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Localized defect states in two-dimensional photonic crystal slab waveguides:
A simple model based upon symmetry analysis
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Localized defect regions within two-dimensional photonic crystal slab waveguides are an attractive method
of forming high-quality factor optical resonators with wavelength-scale modal volumes. Using simple symme-
try bases, and the tools of group theory, we develop an approximate description of the resonant modes of
different photonic crystal defect cavities. Comparison to numerical simulations as well as photoluminescence
measurements of actual microfabricated devices demonstrates the power of this modest symmetry analysis in
describing the localized defect states within photonic crystals.
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[. INTRODUCTION fect cavities in hexagonal and square host photonic lattices.
Section 1l then presents the results of FDTD simulations,
Planar two-dimensional2D) photonic crystal(PC) slab  confirming the results of the approximate group-theory
waveguide(WG) structure$™3 have been the focus of much analysis while providing detailed properties of the defect
research in recent years since they are a promising architeg?ode resonances beyond the scope of the simple symmetry
ture for future generations of high-density lightwave circuits.analysis. Experimental data in the form of spectroscopic
In-plane  waveguided;”  coupled-resonator-waveguide Probing through photoluminescen¢BL) measurements of
system€-20 and add-drop devic&s™ are amongst the de- fabricated devices are also given, completing a study of these
vices in which recent progress has been made. Another ar&igVices that began at the very fundamental level of examin-

of particular interest is the development of wavelength-scald9 their symmetries.
mode volume, high-qualityhigh-Q) factor optical resona-
tors within PC slab WGs. In such structures, local modifica- Il. SYMMETRY ANALYSIS

tions (defects of the photonic lattice have been used to form The spatial symmetries within Maxwell's equations are

nanometer-scale lasers which trap light to Vo'””_"ff close Qetermined by the translation and rotary-reflection symme-
the theoretical limit of a cubic half wavelgng]tﬁ. Ad-  tries of the dielectric functione(r).2422The theory of space
vances in fabrication have reached the point where plang;on€3 can then be used to predict and categorize the reso-
lithography allows for the precise control of the defect ge-nant modes of defects within PC structures. A two-step pro-
ometry in these systen$.Such control has been used t0 cess is implemented here. First, modes of the unperturbed
create optical cavities with defect mode resonances of glab waveguide are used as a symmetry basis to generate
given polarization, frequency, and emission pattérn. approximate field patterns for the PC modes at the high-
The design of PC-based optical elements has often reliegdymmetry points of the first Brillouin zon@BZ) boundary.
on numerical simulations using methods such as finiteThe curvature of the photonic bands at these points are such
difference time domairfFDTD).* While FDTD provides a that peaks and valleys are created in the energy-momentum
wealth of detailed information about the system under condispersion surface. Invoking an equivalent Wannier theorem
sideration, it has the drawback of being rather computationfor photoné* one can argue that it is these peaks and valleys
ally intensive and time consuming. In this paper an approxithat are the seeds from which localized states are for(iseszl
mate analytic technique is presented which uses symmetithe Appendix. The second step in our approach then utilizes
and the methods of group theory to analyze and classify ththe PC band-edge states created from the unperturbed slab
modes of resonant cavities formed in 2D PC slab WG strucwaveguide mode symmetry basis to generate approximate
tures. This technique determines the symmetry of the mode®rms for the localized defect modes lying within the band
that form and their dominant Fourier components, fromgap.
which one can extract information regarding the far-field The host PC structures that we consider in this paper con-
emission pattern as well as the polarization of the resonargist of a symmetric planar geometry with a two-
modes. The symmetry analysis can also be used as a tool dimensionally patterned core layer surrounded by spatially
designing high® cavity mode¥’ and low-loss waveguidés  uniform cladding layers. A structure which has been the basis
in 2D PC slabs, predicting the type of crystal lattice and theof many previously fabricated devic&ss depicted in cross
position of point and linear defects within the crystal which section in Fig. 1a). The semiconductor core dielectric mate-
will produce localized modes with reduced in-plane and ver+ial has an approximate refractive index of 3.4, and the clad-
tical loss. ding in thesemembrandype structures is air with a refrac-
The principle thrust of the paper is contained in Sec. Il,tive index of 1. For the structures studied in this and the
which outlines the application of group theory in producingfollowing sections, the ratio of the core thickneds;o lat-
an approximate description of the resonant modes of the ddice parameteig, is chosen so as to maintain the single-mode
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and the fact that the active region of the light-emitting de-
vices studied in Sec. Il predominantly couples to TE polar-
ized light?® we will focus our attention in this paper on the
fundamental even modes of the 2D PC waveguides which
are TE-like. In the analysis below we consider for the host
PC lattice two of the most common 2D geometries, the
square lattice and the hexagonal or trigonal lattice. We begin
with an analysis of the hexagonal lattice.

A. Hexagonal lattice

The point-group symmetry of a 2D hexagonal PDis, .
Extruding the 2D PC into a symmetric 3D waveguide struc-
Defoct Region A2 waveguide (n=3.4)— ture givgs a single horizontal mirror plane) lying in the
Active Region (4 QWs) Etched Air Holes (n=1) waveguide center. As alluded to above, for the hexagonal PC
InP Substrate (n=3.2) Undereiit. Fiegicn (m=1) slab waveguide of Fig. (8), a band gap opens up in the
(@) frequency spectrum of the fundamental even guided modes,
: ; but not in the fundamental odd mode spectitfmlarrowing
M our scope to TE-like modes of a symmetric slab, the point-

5 : group symmetry of the hexagonal PC system can be effec-
tively reduced taCg, =Dgn /0y, . A plot of the approximate
in-plane band structure for the fundamental TE-like guided
modes of a half-wavelength thick hexagonally patterned slab
waveguide is given in Fig.(b).

For the TE-like fundamental even eigenmodes of the un-
patterned slab waveguide, within the mirror plane of the slab
the magnetic-field pattern can be written & (r )

I
©

o
o

normalized frequency (a/A,)
o o
N o

; : =ze ki) wherek, andr, are in-plane wave-number
OF X J I and spatial coordinates, respectivély order to simplify no-
(b) tation we drop thel label in the equations which follow
_ _ _ Upon patterning the slab waveguide, coupling occurs be-
FIG. 1. (@ lllustration of the two-dimensional hexagonal PC yvaan waveguide modes with similar unperturbed frequen-
slab waveguide structuréb) In-plane band structure; fundamental cies and identical propagation constants modulo a reciprocal-
TE-like (even guided-mode band structure/a=0.3611ga=Netr  |aytice vector G. This follows from the approximate
=2.65). The guided-mode band gap e.Xtenqs over a normalize onservation of frequencikinematic treatmentand the ex-
frequency of 0.29-0.41. The aeladding light line is shown as a act conservation of crystal momentum. Of particular interest

lid black line. . . . :
solid blackfine for the resonant-cavity designs and devices described below

nature of the vertical waveguide for wavelengths within theare those modes which comprise the frequency bands defin-
first-order guided-mode band gap of the PC lattice. Théng the first-order band gap. The Bloch modes at the band
modes of a symmetric slab waveguide, patterned or unpagdges defining the first-order band gap are predominantly
terned, separate into modes of even or odd parity with reformed from modes of the unpatterned waveguide with the
spect to a mirror plane in the middle of the dielectric slab. Ofin-plane wave vector lying at the boundary of the IBZ; other
interest here are thundamentalguided modes, which for unpatterned waveguide modes with additional in-plane mo-
the slab thicknesses of the devices analyzed in Sec. Ill, hav@entum equal to some integer multiple of a reciprocal-lattice
a wavelength commensurate with the emission band of thgector contribute much less, owing to their largenper-
quantum wells. Limiting our analysis to the fundamentalturbed frequency difference. For the symmetry analysis de-
guided modes of the PC slab effectively reduces the spatidicribed here we will be satisfied with considering the contri-
dimension of the problem from three to two. bution from only the degenerate lowest-frequency
For these symmetric quasi-2D systems, within the mirrorunpatterned waveguide modes at the first zone boundary.
plane of the waveguide the fundamental even and odd modes The high-symmetry points within and on the boundary of
can be represented by scalar fieBisandE,, respectively. the IBZ of the hexagonal lattice afeee Fig. 20)] the sixX
As has been described elsewh&éor connected 2D lattices  points [{=(0,1)ky, *(v3/2,1/2ky, *(1/3/2,~1/2)kx}],
such as those investigated here the extent of the photonibe six J points [{i(llz,\/§/2)kJ, +(1/2,— \/§/2)kJ,
band gap for modes with electric-field polarization in the =(1,0)k;}], and thel’ point (0,0). The first-order band gap
plane of the 2D patternin@TE) is larger than for modes with  of the hexagonal latticksee Fig. 1b)] is defined from above
normal electric-field polarizatioiTM). Although the funda- by the X point and below by the point. In analogy to the
mental even and odd modes of the quasi-2D patterned sladectronic bands in semiconductor crystals we term the high-
are not purely TE or TM polarized they are significantly frequency band defining the first-order band gap the “con-
TE-like or TM-like in nature, respectively. For this reason, duction” band, and the low-frequency band the “valence”
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TABLE |. Point-group character tables.

