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Localized defect states in two-dimensional photonic crystal slab waveguides:
A simple model based upon symmetry analysis

Oskar Painter* and Kartik Srinivasan
Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA

~Received 31 December 2002; published 17 July 2003!

Localized defect regions within two-dimensional photonic crystal slab waveguides are an attractive method
of forming high-quality factor optical resonators with wavelength-scale modal volumes. Using simple symme-
try bases, and the tools of group theory, we develop an approximate description of the resonant modes of
different photonic crystal defect cavities. Comparison to numerical simulations as well as photoluminescence
measurements of actual microfabricated devices demonstrates the power of this modest symmetry analysis in
describing the localized defect states within photonic crystals.
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I. INTRODUCTION

Planar two-dimensional~2D! photonic crystal~PC! slab
waveguide~WG! structures1–3 have been the focus of muc
research in recent years since they are a promising arch
ture for future generations of high-density lightwave circui
In-plane waveguides,4–7 coupled-resonator-waveguid
systems,8–10 and add-drop devices11,12 are amongst the de
vices in which recent progress has been made. Another
of particular interest is the development of wavelength-sc
mode volume, high-quality~high-Q) factor optical resona-
tors within PC slab WGs. In such structures, local modifi
tions ~defects! of the photonic lattice have been used to fo
nanometer-scale lasers which trap light to volumes clos
the theoretical limit of a cubic half wavelength.13–16 Ad-
vances in fabrication have reached the point where pla
lithography allows for the precise control of the defect g
ometry in these systems.17 Such control has been used
create optical cavities with defect mode resonances o
given polarization, frequency, and emission pattern.18

The design of PC-based optical elements has often re
on numerical simulations using methods such as fin
difference time domain~FDTD!.14 While FDTD provides a
wealth of detailed information about the system under c
sideration, it has the drawback of being rather computati
ally intensive and time consuming. In this paper an appro
mate analytic technique is presented which uses symm
and the methods of group theory to analyze and classify
modes of resonant cavities formed in 2D PC slab WG str
tures. This technique determines the symmetry of the mo
that form and their dominant Fourier components, fro
which one can extract information regarding the far-fie
emission pattern as well as the polarization of the reson
modes. The symmetry analysis can also be used as a to
designing high-Q cavity modes19 and low-loss waveguides20

in 2D PC slabs, predicting the type of crystal lattice and
position of point and linear defects within the crystal whi
will produce localized modes with reduced in-plane and v
tical loss.

The principle thrust of the paper is contained in Sec.
which outlines the application of group theory in produci
an approximate description of the resonant modes of the
0163-1829/2003/68~3!/035110~23!/$20.00 68 0351
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fect cavities in hexagonal and square host photonic lattic
Section III then presents the results of FDTD simulatio
confirming the results of the approximate group-theo
analysis while providing detailed properties of the defe
mode resonances beyond the scope of the simple symm
analysis. Experimental data in the form of spectrosco
probing through photoluminescence~PL! measurements o
fabricated devices are also given, completing a study of th
devices that began at the very fundamental level of exam
ing their symmetries.

II. SYMMETRY ANALYSIS

The spatial symmetries within Maxwell’s equations a
determined by the translation and rotary-reflection symm
tries of the dielectric function,e(r ).21,22The theory of space
groups23 can then be used to predict and categorize the re
nant modes of defects within PC structures. A two-step p
cess is implemented here. First, modes of the unpertur
slab waveguide are used as a symmetry basis to gen
approximate field patterns for the PC modes at the hi
symmetry points of the first Brillouin zone~IBZ! boundary.
The curvature of the photonic bands at these points are s
that peaks and valleys are created in the energy-momen
dispersion surface. Invoking an equivalent Wannier theor
for photons24 one can argue that it is these peaks and vall
that are the seeds from which localized states are formed~see
the Appendix!. The second step in our approach then utiliz
the PC band-edge states created from the unperturbed
waveguide mode symmetry basis to generate approxim
forms for the localized defect modes lying within the ba
gap.

The host PC structures that we consider in this paper c
sist of a symmetric planar geometry with a tw
dimensionally patterned core layer surrounded by spati
uniform cladding layers. A structure which has been the ba
of many previously fabricated devices16 is depicted in cross
section in Fig. 1~a!. The semiconductor core dielectric mat
rial has an approximate refractive index of 3.4, and the cl
ding in thesemembrane-type structures is air with a refrac
tive index of 1. For the structures studied in this and t
following sections, the ratio of the core thickness,d, to lat-
tice parameter,a, is chosen so as to maintain the single-mo
©2003 The American Physical Society10-1
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OSKAR PAINTER AND KARTIK SRINIVASAN PHYSICAL REVIEW B 68, 035110 ~2003!
nature of the vertical waveguide for wavelengths within t
first-order guided-mode band gap of the PC lattice. T
modes of a symmetric slab waveguide, patterned or un
terned, separate into modes of even or odd parity with
spect to a mirror plane in the middle of the dielectric slab.
interest here are thefundamentalguided modes, which for
the slab thicknesses of the devices analyzed in Sec. III, h
a wavelength commensurate with the emission band of
quantum wells. Limiting our analysis to the fundamen
guided modes of the PC slab effectively reduces the sp
dimension of the problem from three to two.

For these symmetric quasi-2D systems, within the mir
plane of the waveguide the fundamental even and odd mo
can be represented by scalar fieldsBz andEz , respectively.
As has been described elsewhere,25 for connected 2D lattices
such as those investigated here the extent of the phot
band gap for modes with electric-field polarization in t
plane of the 2D patterning~TE! is larger than for modes with
normal electric-field polarization~TM!. Although the funda-
mental even and odd modes of the quasi-2D patterned
are not purely TE or TM polarized they are significan
TE-like or TM-like in nature, respectively. For this reaso

FIG. 1. ~a! Illustration of the two-dimensional hexagonal P
slab waveguide structure.~b! In-plane band structure; fundament
TE-like ~even! guided-mode band structure (r /a50.36,nslab5neff

52.65). The guided-mode band gap extends over a normal
frequency of 0.29–0.41. The air~cladding! light line is shown as a
solid black line.
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and the fact that the active region of the light-emitting d
vices studied in Sec. III predominantly couples to TE pol
ized light,26 we will focus our attention in this paper on th
fundamental even modes of the 2D PC waveguides wh
are TE-like. In the analysis below we consider for the h
PC lattice two of the most common 2D geometries, t
square lattice and the hexagonal or trigonal lattice. We be
with an analysis of the hexagonal lattice.

A. Hexagonal lattice

The point-group symmetry of a 2D hexagonal PC isD6h .
Extruding the 2D PC into a symmetric 3D waveguide stru
ture gives a single horizontal mirror plane (sh) lying in the
waveguide center. As alluded to above, for the hexagonal
slab waveguide of Fig. 1~a!, a band gap opens up in th
frequency spectrum of the fundamental even guided mo
but not in the fundamental odd mode spectrum.14 Narrowing
our scope to TE-like modes of a symmetric slab, the po
group symmetry of the hexagonal PC system can be ef
tively reduced toC6v5D6h /sh . A plot of the approximate27

in-plane band structure for the fundamental TE-like guid
modes of a half-wavelength thick hexagonally patterned s
waveguide is given in Fig. 1~b!.

