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Josephson current through a correlated quantum level: Andreev states aner junction behavior
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The Josephson transport and the electronic properties of a quantum dot characterized by a single level
coupled to superconducting leads is analyzed. Different approximations are used and compared: the mean-field
approximation, the second-order perturbation theory in the Coulomb interaction, and the exact diagonalization
in the zero bandwidth limit. The system exhibits a rich behavior as a function of the relevant parameters. We
discuss in detail the conditions for the observationmgunction behavior and the effect of Coulomb interac-
tions on the Andreev states.
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[. INTRODUCTION restricted to some limiting situatioriS.In Ref. 7 the current
was obtained to the lowest order in the tunneling coupling,

The observation of the Kondo effect in semiconductingthereby neglecting the important physics associated with the
quantum dotshas opened a new area of research in whichAndreev bound states. On the other hand, in Refs. 9,10 the
electronic transport through a nanoscale strongly correlatefimit of infinite Coulomb repulsion was considered.
system can be studied under controlled conditions. More re- At this point we believe that further work is needed to
cently, this effect has also been observed in carbon nanotubggderstand the physical behavior of this system for a broad
coupled to metallic electrodes, a system that can behave farameter range. This behavior is actually rather complex
many respects as a quantum @dhese type of devices pro- due to the several energy scales involved. In particular, as the
vide an almost ideal system to test different theoretical preangreev bound states play a crucial role in the transport
dictions. In this direction, great theoretical interest has arisepoperties, a detailed analysis of electron correlation effects
in connection with the possibility of replacing the normal o, these states seems desirable. In this paper we present a

electrodes by superconducting ones. In fact, carbon NanQnreoretical study of the Josephson effect in a single level
tubes connected to superconducting leads, that are alrea antum dot coupled to superconducting electrodes. Differ-

gsé?gn%mduwd’ can provide a physical realization of such @nt approaches are considered. We first study the zero band-

width limit in which the problem can be exactly diagonal-

In these types of systems an issue of fundamental rel- d. Th imation 1o the full del
evance is the interplay between electron correlation effect €d. Then, as an approximation 1o the full model we use a

and Andreev reflection processes, which provide the basidiadrammatic expansion of the self-energy associated with
mechanism for transport between normal and superconduci?® Coulomb interaction in which the coupling to the super-
ing regions. This interplay has been analyzed by several ad:_onductm_g Iead; |s_ta!<en into account up to |nf|n|.te.order.
thors for the case of a quantum dot coupled to a normal andhis last ingredient is important for a proper description of
superconducting electrodé. There have also been some the Andreev bound states.
works addressing the prob|em of the electron transport me- In Sec. Il, we introduce the theoretical model and discuss
diated by multiple Andreev reflections through a resonanthe diagrammatic approximations for the electron self-
level between two superconducting electrofles. energy. In Sec. lll we present a simplified version of this
When both electrodes are superconducting a more basiwodel in which the Coulomb interaction is replaced by an
guestion is how the electron-electron interactions in the doeffective exchange field. This simple model already de-
would affect the Josephson current. This issue has receivestribes ther-junction transition and allows us to understand
considerable attention in recent year$t In particular, the the behavior of the Andreev states under a finite magnetiza-
discussion has been centered to a large extent around tkien in the dot. Section IV is devoted to the analysis of the
appearance of ar-junction behavior induced by electron- zero bandwidth limit in which the model becomes equivalent
electron interactions. Ther-junction behavior, which con- to a finite system which can be solved exactly. The exact
sists in a reversal of the sign of the supercurrent under cesolution is then used as a test of the approximations used for
tain conditions, was first pointed out by Kulkk when the electron self-energy. It turns out that the zero bandwidth
analyzing the Josephson tunneling in the presence of madimit can describe rather accurately most of the properties of
netic impurities, and discussed afterwards by severathe full model. The results for the full model are presented in
authors>~*° This issue is also related to the interplay be-Sec. V. We first discuss two opposite limiting situations in
tween superconductivity and magnetismjunction behav-  which the coupling of the dot to the leads is either small or
ior has in fact been recently observed $AF-S Josephson large compared to the superconducting gap. As in the zero
junctions?® bandwidth limit, in the case of weak coupling we show that
The existing theoretical works analyzing the Josephsonhe problem can be solved exactly. We also present some
effect in a single correlated level coupled to superconductingiumerical results for the intermediate regime. The paper is
leads have adopted either a mean field descript@mnare closed by a brief summary of the main conclusions.
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II. MODEL AND THEORETICAL APPROACH e (= o R
ILr hfixkgRdwTr[a'zto,kGI:—,O_(w)_O'Ztk,OGa—,l:(w)]a
We describe a small quantum dot conne_qed to supercon- ’ 7)
ducting electrodes by means of a modified single-level
Anderson model, given by wherel| g denotes the current between the leight) lead
and the dot,o, is the usual Pauli matrix, anfj(,’k is the
H=H_+ |3|R+2 €oN,+ UF‘TFUH:'Tv 1) hopping matrix in the Nambu representation
A apa o - R R tox O
wheren,=cg,Co,, H_ andHg represent the uncoupled su- tOk:(tkO)T:< . ) ®)
perconducting leads;Ar== .| g otoxCo,Cr o+ H-C. de- ' ’ 0 —Ttox