Ce, E C, 2C, 2Cs 304 30,
A 1 1 1 1 1 1
Aj 1 1 1 1 -1 -1
B! 1 -1 1 -1 1 -1
B 1 -1 1 -1 -1 1
E, 2 -2 -1 1 0 0
E, 2 2 -1 -1 0 0
sdl 3 -3 0 0 1 -1
sal 2 0 2 0 -2 0
a2 3 3 0 0 -1 -1
Cay E C, ox(oy1)  oy(ogr)
A, 1 1 1 1
A, 1 1 -1 -1
B, 1 -1 -1 1
B, 1 -1 1 -1
sdl 3 -3 -1 1
shdl 3 1 -1 1
sal 2 0 0 -2
saz 3 3 -1 -1
shat 3 3 -1 -1
(b) Cao, E  2C 30y
FIG. 2. lllustrations of the real and reciprocal spaces of the

two-dimensional hexagonal PC. The high-symmetry points of th 1 1 1 1

hexagonal lattice, referenced to the center of an air hole,aare A2 1 1 -1

=(0,0), b=(a/2,0), andc=(0a/\/3). (a) Real-space latticda| E 2 -1 0

=|ay]=a. (b) Reciprocal space.|G,|=|G,|=4n/\3a, |ky|

=27/\3a, and|k,|=4m/3a. Cao, E 2Cg 30,

band. In the approximate analysis of the defect states to foA1 1 1 1

low we will need to include all the degenerate satellite peak#\? 1 1 -1

(conduction bandand valleys(valence band The group of E 2 -1 0

the wave vector, which defines the point-group symmetry oS~ 3 0 -1

a plane-wave modul@ within the dielectric lattice, is for S*2! 2 -1 0

the X, J, andI" points of the hexagonal lattic&s,,, Cs,,

andCg, , respectively. Character tabfé$or these groups are . ) . )
given in Table 1. terned slab waveguide at thg-satellite point, the irreduc-

ible representation$lRREPS of the little group at theX
point, can be found by applying the symmetry operations of
the group of the wave vectoggkxzczl,) to the seed vector

For the frequency bands defining the first-order band gaps,  |n, this case, the basis is simpIB,( By, ). Project-
the unpatterned waveguide modes which are most strongly
coupled together to form the Bloch modes at ¥point are  iNg this symmetry basis onto the IRREP space@gfwelds

1. X point

in our quasi-2D picture given by=ze *x'T wherei B X1_5 cogky 1)

=1,2,...,6. Theunperturbed frequencies of these modes Xoo b

are degenerate and can be writterugs= c|ky|/ngs , Where w

N iS an effective index taking into account the vertical Bg,=2zsin(ky,-r?), (1)

waveguiding perpendicular to the slab.

The star ofk (*k) at theX point, formed from the inde- WhereA, andB, label the IRREP spaces @f,, (see Table
pendent satelliteX points within the IBZ, consistgnot |), and the indexis used to denote the location of the origin
uniquely of wave vectorstky ,kx .y}, all otherX points within the hexagonal latticmarked in Fig. 2a)]. Since the
being equivalent to one of these vectors modulo a reciprocafnagnetic field o8, A , overlaps strongly with the air holes of
lattice vector. A symmetry basis for the modes of the patthe hexagonal PG;lts electric field lying largely in the di-
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\7Z

FIG. 3. Magnetic-fieldamplitudg patterns of the valence-band modes of the hexagonal lattice at the three diKqueinits generated
by the symmetry basi¥ B .

electrig it represents the lower-frequency “valence”-band and degenerate conduction-band modes,
mode, WhiIeBéi represents the “conduction”-band mode.

This is a result of the tendency for modes with electric field c sin(ky. - r?)
o . . . . X, X,
concentrated within regions of high dielectric constant to be .
lower frequency than those with electric field concentrated in CBX=| Cx, | =z| sin kx,: r4) |, )]

low dielectric regiong®

In order to fully define the modes at tiepoint all modes
of the *k must be included. The point symmetry operations
of the full point group of the hexagonal lattice not included Figures 3 and 4 show the magnetic-field amplitudes for each
in the group of the wave vector, the coset generators, may hgf the valence- and conduction-band modes at all the satellite
used to generate the modes of all the degenerate satellifepoints of the hexagonal lattice.
points within the k. In the case of theX point this corre-
sponds to successive rotations h¥6 (Cg rotation. The re-
sult is the following set of degenerate valence-band modes,

Cx, sin(kx,- ré)

2. J point

A similar procedure may be performed in order to deter-
Uy cogky -3 mine approximate forms for the TE-like valence- and
1 1 conduction-band modes of the hexagonal lattice at the
VB;(: vx, | =2 cos(kx2~ r |, 2 point of the IBZ. Approximate forms for the valence-band-
a edge and conduction-band-edge modes at Xhmint are
UXq cos(kx3-r ) (with point a taken as the origin

CX,

1) ) )
[CEICHCECHECECECES
D ) O ) )
e )

ECECECECECSICHECR
[CECECESESECECES
o s
CECECECECECESIS
BeEida)-C e

FIG. 4. Magnetic-field(amplitude patterns of the conduction-band modes of the hexagonal lattice at the three difepeints
generated by the symmetry baﬁsﬁ.
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FIG. 5. Magnetic-fieldamplitude patterns of
the valence-band modes of the hexagonal lattice
at theJ point generated by the symmetry basis
VB).

vy, ek ekt grikyr® coordinate system with poittt at the origin. In the e-quati.orls
VB;= =7z . . .|, @ tofollow, r?, r®, andr® are coordinate systems with origins
vy, e e e located at points, b, andc of the hexagonal lattice, respec-
tively.
C]_Jl efile-ra_,_efikJira_2e7ik35~ra
CZJl ) ok, 1 gmiky 1 3. Conduction-band donor modes
CB;= 1. | T asikg vt amik, e ik, ga In an attempt to form localized resonances, the dielectric
€5, e et +e e —2e constant in a small region of a periodic photonic crystal lat-
c2;, e iky, r? _giky,r? tice may be altered from its unperturbed value, breaking the

(5) regular periodicity of the lattice and mixing the Bloch
modes. If the perturbation corresponds to a local increase in

Figures 5 and 6 show the magnetic-field amplitudes for eackhe dielectric constant, then the localized modes are formed
of the valence- and conduction-band modes atitheint of  predominantly from the conduction-band modes, specifically
the hexagonal lattice. Although not obvious from first inspecthe modes at the band edge. This is a result of the tendency
tion of Egs.(4) and(5), the plots in thes? two figures show for mode frequencies to decrease with increasing dielectric
that the modes of the symmetry ba$i8; have magnetic-  ¢onstan® pulling the conduction-band-edge modes into the
field amplitude predominantly overlapping the air r}mesband gap of the photonic crystal near the defect. This type of
while the magnetic-field amplitudes of the modes@B;  |ocalized mode is termed a donor mode in analogy to the
overlap the dielectric regions, a property that allows us tQectronic defect states in crystalline materials.
classify the modes as valence- and conduction-band, respec- g the hexagonal PC lattice the minimum in the conduc-
tively. This result is al_so_ quitg engogr_aging, given the faction pand occurs at th¥ point[see Fig. 1b)]. Therefore, the
that our symmetry basis is quite primitive and yet can reprogppropriate symmetry basis to use for describing localized
duce this property of the valence- and conduction-ban@jonor modes are the degenerate conduction-band-edge
modes so critical to the formation of a frequency band gap,odes ofCBY, CBY, andCB for defect regions centered

