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Formation process of quantized states in electromagnetic fields
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~Received 12 December 2002; published 15 July 2003!

We theoretically investigate formation process of quantized electronic states in electromagnetic fields. By
using the path-integration theory, we first follow time-evolution of an electronic state which is initially re-
garded as an extended band state. Next, we show that an eigenstate in an electromagnetic field is expressed as
a superposition of states which the electron has undergone. We may regard this effect as an afterimage, i.e., an
electronic state is a time average over the path of history. This is a viewpoint that reflects the nature of
electrons. We show that the Landau states and Stark ladders are formed as a consequence of the afterimage
effect.
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I. INTRODUCTION

The purpose of this paper is to describe the proces
how eigenstates in electromagnetic fields are formed fr
the band states. It is well known that electronic eigenstate
static electromagnetic fields are localized wave packet.1,2 In
a magnetic field, such states are called Landau levels. I
electric field, localized Stark ladders are formed as w
These wave functions and eigen energies are easily obta
by solving the Schro¨dinger equations including electroma
netic potential.2,3

Let us think that a steplike electromagnetic field is appl
to a crystalline solid in which band states are eigensta
How do the band states change into localized wave pac
As far as we know, there are no clear answers to this qu
tion.

Recent development of measurement technologies
ables us to observe phenomena in very short time sca
Therefore, it will be important to describe transformati
process in order for better understanding of electron na
as well as for device applications.

II. ELECTRONIC MOTION AND FORMATION
OF EIGENSTATE

In order to show how eigenstates are formed from f
electronic states, we first consider simple one-dimensio
motion in harmonic potentialV(x)5mv2x2/2. Let c(x0 ,t0)
the initial state at the timet0 given by

c~x0 ,t0!5S a

p D 1/4

e2(a/2)x0
2
1 ik0x0, ~1!

wherek0 is a wave number anda21/2 is extension length of
this state. This is a wave packet put at the origin with vel
ity k0 /m. The energy of this state isE5\2k0

2/2m, which is
retained during the process of oscillatory motion as is in
classical harmonic oscillator. We note that the value ofa is
introduced so as to show the oscillation in the real sp
clearly. In order to describe transformation from band sta
to localized eigenstate,a must be small enough. Whena is
small, this state is well regarded as a free electronic s
with a continuous energy spectrum.
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By using the path-integration theory,4–7 the time evolution
of the state is described as

c~x8,t8!5E
2`

`

K~x8t8,x0t0!c~x0 ,t0!dx0 , ~2!

whereK(x8t8,x0t0) is the Feynman kernel. For the harmon
potential, we can write down the Feynman kernel as

K~x8t8,x0t0!5F mv

2p i\ sinv~ t82t0!
G 1/2

3expH imv

2p\ sinv~ t82t0!
@~x821x0

2!

3cosv~ t82t0!22x8x0#J . ~3!

By inserting Eqs.~1! and ~3! into Eq. ~2!, we can calculate
the wave function at timet8 as

c~x8,t8!

5S a

p D 1/4S i

cosvt1 i j sinvt D
1/2

3expH 2a/2@x82x~ t8!#21 ik~ t8!x81 ih sin 2vt8

cos2vt1j2sin2vt
J ,

~4!

with j5a\/mv and h5(a2x822k0
2)\/mv2mvx82/\. In

Eq. ~4!,

x~ t8!5\k0

sinvt8

mv
~5!

and

k~ t8!5k0cosvt8 ~6!

are the central position and the momentum at the timet8,
respectively. Figure 1 shows the calculated states evo
from the initial-state with (\/mv)1/2k055. One period of
evolution of the initial state is plotted. We can see th
©2003 The American Physical Society08-1



as
ag

a

of

he
s-
h

of

o
,

fe
ct
n
in
ct

o
as

the
n

, in-

en-

n
e,

zed

l.
cil

the
-

y of

MASATO MORIFUJI AND KATSUHIKO KATO PHYSICAL REVIEW B 68, 035108 ~2003!
c(x8,t8) is oscillating with change of wavelength as well
position. We note that the state is not quantized at this st
that is, continuous value of energyE5\2k0

2/2m is possible
for such an oscillator.

Here we make a superposition of the oscillating states

xE~x8,t !5
1

At2t0
E

t0

t

eiE(t82t0)/\c~x8,t8!dt8. ~7!

The factor 1/At2t0 has been added for normalization
xE(x8,t). Mathematically, Eq.~7! is a Fourier transformation
from time representation to energy representation.8 In our
interpretation, this can be called afterimage effect. In ot
words,xE(x8,t) is a superposition of electron over the hi
tory, i.e., what we see is an electron in the past. Althoug
may sound spooky, the functionxE(x8,t) is a reality as a
time-integrated probability amplitude, i.e., the probability
finding an electron at energyE during the periodt0;t. In
this sense, this is a wave function changing gradually from
band state to an eigenstate in an applied potential.