scribing the coupling between the dot level and the leads. . .
Within this model the dot is represented by a single spin. For the zero voltage case the calculation of the different
degenerate level with a repulsive Coulomb interaction deG "’ () is particularly simple because the following rela-
scribed by theU term in Eq.(1). We shall assume that the tion holds:
superconducting leads are well described by the BCS theory
with a superconducting gap and that there is a fixed super- T (w)= f(w)[G (w)— G”(w)] 9
conducting phase differenek= ¢, — ¢g between both elec-
trodes. It is interesting to have an estimate of the typicaheref(w) is the Fermi distribution function anG®" are
values that the model parameters can adopt in an actual ethe advanced and retarded Green functions. Therefore, the
perimental situation. Thus, for instance, in the experimentselevant quantity to be determined is the dot retarded Green
on carbon nanotubes of Ref. 3)~0.45 meV andA function, which in the Nambu R 2 representation adopts the
~0.1 meV. On the other hand the coupling to the leads varyorm
from sample to sample which allows to study the transition
from weak to strong coupling. ¢ BO(Q,):[&,T_ €00,— 3 ()T (0)—Tr(w)] 7Y,

The relevant quantities such as the current and the spec- (10
tral densities can be expressed in terms of nonequilibrium
Green functions! For the description of the superconducting where FL R are the tunneling rates giveni’,

state it is useful to mtroduceOI sfpln%r field operatttsyhich = mpetoud o, With _glil: 0%,= — w/VAZ—w? and g,
in a site representation are defined as: = (g5)* = A/ JAZ— we % with k=L,R and wherepy. is the
c normal density of states at the Fermi lev#he chemical
o= 'TT) ,j,,i‘r:(ciTT Ci)). ) potential of the superconducting leads is taken as)z@&itwe
Ciy self-energy3."(w) takes into account the effect of Coulomb
Then, the different correlation functions appearing in theintéractions. To the lowest order 1d this is given by the
Keldysh formalism adopt the standard causal form Hartree-Fock Bogoliubov approxmatlonE()ll— U(nl>
- , A ay (EN2=-U(np), ENa=E1= U<COTCO¢>- We  shall
GiP(t, tp)= —|<T[¢i(ta)¢;r(tﬁ)]>' (3 discuss in how correlation effects beyond this mean-field ap-

proximation can be included in Sec. Il.

where T is the chronological ordering operator along the This model has been analyzed within a mean-field ap-