'I('jhe dap_pro;in;)ate Vﬁ‘lﬁnce' ha_nd _C(_)nduc;t]ion-band-e;jgground pointsa, b, and ¢ of the hexagonal lattice, respec-
modes derived above all have their origin at the center o alﬂvely (note that these are all the same bases, just written in

a@r hole of the IatFice. The hexa_gonal lattice has two Othershifted coordinate systemsFor defect regions centered
high-symmetry points around which one may center a defecl,, t pointa the largest possible symmetry is that of the

pOiO?tSb andfclshown in Fig. Za)H Unlirlfe pointa, pointsfb e Underlying hexagonal lattic€s, , whereas for defects about
andc are of lower symmetry than the point group of the point b and pointc the largest point-group symmetries are

he>.<agonal Iatt[ce. A defect centered about paintill be C,, andC;, . , respectively. Correspondingly, the character
limited to a point group of symmetr¢,,, and those about e adl X )

point ¢ to point groupcng. The point-group symmetry values of re_prebsc(ialntatloﬁa' Qf the_CBa basis undecCg, ,
operations for each of these types of defects are centererspres.emat'(?lr& of theXCBb .baSIS undeCz, , anq repre-
about different points within the lattice. So as to be clear SentationS* of the CB' basis undecCs, ,, are given in
about the position of the origin to be used for point Symme_Tab|e I. From the character tables we find that these repre-
try operations, we label the Bloch mode symmetry basesentations decompose &*™'=E;®B], S""=A0A,

with an index corresponding to the location of the origin ©By, andSC"“:EeaAg’. Using the appropriate projection
around which it is expanded, the point symmetry operationgperatoré® on CB;(, CBY, andCBé(, a set of basis func-
assumed to act about this point. For exampléiif is the tions for the localized conduction-band donor modes is
X-point valence-band basis of ER) written in a shifted found to be
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C].Jl CQJl

OROROOROOONONCH O O O O O O O (
KOBOOOOOOON O O O O O O O O
BORORORORORONON D O O O O O O O C
' OO O O O O O O O Q)

OO O O O O OO O
SOOIOIOOROMON O O O O O O O )
OO ORORO D) OHO OO OO O OO O)( FIG. 6. Magnetic-fieldamplitudé patterns of

the conduction-band modes of the hexagonal lat-
tice at theJ point generated by the symmetry ba-
%\ % e
adl_ore 1) —si ra i .ra - T T
BB,l, Z[sin(ky, - %) —sin(kx, r%) +sin(ky_-r)], Bg,glzz Zsir< kxl'fc—g +sin( kxz'f°+§
BEOE=2{2 sirky,-1%) + sin(ky,-1%) — sin(ky, - 1)1, _Sin( 75 g”
B292=Z[sin(ky, - r?)+sin(ky, - r?)], 6 - ™ ™
.2 = 2SIk, 1)+ sinlog 1) © BES'=2|sin Ky 1o+ g | +sin ku 1= 2|, (8)

for defects centered about poiatof the hexagonal lattice, for defects centered about poiat Figure 7 shows plots of

R the amplitude of the component of the magnetic field for
B,’i’ldlzz[cos{ Kx,- rb)—cos(kX3~ r”7, each of the localized donor modes centered about podit
the hexagonal lattice generated by the symmetry analysis.
. The localized donor modes centered about pdirasdc are
BR’Zdlzz[cos{kXZ-rb)+coikx3-rb)], shown in Figs. 8 and 9, respectively.
In the above-mentioned plots of the defect motkesd in
all plots generated from the symmetry analysis to follow

Byt =7 sin(ky, - r")], (7)  the localization of each mode has been taken into account by
multiplying a two-dimensional Gaussian envelope function
for defects centered about pointand with each dominant Fourier component, where the two axes

of the Gaussian envelope are taken as parallel and perpen-

dicular to the direction of the Fourier component. This set of

envelope function transforms as the identity under symmetry

operations of the group of the wave vector, and as such does

not alter the transformation properties of e&chomponent.

Ko -1o— Z” Consequently, the IRREP classification of the defect modes
X3 3/ given above is maintained. This particular choice of enve-

c,dl

BSy =27
AY

3 3

. T i T
sin ky, 1= | =sin ky, - r°+ =

+sin
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FIG. 7. Magnetic-field amplitude of the symmetry analysis conduction-band donor modes centered aboatgbdime hexagonal
lattice.

lope function, apart from symmetry, is rather arbitrary, onlya paraboloid. The important comparisons to numerical calcu-
chosen to capture the localized nature of the defect moddations and experimental data to be made in this paper are
and highlight the dominant Fourier components. In the Ap-based upon the symmetry and dominant Fourier components
pendix A, a Wannier-like equation for the envelope of local-of each mode, not the accuracy to which the envelope is
ized photon states is studied and shown to have ground-stagproximated. It suffices here then to be satisfied that the
solutions invariant under those elements of the group of théRREP classification and dominant Fourier components are
wave vector that are also symmetries of the defect perturbaorrect, and remain unchanged for the ground-state envelope
tion. The ground-state envelope solutions of the Appendix Afunctions of the Appendix A.
then, leave the IRREP classification of the above analysis for Returning to Eq(6) describing the localized donor modes
the defect modes unchanged. about pointa of the hexagonal lattice, we note that the
From the form of the Wannier-like EGA7), it is apparent  (d1,B]) donor mode transforms like a hexapole, whereas the
for cases in which the local band structure is approximatelydegeneratedl1,E;) modes transform as am,{y)-dipole pair.
parabolic in naturddefined by an effective-mass tensor di- By introducing defect regions with lower symmetry than that
agonal along orthogonal directions parallel and perpendicuef the host photonic lattice one is able to remove degenera-
lar to the band-edgé point) that the Gaussian envelope cies in the localized mode spectrum. TXesplit andY-split
functions employed above will qualitatively describe thecavities studied in Sec. Il have a defect region wih,
shape of the envelope of the defect mode. In other cases thigmmetry as opposed to the f@k, symmetry of the lattice.
will not be true, such as that for defect perturbation with aThe effects of this symmetry lowering can be simply deter-
reduced symmetry relative to the group of the wave vectormined using group theory by virtue of the compatibility re-
or for the localized modes formed from regionskokpace lations between the IRREPs of the full and reduced symme-
where the local band structure is not approximated simply byry groups:

B;’fl B;,;il Blgclil
‘ .
| —
SN f -
T P -
. ¥ -
| .
| -
\

FIG. 8. Magnetic-field amplitude of the symmetry analysis conduction-band donor modes centered abobtgbdime hexagonal
lattice.
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FIG. 9. Magnetic-field amplitude of the symmetry analysis conduction-band donor modes centered aboatgbdim hexagonal
lattice.

Co,—Cay » mixtures of Bloch modes from the valence-band edge. This

type of defect mode is termed an acceptor mode, again in

gdl_ gadil analogy to the electronic states in a crystal. For the hexago-
By Bi nal lattice the maximum of the valence band occurs atithe

point[see Fig. 1b)]. As in the previous section, the obvious
symmetry basis to use to describe the acceptor modes is the
set of degenerate valence-band modes afl theint, VBj1 in

the case of defects centered around painand VB} and

VBﬂ for defects about point andc, respectively.

In the cases of th¥- andY-split cavities withC,, symmetry, The characters of the representati®h? of VB under
group theory predicts the spliting of the degenerate dipolethe C, point symmetry group, the representatish2! of

::ike modes ir_;_tr?.x-.art;d y-dipole;ik(ra] moﬁes with _diffleri_ng I VBj underC,,, and the representatids** of VB under
requencies. This is borne out both in the numerical simulag,” “are given in Table 1S decomposes into irreduc-

tions and in the experimental measurements of Sec. Il be- , .
low P ible blocks A& Bj, SP3=A,®B,, and S“'=E. Using

the projection operators, the basis functi®; are coupled
together to form the following localized acceptor modes

. . . about pointa:
If the dielectric constant had been reduced in a small re- P

gion within the photonic lattice, by enlarging an air hole, for a,al
instance, then instead of pulling the conduction-band modes BAg
down into the photonic crystal band gap the valence-band
modes are “pushed” up into the band gap. In this case modes
localized to the defect region are formed predominantly from

B3 —B3*? (x dipole),

BE‘;—Bg " (y dipole). 9)

4. Valence-band acceptor modes

=7[cogk; - %) +cogky, - r?)+cogky, - r?)],

Ba = Z[sin(ky, - r%) +sin(k;, - 1) +sin(ky 191 (10)
2

B“A’§1 Bcé,;l
o
. - | L
. - . F I )
N AL . 90 9 metry anlysis valence-band aoeepior modes oo
L . @ ‘ ' . . . tered about poin& of the hexagonal lattice.
Shdie SR LR
. - . LS @8
- - \ e ®
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b,al
B,

®_ 5
oIo
® &

L
L

b,al
Bg,

\/J

™
L
.

o

2%a%

® FIG. 11. Magnetic-field patterns of the sym-
metry analysis valence-band acceptor modes cen-
tered about poinb of the hexagonal lattice.

