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Josephson current through a correlated quantum level: Andreev states andp junction behavior

E. Vecino, A. Martı´n-Rodero, and A. Levy Yeyati
Departamento de Fı´sica Teo´rica de la Materia Condensada C-V, Universidad Auto´noma de Madrid, E-28049 Madrid, Spain
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The Josephson transport and the electronic properties of a quantum dot characterized by a single level
coupled to superconducting leads is analyzed. Different approximations are used and compared: the mean-field
approximation, the second-order perturbation theory in the Coulomb interaction, and the exact diagonalization
in the zero bandwidth limit. The system exhibits a rich behavior as a function of the relevant parameters. We
discuss in detail the conditions for the observation ofp junction behavior and the effect of Coulomb interac-
tions on the Andreev states.
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I. INTRODUCTION

The observation of the Kondo effect in semiconducti
quantum dots1 has opened a new area of research in wh
electronic transport through a nanoscale strongly correla
system can be studied under controlled conditions. More
cently, this effect has also been observed in carbon nanot
coupled to metallic electrodes, a system that can behav
many respects as a quantum dot.2 These type of devices pro
vide an almost ideal system to test different theoretical p
dictions. In this direction, great theoretical interest has ari
in connection with the possibility of replacing the norm
electrodes by superconducting ones. In fact, carbon na
tubes connected to superconducting leads, that are alr
being produced, can provide a physical realization of suc
system.3

In these types of systems an issue of fundamental
evance is the interplay between electron correlation effe
and Andreev reflection processes, which provide the b
mechanism for transport between normal and supercond
ing regions. This interplay has been analyzed by several
thors for the case of a quantum dot coupled to a normal
superconducting electrode.4,5 There have also been som
works addressing the problem of the electron transport
diated by multiple Andreev reflections through a reson
level between two superconducting electrodes.6

When both electrodes are superconducting a more b
question is how the electron-electron interactions in the
would affect the Josephson current. This issue has rece
considerable attention in recent years.7–11 In particular, the
discussion has been centered to a large extent around
appearance of ap-junction behavior induced by electron
electron interactions. Thep-junction behavior, which con-
sists in a reversal of the sign of the supercurrent under
tain conditions, was first pointed out by Kulik12 when
analyzing the Josephson tunneling in the presence of m
netic impurities, and discussed afterwards by seve
authors.13–15 This issue is also related to the interplay b
tween superconductivity and magnetism.p-junction behav-
ior has in fact been recently observed inS-F-S Josephson
junctions.16

The existing theoretical works analyzing the Joseph
effect in a single correlated level coupled to superconduc
leads have adopted either a mean field description8 or are
0163-1829/2003/68~3!/035105~9!/$20.00 68 0351
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restricted to some limiting situations.7,9 In Ref. 7 the current
was obtained to the lowest order in the tunneling coupli
thereby neglecting the important physics associated with
Andreev bound states. On the other hand, in Refs. 9,10
limit of infinite Coulomb repulsion was considered.

At this point we believe that further work is needed
understand the physical behavior of this system for a br
parameter range. This behavior is actually rather comp
due to the several energy scales involved. In particular, as
Andreev bound states play a crucial role in the transp
properties, a detailed analysis of electron correlation effe
on these states seems desirable. In this paper we pres
theoretical study of the Josephson effect in a single le
quantum dot coupled to superconducting electrodes. Dif
ent approaches are considered. We first study the zero b
width limit in which the problem can be exactly diagona
ized. Then, as an approximation to the full model we us
diagrammatic expansion of the self-energy associated w
the Coulomb interaction in which the coupling to the sup
conducting leads is taken into account up to infinite ord
This last ingredient is important for a proper description
the Andreev bound states.

In Sec. II, we introduce the theoretical model and disc
the diagrammatic approximations for the electron se
energy. In Sec. III we present a simplified version of th
model in which the Coulomb interaction is replaced by
effective exchange field. This simple model already d
scribes thep-junction transition and allows us to understa
the behavior of the Andreev states under a finite magnet
tion in the dot. Section IV is devoted to the analysis of t
zero bandwidth limit in which the model becomes equivale
to a finite system which can be solved exactly. The ex
solution is then used as a test of the approximations used
the electron self-energy. It turns out that the zero bandwi
limit can describe rather accurately most of the properties
the full model. The results for the full model are presented
Sec. V. We first discuss two opposite limiting situations
which the coupling of the dot to the leads is either small
large compared to the superconducting gap. As in the z
bandwidth limit, in the case of weak coupling we show th
the problem can be solved exactly. We also present so
numerical results for the intermediate regime. The pape
closed by a brief summary of the main conclusions.
©2003 The American Physical Society05-1
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II. MODEL AND THEORETICAL APPROACH