Keldysh time contour. The labets and 3 refer to the upper o oyimation in Ref. 8. In that work the mean field solution
(a=+) and lower @=-—) branches on this contour. The 45 simplified by neglecting the induced order parameter in

functio_nséﬁ‘ » which can be associated within this formal- the dot and imposing self-consistency only in the dot mag-
ism with the electronic nonequilibrium distribution func- netization. However, the complete Hartree-Fock Bogoliubov

tions, are given by the (22) matrix solution requires the self-consistent determination of both the
diagonal and nondiagonal charges in the dot. It should be

e (c”(t )cip (1) (cjy(t)ei(t) noticed that the self-consistent determination of the induced

Gij (Lt)= (c”(t w(t)) <Cu(t’)CiT¢(t)> . 4 complex order parameter is in principle necessary in order to

ensure current conservation.
In terms of the Fourier transform matrix elements of Inclusion of correlation effectdn order to go beyond the
“=(t,t') one can write the charge and the induced ordefmean-field approximation, we consider the diagrammatic ex-

parameter on the dot, as well as the Josephson current; Pansion of the self-energy in terms of one-electron propaga-
tors in Nambu space. In Fig. 1 we show the corresponding

R 1 (= R second order diagrams in the electron-electron interaction.
(ny)= Fj do[Ggy (@)]a1, (5  Due to the appearance of the anomalous propag&grand
T e G,, in the superconducting state, there are additional dia-
. grams to the one contributing in the normal state, labeled by
(C(T)TC?;Q: - if do[Ggy (@)1, (6) 11(a) in Fig. 1, corresponding to the interaction of a quasi-
2i particle with an electron hole pair with opposite spin.
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The proper choice of the unperturbed one-electron Hamibetter choice is to define an effective dot leeg} in such a
tonian over which the diagrammatic expansion is performedvay that charge consistency between the effective and the
is an important issue. For the normal Anderson model in thénteracting problems is achieved. The natural extension of
symmetric case €,=—U/2) the Hartree approximation this scheme to the superconducting case is to impose also
which renormalizes the dot level ag+ U/2 is the adequate consistency in the nondiagonal chamgg by introducing an
starting point for the perturbation theory as it automaticallyeffective local pairing potentiald.4 in the unperturbed
warrants charge consistency between the perturbed and titamiltonian®
unperturbed situation. However, in a nonsymmetric case per- With these definitions, the dot Green functions in the un-
turbation over the Hartree field yields pathological resultsperturbed effective problem are given tyereafter we omit
close to half-filling(see Ref. 2L As discussed in Ref. 21 a the subscript 00 in the dot Green functipns

&) ) 1 [0 e trgn—tagY  —Aerttigi+tag 1
W)= — ,
D(w)| —A¥ttign+1a05 o+ een— {05 tRO%

where D(w) is the corresponding determinant. Notice thathowever, that for the electron-hole symmetric case the inter-
the Andreev states in the unperturbed problem are detepolative self-energy reduces to the second-order one. In this
mined by the conditiorD(w)=0 , which, in the general case thdJ/T'—oe limit is correctly described by the second-
case, can have up to four solutions. order self-energy except for a narrow region around the
The different contributions to the self-energy representedrermi energy?> A more precise idea of the validity of the
in Fig. 1 can then be written in terms of the one-electronsecond-order self-energy will be obtained in the comparison
propagators as discussed in the Appendix. The second-ordeiith exact results discussed in Sec. IV.
self-energy is in principle valid in the limiy <T". In order to
extend its range of Valldlty an ansatz which interp0|ates Cor- IIl. TRANSITION FROM NORMAL TO 7 JUNCTION
rectly between the limitsJ/I'—=0 and U/I"—«~ can be BEHAVIOR: A SIMPLE MODEL
used> Within this interpolative approach the matrix self-
energy is given by the following expression: An exactly solvable model which can describe the transi-
tion from normal to7r junction behavior is obtained by sub-
S(0)=U(nyo,+Agoy+[1—a2Pa,] 3 (), stituting the interacting region by a single site with a local
(12 exchange fieldEg,, in such a way thak, = ep+Eq ande
=¢p— Eqy. It should be noticed that this model is formally