C

Similarly, projecting the basis functiorMBf) onto the IR-
REPs ofC,, and the basis functionéB; onto the IRREPS of
Cgv,%, we get for the acceptor modes about pdint

Bg’za1=2[cos(k31- r®)+cogky, - r°) —cogky -1

Bgt=2[sin(ky, - r®) +sin(ky,-r

and the acceptor modes about paint

+sin ky - rf—

2
3

®)],

5' rb)]! (11)

o
= +sin(k35'r°)} (12)

Figure 10 shows plots of the component of the magnetic
field for each of the localized acceptor modes centered abourt a deep potential well, the symmetry basis can be expanded
point a of the hexagonal lattice generated by the symmetryin a number of ways. One method would be to modulate the

analysis. The localized acceptor modes centered about points
b andc are shown in Figs. 11 and 12.

In the X- and Y-split cavities withCy, symmetry,B%,"

2

and Bg’”al transform asA, andB, IRREPSs, respectively:
2
CGU_>C2U '
Ba,al Ba]_
Ay —7PBaa,:
,al
Bg,z,a —B35,- (13

For defect regions which strongly perturb the photonic
lattice it is possible that a larger number of localized defect
modes will form that can be described by the limited sym-
metry basis used above. This is the case forisplit cavity
described in Sec. lll, where the defect region is composed of
two enlarged holes and has a relatively deep potential well
for acceptor modes. As a result, in the FDTD simulations and
the PL measurements of thesplit cavity an additional shal-
low acceptor-type modeY(-A2,), not covered by thé&/ Bg
symmetry basis, is present.

In order to capture more fully the possible defect modes

c,al
Bg,

c,al
Bg,

-
® = @
-

» .
"

» 4
. @

FIG. 12. Magnetic-field patterns of the sym-
metry analysis valence-band acceptor modes cen-
tered about point of the hexagonal lattice.
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FIG. 13. Magnetic-field patterns of the symmetry analysis acceptor modes formed from the valence-band modégpainthef the
hexagonal lattice.

current symmetry basisV(B;) by a set of higher-order enve- BaE'agzi[cos( ks -r2) —cogky. - r2)]. (14)
lope functions which contain extra nodes and antinodes. This 2 2 3
would be more applicable in cases where there is a much The Y-split cavity does not hav€g, symmetry, but rather

greater distinction between the length scales for the defecgg2 symmetry. This reduction of symmetry causes e
; 3

region and the underlying lattié® Another technique, which IRREP space to split intd;®A,, and theA, space to trans-
could be used in the case of tifesplit cavity, is to enlarge fer over into anA, IRREP space:

the starting symmetry basis by solving for the localized ac-

ceptor modes of each enlarged hole within ¥asplit cavity Cs,—Cay »
separately, and then to couple the two basis sets. The sym-

metry basis in this case includes two copies of the acceptor B33 _, B321,
modes given in Eq.10), which are spatially separated by the A 2

distance between the two enlarged holes. This method works
well for enlarged holes which are significantly displaced so
as to be weakly coupled. For the closely spaced enlarged
holes of theY-split cavity it is more appropriate to treat the BaE';g—’ B)ax’la 2. (15
two enlarged holes as a single perturbation of the photoni
lattice.

A third method, which will be adopted here, is based upo

a,a2 a,a2,2
BE2,1—> BA2 '

Tfigure 13 shows the magnetic-field patterns of the acceptor
nmodes predicted by the symmetry analysis to form out of the

the observation that for defect regions which provide a dee alence band ‘_”‘t th p0|_nt. The shallow_ acceptor mode
potential well it is also possible that defect modes will form, (Y A20) found in theY-split FDTD simulations of the next
which are composed of unperturbed photonic crystal mode§eCt'0'? transforms as the, IRRE.P underC,, symr.ne.try
located not just at the edge of the band gap, but also at oth@perations. The d_omlnant Fourier c_omponent W'th_'n the
nearby (in frequency high-symmetryk points within the FDTD-generated field pattern of-A2, is ky;, from which
IBZ. In order to represent these additional localized resonarwe can conclude that this mode is given B?:‘Z‘Z as op-
modes the unperturbed photonic crystal modes at the addjosed toB321,
tional high-symmetnk points must be included in the sym- 2
metry basis. For the hexagonal lattice the valence band at the

X point is close in frequency to the band-gap edge atJthe

point [see Fig. 1b)]. The symmetry basis for th&-point As with the hexagonal lattice we concern ourselves here
valence-band edge is the triply degenerst®} basis set. with only the fundamental even mod€EE-like) of the slab
The representation &f B} underCy, , labeledS*#?, has the ~waveguide. The point-group symmetry of the square lattice
character values shown in Table | and decomposes into irrgehotonic crystal can then be reduced@q,=Dgp/oy. A
ducible space&, andAj. The acceptor-type modes formed plot of the app_roximgte in-plane band structure for the fL_m—
from the X-point valence-band modes in a symmetric defectdamental TE-like guided modes of a half-wavelength thick

B. Square lattice

cavity centered about poirtin the lattice are slab waveguide with a square array patterning of air holes is
given in Fig. 14.
a2 - . . -
lez? =2[cogky - r?)+cogKy, - 1) +cogky - r?)], The high-symmetry points on the boundary or within the

IBZ are [see Fig. 18)] the four X points [{=(1,0)ky,
a2 A +(0,1)ky}], the fourM points[(+y2/2, +2/2)ky], and
B2, =22 cogky, %) —cogky, %) —cosky,- 1], the I'-point (0,0). The first-order band edges of the square
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0.8 TABLE Il. Point-group character tables for the square lattice.
(<O
L\U/ C4U E C2 2C4 20-1) 20’d
> 06 [
o A; 1 1 1 1 1
% Ay 1 1 1 -1 -1
D 04 BY 1 1 -1 1 -1
5 B} 1 1 -1 -1 1
N E 2 -2 0 0 0
© 02 M
g S 4 0 0 0 -2
S stdt 2 -2 0 0 0
c : :
0 : : sfhal 2 2 0 -2 0
T X M T
FIG. 14. Fundamental TE-likéeven guided-mode band struc- Cav,04 E C, ox(041) oy (0q2)
ture (r/a=0.35, ng,,= N = 2.65) for a square lattice of air holes.
The guided-mode band gap is seen to be much smaller for th&; 1 1 1 1
square lattice than that in the case of the hexagonal lattice. The ak; 1 1 -1 -1
(cladding light line is shown as a solid black line. B 1 -1 -1 1
B, 1 -1 1 -1
lattice (see Fig. 13 are defined from above by the point
(“conduction™-band edge and below by theM point  Cav.o, E G ox(01) oy(072)
(“valence”-band edgg The groups of the wave vector at the
X, M, andT points areC,,, C,,, andC,,, respectively. A1 1 1 1 1
Character tablé8 for the two groups are given in Table [I. A2 1 1 -1 -1
B, 1 1 -1 1
B, 1 -1 1 -1
sh 2 0 0 -2
sedt 2 0 0 -2
1. X point

A symmetry basis for the modes of the square lattice PC
at the X point can be found by applying the symmetry op-
erations of the group of the wave vect@f, =C5,) to the

seed vectorBy . In this case, the basis is simply
1

(Bk, ,B-k, ). Projecting this symmetry basis onto the IR-
1 1
REP spaces of,, yields

GV'I(GX) G.4,(0,)
N ! /_d1 X" X2
TG1 y B =2cogky, 1),
\\\k k /,// . .
My X, _I:\’M1 Béi: zsin(kx, 1), (16)
. 62 (6) where A, and B, label the IRREP spaces &,,, (see
»Ky—>»e-—- O, . .. . v
. ki T | g B Table Il). With the origin at the center of an air hole of the
ky lattice (point d of Fig. 15, Bﬁi corresponds to the
T_,f(x kMst3 """"" k, “valence”-band mode ancBgi to the “conduction”-band
e mode.
"\ In order to fully define the modes at thepoint all modes
(b) 0q2(0y) of the *k must be included. The result is the following set of

) _ degenerate valence-band modes,
FIG. 15. lllustration of the real and reciprocal spaces of the
vxl) A[cos{kxl~rd)l

two-dimensional PC with a square array of air holes. The high-

symmetry points of the square lattice, referenced to the center of an VB?,(: =7

air hole, ared=(0,0), e=(0,a/2), andf=(a/2,a/2). (a) Real-space cog kX2~ rd)
lattice. |a;|=|ay]=a. (b) Reciprocal space|G,|=|G,|=2n/a,

lky| = /a, and|ky|=27/a. and degenerate conduction-band modes,

17

UX2
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FIG. 16. Magnetic-fieldlamplitude patterns
of the valence-band modes of the square lattice at
the X points of the IBZ generated by the symme-
try basisVB .

