interaction.

The paper is organized as follows: In Sec. II we beg
with a discussion of the Hamiltonian for an Anderson imp
rity embedded in a metallic host with correlated conduct
electrons and the extension of the standard self-consis
large-degeneracy approximation to the case of CEI. Both
interaction-induced changes in the single-electron spec
function of interacting conduction electrons and their ver
function are included. In Sec. III expressions for configu
tional self-energies together with the NCA integral equatio
are formulated for a general case of CEI. The expressions
evaluated in Sec. IV for a model where the Coulomb ver
function is only weakly frequency-dependent. Thermod
namic properties at zero temperature are presented in Se
and Section VI contains discussions and summary. Techn
details related to the explicit evaluation of diagrams and d
03511
t
at
-
re

y
n-

m.
-
n-
ls

st
o-

s

e
e

-

-

e
c-

of

-

e-

n

-
n
nt
e
al
x
-
s
re
x
-
. V
al
-

cussions of the fourth-order hybridization coupling are in t
appendices. Some of the results appeared in the short un
lished preprint.19

II. MODEL AND CALCULATIONAL SCHEME

We adopt a generalized Anderson model for a magn
impurity coupled to interacting conduction electrons. The
sulting Hamiltonian reads

H5Hband1Himp1Hmix , ~1!

where the three components describe the conduction e
trons, thef states, and a hybridization or mixing interactio
between the two,

Hband5(
kWs

ekWckWs
†

ckWs1HCEI ,

Himp5(
m

e fnf m1
U f

2 (
mÞm8

nf mnf m8 ,

Hmix5 (
kW ,m,s

@Vms~kW ! f m
† ckWs1H.c.#. ~2!

The creation~annihilation! operators for conduction elec
trons with momentumkW , band energyekW , and spins are
denoted byckWs

† (ckWs). Throughout this paper, all energies a
measured relative to the Fermi level. The conduction sta
are assumed to be orbitally nondegenerate. Their interac
is accounted for by

HCEI5
1

2L (
kW ,kW8,qW s,s8

U~kW1qW ,kW82qW ;kW8,kW !

3ckW1qW s
†

ckW82qW s8
†

ckW8s8ckWs , ~3!

whereL is the number of lattice sites. In the present pap
we approximateHCEI by a Hubbard-type interaction,

U~kW1qW ,kW82qW ;kW8,kW !→U, ~4!

whereU denotes the local Coulomb repulsion between t
conduction electrons at the same lattice site. Another imp
tant example which shall be studied in a forthcoming pa
are Fermi-liquid systems where the CEI renormalizes
quasiparticle dispersionekW and also introduces a ‘residua
interaction among them.

The f m
† ( f m) are the creation~annihilation! operators forf

electrons at the impurity site. They are characterized by
total angular momentumJ and a quantum numberm which
denotes the different statesm51, . . . ,N within the N-fold
degenerate ground-state multiplet with orbital energye f .
The Coulomb repulsionU f between twof electrons at the
impurity site is assumed to be much larger than the ot
energy scales and therefore we may letU f→`. For simplic-
ity we do not include here excited multiplet states, igno
crystal electric field splittings, and assume that the impu
has only one electron~hole! in its magnetic configuration
We account for the large Coulomb interaction among thf
4-2
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electronsU f→` by restricting the Hilbert space, i.e., b
removing all states in which thef occupancy exceeds unity

The mixing between the two subsystems is convenie
characterized by the ‘‘hybridization width,’’25

D~E!5p
1

L

1

N (
kWsm

uVms~kW !u2d~E2ekW !. ~5!

We are mainly interested in the regimeue f u@Dm(0) which is
usually referred as ‘‘local moment regime.’’

The central goal is to calculate the impurity contributi
to the low-energy properties of the dilute magnetic alloy. T
latter are given in terms of the Green’s functions for t
empty f state u0& (4 f 0 configuration! and the occupiedf
statesum& (4 f 1 configuration! denoted byG0(z) andGm(z),
respectively,

G0~z!5
1

z2S0~z!
; Gm~z!5

1

z2e f2Sm~z!
. ~6!

They are coupled through the configurational self-energ
S0(z) and andSm(z) for which we derive expressions pro
ceeding in close analogy to the case of noninteracting c
duction electrons.

The electronic properties of the metallic host are not
fected by the presence of a small amount of magnetic im
rities. To leading order in the small concentration they
characterized by the one- and two-particle Green’s func
describing the single-particle excitations and the two-part
correlations of the interacting conduction electrons, resp
tively.

We assume that the single-electron Green’s function

Gs~kW ,z!5
1

z2ekW2Ss~kW ,z!
~7!

as well as the conduction-electron self-energySs(kW ,z) do
not explicitly depend upon the wave vectorkW but vary withkW
mainly through the bare band energy, i.e.,

Gs~kW ,z!5Gs~ekW ,z!; Ss~kW ,z!5Ss~ekW ,z!. ~8!

This condition is always satisfied in the DMFT approach14

where the dominant many-body effects are included in a
cal self-energy. As a consequence, also the generaln-particle
Green’s functions of the conduction-electron system dep
upon the wave vectors through the corresponding band e
gies.

The configurational self-energiesS0 and Sm are derived
by means of a perturbation expansion in terms of Gree
functions for the f configurations, one- and two-particl
Green’s functions for the interacting conduction electrons
well as~bare! hybridization vertices. The rules for construc
ing and evaluating the empty- and occupied-state s
energies in the restricted Hilbert space of the infini
U-Anderson model are summarized in Ref. 26. Typical c
tributions to thef-configurational self-energies are display
in Fig. 1. These include the noncrossing diagrams Figs.~a!
and ~b! where the conduction-electron interactions en
through the fully renormalized conduction-electron propa
03511
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tor. Figures 1~c! and~d! describe vertex corrections. We sha
show below that under the assumptions Eq.~8! the infinite-
order summation of these diagrams based on the s
consistent approximation for the empty- and occupied-f -state
propagators can be considered as the leading-order cont
tion in the inverse degeneracy 1/N. The remaining part of the
present section is devoted to the justification of this conj
ture.

We start by briefly summarizing the basic facts on whi
the large-degeneracy expansion is based in the case of
interacting conduction electrons. The classification sche
exploits the fact that the bare conduction-electron propag
1/(z2ekW) depends upon the wave vectorkW through the bare
band energy. As a consequence, the summations over int
kW vectors can be decomposed into integrals over the~bare!
band energiese and averages over constant energy surfa
according to

1

L (
kW

•••→E de
1

L (
kW

d~e2ekW !•••5E deN~e!^•••&e .

~9!