where equivalent to a mean field solution of Hamiltonigl) with
o+ (1—(N)U — eun the prescriptiorEg,=U(n;—n;)/2.
= o - , This model exhibits in general four bound states inside
Us(n)(1—(n)) the superconducting gagAndreev statéswhich give the

dominant contribution to the current. This is determined by
ntpe derivative of the states below the Fermi energy with re-
spect to the phase. The position and spectral weight of these
states can be obtained from the retarded Green funfqn
(10)]. In the limit A<I" and whenl"| =I'g=T", the Andreev

and3(? is the second-order self-energy.
This interpolative scheme has been used in many differe
contexts involving strongly correlated electrdfis?? Notice,

1 11(a) 1 11(b) 1 states can be determined analytically by the expression
L
w+)2_0052¢>/2+ 2E2+Z%(Z2+sir ¢l2) £ 2X S )
A Z44+2(X2+E?)+1 ’
1 Lo ! (13
whereE= ¢,/2I', X=E/2I', andZ?=X?—E? andS(¢) is
21(a) 21(b) given by °
PV L
S(¢)=\Z%coS ¢/2+ E>+ (sirP ) /4.
1 1 . It can be verified that in the limiX—0 Eq.(13) recovers

the well known expression for the Andreev states in a single
FIG. 1. Diagrams contributing to the second-order self-energy irchannel contact of transmission=1/(1+E?), i.e., w/A

the superconducting state. =+1- Tsiﬁz¢/2.24
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FIG. 3. Phase diagram for the simple model of Sec. Ill.
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IV. ZERO BANDWIDTH LIMIT

o
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A special limit in which the model given by Eql) be-
comes exactly solvable is the case where the bandwidth of
the electrodes tends to zero. This is equivalent to neglect the
high-energy excitations in the superconducting electrodes,
substituting the frequency-dependent electrodes self-energy
by an effective diagonal and nondiagonal level in Nambu
o/n ¢/ space?’ In this limit the semi-infinite leads connected to the

dot are replaced by an effective single site and the terms
FIG. 2. Bound states within the energy gap and current- phasg| _ r describing the leads in Eql) are given by

0.0
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relation for the simple model discussed in Sec. Ill. Fgf2l'=
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The qualitative behavior of the Andreev states can be eas-
ily analyzed in the particular cage=0, in which the posi-
tion of the four states is given by

+AE,R6E,R¢‘EI,RT- (15

The system thus becomes a sort of “superconducting mol-
ecule” with a finite number of electron configurations which

s COSp/2+ Xy/sirf ¢/2+ X2 can be diagonalized exactly. This solution can be useful as a
REE (X2+1) (14 test of the accuracy of the proposed approximations for the

infinite system. In spite of its simplicity this limit also gives
a qualitative description of the behavior of the full model, as
This expression clearly shows that the effect of a finitewill be shown below.
exchange field is to split the non-magnetic Andreev states at The exact solution in this limit is obtained by considering
+ A cosp/2 into four states. The transition to thejunction  electronic configurations with all possible total number of
behavior is associated with the progressive intercrossing dflectrons, the pairing interaction connecting configurations
the two “inner” bound states. This crossing is illustrated in that differ in two electrons. The eigenstates can be classified
Fig. 2 for a generic situation. For small exchange fi#fiy.  into those arising from even or odd number configurations.
2(a)], the inner states do not cross and the system is in the (h the even case the ground state has zero total spin, while in
state. AsX increases, the inner states crossrand thus the the odd case the ground state is twofold degenerate corre-
current-phase relation exhibits a sign change aragirdr.  sponding toS,= + 1/2.
Eventually, when the crossing between the inner states is In Fig. 4 we show the evolution of the ground state energy
complete the whole current-phase relation changes sign arigr the even and odd cases for fixegland increasindJ. As
the system is in ther state. The state in the intermediate can be observed, in the even case the ground-state energy
region is conventionally designed as Or 7' depending on  always exhibits a minimum fo$=0, while in the odd case
the relative stability of the minima of the intercrossing statesthe minimum appears fap= 7. This is to be expected from
The boundaries between the different regions are straighthe fact that the system magnetization is finite in the odd