VBY = (vm) =2 costky, 1)+ costky, 9] (19)

CB)= (18)

cx,| [ sin(ky -r?)

=z . .

Cx, sin(ky,-r?) A
CBY =(cly)=2Zcogky - rY)—codky, "] (20

The magnetic-field amplitude patterns of the approximate . .

valence- and conduction-band modes of the square lattice at Approximate modes for the degenerate higher-frequency

the X points of the IBZ are given in Figs. 16 and 17, res:pec-con(_jUCtion bands represented by the IRRERre, in one
tively. particular basis,

sin(ky, - 1) —sin(ky,-r%)
sin(ky, 1) +sin(ky,-r?) |

frequency bands will be unimportant in our
oM e . i present analysis where we focus on the band-edge modes
metry Ba&ss , in this case includes all thi points of the  Gefining the first-order band gap. The magnetic-field ampli-
IBZ, S"=(By, Bk, B-k, Bk, ). As determined from y,de patterns of the valence- and conduction-band modes
its character undeC,, (Table Il), SM=E@A®B]. The at theM point of the IBZ of the square lattice are given
doubly degenerate IRREP must represent a higher-energy- in Fig. 18.

level band since the conduction- and valence-band edges are In the square lattice there are three different high-
nondegenerate at thil point as shown in Fig. 14. Using Symmetry points around which one may center a defect.
only A3 andB/, an approximate form for the valence-band- These points are labeletl e, andf in Fig. 15. Pointsd andf
edge and conduction-band-edge modes atMheoint are ~ Maintain theC,, point group of the square lattice, and point
calculated by projecting the symmetry basis onto these IR€ has a lowered symmetry given by the point gralip ,, .

REP spaces. With the origin centered at painthe valence- As was done for the hexagonal lattice, Bloch mode symme-
and conduction-band-edge modes are try bases written with their origin at points e, or f will be

=Z

c3y 21)

2. M point CBQ"Z:(
A similar procedure may be performed in order to deter-
mine approximate forms for the TE-like valence- and|page higher-

conduction-band modes at thé point of the IBZ. The sym-

CZM) R

cx, cX,
PRV ——

JECECECECHOECNGRC
[ECECECECECEONE)
JECECHCECHOESESE(
o ) e o o
ECECECECESECECEY
0O OO 0000
1 o e

e v e o v

FIG. 17. Magnetic-fieldamplitude patterns
of the conduction-band modes of the square lat-
tice at theX points of the IBZ generated by the
symmetry basi€B% .

JECECHCECECEONSN(
[ECECHCECESECRESN
[ECECECECECECECSEN

IECECHCESECECOESES
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®O®O®®®®®d
®®®O®®®®
®@®®®O®®®®a
®®®O®®®®d
®®®O®O0®®
ORORONONONONONC
®®®O®O®®®q

R R D E

clym

B = === = =
& & & & &8 _ & _®_ W

D=O=O=0=0=0=0=0=(

P=O=0=0=0=0=0==(

P=O=0=Oo=O=0)=(

P=Cr=O=O=O=O=(D=0=(

P=O=0=0=0=0=0=0=(

P=@=@=C=O=@=C=0=(

P=@=@=0=0=0=0=0=(
\-f\.f\-/\-/\./\.f\-/\.f

indexed as such. Coordinates centered about pdjregsand
f of the lattice are also labeled 6% r

3. Conduction-band donor modes

as IRREPs oCZM
in which theCBf}, CB}, andCBf

e, andr', respectively.

PHYSICAL REVIEW B 68, 035110(2003

FIG. 18. Magnetic-fieldamplitude patterns
of the valence- and conduction-band modes of
the square lattice at the points of the IBZ gen-
erated by the symmetry analysisVB(“," and
CBY).

the new mode structure. For a defect@f, symmetry with

mirror planes along the andy directions of Fig. 18)
(Czwv) we have the following reduction for the defect

modes centered about poirdsandf:
For the square PC lattice the minimum in the conduction
band occurs at th point (Fig. 14). As described above,
there are three different high-symmetry points within the
square lattice around which defects can be creéfagl 15.
For a highly symmetric defect centered at poidtandf the
conduction-band-edge modes at Kgoint couple to form
resonant modes which transform as IRREPE gf, whereas
for the lower-symmetry poiné the defect modes transform

The representations describing the way

symmetry bases trans-

form under the appropriate point group are givenSHy'*,
s%d1 andshdt respectively From their characters in Table

I We find thatSddl

, SPU=A2%B2, and S"91=A)
" planesaoy,

®B5. Projecting the symmetry bases onto the different IR-

REPs gives the following conduction-band donor modes:

B =7 sin(ky, 9],

BE 9 =7[sin( Ky,
centered about poird,

Bas '=2[cogky -r

Bgs ' =2z[sin(ky,-
centered about poirg, and

fdl

r)], (22

o1,

], (23

C4v—>C2u,oua
BE{'—Bg " (x dipole),
BES'—Bg," (v dipole),

Bf,dl Bf dll,

AH

Bg, — By (25)

If instead, the defect at pointd and f contain the mirror
the symmetry isC,, oy and the compatibility

relations give the mode decomposition

C4u—>C2u,gd,
Be +BZ Bg’idl (x' dipole),
—Bg9 B (v dipole),
B;,',jl—>BL,dl,
By, — By, - (26)

1

Magnetic-field patterns of the different localized donor-type

A,, —z[cos(kx )+cos(kx2- rH1, defect modes formed about poirdse, andf of the square
lattice are given in Fig. 19, where we have chosen to decom-
ose the fields according ©,, .
By = 2{cosky, 1) —costky, TN, (24 P 9 Fawa,

centered about poirft 4. Valence-band acceptor modes

For the pointsd andf, defects may be formed with lower For the square lattice the maximum of the valence band
symmetry than that of th€,, symmetry of the square lat- occurs at theM point (Fig. 14). For the square lattice the
tice. We may use the compatibility relations between the IRvalence-band-edge modes at tflepoint consist of a single
REPs of the full and reduced symmetry groups to determin@ondegenerate mode. This can be traced back to the fact that
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i L ‘ FIG. 19. Magnetic-field patterns of the local-
’ v . ‘ ‘, ' ' v ized donor modes centered about poitite, and
‘ k) w f of the square lattice.
-
-
Bf{;ﬂ’l Bf{jl’z
& R

N R R X I

17

the M point in the square lattice is highly symmetric, and theabout pointd, and
group of the wave vector mixes all four of ti points on
the IBZ boundary. The symmetries and fundamental momen-
tum components of the possible acceptor modes formed from
the M-point band-edge modesthe approximate defect
modes are then trivially given by the singléM-point  about pointf. The character of the representatigit of the
valence-band-edge mode. M-point valence-band-edge mode under symmetry transfor-
For the high-symmetry pointsandf of the square lattice, mationsC,, , about pointe is given in Table Il. From its
assuming that the defect is symmetric enough SO as to ma'%’haractersee’l; B, , the approximate acceptor mode of a de-
:g;nngr;%%livssymmetry of the square lattice, the single aCCeP+. .t centered about poiitis

BLr =2[cogky,-r")—cosky -], (28)
1 1 2

Bi;z,“:%[cos(le.rd)+coskM2.rd)], (27 Bg'f1=2[sin(le-rE)—sin(kMz.re)]. (29

035110-14
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FIG. 20. Magnetic-field patterns of the acceptor-type modes formed by the valencédbamidt modes of the square lattice.