Here N(e) is the density of bare band energies. T
kW -averageŝ •••&e which contain only combinations of th
hybridization matrix elements,

^Vms* ~kW !Vm8s~kW !&e5
1

N~e! H 1

L (
kWs

Vms* ~kW !Vm8s~kW !d~e2ekW !J
;Vm

2 ~e!dmm8 , ~10!

provide them-selection rule27 which simplifies the structure
of the self-energy contributions and ultimately allows for
classification with respect to the small parameter 1/N.

FIG. 1. Self-consistentf configuration self-energies and contr
butions to the vertex. The solid, dashed, and wavy lines repre
the dressed propagators for conduction electrons, occupied,
empty f states. The open circle denotes the bare hybridizatioV
while open and filled squares are the bare on-site Coulomb re
sion and the two-particle vertexGs,s̄

(U) (1,2;3,4), respectively.~a!
Empty state self-energyS0( inm). ~b! Occupied state self-energ
Ss( ivn). ~c! Contribution to the effective hybridization vertex.~d!
Lowest-order correction.
4-3
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From the preceding discussion it is apparent that the
sumption Eq.~8! guarantees the validity of the 1/N classifi-
cation scheme for all diagrams where the conducti
electron properties enter via the single-particle Gree
function. Within this subclass the contributions displayed
Figs. 1~a! and~b! ~without vertex corrections! are the leading
ones with respect to the small parameter 1/N.

To assess the validity of the 1/N expansion is more subtl
for the diagrams containing the two-particle Green’s fun
tion. Here the simplifying assumptions Eq.~8! imply ~see
Sec. III! that the hybridization matrix elements enter d
grams in Figs. 1~a! and~c! and~b! and~c! in the combination

V(4)~E1s1 ,E2s2 ;E3s3 ,E4s4!

5
1

L3 (
kW1 ,kW2 ,kW3 ,kW4

d@E12e~kW1!#d@E22e~kW2!#

3d@E32e~kW3!#d@E42e~kW4!#

3 (
m,m8

Vms1
~kW1!Vm8s2

~kW2!Vms3
* ~kW3!Vm8s4

* ~kW4!

3d* ~kW31kW42kW12kW2!. ~11!

where the Laue function

d* ~kW11kW22kW32kW4!5
1

L (
RW n

exp$ i ~kW11kW22kW32kW4!%

~12!

accounts for momentum conservation up to a recipro
lattice vector.

In the Appendix we present a detailed model calculat
for a rare-earth impurity hybridized with tight-bindin
s-band states. The results show that the new contribution
S0 andSm areO(1) andO(1/N), i.e., of the same order o
magnitude with respect to 1/N as their NCA counterparts. I
is interesting to note that the dominant contributions toV(4)

are nonlocal coming from the coupling of thef states to the
conduction electrons at the neighboring sites.

To summarize, the configurational self-energies displa
in Fig. 1 provide a consistent extension of the well-know
self-consistent large-degeneracy expansion to the case o
teracting conduction electrons. Actual calculations, howe
require the fully renormalized conduction-electron propa
tor as well as the Coulomb vertex. Since this problem s
remains unsolved for the Hubbard model28,29 we have to
adopt approximate expressions derived either from phen
enological considerations or from partial resummation of
lected classes of diagrams.

General qualitative results can be derived in limiti
cases. Prominent among them is the case where the Cou
vertex can be considered as a static quantity which inclu
the limit of weakly interacting conduction electrons as w
as the Fermi-liquid case.
03511
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III. CONFIGURATIONAL SELF-ENERGIES

For noninteracting conduction electrons, the se
consistent solution30,26 has three characteristic features: T
occupied f-spectrum shifts to peak at a valueē f.e f
1ReSm(e f), the dominant contribution to the level shi
coming from the continuum of charge fluctuations. The re
nance in the occupiedf-spectral function acquires a sma
width. Finally, the empty state spectral function exhibits
pronounced structure atv05 ē f2TK which develops with
decreasing temperature and which sets the scale for the
temperature behavior. This feature is the direct manifesta
of the Kondo effect reflecting the admixture off 0 contribu-
tions to the ground state and the low-energy excitations.

In this paper, we study the influence of the CEI on th
nonperturbative feature. Of particular interest are the posi
of the resonance energyv0 relative to the energyē f of the
4 f 1 configuration as well as the weight of the resonance

Let us first neglect vertex corrections and focus on
modifications introduced by the CEI into the single-partic
excitations of the conduction-electron system. They are
counted for by inserting the full conduction electron prop
gator for interacting electronsGs(kW ,ivn) from Eq. ~7! into
the configurational self-energies Figs. 1~a! and ~b!.

The self-energy of the occupiedf level,

Sm
(0)~v!5

1

L (
kWs

Vms~kW !E dE nf~2E!

3As~kW ,E!G0~v2E!Vms* ~kW !

5
1

pE dE Dm
0 ~E!nf~2E!G0~v2E!, ~13!

is diagonal inm as shown in the previous section. He
nf(E) denotes the Fermi function. The properties of the m
tallic host are reflected in the energy-dependent hybridiza
strength

Dm
(0)~E!5

1

L (
kWs

Vms~kW !As~kW ,E!Vms* ~kW !, ~14!

where the conduction-electron spectral functionAs(kW ,E)
52(1/p)Im Gs(kW ,E) depends upon the wave vectorkW
mainly through the band energyekW @see Eq.~8!#. The self-
energy of the empty state is treated in the same manne
the corresponding self-energy expressions reduce to

S0
(0)~v!5

1

p (
m

E dE Dm
(0)~E!nf~E!Gm~v1E!,

Sm
(0)~v!5

1

pE dE Dm
(0)~E!nf~2E!G0~v2E! ~15!

in close analogy to the case of noninteracting electrons.30

The self-consistency equations~15! were solved
numerically31 for various well-established approximations
the spectral function of interacting conduction electrons s
as the Hubbard III model32 and the Roth approximation.33
4-4
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The general results can be summarized as follows: It is
vious that for~weakly! interacting conduction electrons th
dominant effect of hybridization on the 4f 1 configurational
spectrum is a shifte f(U)2e f.ReSm(e f) of the resonance
energy which is renormalized by the Coulomb repulsionU
and its influence on the charge fluctuations. The quantity
interest, however, is the empty-state self-energy and its va
tion with energy in the vicinity ofe f which can be deduced
from rather simple considerations assuming that the CE
not introduce anomalies into the conduction-electron spec
function on the energy scale defined by the character
temperatureTK . The smooth variation with energy o
(kWAs(kW ,E) implies that in the metallic state the basic an
lytic structure ofS0

(0)(v) is not altered as compared to th
case of noninteracting conduction electrons, the charact
tic feature being a logarithmic variation in the vicinity of th
f energye f . The prefactor, however, is proportional to th
interaction-renormalized density of states at the Fermi le
N(e f). The low-energy scaleTK , i.e., the distance betwee
the pole in the empty f-state Green’s function and the 4f 1

peak, depends on the renormalized parameters in the u
exponential way. Especially the above is clear for the c
when the CEI leads to the spectral function of the quasip
tical type,As(kW ,E) 5 d(E2 ēkW) with a new dispersionēkW .