The exponential factor in Eq.~7! cancels the time-
dependent phase factor ofc(x8,t8), e2 iEt8/\. Such a cancel-
lation is necessary to obtain a rational result. When we c
sider a superposition of states belonging to different times
additional constant potential is applied, relative phase dif
ence between the states changes, and resulting wave fun
becomes quite different. Such a situation is irrational a
undesirable. Therefore, from the viewpoint of the gauge
variance of wave functions, the time-dependent phase fa
should be excluded from the superposition as shown
Eq. ~7!.

In Fig. 2, we show xE(x8,t) calculated at t2t0
50.5p/v;2p/v for an oscillator with energy E
5(3/2)\v. This energy corresponds to the eigen energy
the n51 state. At first, the oscillator moves rightward
shown in Fig. 1, and at this stage the peak at (mv/\)1/2x

FIG. 1. Time evolution of initial state in harmonic potentia
Real part of the wave function is plotted over one period of os
lation. Initial wave number is set as (\/mv)1/2k055.
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.1 grows. As time increases, the oscillator turns around,
dip in the left grows, andxE(x8,t) approaches the eige
wave function ofn51.

Figure 3 shows calculatedxE(x8,t) for E51.7\v. As
this energy is not the eigen energy, the amplitude ofxE(x8,t)
approaches zero with time. This is because, in this case
terference results in cancellation of amplitudes.

These results indicate that the formation process of eig
states is described by the functionxE(x8,t). For t,t0, the
eigenstates are extended band states given by Eq.~1! ~with
a.0). By applying the potential, the electronic motio
shown in Fig. 1 occurs. As a result of self-interferenc
xE(x8,t) changes gradually from a band states to a locali
eigenstate for a particular value ofE. Therefore, the function

-
FIG. 2. Formation process of the eigen wave function. Since

energy of the oscillator is (3/2)\v, xE(x8) approaches the eigen
state withn51.

FIG. 3. Decay process of off-energy state. Since the energ
the oscillator is 1.7\v, xE(x8) decays as time increases.
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xE(x8,t) describes the transformation from Bloch sta
~eigenstates forV50) to localized eigenstates in electroma
netic fields.

Such behavior ofxE(x8,t) is also derived from an alter
native expression of the Feynman kernel. We can exp
K(x8t8,x0t0) by using the eigenstates of the system as4,9

K~x8t8,x0t0!5 (
n50

`

fn~x8!fn* ~x0!e2 iEn(t82t0)/\. ~8!

In this equation,fn(x) andEn are the wave function and th
eigenenergy of a harmonic oscillator, respectively. Substi
ing Eqs.~2! and ~8! into Eq. ~7!, we have

xE~x8,t !5
1

At2t0
(

n
AnE

t0

t

ei (E2En)(t82t0)/\dt8fn~x8!,

~9!

where

An5E
2`

`

fn* ~x0!c~x0 ,t0!dx0 ~10!

is an overlap between the initial state and thenth eigenstate.
In the long-time limit,xE(x8,t) becomes

lim
t→`

xE~x8,t !5
pAn

\At2t0

d~E2En!fn~x8!, ~11!

where we used*0
`exp(iEt)dt5pd(E). This equation indicates

that the superposition of the oscillating state approaches
of the eigenstates if the energy coincides with energy of c
responding eigenstate. On the other hand when the ener
different from any of eigen energies, the amplitude
xE(x8,t) attenuates. This behavior ofxE(x8,t) is well under-
stood in terms of the afterimage effect; if the phase chang
the wave function after one cycle of motion is different fro
a multiple of 2p, the amplitudes are canceled out, and a
result,uxE(x8,t)u decays with time.

Figure 4 shows the norm ofxE(x8,t) plotted as a function
of energy. The curves are calculated fort2t052p/v
;20p/v. We see that electronic states for any value of
ergy are possible for small value oft. With increasingt,
quantization gradually occurs; peaks atEn5\v(n11/2) be-
come sharper. The peak height in Fig. 4 depends on
choice of the initial state. Equations~9! and~10! indicate that
the peak height is related to the overlap between the ini
state and resulting eigenstate. By settinga small enough, we
can make the peak heights almost the same. Therefore
curves in Fig. 4 show the quantization process from f
electronic states to eigenstates in the harmonic poten
These results indicate that quantized eigenstates in harm
potential are formed as a consequent of interference acc
panied with electronic motion.

The behavior of energy spectrum shown in Fig. 4 h
been well known as the lifetime broadening due to the
certainity principleDEDt>\. In interpreting optical absorp
tion spectra, we often attribute the linewidth to finite lifetim
due to scattering. However, we note that a treatment ba
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on the uncertainity principle is phenomenological and its
lidity is sometimes vague. On the other hand, the pres
theory has verified the origin of the broadened energy sp
trum, and it brings about quantitatively the same results
the treatment by the uncertainity principle.

It has been shown that an oscillating wave packet is
pressed as a linear combination of time-dependent eig
functions of harmonic oscillator.10 The procedure describe
above is just the reverse of it: an eigenfunction is expres
as a linear combination of an oscillating state.