For the TE-like fundamental even eigenmodes of the
patterned slab waveguide, within the mirror plane of the s
the magnetic-field pattern can be written asBk�

(r')

5 ẑe2 i (k�•r'), wherek' and r' are in-plane wave-numbe
and spatial coordinates, respectively~in order to simplify no-
tation we drop the' label in the equations which follow!.
Upon patterning the slab waveguide, coupling occurs
tween waveguide modes with similar unperturbed frequ
cies and identical propagation constants modulo a recipro
lattice vector G. This follows from the approximate
conservation of frequency~kinematic treatment! and the ex-
act conservation of crystal momentum. Of particular inter
for the resonant-cavity designs and devices described be
are those modes which comprise the frequency bands d
ing the first-order band gap. The Bloch modes at the b
edges defining the first-order band gap are predomina
formed from modes of the unpatterned waveguide with
in-plane wave vector lying at the boundary of the IBZ; oth
unpatterned waveguide modes with additional in-plane m
mentum equal to some integer multiple of a reciprocal-latt
vector contribute much less, owing to their large~unper-
turbed! frequency difference. For the symmetry analysis d
scribed here we will be satisfied with considering the con
bution from only the degenerate lowest-frequen
unpatterned waveguide modes at the first zone boundary

The high-symmetry points within and on the boundary
the IBZ of the hexagonal lattice are@see Fig. 2~b!# the sixX
points @$6(0,1)kX , 6(A3/2,1/2)kX , 6(A3/2,21/2)kX%],
the six J points @$6(1/2,A3/2)kJ , 6(1/2,2A3/2)kJ ,
6(1,0)kJ%], and theG point (0,0). The first-order band ga
of the hexagonal lattice@see Fig. 1~b!# is defined from above
by the X point and below by theJ point. In analogy to the
electronic bands in semiconductor crystals we term the h
frequency band defining the first-order band gap the ‘‘co
duction’’ band, and the low-frequency band the ‘‘valenc

ed
0-2
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band. In the approximate analysis of the defect states to
low we will need to include all the degenerate satellite pe
~conduction band! and valleys~valence band!. The group of
the wave vector, which defines the point-group symmetry
a plane-wave moduloG within the dielectric lattice, is for
the X, J, andG points of the hexagonal latticesC2v , C3v ,
andC6v , respectively. Character tables28 for these groups are
given in Table I.

1. X point

For the frequency bands defining the first-order band g
the unpatterned waveguide modes which are most stro
coupled together to form the Bloch modes at theX point are
in our quasi-2D picture given byB5 ẑe2 ikXi

•r, where i
51,2, . . . ,6. Theunperturbed frequencies of these mod
are degenerate and can be written asvo

X'cukXu/neff , where
neff is an effective index taking into account the vertic
waveguiding perpendicular to the slab.

The star ofk (* k) at theX point, formed from the inde-
pendent satelliteX points within the IBZ, consists~not
uniquely! of wave vectors$kX1

,kX2
,kX3

%, all otherX points
being equivalent to one of these vectors modulo a recipro
lattice vector. A symmetry basis for the modes of the p

FIG. 2. Illustrations of the real and reciprocal spaces of
two-dimensional hexagonal PC. The high-symmetry points of
hexagonal lattice, referenced to the center of an air hole, aa
5(0,0), b5(a/2,0), andc5(0,a/A3). ~a! Real-space lattice.ua1u
5ua2u5a. ~b! Reciprocal space.uG1u5uG2u54p/A3a, ukXu
52p/A3a, andukJu54p/3a.
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terned slab waveguide at theX1-satellite point, the irreduc-
ible representations~IRREPs! of the little group at theX
point, can be found by applying the symmetry operations
the group of the wave vector (GokX

5C2v) to the seed vector

BkX1
. In this case, the basis is simply (BkX1

,B2kX1
). Project-

ing this symmetry basis onto the IRREP spaces ofC2v yields

BA2

X15 ẑ cos~kX1
•ra!,

BB1

X15 ẑ sin~kX1
•ra!, ~1!

whereA2 andB1 label the IRREP spaces ofC2v ~see Table
I!, and the indexa is used to denote the location of the orig
within the hexagonal lattice@marked in Fig. 2~a!#. Since the
magnetic field ofBA2

X1 overlaps strongly with the air holes o

the hexagonal PC~its electric field lying largely in the di-

e
e

TABLE I. Point-group character tables.

C6v E C2 2C3 2C6 3sd 3sv

A19 1 1 1 1 1 1
A29 1 1 1 1 21 21
B19 1 21 1 21 1 21
B29 1 21 1 21 21 1
E1 2 22 21 1 0 0
E2 2 2 21 21 0 0
Sa,d1 3 23 0 0 1 21
Sa,a1 2 0 2 0 22 0
Sa,a2 3 3 0 0 21 21

C2v E C2 sx(sv1) sy(sd2)

A1 1 1 1 1
A2 1 1 21 21
B1 1 21 21 1
B2 1 21 1 21
Sa,d1 3 23 21 1
Sb,d1 3 1 21 1
Sa,a1 2 0 0 22
Sa,a2 3 3 21 21
Sb,a1 3 3 21 21

C3v,sd
E 2C3 3sd

A18 1 1 1
A28 1 1 21
E 2 21 0

C3v,sv
E 2C3 3sv

A1- 1 1 1
A2- 1 1 21
E 2 21 0
Sc,d1 3 0 21
Sc,a1 2 21 0
0-3
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FIG. 3. Magnetic-field~amplitude! patterns of the valence-band modes of the hexagonal lattice at the three differentX points generated
by the symmetry basisVBa
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electric! it represents the lower-frequency ‘‘valence’’-ban
mode, whileBB1

X1 represents the ‘‘conduction’’-band mod

This is a result of the tendency for modes with electric fie
concentrated within regions of high dielectric constant to
lower frequency than those with electric field concentrated
low dielectric regions.25

In order to fully define the modes at theX point all modes
of the *k must be included. The point symmetry operatio
of the full point group of the hexagonal lattice not includ
in the group of the wave vector, the coset generators, ma
used to generate the modes of all the degenerate sat
points within the *k. In the case of theX point this corre-
sponds to successive rotations byp/6 (C6 rotation!. The re-
sult is the following set of degenerate valence-band mod

VBa
X5S vX1

vX2

vX3

D 5 ẑF cos~kX1
•ra!

cos~kX2
•ra!

cos~kX3
•ra!

G , ~2!
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and degenerate conduction-band modes,

CBa
X5S cX1

cX2

cX3

D 5 ẑF sin~kX1
•ra!

sin~kX2
•ra!

sin~kX3
•ra!

G . ~3!

Figures 3 and 4 show the magnetic-field amplitudes for e
of the valence- and conduction-band modes at all the sate
X points of the hexagonal lattice.

2. J point

A similar procedure may be performed in order to det
mine approximate forms for the TE-like valence- a
conduction-band modes of the hexagonal lattice at thJ
point of the IBZ. Approximate forms for the valence-ban
edge and conduction-band-edge modes at theJ point are
~with point a taken as the origin!:
FIG. 4. Magnetic-field~amplitude! patterns of the conduction-band modes of the hexagonal lattice at the three differentX points
generated by the symmetry basisCBa

X .
0-4
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FIG. 5. Magnetic-field~amplitude! patterns of
the valence-band modes of the hexagonal latt
at the J point generated by the symmetry bas
VBa
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VBa
J5S vJ1

vJ2

D 5 ẑS e2 ikJ1
•ra

1e2 ikJ3
•ra

1e2 ikJ5
•ra

e2 ikJ2
•ra

1e2 ikJ4
•ra

1e2 ikJ6
•raD , ~4!

CBa
J5S c1J1

c2J1

c1J2

c2J2

D 5 ẑS e2 ikJ1
•ra

1e2 ikJ3
•ra

22e2 ikJ5
•ra

e2 ikJ1
•ra

2e2 ikJ3
•ra

e2 ikJ2
•ra

1e2 ikJ4
•ra

22e2 ikJ6
•ra

e2 ikJ2
•ra

2e2 ikJ4
•ra

D .

~5!

Figures 5 and 6 show the magnetic-field amplitudes for e
of the valence- and conduction-band modes at theJ point of
the hexagonal lattice. Although not obvious from first inspe
tion of Eqs.~4! and ~5!, the plots in these two figures sho
that the modes of the symmetry basisVBa

J have magnetic-
field amplitude predominantly overlapping the air hol
while the magnetic-field amplitudes of the modes ofCBa

J

overlap the dielectric regions, a property that allows us
classify the modes as valence- and conduction-band, res
tively. This result is also quite encouraging, given the f
that our symmetry basis is quite primitive and yet can rep
duce this property of the valence- and conduction-ba
modes so critical to the formation of a frequency band g

The approximate valence- and conduction-band-e
modes derived above all have their origin at the center o
air hole of the lattice. The hexagonal lattice has two ot
high-symmetry points around which one may center a def
points b and c shown in Fig. 2~a!. Unlike point a, pointsb
and c are of lower symmetry than the point group of th
hexagonal lattice. A defect centered about pointb will be
limited to a point group of symmetryC2v , and those abou
point c to point groupC3v,sv

. The point-group symmetry
operations for each of these types of defects are cent
about different points within the lattice. So as to be cle
about the position of the origin to be used for point symm
try operations, we label the Bloch mode symmetry ba
with an index corresponding to the location of the orig
around which it is expanded, the point symmetry operati
assumed to act about this point. For example,VBb

X is the
X-point valence-band basis of Eq.~2! written in a shifted
03511
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coordinate system with pointb at the origin. In the equations
to follow, ra, rb, andr c are coordinate systems with origin
located at pointsa, b, andc of the hexagonal lattice, respec
tively.