Would the single-electron contribution present the wh
story the CEI case would be relatively simple. The Coulo
-

ng
on
b-

f
a-

o
al
ic

-

is-

el

ual
e
r-

e
b

interaction induces vertex corrections which are of the sa
order in the inverse degeneracy 1/N as the preceding single
electron contributions. They are an important ingredient
the theory and must be included in the discussion.16,19

The explicit calculation requires the full Coulomb verte
G (U) of the conduction electrons as input which must
determined consistently with the conduction-electron s
energy. We evaluate the vertex corrections by analytic c
tinuation from the Matsubara frequencies inserting the sp
tral representation

Gs~kW ,ivm!5E dE
As~kW ,E!

ivm2E
~16!

for the conduction electron propagators and following t
rules specified in Ref. 26. The projection onto the relev
physical subspace is performed implicitly in the summat
over the Matsubara frequencies where we retain only
contributions from the poles in the conduction-electr
propagators. The empty state self-energyS0

(U)(v) @see Figs.
1~a! and ~c!# can be written as

S0
(U)~v!5

1

p (
m

E dE D0,m
(U)~E,v!nf~E!Gm~v1E!,

~17!

where the Coulomb contribution to the hybridization streng
is given by
D0,m
(U)~E,v!5p

1

L(
kWs

As~kW ,E!
1

L2 (
kW1s1

E dV,nf~2E1V!As1
~kW1 ,E2V!G0~v1V! (

kW2s2

(
kW8s8

(
m8

E dE8 Gm8~v1E81V!

3$As2
~kW2 ,E81V!nf~E81V!Gs8~kW8,E8!1As8~kW8,E8!nf~E8!Gs2

~kW2 ,E81V!%

3@Vms1
~kW1!Vm8s2

~kW2!Vms* ~kW !Vm8s8~kW8!* Gs1s2 ;ss8
(U)

~kW1E2V,kW2E81V;kWE,kW8E8!1c.c.#d* ~kW11kW22kW2kW8!.

~18!
Here and elsewhereGs1s2 ;s3s4

(U) (1,2;3,4) is the Coulomb ver

tex corrections with indices 1,2 for in- and 3,4 for outgoi
particles. A similar expression is found for the hybridizati
strength entering the occupied-f-states selfenergies,@see Fig.
1~b!, ~c!#
Sm
(U)~v!5

1

pE dE Dm,m
(U) ~E,v!nf~2E!G0~v2E!

~19!

with
Dm,m
(U) ~E,v!5p

1

L (
kWs

As~kW ,E!
1

L2 (
kW1s1

(
m8

E dV nf~E2V!As1
~kW1 ,E2V!Gm8~v2V! (

kW2s2

(
kW8s8

E dE8 G0~v2E82V!

3$As2
~kW2 ,E81V!nf~2E82V!Gs8~kW8,E8!1As8~kW8,E8!nf~2E8!Gs2

~kW2 ,E81V!%

3@Vms~kW !Vm8s8~kW8!Vms1
* ~kW1!Vm8s2

* ~kW2!Gss8;s1s2

(U)
~kWE,kW8E8;kW1E2V,kW2E81V!1c.c.#d* ~kW11kW22kW2kW8!.

~20!
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Note that the self-consistency equations~15! generalized by
including the vertex correction contributions from Eqs.~18!
and ~20! in the integrands of Eq.~15! read

S0~v!5
1

p (
m

E dE @Dm
(0)~E!1D0,m

(U)~E,v!#nf~E!

3Gm~v1E!,

Sm~v!5
1

pE dE ~Dm
(0)~E!1Dm,m

(U) ~E,v!!nf~2E!

3G0~v2E!. ~21!

Equations~18! and~20! are general in the sense that th
do not assume any specific form of conduction-electr
spectral functions, vertex corrections, etc. In the case whekW
dependences in conduction-electron propagators enter
Eq. ~8! only via the conduction electrons dispersione(kW ) Eq.
~18! may be casted in the form

D0,m
(U)~E,v!5E dv1dv2dv3dv4

3 (
s1s2s3s4

Vm
(4)~s1v1 ,s2v2 ,s3v3 ,s4v4!

3Fm~E,v,s1v1 ,s2v2 ,s3v3 ,s4v4!. ~22!

Here Vm
(4) denotes the four-order hybridization couplin

given explicitly in Eq. ~11! while Fm(E,v,s1v1 ,
s2v2 ,s3v3 ,s4v4) is readily obtained by using Eq.~8!.
Equation ~22! is simplified enormously in the case whe
conduction-electrons spectral functions may be appro
mated by the quasiparticle spectra. A similar couplingVm

(4)

may be introduced for theDmm
(U)(E,v). For a model calcula-

tion of the four-order hybridization couplingVm
(4) see the

Appendix.
To summarize, we generalized the self-consistent la

degeneracy expansion to the case of correlated condu
electrons. The modifications due to the interaction enter
the spectral function of the conduction electrons as well as
effective renormalized hybridization vertex. The explic
evaluation hence requires these quantities for a system
interacting conduction electrons. In the subsequent secti
we shall consider the influence of the Coulomb repulsionU
on the effective hybridization strengths which depend up
both E and v. In particular, we shall discuss the analyt
structure of the self-energies for weakly interacting electr
and discuss the modifications in observable properties in
low-temperature limitT→0.

IV. WEAK CONDUCTION-ELECTRON INTERACTION

As a first example, we consider the limit of weakly inte
acting electrons, i.e., we assume the Coulomb repulsionU to
be much smaller than the bandwidthD. To leading order in
the small ratioU/D!1 we can neglect changes in the spe
tral function of the conduction electrons which we assume
be given by
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As~kW ,E!→d@E2e~kW !#. ~23!

The central focus of the present paper is the lowest polev0
of the empty-f state Green’s function,

v02S0
(0)~v0!2S0

(U)~v0!50, ~24!

and its variation with the Coulomb repulsionU.
The Coulomb repulsion contributes to the configuratio

self-energies via the effective hybridization strengths E
~18! and ~20! where the full Coulomb vertex is replaced b
the bare local nonretarded repulsion@see Fig. 1~d!#

Gs1s2 ;ss8
(U)

~kW1E2V,kW2E81V;kWE,kW8E8!

→U
1

2
~ isy!s1s2

~ isy!ss8 ~25!

for the case ofD0,m
(U) and

Gss8;s1s2

(U)
~kWE,kW8E8;kW1E2V,kW2E81V!

→U
1

2
~ isy!ss1

~ isy!s8s2
~26!

for the case ofDm,m
(U) , accordingly.