III. LANDAU LEVELS IN A MAGNETIC FIELD

Electronic eigenstates in a crystalline solid in a magne
field is called Landau levels. The Landau states are form
as a result of cyclic motion of band electrons. Thus,
results for the harmonic oscillator shown in the previous s
tion is readily applicable to the Landau states formation.
consider a Hamiltonian with a static magnetic field appli
along thez axis as

H5
1

2m
~p1eA!25

\2kx
2

2m
1

mv2

2 S x1
\ky

mv D 2

1
\2kz

2

2m
,

~12!

whereA is vector potential andv5eB/m. We have chosen
the gauge asA5B(0,x,0) so as to give the magnetic fiel
along thez axis. From Eq.~12!, we see that the motion th
xy plane is a one-dimensional oscillator deviated
2\ky /mv. This system is thus regarded as a harmonic
cillator with a degree of freedom along thez direction.

By applying the result shown in the previous part, w
make a superposition of free states as

xE,k~r ,t !5
1

At
E

0

t

eiEt82 ik(t8)•rdt8, ~13!

whereE5\2(kx
21ky

21kz
2)/2m andk(t)5(kxcosvt,ky ,kz).

FIG. 4. Norm of the statêxEuxE& plotted as a function of
energy. As the time increases, quantized states are formed an
peaks atE5En become sharp.
8-3



u

s
e
c

ze

n
ie
te

ta
ci

tia
an
c
er

on

ch

he

e

se.
s

ed

po-
in

in
in
out

um-
a.
w-
om-

ess
ave
ver
ans
is
all
just
s in
ted
c-

l as

e-

n

MASATO MORIFUJI AND KATSUHIKO KATO PHYSICAL REVIEW B 68, 035108 ~2003!
To show how quantization occurs and energy spectr
changes due to interference, we calculate

r~E,t !5(
k

^xE,kuxE,k&d~E2Ek!. ~14!

This is density of states with weight of norm ofxE,k . Figure
5 showsr(E,t) plotted as a function of energy for variou
values oft. At t50, the density of states is that of the thre
dimensional free electron. With increasing time, interferen
accompanied with electronic motion occurs, and quanti
density of states realizes.

IV. STARK LADDERS

In a static electric fieldF, wave vectors increase ask(t)
5k01eFt/\. At the edge of the Brillouin zone, the electro
is Bragg reflected due to crystalline potential. Accompan
with this motion, a ladderlike energy spectrum associa
with localized wave functions realizes. This is known as
Stark ladder. We can describe the formation process of S
ladders accompanied with the motion called the Bloch os
lation.

In principle, we should treat applied and crystal poten
on an equal footing. Although it will be a hard task, we c
apply the effective mass approximation where the effe
from crystalline potential are included in a cosinelike disp
sion curve.1,2

We consider a case where an electric field is applied al

FIG. 5. The time-dependent density of states plotted as a fu
tion of energy.
rs
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thez axis. In this case, we can make a superposition of Blo
states as12,13

xnk~r !5A V

2pDE2D/2

D/2

dke2 i /\*0
t [«kz(t)2eFLn]dtfk(t)~r !,

~15!

wherefk(r ) is a Bloch function,L is the lattice constant,V
is the system size,k(t)5k1eFt/\, andk5eFt/\. We note
thateFLn in the exponential function is corresponding to t
energyE in Eq. ~7!.

When D is much smaller than Brillouin zone width, w
can set asD.2p/V, and xnk(r ) is regarded as a Bloch
function. A bandlike energy spectrum realizes in this ca
With increasingD, if n is not an integer, the amplitude
interfere with one another and cancel out. Whereas whenn is
an integer,xnk(r ) becomes a rung of the Stark ladder locat
at the nth position for D@2p/L. Therefore, a ladderlike
spectrum associated with localized state is realized. Tem
ral behavior of energy spectrum is similar to that shown
Fig. 4 ~but without the zero point energy!.

The formation process of Stark ladder is important
terms of device applications. For high-field transport
nanoscale semiconductor devices, it has been pointed
that quantum effects are important. There have been a n
ber of studies on quantum effects in transport phenomen11

Many of these studies employ the Green’s functions, ho
ever, there are some attempts to describe transport phen
ena by using half-localized Stark ladder state.14,15

V. CONCLUSION

In conclusion, we have described the quantization proc
in electromagnetic fields. We showed that an eigen w
function is formed as a superposition of electronic states o
the path in which the electron has undergone. This me
that the origin of quantization of an electron in motion
self-interference with electron itself in the past. We may c
this effect as the afterimage, that is, an eigenstate is not
an image at each moment but a superposition of all image
the past. In other words, an eigenfunction is a time-integra
probability amplitude, i.e., the probability of finding an ele
tron at energyE during the period 0;t. This is a viewpoint
which is essential for describing electron behavior as wel
for a better understanding of the nature of electrons.
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