For defects of reduced symmetry about poithizndf we
have the following compatibility relations:

C4v_>C2U,0'v'

d,al d,al
B B,
f,al
By, — By, (30
1 1
C4v_)C2v oy
d,al d,al
B, —B,
A'2’ Aé !
f,al f,al
Bg: — By - (31)

lIl. FDTD SIMULATIONS AND PHOTOLUMINESCENCE
MEASUREMENTS

In order to establish the effectiveness of the above sym-
metry analysis of the modes of relatively localized defects
within photonic crystals, we provide in this section results of
numerical calculations using the FDTD methbdnd PL
measurement$ of actual microfabricated cavities. The
FDTD simulation results provide information about the reso-
nant frequency, radiation pattern, and modal loss of PC de-
fect cavity resonant modes, whereas the PL measurements
relate both the symmetry and FDTD analyses to experimen-
tal data.

The FDTD calculations were performed on a mesh with
20 points per lattice spacing. Excitation of the cavity modes
was performed by an initial fieldR,) with a localized
Gaussian profile, located in a position of low symmetry so as
not to exclude any possible resonant modes. The even modes
of the patterned slab waveguide were selected out by using

Figure 20 shows the magnetic-field patterns of the acceptoan even mirror symmetryof,=+1) in the middle of the

type modes formed from th& point of the IBZ of the

square lattice for defects centered about pothts, andf.
Again, as for the donor modes, the modes are shown for theomputation time, a pair of vertical mirror planes, (o)
CZMU symmetry basis.

slab waveguide. In order to choose a consistent mode basis
(only important for degenerate modgas well as to reduce

were used to filter out cavity modes according to their pro-

FIG. 21. PC defect cavity geometrigs) S cavity. (b) X-split cavity. (c) Y-split cavity.
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A. Symmetric (S) cavity

SA mlodesl
sB2y/A2| PP (x,yL—dipoIe - The simplest cavity geometry that can be readily imple-
modes = mented consists of a single missing hdkechematically
VB f shown in Fig. 21a)]. We will refer to this cavity since a

symmetric orS cavity as it retains the full point-group sym-
metry of the hexagonal latticeCg,). A FDTD simulated
spectrum of a defect cavity with a central missing hole and a
linear grad&®in r/a (from the center outwardsf 0.38—0.34

03 034 038 043 is plotted in Fig. 22 as a dashed line. The spectrum is plotted
Normalized frequency (a/A,) versus normalized frequency,,=a/\,, wherea is the lat-

tice spacing and , is the free-space wavelength. A normal-
ized slab thicknesgj/a, of 0.41 was used in the simulated
structures to be consistent with the fabricated devices. To
reduce computation time, the number of mirror perigas
surrounding the central missing hole was limited to five in
the simulations, save for the more extended modes for which
cavities with eight periods were also simulated in order to

- . ) more accurately estimate the modal losses present in the fab-
jection on the IRREPs o€,,. Each cavity mode is thus |i-ated devicegsee Table I).

labeled by theC,, IRREP by which it transforms and an | Fig. 22, there appear to be two distinct resonance peaks
index corresponding to its energfrequency level. within the guided-mode band gap of the TE-like modes. Per-
For the PL measurements the PC structures were forme@rming a mode filtel using theC,, mirror planes, we find
in a waveguide layer containing multiple InGaAsP quantumthat each resonance peak contains two different modes,
wells which emit light in the 1500-nm wavelength bafid. vyielding a total of four different localized modes whose
Optical pumping was provided by a 830-nm semiconductoimagnetic-field patterns within the mirror-symmetry plane of
laser diode, and the resulting PL was collected from a directhe slab are shown in Table lll. The two resonant modes
tion normal to the surface of InGaAsP samfitertical emis-  (accidentally degeneratessociated with the peak near the
sion from the planar defect cavitlesA more detailed de- valence-band edge correspond to shallow accefB#)
scription of the fabrication process and measurement setumodes which transform as thé and B IRREPs ofCg, ,*
can be found in Ref. 21. and have the same dominant in-plane Fourier components as

FIG. 22. FDTD and PL spectra of @itype defect cavity with
a=515 nm, r/a=0.36 nominally (graded from the center out-
wards, from 0.38—0.34ng,,= 3.4, andd/a=0.409. FDTD simu-
lation results are shown as a dashed line.

TABLE lIl. Characteristics and magnetic-field amplitude patterns of the resonant modes in a symmetric cavityawitbarly graded
from 0.38-0.34 ¢/a=0.409, ng,,=3.4, p=5).

B1 (—1,+1) B2 (+1,-1)
S-Blo S-B2;
000 0E® Q00000
QP00 e 0000000
@ler el 000 o eeoeee
@lefele. eleiele @uloelelelelely
OOOO@@OOOO elela] o7 1 Telelole
@GSl IOIO 0000000000
00000000 0000000000
OO0 OEO OO0 00000000
COUEEeO0E e 0
Clolociooie sellelela®
gl ee@ FOE @
Label Group (o,0y) wp
S-A2 (B%y) SA (-, —) 0.320
S-Blo (B%, 1) DD dipole (x) 0.361
S-B2o (B;‘;é,) SA (+,-) 0.322
S-B21 (BH, 2) DD dipole (y) 0.360
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FIG. 23. (a) In-planex-dipole mode radiation pattefb) In-planey-dipole mode radiation patterfc) Symmetry analysig-dipole mode.
(d) Symmetry analysiy-dipole mode.(e) x-dipole vector plot.(f) y-dipole vector plot. In-plane radiation losséslectric-field amplitude
saturategl of the x- and y-dipole modes(degenerate casere shown in(a) and (b), respectively. The electric-field amplitudes of the
corresponding defect modes generated by the symmetry analysis are sh@yand (d) for comparison. In(e) and(f) the vector plots of
the electric field of the X,y)-dipole modes in the middle of the slab waveguide are shown.

Biz and BaBZ of the symmetry analysis in Sec. Il. The addi- intensity of thex- andy-dipole modes shown in Figs. 28
tion of these SA modes is a result of the linear grading in2nd 23b), we see that the fundamentakcomponents of the

hole radius, which forms a potential well for acceptor-typeX™ @nd y-dipole-like modes correspond nicely with the ap-
modes. Of particular interest are the strongly localized paiPfoximate field patterns predicted by the symmetry analysis.

di ; dl B
of degenerate deep don(®D) dipolelike modes near the Bg 1 represents the-dipole mode andBg , the y-dipole
center of the band gap. From the plots of the electric-fieldnode. Even the subtle difference in the in-plane radiation
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pattern of the X,y)-dipole modes as calculated numerically DD (x,yc)i-dipole [ CB;
using FDTD is contained within the symmetry analysis as Shmedes moges . i
can be seen by the lack of a third standing-wave component X-A2g

in the y-dipole (B‘éiyz) mode.

A PL spectrum from & defect cavity witha=515 nm,
r/a~0.36, andd/a=0.41 is shown overlaid upon the FDTD
simulation in Fig. 22. The emission from tt&cavity also
shows the presence of two dominant peaks, one very close to
the DD peak and one close to the SA peak. Owing to the f
small scale of the photonic crystal defect cavities, the field 03 034 038 042
patterns of the deep donor modes strongly resemble that of Narmalized fragqueney: (aikv)

an oscillating electric dipole. A vector plot of tfiefield of ~ rig. 24, PL and FDTD spectra showing the resonant modes of
thex- andy-dipole modes in the plane of the slab is shown ing x-spiit defect cavity withr/a=0.38-0.34, d/a=0.409, Ny,

Figs. 23c) and 23d). Polarization measurements of the DD =34, andAy=0.05%. FDTD simulation results are shown as a
peak? confirm that the emission is polarized predominantlydashed line.

along two orthogonal directions consistent with theand

y-dipole directions. The experimental determination of themodes as those found in ttf&cavity, in which the linear
absolute frequency of the DD dipole modes provides a refgrade in hole size created a potential well for additional
erence point from which to classify the rest of the cavityacceptor-type modes. As such, these modes have the same
modes, and also provides a measure of the accuracy of thfpminant in-plane Fourier components B and B! of
FDTD calculations. Sec. II. ? ’