We elaborate on the self-energies expressions, Eqs.~17!
and ~19!, for the case of anorbitally nondegenerate Ander
son model. In this case the hybridisation matrix element
duces toVms(kW )5dmsV(kW ) and the occupiedf-state propa-
gator does not depend upon them-index.34

Inserting Eqs.~23!, ~25!, and~26! into the vertex correc-
tions Eqs.~18! and ~20!, correspondingly, we obtain

D0,m
(U)~E,v!5pUE dE1dE2dE8nf~2E1!

3G0~v1E2E1!

3
2ReV(4)~E1 ,E2 ,E,E8!

E11E22E2E8
$Gm~v1E2!nf~E2!

2Gm~v1E81E2E1!nf~E8!% ~27!

and

Dm,m
(U) ~E,v!5pUE dE8dE3 dE4nf~E3!G2m~v1E32E!

3
2ReV(4)~E,E8,E3 ,E4!

E31E42E2E8
$G0~v2E4!

3nf~2E4!2G0~v1E32E2E8!nf~2E8!%.

~28!

To derive these expressions we used Eq.~11!, performed the
s-summations and the relevant integrations.

The hybridization matrix elementsVkW vary smoothly with
ukW u, and, as a consequence,Vm

(4)(E1 ,E2 ,E3 ,E4) is a smooth
function of the energiesEi i 51, . . . ,4. It can beapproxi-
mated by~see the Appendix!
4-6
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Vm
(4)~E1 ,E2 ,E3 ,E4!→S N~0!D

p D 2

→S D

2pD D 2

, ~29!

whereD is the hybridization width. In the following we sha
adopt a flat density of states extending over the energy ra
(2D,D) and use for theVm

(4) the last expression in Eq.~29!.
We start by discussing the configurational self-energ

for T50 where the Fermi function can be replaced by
step functionnf(x)5u(2x) and we insert the free propaga
tor for the occupied-state Green’s function,35

Gm~v!→ 1

v2e f
. ~30!

The self-energiesS0
(U) andSm

(U) can be expressed in terms
three integralsI 0i and I mi , 151,2,3, respectively,

S0
(U)~v!5

1

2p2
US D

D D 2

3S 2I 01~v!lnF v2e f

v2e f2DG1I 02~v!1I 03~v! D
~31!

and

Sm
(U)~v!52

1

4p2
US D

D D 2S 2I m1~v!lnF v

v2DG
1I m2~v!1I m3~v! D . ~32!

Further we discuss the half filling case.37 This particular
choice of the band filling, however, does not affect the a
lytic behavior in the energy range of interest, i.e., forv
.e f .

We should like to emphasize that the integralsI 0i andI mi
in Eqs. ~31! and ~32! depend upon the full empty stat
Green’s functionG0(v). This fact implies that the Coulomb
contribution to the self-energy,S0

(U)(v), has to be deter-
mined self-consistently from Eq.~31! in principle. In the
present paper, we employ an iterative scheme and ado
convenient parametrization of the spectral functionsA0(v)
and. Before presenting the results, let us briefly summa
our procedure. In the first step, we insert the free empty s
propagator, i.e.,A0(v)→d(v) into the right-hand side o
Eq. ~31!. The resulting self-energyS0

(U)(v) yields a Green’s
function G0(v) which has a Kondo-type pole atv0c(U)
,v0(U50),e f with rather small weight 12nf c(U). The
indexc denotes the fact that only the charge fluctuation c
tribution was included in the self-energyS0c

(U)(v). In the
next iteration, we account for the low-energy peak in t
spectral function which we model by twod functions
A0(v)→@12nf c(U)#d@v2v0c(U)#1nf c(U)d(v). In-
cluding the low-energy spin fluctuations furthers shifts t
threshold v0(U) to lower energy, i.e., we findv0(U)
,v0c(U),v0(U50),e f .

Modeling the spectral functionA0(v) by a combination
of d functions allows us to decompose the integrals i
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contributions from the charge fluctuationsI 0ic(v), I mic(v)
~further all paramerers and variables are in units of the b
half width D),

I 01c~v!5E
0

1

dxE
0

1

dy

2 lnF 2v1e f1x1y

2v1e f1x1y11G
~2v1x1y!~2v1e f1x!

, ~33!

I 02c~v!5S E
0

1

dx

lnF2v1x11

2v1x G
~2v1e f1x!

D 2

, ~34!

I 03c~v!5E
0

1

dxE
0

1

dyE
0

1

dz2 lnFx1y1z11

x1y1z G@~2v1x1y!

3~2v1e f1x!~2v1e f1x1y1z!#21, ~35!

I m1c~v!5E
0

1

dxE
0

1

dy

2 lnF 2v1x1y

2v1x1y11G
~2v1x!~2v1e f1x1y!

,

~36!

I m2c~v!5S E
0

1

dx

lnF 2v1e f1x

2v111e f1xG
~2v1x!

D 2

, ~37!

I m3c~v!5E
0

1

dxE
0

1

dyE
0

1

dz2 lnFx1y1z11

x1y1z G@~2v1x!

3~2v1e f1x1y!~2v1x1y1z!#21, ~38!

and from spin fluctuations integralsI 0is f andI mis f . The latter
integrals are obtained from their charge fluctuations coun
parts by the substitutionv→v2v0. The charge fluctuations
integrals have no singularities forv,e f,0 and it is evident
just from their inspection thatI 01c ,I m1c,0 and other inte-
grals are positive.

The spin fluctuations integrals are of analogical proper
but for v,v0. The infinitesimal imaginary parts1 i01 in
denominators of the integrands in Eqs.~33!–~38! are omitted
because they do not contribute forv,e f . Note that fornf
,1 integralsI 0ic , I 0is have to be inserted in Eq.~31! being
multiplied bynf or 12nf correspondingly. The contribution
from the spin fluctuations to the Coulomb renormalization
the occupied-state vertexI mis f are neglected. The Coulom
contributions to the occupied-state self-energy vary rat
smoothly withv in the vicinity of e f .

They give rise to a rather small shift of the effectivef
level which can be estimated from the integralsI mic(e f) dis-
played in Fig. 2 and the real part of the self-energySm

(U)(e f).
As we shall see below, we need not explicitly account for
shift in the determination of the many-body low-ener
scale.

Let us now turn to the empty state self-energy. Followi
the iterative procedure we include the charge fluctuation
the first step. The variation with energy of the integra
I 0ic(v) is displayed in Fig. 3.
4-7
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A detailed analysis shows that in the energy range of
terest the integrals vary approximately likeI 01c(v)
;A1lnuv2efu1B1 and I 02c(v);(A2lnuv2efu1B2)

2 where
A1.A2. The resulting real part of the emptyf state self-
energy varies like2(lnuef2vu)2 in the vicinity of the~renor-
malized! f level. As a consequence, the correspond
Green’s functionG0(v) always exhibits a pole atv0(U)
,v0(U50),e f . For not too small values of the hybridiza
tion width they are well described by the linear depende

v0~U !.v0~U50!1
ReS0c

(U)~v0!