We describe a small quantum dot connected to super
ducting electrodes by means of a modified single-le
Anderson model, given by

Ĥ5ĤL1ĤR1(
s

e0n̂s1Un̂↑n̂↓1ĤT , ~1!

wheren̂s5 ĉ0s
† ĉ0s , ĤL andĤR represent the uncoupled su

perconducting leads;ĤT5(kPL,R;st0,kĉ0s
† ĉk,s1H.c. de-

scribing the coupling between the dot level and the lea
Within this model the dot is represented by a single s
degenerate level with a repulsive Coulomb interaction
scribed by theU term in Eq.~1!. We shall assume that th
superconducting leads are well described by the BCS the
with a superconducting gapD and that there is a fixed supe
conducting phase differencef5fL2fR between both elec
trodes. It is interesting to have an estimate of the typi
values that the model parameters can adopt in an actua
perimental situation. Thus, for instance, in the experime
on carbon nanotubes of Ref. 3,U'0.45 meV and D
'0.1 meV. On the other hand the coupling to the leads v
from sample to sample which allows to study the transit
from weak to strong coupling.

The relevant quantities such as the current and the s
tral densities can be expressed in terms of nonequilibr
Green functions.17 For the description of the superconductin
state it is useful to introduce spinor field operators,18 which
in a site representation are defined as:

ĉ i5S ci↑
ci↓

† D , ĉ i
†5~ci↑

† ci↓!. ~2!

Then, the different correlation functions appearing in t
Keldysh formalism adopt the standard causal form

Ĝi j
a,b~ ta ,tb8 !52 i ^T̂@ĉ i~ ta!ĉ i

†~ tb8 !#&, ~3!

where T̂ is the chronological ordering operator along t
Keldysh time contour. The labelsa andb refer to the upper
(a[1) and lower (a[2) branches on this contour. Th
functionsĜi j

12 , which can be associated within this forma
ism with the electronic nonequilibrium distribution func
tions, are given by the (232) matrix

Ĝi , j
12~ t,t8!5 i S ^cj↑

† ~ t8!ci↑~ t !& ^cj↓~ t8!ci↑~ t !&

^cj↑
† ~ t8!ci↓

† ~ t !& ^cj↓~ t8!ci↓
† ~ t !&

D . ~4!

In terms of the Fourier transform matrix elements
Ĝi j

12(t,t8) one can write the charge and the induced or
parameter on the dot, as well as the Josephson current:

^n̂↑&5
1

2p i E2`

`

dv@Ĝ00
12~v!#11, ~5!

^c0↑
† c0↓

† &52
1

2p i E2`

`

dv@Ĝ00
12~v!#21, ~6!
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kPL,R

dv Tr@szt̂0,kĜk,0
12~v!2szt̂ k,0Ĝ0,k

12~v!#,

~7!

whereI L,(R) denotes the current between the left~right! lead
and the dot,sz is the usual Pauli matrix, andt̂0,k is the
hopping matrix in the Nambu representation

t̂0,k5~ t̂ k,0!
†5S t0,k 0

0 2t0,k* D . ~8!

For the zero voltage case the calculation of the differ
Ĝ12(v) is particularly simple because the following rel
tion holds:

Ĝi j
12~v!5 f ~v!@Ĝi j

a ~v!2Ĝi j
r ~v!#, ~9!

where f (v) is the Fermi distribution function andĜa,r are
the advanced and retarded Green functions. Therefore,
relevant quantity to be determined is the dot retarded Gr
function, which in the Nambu 232 representation adopts th
form

Ĝ00
r ~v!5@v Î 2e0ŝz2Ŝ r~v!2ĜL~v!2ĜR~v!#21,

~10!

where ĜL,R are the tunneling rates given Ĝk

5prFt̂0,kĝ
kt̂ k,0 , with g11

k 5g22
k 52v/AD22v2 and g12

k

5(g21
k )* 5D/AD22v2eifk with k5L,R and whererF is the

normal density of states at the Fermi level~the chemical
potential of the superconducting leads is taken as zero!. The
self-energyŜ r(v) takes into account the effect of Coulom
interactions. To the lowest order inU this is given by the
Hartree-Fock Bogoliubov approximation (Ŝ r)115U^n̂↓&,
(Ŝ r)2252U^n̂↑&, (Ŝ r)215(Ŝ r)12* 5U^ĉ0↑

† ĉ0↓
† &. We shall

discuss in how correlation effects beyond this mean-field
proximation can be included in Sec. II.

