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Formation process of quantized states in electromagnetic fields
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We theoretically investigate formation process of quantized electronic states in electromagnetic fields. By
using the path-integration theory, we first follow time-evolution of an electronic state which is initially re-
garded as an extended band state. Next, we show that an eigenstate in an electromagnetic field is expressed as
a superposition of states which the electron has undergone. We may regard this effect as an afterimage, i.e., an
electronic state is a time average over the path of history. This is a viewpoint that reflects the nature of
electrons. We show that the Landau states and Stark ladders are formed as a consequence of the afterimage
effect.
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[. INTRODUCTION By using the path-integration thedty’ the time evolution
of the state is described as

The purpose of this paper is to describe the process of
how eigenstates in electromagnetic fields are formed from WX’ t,):J
the band states. It is well known that electronic eigenstates in ’
static electromagnetic fields are localized wave patkén
a magnetic field, such states are called Landau levels. In
electric field, localized Stark ladders are formed as well.
These wave functions and eigen energies are easily obtained
by solving the Schidinger equations including electromag- K(x't’ ,Xoto) =
netic potentiaf®

Let us think that a steplike electromagnetic field is applied _
to a crystalline solid in which band states are eigenstates. Mo
How do the band states change into localized wave packet? X ex 27h sinw(t’ —ty)
As far as we know, there are no clear answers to this ques- 0
tion.

Recent development of measurement technologies en- ><COSv(t'—to)—ZX’Xo]}- (©)]
ables us to observe phenomena in very short time scales.
Therefore, it will be important to describe transformation By inserting Eqs(1) and(3) into Eq. (2), we can calculate
process in order for better understanding of electron naturghe wave function at timé¢’ as
as well as for device applications.

o0

wK(X’t,:Xoto) (Xg,to)dXo, (2

a\p{hereK(x’t’,xoto) is the Feynman kernel. For the harmonic
potential, we can write down the Feynman kernel as

12
Mo
2mih sinw(t’—to)]

[(x'2+Xx3)

Pp(x',t")
Il. ELECTRONIC MOTION AND FORMATION o\ Y4 i 1/2
OF EIGENSTATE == ==
T coswt+iésinwt
In order to show how eigenstates are formed from free ) B ,
electronic states, we first consider simple one-dimensional — al2[X" = x(t) ]7+ik(t")x" +i 7 sin 20t
motion in harmonic potentiaV(x) = mw?x?/2. Let ¢(Xq,to) cowt + &2sirfwt ’
the initial state at the timg, given by @
1/4 . _ _ ’ 2 12
a\ ™t 2y with é=ah/mew and 7= (a?x'?—k5)h/mw—maex'?/4. In
—| = (al2)xg+ikoxg 0
l/j(XO!tO) (7T> e ’ (1) Eq (4),
wherek, is a wave number and~ 2 is extension length of N sinwt’ 5
this state. This is a wave packet put at the origin with veloc- X(t")=7iko Mo ®)

ity ko/m. The energy of this state E=ﬁ2k§/2m, which is

retained during the process of oscillatory motion as is in thé"d

classical harmonic oscillator. We note that the valueraé K(t')=Kocosmt’ (6)
introduced so as to show the oscillation in the real space 0

clearly. In order to describe transformation from band statesire the central position and the momentum at the tifme

to localized eigenstatey must be small enough. Whenis  respectively. Figure 1 shows the calculated states evolved
small, this state is well regarded as a free electronic statfom the initial-state with &/mw)%,=5. One period of
with a continuous energy spectrum. evolution of the initial state is plotted. We can see that
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FIG. 1. Time evolution of initial state in harmonic potential.  FIG. 2. Formation process of the eigen wave function. Since the
Real part of the wave function is plotted over one period of oscil-energy of the oscillator is (3/Z)w, xg(x’) approaches the eigen-
lation. Initial wave number is set ag(mw)Y%ky=5. state withn=1.

Y(x',t") is oscillating with change of wavelength as well as
position. We note that the state is not quantized at this stag
that is, continuous value of enerdy= h2k§/2m is possible
for such an oscillator.

Here we make a superposition of the oscillating states as

=1 grows. As time increases, the oscillator turns around, the
%11p in the left grows, andyg(x’,t) approaches the eigen
wave function ofn=1.