12F ]ReS0
(0)~v!

]v
G

v0

. ~39!

The change in the pole is seen to be proportional to
weight of thef 0 configuration in the ground state times th

FIG. 2. Contributions to the occupied-state self-energy from
Coulomb correction to the effective hybridization vertex: Occupie
state integralsI mic(e f) evaluated for various values of thef-level
energye f . Here and in all further figures solid lines are guides
the eye.

FIG. 3. Charge fluctuation contribution to empty-state se
energy integralsI 0ic(v) for e f522/3, D50.2, U50.1. For v
.e f the real part is shown.
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Coulomb repulsion among the conduction electrons.
For a first qualitative understanding of the variation w

the Coulomb repulsion of the threshold energyv0 one may
use the ‘‘on-shell’’ approximation.19 Within this approxima-
tion, the empty state self-energyS0(v)5(2D̃/p)ln@ẽf2v#
has the samev dependence as in the noninteracti
case but with renormalized parameters:D̃5D@1
2(U/4p)DI 01c(v0)#; ẽ f5e f2(UD2/2p2)@ I 02c(v0)
1I 03c(v0)# with v05v0(U50) here. We see thatD̃.D

and u ẽ f u.ue f u. If the impurity valence is close to intege
which lead to a Kondo regime the renormalization of t
hybridization coupling prevails the renormalization of th
f-level energy resulting in an effective enhancement of
Kondo energy scale. The simplified approach, however, c
not be used for quantitative estimates. Unfortunately
variation with U of the corresponding Kondo-type pole
systematically underestimated (TK is overestimated! as can
be easily seen from the slopes

]v0
OnShell

]U
2

]v0

]U
52

1

2p2
D2@ I 02c~v0!1I 03c~v0!#,0.

The results for the Kondo pole change only slightly up
iteration. Inclusion of the spin-fluctuation contribution to th
Coulomb correction yields a rather small shift in the se
energy which further stabilizes the Kondo ground state. T
can be seen from the calculated variation with energy of
integralsI 0is f(v). The full self-energyS0(v) is shown in
Fig. 4.

The characteristic energy scale for low-energy excitatio
i.e., the Kondo temperature, is now calculated as the dif
ence between the ground-state energy—the thres
v0—and the energy of thef level e f ,

kBTK5e f2v0 . ~40!

At this point we should like to add a comment concerni
the choice ofe f . This quantity enters Eq.~40! explicitly as
well as implicitly throughv0. If we were to account for the
Coulomb renormalization we would have to do it cons

e
-

-

FIG. 4. Variation with energy of the real part of the full emp
state self-energy ReS0

(U)(v) from NCA plus Coulomb correction to
the hybridization vertex fore f522/3, D50.2, andU50.1
4-8
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KONDO EFFECT IN A METAL WITH CORRELATED . . . PHYSICAL REVIEW B68, 035114 ~2003!
tently. This means we would have to consider the differe
e f1de f2v0(e f1de f).e f2v01de f(12nf). The correc-
tion from the Coulomb contribution is hence proportional
de f(12nf) which is rather small in our case because
shift ReSm(v) is very small.

To conclude, we can calculatekBTK from Eq. ~40! using
the the baref-level energy ate f . The results displayed in Fig
5 show the enhancement of the Kondo temperature du
the Coulomb interaction among the conduction electrons

Following up the iteration procedure the spectral funct

A0~v!52
1

p
Im~v2S0

(0)2S0c
(U)!21 ~41!

is inserted in to Eq.~31!. It comes from calculations tha
including the spin fluctuation peak atv5v0(U) does not
significantly alter the empty state self-energyS0

(U)(v) in the
Kondo regime. The spin fluctuations lower the energy of
pole in the Green’s functionG0(v) and therefore further
stabilize the Kondo ground state. This can be seen from
5. The data suggest the charge fluctuation contribution
ready gives a rather good estimate of the Coulomb correc
to the low-temperature properties to leading order in the
verse degeneracy.

The main feature of the above calculations is the fac
ization of the ‘NCA-bubble’ self-energyS0

0(v) in the right-
hand side of Eq.~31! for the empty state self-energ
S0

(U)(v). This factorization is due to the possibility, as it w
shown for the orbital degeneracy case in the Appendix
neglect the momentum conservation in the integrals of
V(4) coupling, Eq.~11!. Therefore results of this section a
also valid for the degenerate case if one replace in Eq.~31!
D→(N21)D. So the renormalization of the parameters
the Anderson impurity Hamiltonian is self-consistent, in t
spirit of the NCA.

V. THERMODYNAMIC PROPERTIES
AT ZERO TEMPERATURE

The results of the preceeding section allow us to ass
the influence of the conduction electron Coulomb repuls

FIG. 5. Enhancement of the Kondo temperature fore f522/3
andD50.2. Charge fluctuations are dominant.
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on the thermodynamic properties of dilute magnetic allo
Of particular interest are the low-temperaturef valencenf ,
the f-charge susceptibilityxc , the f-spin susceptibilityxs ,
and the magnetic contribution to the linear coefficient of t
specific heatg. Previous calculations based on the symm
ric Anderson model yield a rather strong depression withU
of the f magnetic susceptibility.13 Data for theU dependence
of the f valencenf and thef charge susceptibilityxc , how-
ever, could not be obtained from these model studies s
particle-hole symmetry pinsnf to unity. For a first quantita-
tive estimate we approximate the empty state self-energyS0
by

S0
(0)→S0

(0)1S0c
(U) ~42!

keeping only the charge fluctuation contribution. This proc
dure should be justified in the Kondo limit where the dev
tion from integerf valence is small. The pole of the corre
sponding Green’s functionv0 can be interpreted as th
ground state of the system. It yields the dominant lo
temperature contribution to the partition function, and t
thermodynamic properties follow by straightforwa
differentiation,5

nf5
]v0

]e f
, ~43!

xc52
]2v0

]e f
2

, ~44!

x5 lim
H→0

S 2
]2v0

]H2 D , ~45!

g5 lim
T→0

S 2
1

T

]v0~T!

]T D . ~46!

Finally, we shall discuss the Sommerfeld-Wilson ratioR, i.e.,
the ratio of the zero-temperature spin susceptibility and
specific-heat coefficient,

R5

p2

3
x

m j
2

3
g

, ~47!

wherem j
25 j ( j 11)(gmB)2.