3. Conduction-band donor modes

In an attempt to form localized resonances, the dielec
constant in a small region of a periodic photonic crystal l
tice may be altered from its unperturbed value, breaking
regular periodicity of the lattice and mixing the Bloc
modes. If the perturbation corresponds to a local increas
the dielectric constant, then the localized modes are form
predominantly from the conduction-band modes, specifica
the modes at the band edge. This is a result of the tende
for mode frequencies to decrease with increasing dielec
constant,25 pulling the conduction-band-edge modes into t
band gap of the photonic crystal near the defect. This type
localized mode is termed a donor mode in analogy to
electronic defect states in crystalline materials.

For the hexagonal PC lattice the minimum in the cond
tion band occurs at theX point @see Fig. 1~b!#. Therefore, the
appropriate symmetry basis to use for describing locali
donor modes are the degenerate conduction-band-e
modes ofCBa

X , CBb
X , andCBc

X for defect regions centere
around pointsa, b, and c of the hexagonal lattice, respec
tively ~note that these are all the same bases, just writte
shifted coordinate systems!. For defect regions centere
about pointa the largest possible symmetry is that of th
underlying hexagonal lattice,C6v , whereas for defects abou
point b and pointc the largest point-group symmetries a
C2v andC3v,sv

, respectively. Correspondingly, the charac

values of representationSa,d1 of the CBa
X basis underC6v ,

representationSb,d1 of the CBb
X basis underC2v , and repre-

sentationSc,d1 of the CBc
X basis underC3v,sv

are given in
Table I. From the character tables we find that these re
sentations decompose asSa,d15E1% B19 , Sb,d15A1% A2

% B1 , andSc,d15E% A2- . Using the appropriate projectio
operators28 on CBa

X , CBb
X , and CBc

X , a set of basis func-
tions for the localized conduction-band donor modes
found to be
0-5
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FIG. 6. Magnetic-field~amplitude! patterns of
the conduction-band modes of the hexagonal l
tice at theJ point generated by the symmetry ba
sis CBa
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a,d1
5 ẑ@sin~kX1

•ra!2sin~kX2
•ra!1sin~kX3

•ra!#,

BE1,1
a,d15 ẑ@2 sin~kX1

•ra!1sin~kX2
•ra!2sin~kX3

•ra!#,

BE1,2
a,d15 ẑ@sin~kX2

•ra!1sin~kX3
•ra!#, ~6!

for defects centered about pointa of the hexagonal lattice,

BA1

b,d15 ẑ@cos~kX2
•rb!2cos~kX3

•rb!#,

BA2

b,d15 ẑ@cos~kX2
•rb!1cos~kX3

•rb!#,

BB1

b,d15 ẑ@sin~kX1
•rb!#, ~7!

for defects centered about pointb, and

BA
2-

c,d1
5 ẑFsinS kX1

•r c2
p

3 D2sinS kX2
•r c1

p

3 D
1sinS kX3

•r c2
p

3 D G ,

03511
BE,1
c,d15 ẑF2 sinS kX1

•r c2
p

3 D1sinS kX2
•r c1

p

3 D
2sinS kX3

•r c2
p

3 D G ,
BE,2

c,d15 ẑFsinS kX2
•r c1

p

3 D1sinS kX3
•r c2

p

3 D G , ~8!

for defects centered about pointc. Figure 7 shows plots of
the amplitude of theẑ component of the magnetic field fo
each of the localized donor modes centered about pointa of
the hexagonal lattice generated by the symmetry analy
The localized donor modes centered about pointsb andc are
shown in Figs. 8 and 9, respectively.

In the above-mentioned plots of the defect modes~and in
all plots generated from the symmetry analysis to follow!,
the localization of each mode has been taken into accoun
multiplying a two-dimensional Gaussian envelope functi
with each dominant Fourier component, where the two a
of the Gaussian envelope are taken as parallel and per
dicular to the direction of the Fourier component. This set
envelope function transforms as the identity under symme
operations of the group of the wave vector, and as such d
not alter the transformation properties of eachk component.
Consequently, the IRREP classification of the defect mo
given above is maintained. This particular choice of en
0-6
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FIG. 7. Magnetic-field amplitude of the symmetry analysis conduction-band donor modes centered about pointa of the hexagonal
lattice.
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lope function, apart from symmetry, is rather arbitrary, on
chosen to capture the localized nature of the defect mo
and highlight the dominant Fourier components. In the A
pendix A, a Wannier-like equation for the envelope of loc
ized photon states is studied and shown to have ground-
solutions invariant under those elements of the group of
wave vector that are also symmetries of the defect pertu
tion. The ground-state envelope solutions of the Appendix
then, leave the IRREP classification of the above analysis
the defect modes unchanged.

From the form of the Wannier-like Eq.~A7!, it is apparent
for cases in which the local band structure is approxima
parabolic in nature~defined by an effective-mass tensor d
agonal along orthogonal directions parallel and perpend
lar to the band-edgek point! that the Gaussian envelop
functions employed above will qualitatively describe t
shape of the envelope of the defect mode. In other cases
will not be true, such as that for defect perturbation with
reduced symmetry relative to the group of the wave vec
or for the localized modes formed from regions ofk space
where the local band structure is not approximated simply
03511
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a paraboloid. The important comparisons to numerical ca
lations and experimental data to be made in this paper
based upon the symmetry and dominant Fourier compon
of each mode, not the accuracy to which the envelope
approximated. It suffices here then to be satisfied that
IRREP classification and dominant Fourier components
correct, and remain unchanged for the ground-state enve
functions of the Appendix A.

Returning to Eq.~6! describing the localized donor mode
about point a of the hexagonal lattice, we note that th
(d1,B19) donor mode transforms like a hexapole, whereas
degenerate (d1,E1) modes transform as an (x,y)-dipole pair.
By introducing defect regions with lower symmetry than th
of the host photonic lattice one is able to remove degen
cies in the localized mode spectrum. TheX-split andY-split
cavities studied in Sec. III have a defect region withC2v
symmetry as opposed to the fullC6v symmetry of the lattice.
The effects of this symmetry lowering can be simply det
mined using group theory by virtue of the compatibility r
lations between the IRREPs of the full and reduced symm
try groups:
FIG. 8. Magnetic-field amplitude of the symmetry analysis conduction-band donor modes centered about pointb of the hexagonal
lattice.
0-7
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FIG. 9. Magnetic-field amplitude of the symmetry analysis conduction-band donor modes centered about pointc of the hexagonal
lattice.
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C6v→C2v ,

BB
19

a,d1→BB1

a,d1,1,

BE1,1
a,d1→BB1

a,d1,2 ~x dipole!,

BE1,2
a,d1→BB2

a,d1 ~y dipole!. ~9!

In the cases of theX- andY-split cavities withC2v symmetry,
group theory predicts the splitting of the degenerate dipo
like modes intox- and y-dipole-like modes with differing
frequencies. This is borne out both in the numerical simu
tions and in the experimental measurements of Sec. III
low.