forwardly obtained from Eq(13): the curvesX=E, X=(E  case. For small values &f the even case is more stable for
+3+4E?)/3, and X=1+E? correspond to the 00  all values of the phasgFig. 4a)], while the opposite situa-
0’'-7'", and 7' -7 boundaries, respectively. The full phase tion is found for large enoughbl [Fig. 4(d)]. In the interme-
diagram of this simple model is illustrated in Fig. 3. diate region[Figs. 4b) and 4c)] the even and odd energy

035105-4



JOSEPHSON CURRENT THROUGH A CORRELATED. . .. PHYSICAL REVIEWEB, 035105 (2003

-
n

-0.38 1 -038
039} a b 1 L ]
g o0l -0.39 1ok I h
9l L - ]
slo -
0
<4t i ]
=IN 1 ]
s 0 | T ]
41 J1 4
of ()} 1 0* 0 ]
-0.39
< 2t 1F .
-0.39
g -0.40 Y a it b ]
m -0.40 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P e e 6 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8
oM - O/A -EO/A
e 05 10 45 20 08 05 10 5 20
om orm FIG. 6. Phase diagram in the zero bandwidth limit with-tg
. ) _ . =A obtained by exact diagonalizati¢a) and within the mean-field
FIG. 4. Energy levels for the model in the zero bandwidth limit approximation(b).

with t, =tg=1.2A, e/A=-10, andU/A=11 (a), 13 (b), 15 (c),
and 18(d). Dotted and full lines correspond to the evgmound and  tion between the exact and the mean-field solution first in-
first excited statgsand odd cases, respectively. creases in the small range while it progressively decreases
for largeU. This is due to the fact that the exact ground state
levels cross. This level crossing corresponds to the transitiodorresponds to a localized spin at the central site Wor
between 0 andr junction behavior in the full model. The —o, which is correctly described by the magnetic mean-
state thus corresponds to a situation in which the dot adfield solution.
quires a finite magnetization. The inclusion of the second-order self-energy substan-
The exact ground-state energy of this simple model casially improves the results of the mean-field approximation
now be used to check the accuracy of the different approxiboth in the magnetic and in the nonmagnetic cases for small
mations discussed in Sec. Il. For the sake of simplicity weand moderate values &f. In the nonmagnetic case the im-
shall restrict this comparison to tkg= —U/2 case. In Fig. 5 provement is considerable in the whole range of valued of
we show the comparison between the exact, the mean-fieltrigs. 5a) and 5b)]. On the other hand, in the magnetic case
and second-order self-energy results for the ground-state ethe improvement due to the inclusion of correlation effects
ergy for different values ofJ/A. At small values ofU/A  progressively becomes less important as the mean field tends
[Fig. 5@], the energy of the mean-field approximation liesto the exact solution in the larde limit.
slightly above the exact result both in the nonmagnetic and Finally, it is interesting to analyze the phase diagram of
in the magnetic case. When increasidgA [Fig. 5b)], the  the model in the zero bandwidth limit, which turns out to
nonmagnetic mean-field solution increasingly deviates frontontain the essential features of the full model with the four
the exact result. In contrast, in the magnetic case, the deviaypes of solutions 0, Q 7', ands appearing in the previous
section. In this discrete model the different phases can be
- T - T T identified by the phase dependence of the ground-state en-
-0.66 b T ergy.
3 : ] The exact phase diagram for the zero bandwidth limit is