A list of properties of the two SA and two DD localized Figure 24 also contains a PL spectrum for)asplit cav-
defect modes are given in Table Ill. The numerically calcu-j; (r/a=0.38-0.34d/a=0.409Ay=0.0%) overlaid upon
!ated losses of each cavity mode are represented by effectiyge FpTpD spectrum. The PL spectrum shows the presence of
in-plane and out-of-plane quality factofsQ andQ, , re- g pairs of resonance peaks. The SA and DD peaks oBthe

spectively. The effective mode volum¥;, is calculated  c4yity have each split into two distinct resonances. The po-
from an estimate of the full width at half maximum value of gjtions of these peaks correspond well with those of the

the electric-field energy density in each directidrand is  EpTp simulation, and allow for their identificatiofsee
given in units of cubic half wavelengths. As a result of therapje |v) using the nomenclature developed in Sec. II. This
large porosity of the PC obtained during the fabricationgassification is further supported by polarization measure-
proces€? FDTD simulations predict a rather large vertical ments of the DD mode¥ These measurements show that
diffraction loss(smallQ, ) for the highly localized dipolelike  he two modes are highly polarized along orthogonal direc-
modes. In contrast, the unintentionally introduced lineatjons with the longer-wavelength peak identified as the
grade in hole radius provides sufficient in-plane Iocalizationy_dipo|e mode and the shorter wavelength peak as the
to produce highR SA modes. For the fabricated defect cavi- y_ginole mode.

ties with eight periods of the photonic crystal mirrop (- FDTD calculated properties of the SA and DD resonant
=8), the quality factor for th&s-B2, mode is theoretically modes of thex-split cavity are listed in Table IV. As in th®
estimated to be as high as 7500, limited by radiative losses ipayity the DD dipolelike modes are seen to be highly local-
the plane of the photonic lattice. It is for this reason thatizeq; however, the vertical diffraction loss suffered by the
room-temperature lasing i defect cavities is limited to the gipolelike modes is much more severe in the case of the
SA mode peak; and reduced temperatures are required iny_spjit cavity, especially so for the-dipole mode. This can

order for the DD dipolelike modes to lagsee Sec. Il . be seen in the PL spectrum of tesplit cavity in which the
higher-frequency DD peak is significantly broader than its
B. X split (X) cavity lower-frequency partner. Room-temperature lasipglsed

was limited to theX-A2, and X-B2, SA modes. Measure-
ments of the threshold pump power of each SA mode from a
large array of devices showed a consistently lower threshold
value for the higher-frequency-B2, mode?! in agreement
with its higher estimate value given in Table IV.

Another type of defect cavity that was fabricated and
tested, referred to as the-split cavity, is shown in Fig.
21(b). In this cavity the four air holes on the top and bottom
of the central missing hole are moved inwards a distange
reducing the defect symmetry fro@g, to C,, . In the fab-
ricated structureay~0.05a~25 nm. A FDTD spectrum of ) )
an X-split cavity with Ay matching that of the fabricated C. Y-split (¥) cavity
devices is plotted in Fig. 24. The magnetic-field amplitudes In the Y-split cavity, illustrated in Fig. 2(t), the nearest-
of the different resonant modes found in the FDTD spectrunmeighbor holes on both sides of the central missing hole
are shown in Table IV. The deep donot,Y)-dipole modes along thel'J direction are enlarged and moved slightly in-
are seen to split, as expected from the symmetry analysis afards. The degree of splitting is measuredrbir, the scal-
the previous section, with the dipole being higher in fre- ing factor of the enlarged holes. The cavities studied here use
guency. The geometry of the cavity also introduces two shalkhole enlargements which result in a much stronger perturba-
low acceptor modes{-A2, andX-B2,. These are the same tion of the cavity than in theX-split case. A FDTD simula-
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TABLE IV. Characteristics and magnetic-fieldmplitude patterns of the resonant modes in dsplit cavity (r/a=0.38-0.34d/a
=0.409Ngp=3.4Ay=0.05,p=5).
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Label Group (02,0y) wy,
X-A20 (BY, SA f—i—) 0.316
X-Blo (BE.?) DD dipole (x) 0.385
X-B2o (B%,) SA (+,—) 0.319
X-B2: (B%,) DD dipole (v) 0.374

tion showing the mode spectrum ofYasplit cavity with the  modes is so strong in this case that tdipole mode is
two nearest-neighbor holes enlarged idyr =1.5 is shown completely pushed out of the band gap and onlyxtkpole
in Fig. 25. The magnetic-field amplitudes of the various lo-mode remains.
calized defect modes of thésplit cavity are given in Table The PL spectrum for aY-split cavity (r/a=0.38
V. There are now at least four different localized modes—0.34y'/a=0.51d/a=0.409), shown along with the
within the photonic band gap. The two enlarged holes act aDTD spectrum in Fig. 25, confirms many of the predictions
centers for acceptor modes and give rise to two deep accemade by the group-theory and FDTD analyses. In particular,
tor (DA) modes in the spectrum. These DA modes are lawe note the presence of a SA peak, two DA peaks, and a
beled asy-A2, andY-B2,, and correspond to the SA modes single DD peak. Polarization measurements of this DD
of the SandX-split cavities. The strength of the perturbation mode”? show it to be strongly polarized in a direction corre-
to the photonic lattice produces an additional SA mode asponding to the-dipole mode. Table V also contains a list of
well. As noted in Sec. Il, this mode has the same dominanthe FDTD calculated properties of thésplit cavity defect
in-plane Fourier components Bﬁi*z of the symmetry analy- modes. It is interesting to note that the DA modes are as well
sis. We further note that the splitting of the,y)-dipole localized as the DD dlpolellke mode. The Idy~values of'
the DA modes and the-dipole mode are due to the large size
SAmode 11T " DD x-dipole of the splitting holes. Room-temperatyulsed lasing was
Y-A2, mode | observed from all but the DD-dipole mode in theY-split
"'“Y_B10 cavities?! At reduced temperature§ € 150 K), it was pos-
sible to obtain pulsed lasing action of tkedipole modet®
Since the DA modes have simil& values to that of the
x-dipole mode, it is suspected that the difficulty in obtaining
CB| lasing from the DD mode may have more to do with the

DA modes |;

VB

_’ misalignment of the gain spectrum with the resonance wave-
length of the defect cavities fabricated and tested in this ex-

A W W periment than with the modal loss.

0.3 034 038 0.42
Normalized frequency (a/A)
IV. SUMMARY
FIG. 25. PL and FDTD spectra of the resonant modes in a

Y-split defect cavity with r/a=0.38-0.34, r'/a=0.51, d/a The resonant modes of localized defects in hexagonal and
=0.409, andng,,=3.4. FDTD simulation results are shown as a square 2D photonic lattices have been examined analytically
dashed line. through group-theoretical methods. Although the method is
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TABLE V. Characteristics and magnetic-fie[dmplitude patterns of the resonant modes inYasplit cavity (r/a=0.38-0.34r'/a
=051,d/a=0409ns|ab=34,p:8)

42 (=) Bl (-, +) B2 (+,-)
Y-Blo Y-B2o
000000000 000000000
Q000000000 0000000000
00000000000 00000000000
Q00000000000 000000000000
C000000000000 0000000000000
000000C0000000 000000000000 00
0000000000000 00 0000000000000
ooooooo@ooooooo ooooo::;@‘s;,@ooooo
0000000 0000000 | 0000000 0000000
00000000YU0000000 | COO0OOUESOLOO000
0000000000000 00 0000000000000
0000000000000 0 00000000000000
0000000000000 0000000000000
000000000000 000000000000
00000000000 00000000000
0000000000 0000000000
000000000 000000000
Label Group (02,0y) wy,
Y-A2 (B2?) SA oy — 0.326
Y-A2: (B%}) DA (- - 0.350
d1,2 5
Y-Blo (Bg*) DD dipole (x) 0.384
Y-B2, (B%,) DA (+,-) 0.344

general, the focus in this paper has been on the TE-like funwere the transformation properties of the envelope functions
damental even modes present in optically thin patterned didescribing the localization of each mode. In those sections it
electric slab waveguides. Approximate mode patterns fowas assumed that the envelope functions transformed as the
those localized states formed within the lowest-frequencydentity under all point symmetry operations of the defect
gap are determined for defects oriented around the highsystem. In this Appendix we utilize a Wannier-like equation
symmetry points of the square and hexagonal lattices. Nufor localized photon states to study the transformation prop-
merical calculations using the FDTD method, along with PLerties of the ground-state envelope functions. Since the de-
spectroscopy of microfabricated devices in InP, are presentefédct modes studied in the previous sections were fundamen-
for defects of varying symmetry within the hexagonal latticetal TE-like modes of a symmetric slab PC, we use here a
structure. The simple group-theory analysis is seen to descalar field theory in terms of the component of the magnetic
scribe the approximate behavior of the localized resonarfield normal to the slab.
modes in such devices, predicting not only the correct sym- In forming a defect state by perturbing the lattice in a
metry of the modes but many of their subtle features. Experitocalized region of space, the Bloch modes in proximity to
mental characterization of fabricated structures largely conthe degenerate satellite extrema of a band edge{khe
firms the accuracy of both FDTD and symmetry models. The=1,2, ... M} points of the * (from here on reference to
closeness of the correspondence illustrates the degree tioe *k refers implicitly to the orbit of this band edpeare
which the emission properties of resonant modes of localizeehost strongly coupled togeth&t:
defects within photonic crystals can bpecifiedby utilizing
a combination of the numerical and symmetry-based tech- 5 1 .
niques described in this paper. Hq(r)=2>, ci; Fi(k—ki)Ethe'k'r, (A1)

|
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Hl,k:EhI,k(r)elk'ra (A2)
APPENDIX: SYMMETRY OF THE ENVELOPE