4. Valence-band acceptor modes

If the dielectric constant had been reduced in a small
gion within the photonic lattice, by enlarging an air hole, f
instance, then instead of pulling the conduction-band mo
down into the photonic crystal band gap the valence-b
modes are ‘‘pushed’’ up into the band gap. In this case mo
localized to the defect region are formed predominantly fr
03511
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mixtures of Bloch modes from the valence-band edge. T
type of defect mode is termed an acceptor mode, agai
analogy to the electronic states in a crystal. For the hexa
nal lattice the maximum of the valence band occurs at thJ
point @see Fig. 1~b!#. As in the previous section, the obviou
symmetry basis to use to describe the acceptor modes is
set of degenerate valence-band modes at theJ point, VBa

J in
the case of defects centered around pointa, and VBb

J and
VBc

J for defects about pointsb andc, respectively.
The characters of the representationSa,a1 of VBa

J under
the C6v point symmetry group, the representationSb,a1 of
VBb

J underC2v , and the representationSc,a1 of VBc
J under

C3v,sv
are given in Table I.Sa,a1 decomposes into irreduc

ible blocks A29% B29 , Sb,a15A2% B2 , and Sc,a15E. Using
the projection operators, the basis functionsVBa

J are coupled
together to form the following localized acceptor mod
about pointa:

BA
29

a,a1
5 ẑ@cos~kJ1

•ra!1cos~kJ3
•ra!1cos~kJ5

•ra!#,

BB
29

a,a1
5 ẑ@sin~kJ1

•ra!1sin~kJ3
•ra!1sin~kJ5

•ra!#. ~10!
-
en-
FIG. 10. Magnetic-field patterns of the sym
metry analysis valence-band acceptor modes c
tered about pointa of the hexagonal lattice.
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LOCALIZED DEFECT STATES IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 035110 ~2003!
FIG. 11. Magnetic-field patterns of the sym
metry analysis valence-band acceptor modes c
tered about pointb of the hexagonal lattice.
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Similarly, projecting the basis functionsVBb
J onto the IR-

REPs ofC2v and the basis functionsVBc
J onto the IRREPs of

C3v,sv
, we get for the acceptor modes about pointb

BA2

b,a15 ẑ@cos~kJ1
•rb!1cos~kJ3

•rb!2cos~kJ5
•rb!#,

BB2

b,a15 ẑ@sin~kJ1
•rb!1sin~kJ3

•rb!2sin~kJ5
•rb!#, ~11!

and the acceptor modes about pointc

BE,1
c,a15 ẑFcosS kJ1

•r c1
2p

3 D
1cosS kJ3

•r c2
2p

3 D1cos~kJ5
•r c!G ,

BE,2
c,a15 ẑFsinS kJ1

•r c1
2p

3 D
1sinS kJ3

•r c2
2p

3 D1sin~kJ5
•r c!G . ~12!

Figure 10 shows plots of theẑ component of the magneti
field for each of the localized acceptor modes centered a
point a of the hexagonal lattice generated by the symme
03511
ut
y

analysis. The localized acceptor modes centered about p
b andc are shown in Figs. 11 and 12.

In the X- and Y-split cavities withC2v symmetry,BA
29

a,a1

andBB
29

a,a1
transform asA2 andB2 IRREPs, respectively:

C6v→C2v ,

BA
29

a,a1→Ba,A2

a1 ,

BB
29

a,a1→Ba,B2

a1 . ~13!

For defect regions which strongly perturb the photon
lattice it is possible that a larger number of localized def
modes will form that can be described by the limited sy
metry basis used above. This is the case for theY-split cavity
described in Sec. III, where the defect region is compose
two enlarged holes and has a relatively deep potential w
for acceptor modes. As a result, in the FDTD simulations a
the PL measurements of theY-split cavity an additional shal-
low acceptor-type mode (Y-A20), not covered by theVBa

J

symmetry basis, is present.
In order to capture more fully the possible defect mod

in a deep potential well, the symmetry basis can be expan
in a number of ways. One method would be to modulate
-
en-
FIG. 12. Magnetic-field patterns of the sym
metry analysis valence-band acceptor modes c
tered about pointc of the hexagonal lattice.
0-9
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FIG. 13. Magnetic-field patterns of the symmetry analysis acceptor modes formed from the valence-band modes at theX point of the
hexagonal lattice.
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current symmetry basis (VBa
J) by a set of higher-order enve

lope functions which contain extra nodes and antinodes. T
would be more applicable in cases where there is a m
greater distinction between the length scales for the de
region and the underlying lattice.29 Another technique, which
could be used in the case of theY-split cavity, is to enlarge
the starting symmetry basis by solving for the localized
ceptor modes of each enlarged hole within theY-split cavity
separately, and then to couple the two basis sets. The s
metry basis in this case includes two copies of the acce
modes given in Eq.~10!, which are spatially separated by th
distance between the two enlarged holes. This method w
well for enlarged holes which are significantly displaced
as to be weakly coupled. For the closely spaced enlar
holes of theY-split cavity it is more appropriate to treat th
two enlarged holes as a single perturbation of the photo
lattice.

A third method, which will be adopted here, is based up
the observation that for defect regions which provide a d
potential well it is also possible that defect modes will for
which are composed of unperturbed photonic crystal mo
located not just at the edge of the band gap, but also at o
nearby ~in frequency! high-symmetryk points within the
IBZ. In order to represent these additional localized reson
modes the unperturbed photonic crystal modes at the a
tional high-symmetryk points must be included in the sym
metry basis. For the hexagonal lattice the valence band a
X point is close in frequency to the band-gap edge at thJ
point @see Fig. 1~b!#. The symmetry basis for theX-point
valence-band edge is the triply degenerateVBa

X basis set.
The representation ofVBa

X underC6v , labeledSa,a2, has the
character values shown in Table I and decomposes into
ducible spacesE2 andA29 . The acceptor-type modes forme
from theX-point valence-band modes in a symmetric def
cavity centered about pointa in the lattice are

BA
29

a,a2
5 ẑ@cos~kX1

•ra!1cos~kX2
•ra!1cos~kX3

•ra!#,

BE2,1
a,a25 ẑ@2 cos~kX1

•ra!2cos~kX2
•ra!2cos~kX3

•ra!#,
03511
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BE2,2
a,a25 ẑ@cos~kX2

•ra!2cos~kX3
•ra!#. ~14!

TheY-split cavity does not haveC6v symmetry, but rather
C2v symmetry. This reduction of symmetry causes theE2

IRREP space to split intoA1% A2 , and theA29 space to trans-
fer over into anA2 IRREP space:

C6v→C2v ,

BA
29

a,a2→BA2

a,a2,1,

BE2,1
a,a2→BA2

a,a2,2,

BE2,2
a,a2→BA1

a,a2 . ~15!

Figure 13 shows the magnetic-field patterns of the acce
modes predicted by the symmetry analysis to form out of
valence band at theX point. The shallow acceptor mod
(Y-A20) found in theY-split FDTD simulations of the nex
section transforms as theA2 IRREP underC2v symmetry
operations. The dominant Fourier component within t
FDTD-generated field pattern ofY-A20 is kX1

, from which

we can conclude that this mode is given byBA2

a,a2,2 as op-

posed toBA2

a,a2,1.

B. Square lattice

As with the hexagonal lattice we concern ourselves h
with only the fundamental even modes~TE-like! of the slab
waveguide. The point-group symmetry of the square latt
photonic crystal can then be reduced toC4v5D4h /sh . A
plot of the approximate in-plane band structure for the fu
damental TE-like guided modes of a half-wavelength th
slab waveguide with a square array patterning of air hole
given in Fig. 14.

The high-symmetry points on the boundary or within t
IBZ are @see Fig. 15~b!# the four X points @$6(1,0)kX ,
6(0,1)kX%], the four M points @(6A2/2, 6A2/2)kM], and
the G-point (0,0). The first-order band edges of the squ
0-10
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LOCALIZED DEFECT STATES IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 035110 ~2003!
lattice ~see Fig. 14! are defined from above by theX point
~‘‘conduction’’-band edge! and below by theM point
~‘‘valence’’-band edge!. The groups of the wave vector at th
X, M, and G points areC2v , C4v , and C4v , respectively.
Character tables28 for the two groups are given in Table II.

FIG. 14. Fundamental TE-like~even! guided-mode band struc
ture (r /a50.35, nslab5neff 52.65) for a square lattice of air holes
The guided-mode band gap is seen to be much smaller for
square lattice than that in the case of the hexagonal lattice. Th
~cladding! light line is shown as a solid black line.