This model has been analyzed within a mean-field
proximation in Ref. 8. In that work the mean field solutio
was simplified by neglecting the induced order paramete
the dot and imposing self-consistency only in the dot m
netization. However, the complete Hartree-Fock Bogoliub
solution requires the self-consistent determination of both
diagonal and nondiagonal charges in the dot. It should
noticed that the self-consistent determination of the indu
complex order parameter is in principle necessary in orde
ensure current conservation.19

Inclusion of correlation effects. In order to go beyond the
mean-field approximation, we consider the diagrammatic
pansion of the self-energy in terms of one-electron propa
tors in Nambu space. In Fig. 1 we show the correspond
second order diagrams in the electron-electron interact
Due to the appearance of the anomalous propagatorsG12 and
G21 in the superconducting state, there are additional d
grams to the one contributing in the normal state, labeled
11~a! in Fig. 1, corresponding to the interaction of a qua
particle with an electron hole pair with opposite spin.
5-2



m
e
th

lly

pe
lt

a

the
of

also

n-

JOSEPHSON CURRENT THROUGH A CORRELATED . . . PHYSICAL REVIEW B68, 035105 ~2003!
The proper choice of the unperturbed one-electron Ha
tonian over which the diagrammatic expansion is perform
is an important issue. For the normal Anderson model in
symmetric case (e052U/2) the Hartree approximation
which renormalizes the dot level ase01U/2 is the adequate
starting point for the perturbation theory as it automatica
warrants charge consistency between the perturbed and
unperturbed situation. However, in a nonsymmetric case
turbation over the Hartree field yields pathological resu
close to half-filling~see Ref. 21!. As discussed in Ref. 21
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better choice is to define an effective dot leveleeff in such a
way that charge consistency between the effective and
interacting problems is achieved. The natural extension
this scheme to the superconducting case is to impose
consistency in the nondiagonal chargen12 by introducing an
effective local pairing potentialDeff in the unperturbed
Hamiltonian.5

With these definitions, the dot Green functions in the u
perturbed effective problem are given by~hereafter we omit
the subscript 00 in the dot Green functions!
Ĝr (0)~v!5
1

D~v! S v2eeff2tL
2g11

L 2tR
2g11

R 2Deff1tL
2g12

L 1tR
2g12

R

2Deff* 1tL
2g21

L 1tR
2g21

R v1eeff2tL
2g22

L 2tR
2g22

R D , ~11!
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where D(v) is the corresponding determinant. Notice th
the Andreev states in the unperturbed problem are de
mined by the conditionD(v)50 , which, in the genera
case, can have up to four solutions.

The different contributions to the self-energy represen
in Fig. 1 can then be written in terms of the one-electr
propagators as discussed in the Appendix. The second-o
self-energy is in principle valid in the limitU,G. In order to
extend its range of validity an ansatz which interpolates c
rectly between the limitsU/G→0 and U/G→` can be
used.5 Within this interpolative approach the matrix se
energy is given by the following expression:5

Ŝ~v!5U^n̂&ŝz1Ddŝx1@ Î 2aŜ (2)ŝz#
21Ŝ (2)~v!,

~12!

where

a5
e01~12^n̂&!U2eeff

U2^n̂&~12^n̂&!
,

and Ŝ (2) is the second-order self-energy.
This interpolative scheme has been used in many diffe

contexts involving strongly correlated electrons.20–22Notice,

FIG. 1. Diagrams contributing to the second-order self-energ
the superconducting state.
t
r-
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however, that for the electron-hole symmetric case the in
polative self-energy reduces to the second-order one. In
case theU/G→` limit is correctly described by the second
order self-energy except for a narrow region around
Fermi energy.23 A more precise idea of the validity of th
second-order self-energy will be obtained in the compari
with exact results discussed in Sec. IV.