Implicit in the derivation of the symmetries and dominantwith L? equal to the area of the 2D photonic crystal and the
Fourier components of the defect states described in Sec. $let of periodic functionsh, ,(r), at crystal momentunk,
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satisfying their own set of orthogonality relatiofisormal-  coupling matrix elements are determined from the Bloch
ized over the lattice unit celt), modes of the unperturbed lattice to be

1 1 .
(h|,,k|h,'k>vz;Ldzrhﬁkhhk:ém. (A3) K|,Y|(k’,k,G)=—;Ldzre'G'rhl*,yk,

~ 2 ; 2
The I'; are a set of Fourier space envelope functions, X (VE+2ik-V = [k[H)h,  (A10)

which in the spirit of effective-mass theory have amplitudes L
localized aroundk=k;. Note that throughout this analysis , _ 2 G-k .
the band of interest at the band edge is considered to be Lina(k ’k’G)__ELd re=hy, o (VATh
nondegenerate and we negléterband mixing®* (A11)
Assuming thah, , do not vary significantlyusing a simi-
lar argument as in Ref. 3%ver the range of each Fourier whereG are reciprocal-lattice vectors, a@ ;=0.
space envelope function, In considering the mixing of states from a symmetry
standpoint it is necessary to know how the envelope func-
tions transform under the point-group symmetry operations
. (A4) of the defect. Of most importance here are the ground-state
envelope functions. As discussed in more detail in Sec. Il A,
where Ak=k—k; . Writing the envelope functions in real this is due to the relatively localized nature of the defect
space regions present in the devices designed and tested in Sec. IIl.
For delocalized defect regions extending over many lattice
periods a more extensive set of envelope functions, including
higher-order functions with added nodes and antinodes must
be included. The choice of such a set of envelope functions
allows us to rewrite Eq(A4) as will depend on the geometry of the boundary of the detéct.
For the present work, we choose only the ground-state enve-
lope functionsl’;(r)=TI"; ,(r).
The ground state of a system is in general invariant under
- ~ the symmetries of the Hamiltonian of that syst&m° Thus,
It is in this way that the real-space envelope of localizedihe ground-state envelope function should transform as the
defect modes_ can be mter_p_reted in the Fourier dofiais a identity of the point symmetry group of the Wannier-like
modes of the crystal. As will be presented elsewliérene (A7) are those of\/i( 1p) and Al i(r). Since p
can derive a Wannier-like equation for the envelope of local-~ . ! L
) L : - =—iAaV transforms as a wave vector under rotary reflec-
ized defect states within PC slab waveguides. The resultin . ) P )
eigenvalue equation for the magnetic-field envelope aboufons: the transformation propertiesif; (7~ “p) are equiva-
each element of thek; where the mixing of Bloch states lent to those of[;(Ak), which as mentioned earlier is a
between different satellite points of thé ‘are neglected, is local expansion ok, (k) in a neighborhood ok; . The lim-

E Fi(Ak)eiAk»r

1 )
Ha(r) =2 ci—hy ek
i L ™" Y

ri<r>=§ Ti(Ak)e'skr (A5)

1 .
Ha(r)~ 2 ¢iph e Ti(r). (A6)

given by ited local correspondence betwegfy;, and \; results in a
reduced symmetry of|; from that of\, .
{[A)\d—)\(yi(h‘lﬁ)]—Ani’yi(r)}l“i(r)=0, (A7) In order to determine the symmetry ®f ; we decompose
, ) i the point-group operations of the crystdl,into the group of
with effective potential the wave vectorGy, and a set of coset generatofd; ;|
Aﬂi,,j(r):Aﬂ(r)Kl,l(ki ;.G ) =1,... M} g=2jdijgki, whereM is the number of ele-

ments of the k and thed;; takek; to k;. \,(k) is invariant
+VIA7()]-Li,(ki kj,Gji).  (A8)  under all the operations ¢ A/ ;(Ak) on the other hand can
In the above set of equations\y=Ay—\, . is the eigen- at most be invariant under the operationsdf, which are
0 . . : .
value referenced to the tofbottom) of the band edge, those operations of that take a neighborhood d into
Ak; i=k;—k; p=—i#V as in quantum mechanics, and itself modulo a reciprocal-lattice vector. Thiaf;(Ak) is in
Az(r) is the local perturbation to the inverse of the dielectric’@ct invariant undeall such operations follows by consider-
constant of the PC. The local band structure ofltheband g the operation of an element Gf, acting upon\, (k) with
in a neighborhood of each element df ts given by\,; k=Ak+k;:

M =[N ot N (AK)]+O(AKY), (A9) {Gk N (K) =N ({Gi 1K) =M [{ Gk JAK+ (ki +G) ].

. (A12)
where )\, , is the top (bottom) of the band edgeAk=k’

—k;, and where we taka,; to contain only terms up to Since the dispersion relation is periodic in reciprocal space,
second order in elements dfk.>* The scalar and vector )\|[{gki}Ak+(ki+G)]=)\|({gki}Ak+ k;), which gives
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M(AK+K) ={G IN(Ak+Ki) =N ({Gy tAK+K;).
(A13)
This then implies thah, ; is invariant under all the opera-
tions of Gy, )\(,i({gki}Ak)=)\,"i(Ak). The other operations
of G which takek; into k;, j#i, simply transform\|; into
)\,”j . In situations where the crystal lacks inversion symme
try (the lattice itself always has inversion symmettlye ef-

fects of time-reversal symmetry must be considered. If ther

exists a reciprocal-lattice vectdd that connectsk; and
—k;, and time-reversal symmetry does not mix tkie band
with another ban§° then\| ;(Ak) =/ ;(— Ak) regardless of

the lack of crystal symmetry. In this case, with the inclusion

of time-reversal symmetry, the full symmetry Xf; is given
by the point group formed from the elements@g‘iu{f},
wherel is the inversion operator. We will uﬁ(i to label the
point group which is equivalent g, except in those situa-

e

PHYSICAL REVIEW B 68, 035110(2003

under rotary reflections. As a result, the point-group symme-
try of A/ ;(r) is that of the defect perturbatialy(r). La-
beling the point group symmetries of the defect perturbation
as G', the symmetry of the Wannier-like equation for the
envelope functions is then given by the point group gener-
ated by the symmetry elements §fﬂg{<i. Note that the

‘point groupg’ is independent of the photonic crystal lattice;

the full point-group symmetry of the perturbed crystéal’
under which the localized states are classified is limited by
the point group of the crystald) and the position of the
defect perturbation within the lattice.

The transformation properties of thetal envelope,
Fiyo(r)e“‘i'r, under the point-group symmetry operations of
the localized defect in the latticg/(), are therefore identical
to those ofk; modulo a reciprocal-lattice vector. Point sym-
metries of the perturbed crystal which are in the group of the
wave vector transfornt’; o into itself, while all other point

tions where time-reversal symmetry plays a role and théymmetries simply rotary refle€y o into I' . In the context

group of the wave vector is modified as described above.
We must lastly consider the symmetry &fy; (r). The

of a symmetry analysis of the mixing of states from different
satellite points of the k then, one can neglect the transfor-

effective potential of the Wannier-like equation depends orfnation properties of the localized ground-state envelope

A7 and V(A7), both of which are as symmetric asz

functions since they transform effectively as the identity.
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