FIG. 15. Illustration of the real and reciprocal spaces of
two-dimensional PC with a square array of air holes. The hi
symmetry points of the square lattice, referenced to the center o
air hole, ared5(0,0), e5(0,a/2), andf5(a/2,a/2). ~a! Real-space
lattice. ua1u5ua2u5a. ~b! Reciprocal space.uG1u5uG2u52p/a,
ukXu5p/a, andukMu5A2p/a.
03511
1. X point

A symmetry basis for the modes of the square lattice
at theX point can be found by applying the symmetry o
erations of the group of the wave vector (GokX

5C2v) to the

seed vector BkX1
. In this case, the basis is simpl

(BkX1
,B2kX1

). Projecting this symmetry basis onto the IR

REP spaces ofC2v yields

BA2

X15 ẑ cos~kX1
•r !,

BB1

X15 ẑ sin~kX1
•r !, ~16!

where A2 and B1 label the IRREP spaces ofC2v,sv
~see

Table II!. With the origin at the center of an air hole of th
lattice ~point d of Fig. 15!, BA2

X1 corresponds to the

‘‘valence’’-band mode andBB1

X1 to the ‘‘conduction’’-band

mode.
In order to fully define the modes at theX point all modes

of the *k must be included. The result is the following set
degenerate valence-band modes,

VBd
X5S vX1

vX2

D 5 ẑF cos~kX1
•rd!

cos~kX2
•rd!G . ~17!

and degenerate conduction-band modes,

he
air

e
-
an

TABLE II. Point-group character tables for the square lattice.

C4v E C2 2C4 2sv 2sd

A19 1 1 1 1 1
A29 1 1 1 21 21
B19 1 1 21 1 21
B29 1 1 21 21 1
E 2 22 0 0 0
SM 4 0 0 0 22
Sd,d1 2 22 0 0 0
Sf ,d1 2 2 0 22 0

C2v,sd
E C2 sx8(sd1) sy8(sd2)

A18 1 1 1 1
A28 1 1 21 21
B18 1 21 21 1
B28 1 21 1 21

C2v,sv
E C2 sx(sv1) sy(sv2)

A1 1 1 1 1
A2 1 1 21 21
B1 1 21 21 1
B2 1 21 1 21
SX1 2 0 0 22
Se,d1 2 0 0 22
0-11
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FIG. 16. Magnetic-field~amplitude! patterns
of the valence-band modes of the square lattice
theX points of the IBZ generated by the symm
try basisVBd
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CBd
X5S cX1

cX2

D 5 ẑF sin~kX1
•rd!

sin~kX2
•rd!G . ~18!

The magnetic-field amplitude patterns of the approxim
valence- and conduction-band modes of the square lattic
theX points of the IBZ are given in Figs. 16 and 17, respe
tively.

2. M point

A similar procedure may be performed in order to det
mine approximate forms for the TE-like valence- a
conduction-band modes at theM point of the IBZ. The sym-
metry basis,SM, in this case includes all theM points of the
IBZ, SM5(BkM1

,BkM2
,B2kM1

,B2kM2
). As determined from

its character underC4v ~Table II!, SM5E% A29% B19 . The
doubly degenerate IRREPE must represent a higher-energ
level band since the conduction- and valence-band edge
nondegenerate at theM point as shown in Fig. 14. Using
only A29 andB19 , an approximate form for the valence-ban
edge and conduction-band-edge modes at theM point are
calculated by projecting the symmetry basis onto these
REP spaces. With the origin centered at pointd, the valence-
and conduction-band-edge modes are
03511
e
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VBd
M5~vM !5 ẑ@cos~kM1

•rd!1cos~kM2
•rd!# ~19!

CBd
M5~c1M !5 ẑ@cos~kM1

•rd!2cos~kM2
•rd!#. ~20!

Approximate modes for the degenerate higher-freque
conduction bands represented by the IRREPE are, in one
particular basis,

CBd
M ,25S c2M

c3M
D 5 ẑF sin~kM1

•rd!2sin~kM2
•rd!

sin~kM1
•rd!1sin~kM2

•rd!G . ~21!

These higher-frequency bands will be unimportant in o
present analysis where we focus on the band-edge m
defining the first-order band gap. The magnetic-field am
tude patterns of the valence- and conduction-band mo
at the M point of the IBZ of the square lattice are give
in Fig. 18.

In the square lattice there are three different hig
symmetry points around which one may center a defe
These points are labeledd, e, andf in Fig. 15. Pointsd andf
maintain theC4v point group of the square lattice, and poi
e has a lowered symmetry given by the point groupC2v,sv

.
As was done for the hexagonal lattice, Bloch mode symm
try bases written with their origin at pointsd, e, or f will be
at-
e

FIG. 17. Magnetic-field~amplitude! patterns
of the conduction-band modes of the square l
tice at theX points of the IBZ generated by th
symmetry basisCBd

X .
0-12
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FIG. 18. Magnetic-field~amplitude! patterns
of the valence- and conduction-band modes
the square lattice at theM points of the IBZ gen-
erated by the symmetry analysis (VBd

M and
CBd
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indexed as such. Coordinates centered about pointsd, e, and
f of the lattice are also labeled asrd, re, andr f , respectively.

3. Conduction-band donor modes

For the square PC lattice the minimum in the conduct
band occurs at theX point ~Fig. 14!. As described above
there are three different high-symmetry points within t
square lattice around which defects can be created~Fig. 15!.
For a highly symmetric defect centered at pointsd and f the
conduction-band-edge modes at theX point couple to form
resonant modes which transform as IRREPs ofC4v , whereas
for the lower-symmetry pointe the defect modes transform
as IRREPs ofC2v,sv

. The representations describing the w

in which theCBd
X , CBe

X , and CBf
X symmetry bases trans

form under the appropriate point group are given bySd,d1,
Se,d1, andSf ,d1, respectively. From their characters in Tab
II we find that Sd,d15E, Se,d15A2% B2, and Sf ,d15A29
% B29 . Projecting the symmetry bases onto the different
REPs gives the following conduction-band donor modes

BE,1
d,d15 ẑ@sin~kX1

•rd!#,

BE,2
d,d15 ẑ@sin~kX2

•rd!#, ~22!

centered about pointd,

BA2
e,d15 ẑ@cos~kX1

•re!#,

BB2
e,d15 ẑ@sin~kX2

•re!#, ~23!

centered about pointe, and

BA
29

f ,d1
5 ẑ@cos~kX1

•r f !1cos~kX2
•r f !#,

BB
29

f ,d1
5 ẑ@cos~kX1

•r f !2cos~kX2
•r f !#, ~24!

centered about pointf.
For the pointsd and f, defects may be formed with lowe

symmetry than that of theC4v symmetry of the square lat
tice. We may use the compatibility relations between the
REPs of the full and reduced symmetry groups to determ
03511
n

-

-
e

the new mode structure. For a defect ofC2v symmetry with
mirror planes along thex̂ and ŷ directions of Fig. 15~a!
(C2v,sv

) we have the following reduction for the defe
modes centered about pointsd and f:

C4v→C2v,sv
,

BE,1
d,d1→BB1

d,d1 ~x dipole!,

BE,2
d,d1→BB2

d,d1 ~y dipole!,

BA
29

f ,d1→BA2

f ,d1,1,

BB
29

f ,d1→BA2

f ,d1,2. ~25!

If instead, the defect at pointsd and f contain the mirror
planessd , the symmetry isC2v,sd

and the compatibility
relations give the mode decomposition

C4v→C2v,sd
,

BE,1
d,d11BE,2

d,d1→BB
18

d,d1
~x8 dipole!,

BE,1
d,d12BE,2

d,d1→BB
28

d,d1
~y8 dipole!,

BA
29

f ,d1→BA
28

f ,d1
,

BB
29

f ,d1→BA
18

f ,d1
. ~26!

Magnetic-field patterns of the different localized donor-ty
defect modes formed about pointsd, e, and f of the square
lattice are given in Fig. 19, where we have chosen to dec
pose the fields according toC2v,sv

.