Figure 3 shows calculategg(x’,t) for E=1.7hw. As

s energy is not the eigen energy, the amplitudgix’,t)

¢ approaches zero with time. This is because, in this case, in-
eiE(t’*to)/ﬁ,p(X',t')dt'_ (7) terference results in cancellation of amplitudes.

t—tg/to These results indicate that the formation process of eigen-

o states is described by the functiqr(x’,t). For t<ty, the
The factor 1{t—ty, has been added for normalization of . . .
xe(x',t). Mathematically, Eq(7) is a Fourier transformation eigenstates are extended band states given byIEqwith

. . . a=0). By applying the potential, the electronic motion
from time representation to energy rgpresenta%dxm.our shown in Fig. 1 occurs. As a result of self-interference,
interpretation, this can be called afterimage effect. In other

words, yc(x',1) is a superposition of electron over the his- xe(x’,t) changes gradually from a band states to a localized
> XEL Perp : .eigenstate for a particular value Bf Therefore, the function
tory, i.e., what we see is an electron in the past. Although it

may sound spooky, the functiopz(x’,t) is a reality as a
time-integrated probability amplitude, i.e., the probability of
finding an electron at enerdgy during the periody~t. In : /o
this sense, this is a wave function changing gradually from a
band state to an eigenstate in an applied potential.

The exponential factor in Eq(7) cancels the time-

dependent phase factor ¢{x’,t'), e 'Et"/% Such a cancel-
lation is necessary to obtain a rational result. When we con-
sider a superposition of states belonging to different times, if
additional constant potential is applied, relative phase differ-
ence between the states changes, and resulting wave function
becomes quite different. Such a situation is irrational and
undesirable. Therefore, from the viewpoint of the gauge in-
variance of wave functions, the time-dependent phase factor
should be excluded from the superposition as shown in
Eq. (7). L
In Fig. 2, we show yg(x',t) calculated att—tg, —4 -2 0 2 4
=0.57/w~27lw for an oscillator with energy E (meofiy Py
=(3/2)hw. This energy corresponds to the eigen energy of ’
the n=1 state. At first, the oscillator moves rightward as FIG. 3. Decay process of off-energy state. Since the energy of
shown in Fig. 1, and at this stage the peak miw(%)Y?x  the oscillator is 17w, ye(x') decays as time increases.

Xe(x',t)=

Re[ 3z(x")]
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xe(x’,t) describes the transformation from Bloch states ' ' ' '
(eigenstates fov=0) to localized eigenstates in electromag- 20m/e
netic fields.

Such behavior ofyg(x’,t) is also derived from an alter-
native expression of the Feynman kernel. We can express H
K(x't’,Xoto) by using the eigenstates of the systerfi’as

" A | 12m@ h
LBt — >3
K(X't' Xoto) = 2 ¢n(X') 5 (Xo)e™ =" 10/ () 5 f
n=0 ?\</
In this equationg,(x) andE, are the wave function and the 6m/o \
eigenenergy of a harmonic oscillator, respectively. Substitut- N |

ing Egs.(2) and(8) into Eq. (7), we have 21/
N N L
1 0 &X;:A

o ’
(X', t)= 2 A j e E-E(t' ~to)lig ¢ (x'), : X ;
XE /—t_to ~ n . bn 2 3

(9) E/ ho

o

where FIG. 4. Norm of the statd xg|xe) plotted as a function of
energy. As the time increases, quantized states are formed and the
* peaks aE=E, become sharp.
An= f b7 (Xo) ¥(Xo,to) dXo (10)

N on the uncertainity principle is phenomenological and its va-

is an overlap between the initial state and title eigenstate. lidity is sometimes vague. On the other hand, the present

In the long-time limit, yg(x’,t) becomes theory has verified the origin of the broadened energy spec-
trum, and it brings about quantitatively the same results as

) A, the treatment by the uncertainity principle.

lim xe(x’,t)= \/—5(E_En)¢n(xl)a (11) It has been shown that an oscillating wave packet is ex-

e hNt=to pressed as a linear combination of time-dependent eigen-

where we used Zexp(Et)dt=7d(E). This equation indicates functior_ws.of harmonic oscille_ltéﬂ Thg procedyre .described
that the superposition of the oscillating state approaches orfdP0Ve iS just the reverse of it: an eigenfunction is expressed
of the eigenstates if the energy coincides with energy of cor@S & linear combination of an oscillating state.

responding eigenstate. On the other hand when the energy is

different from any of eigen energies, the amplitude of lll. LANDAU LEVELS IN A MAGNETIC FIELD

xe(x’,t) attenuates. This behavior gE(x’,t) is well under-
stood in terms of the afterimage effect; if the phase change cﬁ
the wave function after one cycle of motion is different from
a multiple of 27, the amplitudes are canceled out, and as
result,| yg(x’,t)| decays with time.