-0.42

-0.44 0o8F R shown in Fig. §a). Only the regiorlJ >0 ande<0 is shown
< ok’ | as for all other regions the only possible phase is 0 type.
S 046 ] Roughly, then state is found forlU/T" and — ey /T" suffi-
= o072k i ciently large, while the O state appears either " or
048 —€o/I" sufficiently small. The 0 and then’ behavior is
0.74 found in the intermediate regime. It is interesting to notice
that for —ey/I'<1 andU/I"—« the O state is always the
-0.50 076 more stable. An extrapolation of this result to the full model
would imply the absence of junction behavior in the so-
08 T o5 10 15 20 80 o5 10 15 20 called mixed vglence regime, as has_been pr_edlcted in Ref._ 9.
ol oln For comparison, the mean-field diagram is also shown in

Fig. 5b). Notice that although the overall behavior is cap-
FIG. 5. Comparison of the ground-state energy in the zero bandured in the mean-field solution, correlation effects displace
width limit obtained by different approximations: exact diagonal- the 7 region to much larger values d8/I" and —€/I".
ization (full lines), mean-field approximatioridotted line, and  Neglecting the induced order parameter in the dot as done in
second-order self-energgashed lings The values of the param- Ref. 8 does not qualitatively change the phase diagram al-
eters aree=—U/2, t, =tg=1.2A, with U/A=2.5 (a) and U/A though the full self-consistent solution is somewhat closer to
=10 (b). the exact result.
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V. RESULTS FOR THE FULL MODEL sl

The mean-field approximation for the full model has been 2
analyzed in Ref. 8. Although in this work self-consistency in 8 I
the induced order parameter was neglected, its effects on the 1
total energy is small as already discussed for the zero band- ol
width limit. In the present section we will concentrate in
discussing the effects of electronic correlations beyond the 5[
mean-field solution. We will consider the electron-hole sym- I
metric situation €,=—U/2) in which electron correlation & 2t
effects are expected to be more important. A I

For a fixed value ofJ, the physical behavior of the model ! i
is controlled by the dimensionless parameiéi’. Is is in- 0
teresting to analyze in detail the two opposite lImisl® ,
>1 andA/T'<1 3t

A/T'>1 limit. This situation corresponds to a dot very I
weakly coupled to the leads. In this limit the exact solution g 2 i
can be obtained due to the fact that the problem can be A gt
mapped into a two-level Hamiltonian describing the dynam- N —

ics of the Andreev states. This can be shown by first consid- 50 15 10 5 0 5 10 15 20
ering the noninteracting=0) situation. In this case, the
spectral density of the dot exhibits bound states at energies E/T
Ws= +2I' cos¢/2 and the continuous part becpmes negli- FIG. 7. Density of states for the symmetric case in the regime
gible. Consequently, the retarded Green function at the dgt- A The values of the parameters &&= 0.2 andU/T' =5 (a)
can be simply written as 10 (b), and 20(c). The dotted lines indicate the corresponding re-
sults for the normal state.
w — ws> -1

—wg U \? ?

o[z (3% 7
indicating that the corresponding effective Hamiltonian is
given by H®"=w{c,c, +c[cl]. When introducing a finite  which coincides with the perturbative result of Ref. 26 for
U, the diagonal level at-U/2 is canceled by the Hartree the Anderson model. Although this approach fails to give the
term and the remaining part of the Hamiltonian associateegxponential decay of the Kondo temperature witlit gives
with the Coulomb interaction becomeb(n;—1/2)(n;  a rather good description of the spectral density in the mod-
—1/2)—U/4. This term vanishes for the case of an emptyerateU/T" range?®
and a doubly occupied dot, while it yields an energ¥)/2 The coexistence of the Kondo and Josephson effects is to
for the single electron case. As a consequence, the grouriie expected as far ag>A. WhenU is further increased
state of the system is either the symmetric combination ofhe system should evolved into the magnetistate with the
empty and doubly occupied configuratiosith energy suppression of the Kondo effect.