4. Valence-band acceptor modes

For the square lattice the maximum of the valence ba
occurs at theM point ~Fig. 14!. For the square lattice the
valence-band-edge modes at theM point consist of a single
nondegenerate mode. This can be traced back to the fact
0-13
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FIG. 19. Magnetic-field patterns of the loca
ized donor modes centered about pointsd, e, and
f of the square lattice.
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theM point in the square lattice is highly symmetric, and t
group of the wave vector mixes all four of theM points on
the IBZ boundary. The symmetries and fundamental mom
tum components of the possible acceptor modes formed f
the M-point band-edge modes~the approximate defec
modes! are then trivially given by the singleM-point
valence-band-edge mode.

For the high-symmetry pointsd andf of the square lattice
assuming that the defect is symmetric enough so as to m
tain theC4v symmetry of the square lattice, the single acce
tor mode is

BA
29

d,a1
5 ẑ@cos~kM1

•rd!1cos~kM2
•rd!#, ~27!
03511
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about pointd, and

BB
19

f ,a1
5 ẑ@cos~kM1

•r f !2cos~kM2
•r f !#, ~28!

about pointf. The character of the representationSe
a1 of the

M-point valence-band-edge mode under symmetry trans
mationsC2v,sv

about pointe is given in Table II. From its

character,Se
a15B1 , the approximate acceptor mode of a d

fect centered about pointe is

BB1

e,a15 ẑ@sin~kM1
•re!2sin~kM2

•re!#. ~29!
0-14
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FIG. 20. Magnetic-field patterns of the acceptor-type modes formed by the valence-bandM-point modes of the square lattice.
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For defects of reduced symmetry about pointsd and f we
have the following compatibility relations:

C4v→C2v,sv
,

BA
29

d,a1→BA2

d,a1 ,

BB
19

f ,a1→BA1

f ,a1 , ~30!

C4v→C2v,sd
,

BA
29

d,a1→BA
28

d,a1
,

BB
19

f ,a1→BA
28

f ,a1
. ~31!

Figure 20 shows the magnetic-field patterns of the accep
type modes formed from theM point of the IBZ of the
square lattice for defects centered about pointsd, e, and f.
Again, as for the donor modes, the modes are shown for
C2v,sv

symmetry basis.
03511
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III. FDTD SIMULATIONS AND PHOTOLUMINESCENCE
MEASUREMENTS

In order to establish the effectiveness of the above sy
metry analysis of the modes of relatively localized defe
within photonic crystals, we provide in this section results
numerical calculations using the FDTD method14 and PL
measurements26 of actual microfabricated cavities. Th
FDTD simulation results provide information about the res
nant frequency, radiation pattern, and modal loss of PC
fect cavity resonant modes, whereas the PL measurem
relate both the symmetry and FDTD analyses to experim
tal data.

The FDTD calculations were performed on a mesh w
20 points per lattice spacing. Excitation of the cavity mod
was performed by an initial field (Bz) with a localized
Gaussian profile, located in a position of low symmetry so
not to exclude any possible resonant modes. The even m
of the patterned slab waveguide were selected out by u
an even mirror symmetry (sh511) in the middle of the
slab waveguide. In order to choose a consistent mode b
~only important for degenerate modes!, as well as to reduce
computation time, a pair of vertical mirror planes (sx ,sy)
were used to filter out cavity modes according to their p
FIG. 21. PC defect cavity geometries.~a! S cavity. ~b! X-split cavity. ~c! Y-split cavity.
0-15
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OSKAR PAINTER AND KARTIK SRINIVASAN PHYSICAL REVIEW B 68, 035110 ~2003!
jection on the IRREPs ofC2v . Each cavity mode is thus
labeled by theC2v IRREP by which it transforms and a
index corresponding to its energy~frequency! level.

For the PL measurements the PC structures were for
in a waveguide layer containing multiple InGaAsP quant
wells which emit light in the 1500-nm wavelength band26

Optical pumping was provided by a 830-nm semiconduc
laser diode, and the resulting PL was collected from a dir
tion normal to the surface of InGaAsP sample~vertical emis-
sion from the planar defect cavities!. A more detailed de-
scription of the fabrication process and measurement s
can be found in Ref. 21.

FIG. 22. FDTD and PL spectra of anS-type defect cavity with
a5515 nm, r /a50.36 nominally ~graded from the center out
wards, from 0.38–0.34!, nslab53.4, andd/a50.409. FDTD simu-
lation results are shown as a dashed line.
03511
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A. Symmetric „S… cavity

The simplest cavity geometry that can be readily imp
mented consists of a single missing hole@schematically
shown in Fig. 21~a!#. We will refer to this cavity since a
symmetric orS cavity as it retains the full point-group sym
metry of the hexagonal lattice (C6v). A FDTD simulated
spectrum of a defect cavity with a central missing hole an
linear grade30 in r /a ~from the center outwards! of 0.38–0.34
is plotted in Fig. 22 as a dashed line. The spectrum is plo
versus normalized frequency,vn5a/lo , wherea is the lat-
tice spacing andlo is the free-space wavelength. A norma
ized slab thickness,d/a, of 0.41 was used in the simulate
structures to be consistent with the fabricated devices.
reduce computation time, the number of mirror periods~p!
surrounding the central missing hole was limited to five
the simulations, save for the more extended modes for wh
cavities with eight periods were also simulated in order
more accurately estimate the modal losses present in the
ricated devices~see Table III!.

In Fig. 22, there appear to be two distinct resonance pe
within the guided-mode band gap of the TE-like modes. P
forming a mode filter14 using theC2v mirror planes, we find
that each resonance peak contains two different mo
yielding a total of four different localized modes whos
magnetic-field patterns within the mirror-symmetry plane
the slab are shown in Table III. The two resonant mod
~accidentally degenerate! associated with the peak near th
valence-band edge correspond to shallow acceptor~SA!
modes which transform as theA29 andB29 IRREPs ofC6v ,31

and have the same dominant in-plane Fourier componen
TABLE III. Characteristics and magnetic-field amplitude patterns of the resonant modes in a symmetric cavity withr /a linearly graded
from 0.38–0.34 (d/a50.409,nslab53.4, p55).
0-16



e

LOCALIZED DEFECT STATES IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 035110 ~2003!
FIG. 23. ~a! In-planex-dipole mode radiation patter.~b! In-planey-dipole mode radiation pattern.~c! Symmetry analysisx-dipole mode.
~d! Symmetry analysisy-dipole mode.~e! x-dipole vector plot.~f! y-dipole vector plot. In-plane radiation losses~electric-field amplitude
saturated! of the x- and y-dipole modes~degenerate case! are shown in~a! and ~b!, respectively. The electric-field amplitudes of th
corresponding defect modes generated by the symmetry analysis are shown in~c! and~d! for comparison. In~e! and~f! the vector plots of
the electric field of the (x,y)-dipole modes in the middle of the slab waveguide are shown.
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BA
29

a1
andBB

29
a1

of the symmetry analysis in Sec. II. The add

tion of these SA modes is a result of the linear grading
hole radius, which forms a potential well for acceptor-ty
modes. Of particular interest are the strongly localized p
of degenerate deep donor~DD! dipolelike modes near the
center of the band gap. From the plots of the electric-fi
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intensity of thex- andy-dipole modes shown in Figs. 23~a!
and 23~b!, we see that the fundamentalk components of the
x- and y-dipole-like modes correspond nicely with the a
proximate field patterns predicted by the symmetry analy
BE1,1

d1 represents thex-dipole mode andBE1,2
d1 the y-dipole

mode. Even the subtle difference in the in-plane radiat
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pattern of the (x,y)-dipole modes as calculated numerica
using FDTD is contained within the symmetry analysis
can be seen by the lack of a third standing-wave compon
in the y-dipole (BE1,2

d1 ) mode.

A PL spectrum from aS defect cavity witha5515 nm,
r /a'0.36, andd/a50.41 is shown overlaid upon the FDTD
simulation in Fig. 22. The emission from theS cavity also
shows the presence of two dominant peaks, one very clos
the DD peak and one close to the SA peak. Owing to
small scale of the photonic crystal defect cavities, the fi
patterns of the deep donor modes strongly resemble tha
an oscillating electric dipole. A vector plot of theE field of
thex- andy-dipole modes in the plane of the slab is shown
Figs. 23~c! and 23~d!. Polarization measurements of the D
peak32 confirm that the emission is polarized predominan
along two orthogonal directions consistent with thex- and
y-dipole directions. The experimental determination of t
absolute frequency of the DD dipole modes provides a
erence point from which to classify the rest of the cav
modes, and also provides a measure of the accuracy o
FDTD calculations.