Our main interest is in the linear inU corrections to the
experimental quantities. These contributions can be ea
obtained from the linear inU corrections to the ground-stat
energy as given by Eq.~39!. We specify the interaction re
lated enhancement/reduction in terms of the coefficients

nf~U !.nf
(0)~11Unf

(1)!,

xc~U !.xc
(0)~11Uxc

(1)!,

xs~U !.xs
(0)~11Uxs

(1)!,
4-9
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g f~U !.g f
(0)~11Ug f

(1)!,

R~U !.R(0)~11UR(1)!, ~48!

which depend upon thef-level positione f and the hybridiza-
tion width D, and, concomitantly, on the Kondo energ
kBTK

(0) of the reference system with noninteracting cond
tion electrons.

The explicit evaluation requires the generalization ofS0
(U)

to low but finite temperatures and to small external magn
fields. The former is easily achieved by starting from E
~27! and proceeding in close analogy to the zero-tempera
case keeping the Fermi functions instead of the step fu
tions. The derivatives with respect to temperature are ca
lated from a Sommerfeld expansion. An external magn
field, on the other hand, lifts the the degeneracy of thef level
according to36

e f→e f1sh. ~49!

The NCA contributionS0(v)5(D/p)(sln@ef1sh2v# is
directly read off. The Coulomb contribution is now e
pressed in terms of three spin-dependent integralsI 0i(v;s)
e
pe
nd

he
e

n
th
ie

a
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which which closely parallel their counterparts in the a
sence of an external magnetic fieldI 0i(v). Keeping only the
charge fluctuation contribution yields

S0
(U)~v!5(

s

1

4p2
UD2@2I 01~v;s!

3 lnue f2sh2vu1I 02~v;s!1I 03~v;s!#,

~50!

I 01c~v;s!5E
0

1

dxE
0

1

dy
2

~2v1x1y!~2v1e f1sh1x!

3 lnF 2v1e f2sh1x1y

2v1e f2sh1x1y11G , ~51!

I 02c~v;s!5 Ĩ 02c~v;s! Ĩ ~v;2s! Ĩ 02c~v;s!,

I 02c~v;s!5E
0

1

dx
1

~2v1e f1sh1x!
lnF2v111x

2v1x G ,
~52!
I 03c~v;s!5E
0

1

dxE
0

1

dyE
0

1

dz

2 lnFx1y1z11

x1y1z G
~2v1x1y!~2v1e f1sh1x!~2v1e f2sh1x1y1z!

. ~53!
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At low temperatures, we find a finite temperatur
independent Pauli-like spin susceptibility and a linear s
cific heat indicating a nonmagnetic Fermi-liquid grou
state. The results are displayed in Figs. 6~a! and ~b!. The
coefficient g f of the linear specific heat is reduced by t
conduction electron interactions reflecting the enhancem
of the Kondo temperature. The scalingg f;1/TK can be seen
from from Fig. 6~c!.38 Similarly, the magnetic susceptibility
-
-

nt

is reduced by the conduction-electron interactions. The
duction determined here is comparable to the value obta
by Hofstetteret al.13 Its actual values, however, exhibit de
viations from universal scaling with the inverse Kondo te
perature 1/TK reflecting the importance of quasiparticle in
teractions. This is to be expected from the explicit express
for the spin susceptibility calculated to leading order in t
conduction-electron interaction
xs~U !/xs
(0).12F ]

]v
lnS 2

]2S0
(0)

]h2

12
]S0

(0)

]v

D G
v

0
(0) ,h50

dTK1S F ]S0
(U)

]v

12
]S0

(0)

]v

G
v

0
(0) ,h50

1F ]2S0
(U)

]h2

]2S0
(0)

]h2

G
v

0
(0) ,h50

D . ~54!
he
er
’s

m-

he
The interaction correction to the spin susceptibility co
sists of two terms where the first one is proportional to
change in the Kondo temperature. As its coefficient var
proportional to TK(0)22 we expect this contribution to
dominate in the close to integer valence limit whereTK(0)
becomes small. In this limit we should recover the typic
-
e
s

l

Kondo scaling. The second term which results from t
variation withh of the interaction corrections tends to furth
reduce the spin susceptibility. Within the spirit of Landau
Fermi-liquid theory it gives rise to a positive Landau para
eterF0

(a) .
The deviation from simple scaling is also reflected in t
4-10



e

et

n

g.
f

-

o
d
p

ut
b
id
c

re,

the
that

ly

on
to

tex
CEI
ea-
im-
y-
of a

he

ility
he
um-
ads
g.
er-
-

rac-
ves
he
er-

ific

de-
the
by

a
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Sommerfeld-Wilson ratio which is reduced by th
conduction-electron Coulomb interaction@see Fig. 6~d!#.
Since

R(1).xs
(1)2g f

(1) , ~55!

this quantity allows us to estimate the Landau param
R(1).2F0

(a) .
The deviations from the universal scaling withTK are

most strongly evident in thef valencenf and in thef-charge
susceptibilityxc displayed in Fig. 7. Thef valence is slightly
decreased by the conduction-electron Coulomb repulsio
can be seen from the coefficientnf

(1) displayed in Fig. 7~a!.
This behavior reflects two competing effects, i.e.,~a! the in-
crease in characteristic energy as demonstrated in Fi
which is partially compensated by~b! the enhancement o
the effective hybridization.

The f-charge susceptibilityxc is affected more dramati
cally as suggested by the coefficientxc

(1) in Fig. 7~b!. In the
Kondo regime, it is enhanced by the Coulomb interaction
the conduction electrons. This enhancement, however,
creases as we approach the mixed-valent regime. In this
rameter regime, however, the adopted approximation~charge
fluctuation contribution to self-energy only! ceases to be
valid.

To summarize, the low-temperature properties of a dil
magnetic alloy are significantly modified by the Coulom
repulsion of the conduction electrons. The local Fermi-liqu
properties are preserved in the sense that the magnetic

FIG. 6. Reduced thermodynamical coefficients from Eq. 48
functions of D for e f522/3 ~diamonds! and e f520.7 ~circles!.
~a!: g f

(1) ; ~b!: xs
(1) ; ~c!: g f

(1)/TK
(1) ; ~d!: R(1).
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tribution to the specific heat varies linearly with temperatu
Cf;T, and that the magnetic susceptibilityxs is finite atT
50. Even in the lowest order in the inverse degeneracy,
low-temperature properties are not universal in the sense
their variation withU cannot be accounted for by proper
adjusting the Kondo temperature.