é’(w)e( (16)

—wg) or the doubly degenerate single occupied statith Let us analyze the self-energy in this limit. The effective
energy—U/2). Thus, the transition to the magneticstate  one-electron problem in this case is characterized by the
takes place whet/2>2T". presence of Andreev states which, from ELL), are located

A/T <1 limit. In this opposite limit one would expect to at ws=A1— 7sir?@/2, where 7=4T"2/(e24+4T?) is the
recover gradually the properties of a normal system. In parnormal transmission in the effective probléim the electron-
ticular, for U>T" the features associated with the Kondo ef-hole symmetric case considered hesg=0 and r=1),
fect should emerge. Figure 7 shows the dot spectral densitsimilar to the case of a single channel point contact. The
in this regime for increasing values &f obtained in the weight of the Andreev states at the dot site decreas@sias
second-order self-energy approximation. For comparison thaccording to the expressiak|sing/2|/4". Also the induced
spectral density in the normal state is also shown. As can berder parameter tends to zero &4 in this limit.
observed, the spectral density is similar to the one found in The electron self-energy can then be evaluated retaining
the normal state except for the superimposed features in thenly terms of orderA/T". The contributions labeled as (bl
gap region. The overall shape evolves as in the normal casend 21a) can be altogether neglected as they involve more
from a single Lorentzian broad resonance @« I" to the than one anomalous propagator and are thus of order
three peaked structure characteristic of the Kondo regim¢A/I")2. On the other hand, from the general expressions for
whenU>T". In this regime the relevant energy scale is setthe second-order self-energy, E¢al), (A4) in the Appen-
by the Kondo temperatuig which essentially measures the dix, it should be noticed that there are three types of contri-
width of the Kondo resonance in the normal state. Within thebutions to3.(?): one involving only the discrete part of the
second-order self-energy approximationc~1"/(1— «ay), one-electron spectral densities, another one involving only
whereay=(92/Jdw)(0). In thesymmetric case the continuous part; and terms in which both the localized
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FIG. 8. Renormalized bound states within the gap in the regime

. 9. i i i l.
I'>A with U/T=0, 10, 14, 18, and 20. FIG. 9. Phase diagram in the symmetric case for the full mode

The full and the dashed lines correspond to the onset ofrtbtate

. . . within the second-order self-energy and the mean-field approxima-
states and the continuous spectrum are mixed. The first Qfo * respectively. The dash-dotted line correspondsTio=A

these contributions is of orden(T")* and can be neglected. yithin the second-order self-energy approximation. Inset: closer

The resulting expression fa?) up to first order inA/I" for  view of the <A region showing the behavior of the mean-field

|w|<A is approximation. The dotted lines indicate the different slopes in the
I'<A andI'>A regimes.

U \? w2
(2) _—| -
2ir(e)= (2771“) (3 4 )“” (18) finite U. We also show as a reference the line whé&gein
the normal state, given by the second-order self-energy ap-

U \2 1 proximation, matched. It can be observed that the crite-
Eﬁé)(w):(ﬁ) sin(¢/2)| +2| 1+ = |cog ¢/2)}A. rium T~ A for the transition to ther state is a rather good
a a ..
(19 for I sufficiently large.
These expressions for the self-energies allow one to de- VI. CONCLUSIONS AND FINAL REMARKS

termin_e the re_normalization of the states inside the gap due \\, have presented a theoretical analysis of the Josephson
to the interactions. For moderate valuestb{U <100') the  yransport through a strongly correlated level coupled to su-