A list of properties of the two SA and two DD localize
defect modes are given in Table III. The numerically calc
lated losses of each cavity mode are represented by effe
in-plane and out-of-plane quality factors,14 Quu andQ' , re-
spectively. The effective mode volume,Veff , is calculated
from an estimate of the full width at half maximum value
the electric-field energy density in each direction,33 and is
given in units of cubic half wavelengths. As a result of t
large porosity of the PC obtained during the fabricati
process,26 FDTD simulations predict a rather large vertic
diffraction loss~smallQ') for the highly localized dipolelike
modes. In contrast, the unintentionally introduced line
grade in hole radius provides sufficient in-plane localizat
to produce high-Q SA modes. For the fabricated defect cav
ties with eight periods of the photonic crystal mirror (p
58), the quality factor for theS-B20 mode is theoretically
estimated to be as high as 7500, limited by radiative losse
the plane of the photonic lattice. It is for this reason th
room-temperature lasing inSdefect cavities is limited to the
SA mode peak,21 and reduced temperatures are required
order for the DD dipolelike modes to lase~see Sec. III C!.

B. X split „X… cavity

Another type of defect cavity that was fabricated a
tested, referred to as theX-split cavity, is shown in Fig.
21~b!. In this cavity the four air holes on the top and botto
of the central missing hole are moved inwards a distanceDy,
reducing the defect symmetry fromC6v to C2v . In the fab-
ricated structuresDy;0.05a;25 nm. A FDTD spectrum of
an X-split cavity with Dy matching that of the fabricate
devices is plotted in Fig. 24. The magnetic-field amplitud
of the different resonant modes found in the FDTD spectr
are shown in Table IV. The deep donor (x,y)-dipole modes
are seen to split, as expected from the symmetry analys
the previous section, with thex dipole being higher in fre-
quency. The geometry of the cavity also introduces two sh
low acceptor modes,X-A20 andX-B20 . These are the sam
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modes as those found in theS cavity, in which the linear
grade in hole size created a potential well for addition
acceptor-type modes. As such, these modes have the
dominant in-plane Fourier components asBA2

a1 and BB2

a1 of

Sec. II.
Figure 24 also contains a PL spectrum for anX-split cav-

ity ( r /a50.3820.34,d/a50.409,Dy50.05a) overlaid upon
the FDTD spectrum. The PL spectrum shows the presenc
two pairs of resonance peaks. The SA and DD peaks of thS
cavity have each split into two distinct resonances. The
sitions of these peaks correspond well with those of
FDTD simulation, and allow for their identification~see
Table IV! using the nomenclature developed in Sec. II. T
classification is further supported by polarization measu
ments of the DD modes.32 These measurements show th
the two modes are highly polarized along orthogonal dir
tions, with the longer-wavelength peak identified as t
y-dipole mode and the shorter wavelength peak as
x-dipole mode.

FDTD calculated properties of the SA and DD resona
modes of theX-split cavity are listed in Table IV. As in theS
cavity the DD dipolelike modes are seen to be highly loc
ized; however, the vertical diffraction loss suffered by t
dipolelike modes is much more severe in the case of
X-split cavity, especially so for thex-dipole mode. This can
be seen in the PL spectrum of theX-split cavity in which the
higher-frequency DD peak is significantly broader than
lower-frequency partner. Room-temperature lasing~pulsed!
was limited to theX-A20 and X-B20 SA modes. Measure
ments of the threshold pump power of each SA mode from
large array of devices showed a consistently lower thresh
value for the higher-frequencyX-B20 mode,21 in agreement
with its higher estimatedQ value given in Table IV.

C. Y-split „Y… cavity

In the Y-split cavity, illustrated in Fig. 21~c!, the nearest-
neighbor holes on both sides of the central missing h
along theGJ direction are enlarged and moved slightly i
wards. The degree of splitting is measured byr 8/r , the scal-
ing factor of the enlarged holes. The cavities studied here
hole enlargements which result in a much stronger pertu
tion of the cavity than in theX-split case. A FDTD simula-

FIG. 24. PL and FDTD spectra showing the resonant mode
a X-split defect cavity withr /a50.3820.34, d/a50.409, nslab

53.4, andDy50.05a. FDTD simulation results are shown as
dashed line.
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TABLE IV. Characteristics and magnetic-field~amplitude! patterns of the resonant modes in anX-split cavity (r /a50.3820.34,d/a
50.409,nslab53.4,Dy50.05a,p55).
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tion showing the mode spectrum of aY-split cavity with the
two nearest-neighbor holes enlarged byr 8/r 51.5 is shown
in Fig. 25. The magnetic-field amplitudes of the various
calized defect modes of theY-split cavity are given in Table
V. There are now at least four different localized mod
within the photonic band gap. The two enlarged holes ac
centers for acceptor modes and give rise to two deep ac
tor ~DA! modes in the spectrum. These DA modes are
beled asY-A21 andY-B20 , and correspond to the SA mode
of theSandX-split cavities. The strength of the perturbatio
to the photonic lattice produces an additional SA mode
well. As noted in Sec. II, this mode has the same domin
in-plane Fourier components asBA2

a2,2 of the symmetry analy-

sis. We further note that the splitting of the (x,y)-dipole

FIG. 25. PL and FDTD spectra of the resonant modes i
Y-split defect cavity with r /a50.3820.34, r 8/a50.51, d/a
50.409, andnslab53.4. FDTD simulation results are shown as
dashed line.
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modes is so strong in this case that they-dipole mode is
completely pushed out of the band gap and only thex-dipole
mode remains.

The PL spectrum for aY-split cavity (r /a50.38
20.34,r 8/a50.51,d/a50.409), shown along with the
FDTD spectrum in Fig. 25, confirms many of the predictio
made by the group-theory and FDTD analyses. In particu
we note the presence of a SA peak, two DA peaks, an
single DD peak. Polarization measurements of this D
mode32 show it to be strongly polarized in a direction corr
sponding to thex-dipole mode. Table V also contains a list o
the FDTD calculated properties of theY-split cavity defect
modes. It is interesting to note that the DA modes are as w
localized as the DD dipolelike mode. The low-Q values of
the DA modes and thex-dipole mode are due to the large siz
of the splitting holes. Room-temperature~pulsed! lasing was
observed from all but the DDx-dipole mode in theY-split
cavities.21 At reduced temperatures (T,150 K), it was pos-
sible to obtain pulsed lasing action of thex-dipole mode.16

Since the DA modes have similarQ values to that of the
x-dipole mode, it is suspected that the difficulty in obtaini
lasing from the DD mode may have more to do with t
misalignment of the gain spectrum with the resonance wa
length of the defect cavities fabricated and tested in this
periment than with the modal loss.

IV. SUMMARY

The resonant modes of localized defects in hexagonal
square 2D photonic lattices have been examined analytic
through group-theoretical methods. Although the method

a
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TABLE V. Characteristics and magnetic-field~amplitude! patterns of the resonant modes in aY-split cavity (r /a50.3820.34,r 8/a
50.51,d/a50.409,nslab53.4,p58).
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the
general, the focus in this paper has been on the TE-like
damental even modes present in optically thin patterned
electric slab waveguides. Approximate mode patterns
those localized states formed within the lowest-freque
gap are determined for defects oriented around the h
symmetry points of the square and hexagonal lattices.
merical calculations using the FDTD method, along with
spectroscopy of microfabricated devices in InP, are prese
for defects of varying symmetry within the hexagonal latti
structure. The simple group-theory analysis is seen to
scribe the approximate behavior of the localized reson
modes in such devices, predicting not only the correct sy
metry of the modes but many of their subtle features. Exp
mental characterization of fabricated structures largely c
firms the accuracy of both FDTD and symmetry models. T
closeness of the correspondence illustrates the degre
which the emission properties of resonant modes of locali
defects within photonic crystals can bespecifiedby utilizing
a combination of the numerical and symmetry-based te
niques described in this paper.
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APPENDIX: SYMMETRY OF THE ENVELOPE

Implicit in the derivation of the symmetries and domina
Fourier components of the defect states described in Se
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were the transformation properties of the envelope functi
describing the localization of each mode. In those section
was assumed that the envelope functions transformed a
identity under all point symmetry operations of the defe
system. In this Appendix we utilize a Wannier-like equati
for localized photon states to study the transformation pr
erties of the ground-state envelope functions. Since the
fect modes studied in the previous sections were fundam
tal TE-like modes of a symmetric slab PC, we use her
scalar field theory in terms of the component of the magn
field normal to the slab.