VI. DISCUSSION

We formulated here the NCA equations for an Anders
impurity coupled to interacting conduction electrons. Due
the CEI an energy-dependent effective hybridization ver
appears in the usual NCA equations. The case of weak
was investigated in detail here including calculations of m
surable thermodynamical properties of a dilute magnetic
purities system. The results for a rigid, i.e., energ
independent vertex can serve as a guideline for the case
magnetic impurity embedded in a Fermi liquid where t
central quantity is the quasiparticlet matrix.39

For weak electron-electron interaction the increase ofTK
may be understood as resulting from the reduced probab
of finding doubly occupied and empty lattice sites in t
correlated conduction electron systems. The increased n
ber of uncompensated conduction electron spins finally le
to the enhancement of the effective hybridization couplin
The analogy between the Kondo spin model and the And
son impurity model in its local moment regime is not com
plete in the case of correlated conduction electrons~see also
Ref. 16!. In the former caseTK will increase monotonously
with U because of the enhancement of the exchange inte
tion. In the latter case the process is two staged, it invol
the formation of a local moment and its interaction with t
conduction electrons. As we show here CEI influence th
modynamical quantities in a nontrivial fashion: the spec
heat coefficientg(U) scales withTK(U) like in the nonin-
teracting case while the magnetic susceptibilityxs(U) does
not. That may be understood because the latter quantity
pends not only on the low-energy excitations spectrum as
former but also on the matrix element which is influenced
CEI.

s

FIG. 7. Reduced thermodynamical coefficients from Eq.~48! as
functions of D for e f522/3 ~diamonds! and e f520.7 ~circles!.
~a!: nf

(1) ; ~b!: xc
(1).
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There is some controversy about the scaling withTK(U)
of xs(U). In a somewhat artificial model of Ref. 15 th
scaling ofxs(U) with TK(U) is preserved for not too larg
values ofU. In Ref. 13 this question is not discussed expl
itly but it may be judged from the relevant plots in Ref. 1
that their results do not show the usual scaling behavio
xs(U) but rather resemble our results.

The present results are based on the separation of en
scales. In so far as the vertex correction does not produ
new low-frequency scale or does not dominantely contrib
to the empty state~empty f state! self-energy we anticipate
no qualitative changes when using more sophisticated
proximations for the verticesGs,s̄

(U) (1,2;3,4)@Fig. 1~c!# appro-
priate for the strong correlation regime. We may expect t
for sufficiently largeU the virtual transition from thef state
to the conduction state will cost too much energy inhibiti
the TK increase and leading eventually to the change in
trend.12,13 For a quantitative treatment of this problem the
are two visible approaches. One is to introduce summatio
the infinite subseries of the ring, the ladder, and the parti
particle type starting with the second-order self-energie31

The other way is to approximate the vertex correction
response functions~dynamic susceptibilities!. The other vis-
ible development of the theory of the Kondo effect for ele
tronic correlated system in general and high-Tc cuprates in
particular is the use of the antiferromagnon dynam
susceptibility40 or other phenomenological models which d
velop a short-range order with the virtual breaking of singl
triplet degeneracy in the conduction-electron system~see
also Ref. 12!. In addition, the influence of conduction
electron interactions on the spectral properties of magn
impurities and their dependence upon the doping are
interesting topics for future investigations.

In conclusion, the NCA theory of an Anderson impuri
embedded in a metal with correlated conduction electron
developed and general NCA equations for the interac
conduction electrons are obtained. It is shown that due to
renormalization of the hybridization interaction the chara
teristic energy is increased by the weak interactions. T
influence of weak conduction-electron interations on therm
dynamic properties of magnetic impurities is discussed.
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APPENDIX: FOURTH-ORDER TERM

We estimate the variation with the orbital degeneracyN of
the vertex-corrected boson self-energy@Fig. 1~c!# assuming a
simple band structure for the metallic host. The orbitally d
generate conduction bands are modeled by tight-bindins
bands, the dispersion being determined by hopping betw
nearest-neighbor sites on a simple cubic lattice. The m
netic impurity sitting at the origin is surrounded by six nea
est neighbors. The wave-vector dependence of the coup
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between the conduction states and the strongly correl
local orbital (j ,m) is given by the canonical structure con
stantS00;jm(kW ) ~Refs. 41 and 42! of the atomic sphere ap
proximation~ASA! to the linear muffin-tin orbital~LMTO!
method. Herej and m refer to the azimuthal and magnet
quantum number of the impurity orbital under consideratio

Let us neglect spin-orbit interaction for a first qualitativ
discussion. The hybridization matrix elementVms(kW ) does
not depend upons. It is given by

Vms~kW !5V0~ekW !(
RW j

eikW•RW j@A4p iY,m~R̂j !#* S S

uRW j u
D ,11

,

~A1!

where the argumentR̂j of the spherical harmonicY,m de-
notes the unit vector pointing from the impurity to th
nearest-neighbor sitesRW j . The overall length scaleS is usu-
ally chosen as the average atomic radius whileV0(ekW) is an
energy-dependent real prefactor.

Starting from this form of the hybridization we shall firs
derive an expression for the second-order term which is s
sequently compared to the fourth-order average.

The sum

(
m

Vms* ~kW !Vms~kW8! ~A2!

is easily evaluated using the addition theorem for spher
harmonics,

(
m52,

,

@Y,m~R̂j !#* Y,m~R̂j 8!5
2,11

4p
P,~R̂j•R̂j 8!

5
N

4p
P,~R̂j•R̂j 8!, ~A3!

whereN52,11 is the degeneracy of the impurity level. Fo
a simple cubic lattice with

R̂j•R̂j 85d R̂j R̂j 8
2d R̂j ,2R̂j 8

~A4!

we obtain for,53

(
m

Vms* ~kW !Vms~kW8!V0~ekW !V0~ekW8!N

3(
RW j

~e2 ikW•RW jeikW8•RW j2e2 ikW•RW je2 ikW8•RW j !. ~A5!

As expected, the second-order term entering the noncros
diagram

K (
m

uVms~kW !u2L
e

5uV0~e!u2NK (
RW j

~12cos 2kW•RW j !L
e

5uV0~e!u2N2K (
RW j

sin2kW•RW j L
e

5uV0~e!u22zN^sin2kx&e ~A6!

is proportional to the degeneracyN52,11 and the number
of nearest neighbbors withz56 for simple cubic lattice. The
4-12
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average over the constant energy surface which has t
numerically evaluated is of order unity and varies smoot
with the energye. To summarize: The noncrossing diagram
involve the combination

ND~e!5NN~e!uV0~e!u22z^sin2kx&e . ~A7!

The contributions from the Coulomb-corrected vertex,
the other hand, require the fourth-order term from Eq.~11!:

(
m

Vm
(4)~E1 ,E2 ,E3 ,E4!

5
1

L3 (
kW1 ,kW2 ,kW3 ,kW4

d~ekW1
2E1!d~ekW2

2E2!d~ekW3
2E3!

3d~ekW4
2E4! (

m,m8
Vms1

~kW1!Vms3
* ~kW3!