Electronic eigenstates in a crystalline solid in a magnetic
eld is called Landau levels. The Landau states are formed
as a result of cyclic motion of band electrons. Thus, the
&esults for the harmonic oscillator shown in the previous sec-
tion is readily applicable to the Landau states formation. We

Figure 4 shows the norm qfg(x,t) plotted as a function  ¢,hgiger a Hamiltonian with a static magnetic field applied
of energy. The curves are calculated forty=2n/w along thez axis as

~20m/ w. We see that electronic states for any value of en-

ergy are possible for small value of With increasingt, 1 ﬁ2k)2< Mw? ik, 2 hzkg
quantization gradually occurs; peaksgt=% w(n+1/2) be- H=-—(pteA)’=——+—|x+ — ,

' ) ) 2m 2m 2 mw 2m
come sharper. The peak height in Fig. 4 depends on the (12)

choice of the initial state. Equatiofi8) and(10) indicate that
the peak height is related to the overlap between the initialwhereA is vector potential and=eB/m. We have chosen
state and resulting eigenstate. By settingmall enough, we the gauge a®\=B(0x,0) so as to give the magnetic field
can make the peak heights almost the same. Therefore, ti#ong thez axis. From Eq(12), we see that the motion the
curves in Fig. 4 show the quantization process from freexy plane is a one-dimensional oscillator deviated by
electronic states to eigenstates in the harmonic potentiak-7ik,/mw. This system is thus regarded as a harmonic os-
These results indicate that quantized eigenstates in harmontdlator with a degree of freedom along thelirection.
potential are formed as a consequent of interference accom- By applying the result shown in the previous part, we
panied with electronic motion. make a superposition of free states as
The behavior of energy spectrum shown in Fig. 4 has
been well known as the lifetime broadening due to the un- L e k) r g
certainity principleAEAt=#. In interpreting optical absorp- Xex(r )= ﬁjoe dt’,
tion spectra, we often attribute the linewidth to finite lifetime
due to scattering. However, we note that a treatment baseshereE=72(k+k;+kZ)/2m andk(t) = (kycoswtK, k).

(13
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' ' ' ' ' ' thez axis. In this case, we can make a superposition of Bloch

states ag3
alz /ﬁf eFLn]d
—i Ek (T) T
. Xok(T \/277 Jm (1),
T/ ® (15)
= | 12w where ¢, (r) is a Bloch functionL is the lattice constant)
@: e is the system sizé(t) =k+eFt/h, andk=eFt/#. We note
ol thateFLnin the exponential function is corresponding to the
/W .
energyE in Eq. (7).
2/, When A is much smaller than Brillouin zone width, we

can set asA=27x/Q, and x,(r) is regarded as a Bloch
function. A bandlike energy spectrum realizes in this case.
With increasingA, if nis not an integer, the amplitudes
0 - 5 - : - interfere with one another and cancel out. Whereas when
an integery,(r) becomes a rung of the Stark ladder located
2R at the nth position for A>2#/L. Therefore, a ladderlike
FIG. 5. The time-dependent density of states plotted as a funcSPeCtrum associated with localized state is realized. Tempo-
tion of energy. ral behavior of energy spectrum is similar to that shown in
Fig. 4 (but without the zero point energy
To show how quantization occurs and energy spectrum The formation process of Stark ladder is important in
changes due to interference, we calculate terms of device applications. For high-field transport in
nanoscale semiconductor devices, it has been pointed out
that quantum effects are important. There have been a num-
p(E’t):Ek: (Xexlxe ) S(E—Ey). (14 pber of studies on quantum effects in transport phenontena.
Many of these studies employ the Green’s functions, how-
This is density of states with weight of norm gg . Figure  ever, there are some attempts to describe transport phenom-
5 showsp(E,t) plotted as a function of energy for various ena by using half-localized Stark ladder stt&>
values oft. At t=0, the density of states is that of the three-
dimensional free electron. With increasing time, interference V. CONCLUSION
accompanied with electronic motion occurs, and quantized
density of states realizes. In conclusion, we have described the quantization process
in electromagnetic fields. We showed that an eigen wave
IV. STARK LADDERS function is_ form_ed as a superposition of electronic states over
the path in which the electron has undergone. This means
In a static electric field=, wave vectors increase &$t)  that the origin of quantization of an electron in motion is
=ko+ eFt/f. At the edge of the Brillouin zone, the electron self-interference with electron itself in the past. We may call
is Bragg reflected due to crystalline potential. Accompaniedhis effect as the afterimage, that is, an eigenstate is not just
with this motion, a ladderlike energy spectrum associate@n image at each moment but a superposition of all images in
with localized wave functions realizes. This is known as athe past. In other words, an eigenfunction is a time-integrated
Stark ladder. We can describe the formation process of Stafrobability amplitude, i.e., the probability of finding an elec-
ladders accompanied with the motion called the Bloch osciliron at energye during the period 6-t. This is a viewpoint
lation. which is essential for describing electron behavior as well as
In principle, we should treat applied and crystal potentialfor a better understanding of the nature of electrons.
on an equal footing. Although it will be a hard task, we can

t=0

o
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