In forming a defect state by perturbing the lattice in
localized region of space, the Bloch modes in proximity
the degenerate satellite extrema of a band edge, the$k i ; i
51,2, . . . ,M % points of the *k ~from here on reference to
the *k refers implicitly to the orbit of this band edge!, are
most strongly coupled together:34

Hd~r !5(
i

ci(
k

G̃ i~k2k i !
1

L
hl ,ke

ik•r, ~A1!

whereHd(r ) is the localized defect state,l labels the band
index, andk labels the in-plane crystal momentum. Th
Bloch waves of the unperturbed 2D lattice,Hl ,k , are written
as

Hl ,k5
1

L
hl ,k~r !eik•r, ~A2!

with L2 equal to the area of the 2D photonic crystal and
set of periodic functions,hl ,k(r ), at crystal momentumk,
0-20
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satisfying their own set of orthogonality relations~normal-
ized over the lattice unit cellv),

^hl 8,kuhl ,k&v[
1

vEv
d2rhl 8,k

* hl ,k5d l 8,l . ~A3!

The G̃ i are a set of Fourier space envelope functio
which in the spirit of effective-mass theory have amplitud
localized aroundk5k i . Note that throughout this analys
the band of interest at the band edge is considered to
nondegenerate and we neglectinterband mixing.34

Assuming thathl ,k do not vary significantly~using a simi-
lar argument as in Ref. 35! over the range of each Fourie
space envelope function,

Hd~r !'(
i

ci

1

L
hl ,ki

eiki•rF(
Dk

G̃ i~Dk!eiDk•rG , ~A4!

where Dk[k2k i . Writing the envelope functions in rea
space

G i~r !5(
Dk

G̃ i~Dk!eiDk•r ~A5!

allows us to rewrite Eq.~A4! as

Hd~r !'(
i

ci

1

L
hl ,ki

eiki•rG i~r !. ~A6!

It is in this way that the real-space envelope of localiz
defect modes can be interpreted in the Fourier domain35 as a
result of the intraband mixing of the unperturbed Bloc
modes of the crystal. As will be presented elsewhere,36 one
can derive a Wannier-like equation for the envelope of loc
ized defect states within PC slab waveguides. The resul
eigenvalue equation for the magnetic-field envelope ab
each element of the *k, where the mixing of Bloch state
between different satellite points of the *k are neglected, is
given by

$@Dld2l l ,i8 ~\21p̂!#2Dh i ,i8 ~r !%G i~r !50, ~A7!

with effective potential

Dh i , j8 ~r !5Dh~r !Kl ,l~k i ,k j ,Gj ,i !

1¹@Dh~r !#•L l ,l~k i ,k j ,Gj ,i !. ~A8!

In the above set of equationsDld5ld2l l ,o is the eigen-
value referenced to the top~bottom! of the band edge
Dk j ,i[k j2k i ,p̂52 i\¹ as in quantum mechanics, an
Dh(r ) is the local perturbation to the inverse of the dielect
constant of the PC. The local band structure of thel th band
in a neighborhood of each element of *k is given byl l ,i8

l l ,k8'@l l ,o1l l ,i8 ~Dk!#1O~Dk3!, ~A9!

where l l ,o is the top ~bottom! of the band edge,Dk5k8
2k i , and where we takel l ,i8 to contain only terms up to
second order in elements ofDk.34 The scalar and vecto
03511
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coupling matrix elements are determined from the Blo
modes of the unperturbed lattice to be

Kl 8,l~k8,k,G!52
1

vEv
d2reiG•rhl 8,k8

*

3~¹212ik•¹ 2uku2!hl ,k , ~A10!

L l 8,l~k8,k,G!52
1

vEv
d2reiG•rhl 8,k8

* ~¹ 1 ik!hl ,k ,

~A11!

whereG are reciprocal-lattice vectors, andGi ,i50.
In considering the mixing of states from a symmet

standpoint it is necessary to know how the envelope fu
tions transform under the point-group symmetry operatio
of the defect. Of most importance here are the ground-s
envelope functions. As discussed in more detail in Sec. II
this is due to the relatively localized nature of the defe
regions present in the devices designed and tested in Sec
For delocalized defect regions extending over many lat
periods a more extensive set of envelope functions, includ
higher-order functions with added nodes and antinodes m
be included. The choice of such a set of envelope functi
will depend on the geometry of the boundary of the defec37

For the present work, we choose only the ground-state en
lope functionsG i(r )5G i ,o(r ).

The ground state of a system is in general invariant un
the symmetries of the Hamiltonian of that system.38,39 Thus,
the ground-state envelope function should transform as
identity of the point symmetry group of the Wannier-lik
equation given in Eq.~A7!. The spatial symmetries of Eq
~A7! are those of l l ,i8 (\21p̂) and Dh i ,i8 (r ). Since p̂
52 i\¹ transforms as a wave vector under rotary refle
tions, the transformation properties ofl l ,i8 (\21p̂) are equiva-
lent to those ofl l ,i8 (Dk), which as mentioned earlier is
local expansion ofl l(k) in a neighborhood ofk i . The lim-
ited local correspondence betweenl l ,i8 and l l results in a
reduced symmetry ofl l ,i8 from that ofl l .

In order to determine the symmetry ofl l ,i8 we decompose
the point-group operations of the crystal,G, into the group of
the wave vectorGki

and a set of coset generators$di j ; j

51, . . . ,M %: G5( jdi j Gki
, whereM is the number of ele-

ments of the *k and thedi j takek i to k j . l l(k) is invariant
under all the operations ofG. l l ,i8 (Dk) on the other hand can
at most be invariant under the operations ofGki

, which are

those operations ofG that take a neighborhood ofk i into
itself modulo a reciprocal-lattice vector. Thatl l ,i8 (Dk) is in
fact invariant underall such operations follows by conside
ing the operation of an element ofGki

acting uponl l(k) with

k5Dk1k i :

$Gki
%l l~k!5l l~$Gki

%k!5l l@$Gki
%Dk1~k i1G!#.

~A12!

Since the dispersion relation is periodic in reciprocal spa
l l@$Gki

%Dk1(k i1G)#5l l($Gki
%Dk1k i), which gives
0-21
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l l~Dk1k i !5$Gki
%l l~Dk1k i !5l l~$Gki

%Dk1k i !.
~A13!

This then implies thatl l ,i8 is invariant under all the opera
tions of Gki

, l l ,i8 ($Gki
%Dk)5l l ,i8 (Dk). The other operations

of G which takek i into k j , j Þ i , simply transforml l ,i8 into
l l , j8 . In situations where the crystal lacks inversion symm
try ~the lattice itself always has inversion symmetry! the ef-
fects of time-reversal symmetry must be considered. If th
exists a reciprocal-lattice vectorG that connectsk i and
2k i , and time-reversal symmetry does not mix thel th band
with another band,40 thenl l ,i8 (Dk)5l l ,i8 (2Dk) regardless of
the lack of crystal symmetry. In this case, with the inclusi
of time-reversal symmetry, the full symmetry ofl l ,i8 is given

by the point group formed from the elements ofGki
ø$ Î %,

whereÎ is the inversion operator. We will useGki
8 to label the

point group which is equivalent toGki
except in those situa

tions where time-reversal symmetry plays a role and
group of the wave vector is modified as described above

We must lastly consider the symmetry ofDh i ,i8 (r ). The
effective potential of the Wannier-like equation depends
Dh and ¹(Dh), both of which are as symmetric asDh
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