3(
m8

Vm8s2
~kW2!Vm8s4

* ~kW4!d* ~kW11kW22kW32kW4!,

~A8!

whered* (kW11kW22kW32kW4) is the Laue function, Eq.~12!. If
we were to neglect momentum conservation this expres
would vanish identically.

Inserting the explicit expressions for the hybridizati
matrix elements Eq.~A1! reduces to a sum of local contr
butions,

(
m

Vm
(4)~E1 ,E2 ,E3 ,E4!

5(
RW n

(
m,m8

I ms1
~RW n ,E1!I m8s2

~RW n ,E2!I ms3
* ~RW n ,E3!

3I m8s4
* ~RW n ,E4!, ~A9!

where the averages

I ms~RW n ,E!5N~E!^Vms~kW !eikW•RW n&E ~A10!

are given by

I ms~RW n ,E!5N~E!V0~E!~2 i !A4p(
RW j

Y3m* ~R̂j !

3^eikW•RW jeikW•RW n&E . ~A11!

In the next step, we sum over the magnetic quantum num
m andm8,

*Present address: Institute for Bioinformatics, German Natio
Center for Health and Environment, Ingolsta¨dter Landstrae 1,
D-85764 Neuherbeg, Germany.
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4

N~Er !V0~Er !2^sin2kx&Er
. ~A14!

The average 2̂sin2kx&E is of order unity as mentioned above
If we neglect the dependence of the density of states andV0
on the energyE we find for the averaged value o
V(4)(E1 ,E2 ,E3 ,E4),

V(4)5
N

z S N~e f !D

p D 2

. ~A15!

In conclusion, we showed that in the leading approxim
tion of the hybridization matrix element expansion, Eq.~A1!,
the ratioV(4)/@DN(e f)/p#2.N/z, i.e., of the order of unity.

l edited by F. Seitz, D. Turnbull, and H. Ehrenreich~Academic
Press, New York, 1988!, Vol. 41, p. 1.

4G. Zwicknagl, Adv. Phys.41, 203 ~1992!.
5A. C. Hewson,The Kondo Problem to Heavy Fermions~Cam-

bridge University Press, Cambridge, England, 1993!.
6D. H. Lee and J. Toner, Phys. Rev. Lett.69, 3378~1992!.
7A. Furusaki and N. Nagaosa, Phys. Rev. Lett.72, 892 ~1994!.
4-13



rg

ev

er
.

on-
rity

y

t

-

e

rti-
of

M. NEEF, S. TORNOW, V. ZEVIN, AND G. ZWICKNAGL PHYSICAL REVIEW B68, 035114 ~2003!
8A. Schiller and K. Ingersent, Phys. Rev. Lett.51, 4676~1995!.
9Y. M. Li, Phys. Rev. B52, R6979~1995!.

10P. Phillips and N. Sandler, Phys. Rev. B53, 468 ~1996!.
11A. Schiller and K. Ingersent, Europhys. Lett.39, 645 ~1997!.
12B. Davidovich and V. Zevin, Phys. Rev. B57, 7773~1998!.
13W. Hofstetter, R. Bulla, and D. Vollhardt, Phys. Rev. Lett.84,

4417 ~2000!.
14W. K. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenbe

Rev. Mod. Phys.68, 13 ~1996!.
15R. Takayama, O. Sakai, J. Phys. Soc. Jpn.67, 1844~1998!.
16G. Khaliullin and P. Fulde, Phys. Rev. B52, 9514~1995!.
17T. Schork, Phys. Rev. B53, 5626~1996!.
18K. Itai and P. Fazekas, Phys. Rev. B54, R752~1996!.
19S. Tornow, V. Zevin, and G. Zwicknagl, cond-mat/9701137~un-

published!.
20T. A. Costi and A. Newns, Physica C185-189, 2649~1991!.
21R. Takayama and O. Sakai, Physica B186-188, 915 ~1993!.
22I. E. Perakis, C. M. Varma, and A. E. Ruckenstein, Phys. R

Lett. 70, 3467~1993!.
23T. Giamarchi, Phys. Rev. Lett.70, 3967~1993!.
24J. K. A. Bauer, Z. Phys. B: Condens. Matter96, 383 ~1995!.
25The nondegenerate case may evolve from the orbital degen

case as the consequence of the crystal electric-field splitting
26N. E. Bickers, Rev. Mod. Phys.59, 845 ~1987!.
27A. Bringer and H. Lustfeld, Z. Phys. B28, 213 ~1977!.
28P. Fulde,Electron Correlations in Molecules and Solids, 3rd ed.

~Springer Verlag, Berlin, 1995!, and references therein.
29P. Fazekas,Electron Correlations and Magnetism~World Scien-

tific, Singapore, 1999!, and references therein.
30P. Coleman, Phys. Rev. B29, 3035~1984!.
31S. Tornow, Ph.D. thesis, U Stuttgart, 1997.
03511
,

.

ate

32J. Hubbard, Proc. R. Soc. London, Ser. A281, 401 ~1964!.
33L. Roth, Phys. Rev.184, 451 ~1969!.
34Both the degenerate (N.2) and the nondegenerate cases are c

sidered. In the case of the nondegenerate Anderson impu
index m consides with the electron-spin indexs and the cou-

pling V(kW ) does not depend~in a paramagnetic host and b
neglecting the spin-orbit interaction! on the spin orientation. So
in the nondegenerate Anderson impurity case the subscripm

coincides withs andVms(kW )→V(kW ).
35As it is known from the NCA method, Eq.~30! is the first step in

the NCA iteration procedure~see Ref. 26! which already cap-
tures right the exponent of the Kondo energetic scale.

36One has have in mind that Eq.~49! is strictly speaking applied for
the bubble of Fig. 1~a!. For Fig. 1~c! s changes sign ‘‘across’’
interactionU.

37The generalization on other filling is trivial~Ref. 17!. Our integral
functions I i8(v), i 51, 2, 3, are very close to analogical inte
grals in Ref. 17,2I A

(1) , 2(I B
(1) and I D

(1)), correspondingly.
38In Fig. 6~c! we useTK

(1) which is defined in close analogy to th
thermodynamical parameters asTK(U).TK

(0)(11UTK
(1)). The

value ofTK
(1) is obtained in a straightforward way from Eqs.~40!

and ~39!. Then from the scalingg fTK(U)5const followsg f
(1)

52TK
(1) .

39The influence of residual interactions of Fermi liquid quasipa
cles on the Kondo effect may be interesting for the case
nearly ferromagnetic metals~unpublished!.

40A. Chubukov, D. Pines, and J. Schmalian, cond-mat/0201140~un-
published!, and references therein.

41O. K. Andersen, Phys. Rev. B12, 3060~1975!.
42H. Skriver, The LMTO Method, Springer Series in Solid State

Sciences, Vol. 41 ~Springer-Verlag, Berlin, 1984!.
4-14