renormalized states have approximately the same phase dgsconducting electrodes. The analysis has been specially fo-
pendence as in the noninteracting chise, ~cos@/2)] but  ¢seq in the effect of electron correlations on the subgap
with a narrower dispersion given byws(0)=A[1l  Andreev states. These states determine to a large extent the
—(U/Ug)?], where Uo/T')?=(I'/A)@?/(2w+2). For  current-phase relation in this system. The transition to a
larger values ol the phase dependence of the states starts tetate can be understood as a result of the intercrossing of the
deviate from this simple law. This is illustrated in Fig. 8.  subgap states induced by an increasing Coulomb interaction.
The evolution of the renormalized Andreev states indicatepithin this model this transition corresponds to a truly quan-
that the critical currents are suppressed~dd —(U/U,)?] tum phase transition in which the ground state becomes de-
in this limit (for moderate values dfl). One can summarize generate having a localized magnetic moment at the dot level
the results for the full model in the symmetric case by dis-as already noticed in Ref. 10. It is worth noticing that this
cussing the phase diagram shown in Fig. 9. In this figure wejtuation cannot exist in the absence of superconductivity. In
compare the results of the mean-field and the second-ordéct, this behavior can be traced to the suppression of the
self-energy approximations for the criticel, U., defining  Kondo effect(in which the electrons at the dot level couple
the transition to ther state. As can be observed both ap-to a singlet due to the absence of low-energy excitations in
proximations yield the same result in th#A<1 limit. A the superconducting leads.
close inspection of this regime, illustrated by the inset in Fig. In the present analysis we have used different approxima-
9, shows that the transition takes place td¢f~4I" when tion methods. In order to get insight on the behavior of the
I'—0 in agreement with the exact result. R8A increases Andreev states in the transition to thestate we have first
the predictions of the two approaches start to deviate. Thanalyzed a simple mean-field model in which the electron
mean field predicts an almost linear relation betwderand interactions are represented by a local exchange field. We
I' although with a larger slope than in the<A limit. Onthe  have also studied the zero bandwidth limit which allows for
other hand, the second-order self-energy predicts a faster ilmn exact diagonalization. It has been shown that the study of
crease ofU. with I'. Notice that in the normal stateA( this limit already illustrates the different types of behaviors
—0) there should be no transition into a magnetic state fothat can be found in the full model. These results have also
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been used to determine the accuracy of the self-energy aplied bias voltage. This would allow one to analyze an ex-
proach, showing that it considerably improves the results operimental situation such as the one of Ref. 3. Work along
the mean-field approximation for moderate values of thehis line is under progress.
Coulomb interaction. Finally, we have presented results for
the full model in different regimes. In the limih>T we ACKNOWLEDGMENTS
have shown that the problem can be solved exactly, its dy-
namics being described by a two level Hamiltonian corre- This work has been supported by the Spanish CICyT un-
sponding to the Andreev states. On the other hand,Ifor der contract BFM2001-0150.
> A there is a coexistence of Kondo and Josephson effects
for Tx>A, the main effect of electron correlations being APPENDIX
included in a renormalization of the critical current.

The present work constitutes a first step in the study of the The different contributions to the self-energy represented
transport properties of a quantum dot coupled to supercorin Fig. 1 can then be written in terms of the one-electron
ducting leads in a nonequilibrium situation, i.e., with an ap-propagators in the following way:

O ()G ()G " (€3) -G " (€1)G T ()G (e3)

w— €1 62+ E3+io+

u? G
Er(Z)(w)lla:_(Zﬂ-—iff delf dezf de;
(A1)

O ()G (G T(e3)— G " (e1)GY T ()G (e3)

w—e;— eyt ez+i0”"

u? G
zr(Z)(w)ll’b:_(zﬂ-—i)E}f dflf dfzf d63
(A2)

@ u? G ()G ()G (€) — G (e)GY (G (ea)
21 w)a15= — - de; | dey | des : ,
(2mi)3 w—e;— e+ ez+i0”"
(A3)

u? G ()G ()G T () =G ()G (2GR (e3)
7)) pyp= fdflf dfzf e DACLT) 2)621 3 22 ACLT 2)Go1 3

(277')3 (J)_fl_62+63+i0+
(Ad)

Notice thatG®* ~/27i andG(®)~*/2mi in the above equa- (25 and 3!'?)) are obtained by similar expressions.
tions correspond, respectively, to the occupied and unoccun the nonmagnetic case the diagonal self-energy
pied states in the dot spectral density. components are related byErz(zz)(w)=—Ei‘(12)(—w).

The total self-energy is obtained by adding theThis relation does not hold in the general magnetic
contributions labeled by(a) and (b) in the above case, except wheney=-U/2 for which Erl(f)(w)
equations. The remaining self-energy components:Erz(zz)(w).
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