III. TRANSITION FROM NORMAL TO p JUNCTION
BEHAVIOR: A SIMPLE MODEL

An exactly solvable model which can describe the tran
tion from normal top junction behavior is obtained by sub
stituting the interacting region by a single site with a loc
exchange fieldEex, in such a way thate↑5e01Eex and e↓
5e02Eex. It should be noticed that this model is formal
equivalent to a mean field solution of Hamiltonian~1! with
the prescriptionEex5U(n↓2n↑)/2.

This model exhibits in general four bound states ins
the superconducting gap~Andreev states! which give the
dominant contribution to the current. This is determined
the derivative of the states below the Fermi energy with
spect to the phase. The position and spectral weight of th
states can be obtained from the retarded Green function@Eq.
~10!#. In the limit D!G and whenGL5GR5G, the Andreev
states can be determined analytically by the expression

S v6

D D 2

5
cos2f/212E21Z2~Z21sin2f/2!62XS~f!

Z412~X21E2!11
,

~13!

whereE5e0/2G, X5Eex/2G, andZ25X22E2 andS(f) is
given by

S~f!5AZ2cos2f/21E21~sin2f!/4.

It can be verified that in the limitX→0 Eq.~13! recovers
the well known expression for the Andreev states in a sin
channel contact of transmissiont51/(11E2), i.e., v/D
56A12t sin2f/2.24

n

5-3
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The qualitative behavior of the Andreev states can be e
ily analyzed in the particular caseE50, in which the posi-
tion of the four states is given by

v6
656D

cosf/26XAsin2f/21X2

~X211!
. ~14!

This expression clearly shows that the effect of a fin
exchange field is to split the non-magnetic Andreev state
6D cosf/2 into four states. The transition to thep junction
behavior is associated with the progressive intercrossin
the two ‘‘inner’’ bound states. This crossing is illustrated
Fig. 2 for a generic situation. For small exchange field@Fig.
2~a!#, the inner states do not cross and the system is in th
state. AsX increases, the inner states cross atp and thus the
current-phase relation exhibits a sign change aroundf5p.
Eventually, when the crossing between the inner state
complete the whole current-phase relation changes sign
the system is in thep state. The state in the intermedia
region is conventionally designed as 08 or p8 depending on
the relative stability of the minima of the intercrossing stat

The boundaries between the different regions are strai
forwardly obtained from Eq.~13!: the curvesX5E, X5(E
1A314E2)/3, and X5A11E2 correspond to the 0-08,
08-p8, and p8-p boundaries, respectively. The full pha
diagram of this simple model is illustrated in Fig. 3.

FIG. 2. Bound states within the energy gap and current-ph
relation for the simple model discussed in Sec. III. Fore0/2G5
20.5 and Eex/2G50.25 ~top panel!, 0.75 ~middle panel!, 1.50
~lower panel!.
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IV. ZERO BANDWIDTH LIMIT

A special limit in which the model given by Eq.~1! be-
comes exactly solvable is the case where the bandwidt
the electrodes tends to zero. This is equivalent to neglect
high-energy excitations in the superconducting electrod
substituting the frequency-dependent electrodes self-en
by an effective diagonal and nondiagonal level in Nam
space.25 In this limit the semi-infinite leads connected to th
dot are replaced by an effective single site and the te
HL,R describing the leads in Eq.~1! are given by

HL,R5(
s

eL,RĉL,Rs
† ĉL,Rs1DL,RĉL,R↑ĉL,R↓

1DL,R* ĉL,R↓
† ĉL,R↑

† . ~15!

The system thus becomes a sort of ‘‘superconducting m
ecule’’ with a finite number of electron configurations whic
can be diagonalized exactly. This solution can be useful a
test of the accuracy of the proposed approximations for
infinite system. In spite of its simplicity this limit also give
a qualitative description of the behavior of the full model,
will be shown below.

The exact solution in this limit is obtained by considerin
electronic configurations with all possible total number
electrons, the pairing interaction connecting configuratio
that differ in two electrons. The eigenstates can be classi
into those arising from even or odd number configuratio
In the even case the ground state has zero total spin, whi
the odd case the ground state is twofold degenerate co
sponding toSz561/2.

In Fig. 4 we show the evolution of the ground state ene
for the even and odd cases for fixede0 and increasingU. As
can be observed, in the even case the ground-state en
always exhibits a minimum forf50, while in the odd case
the minimum appears forf5p. This is to be expected from
the fact that the system magnetization is finite in the o
case. For small values ofU the even case is more stable f
all values of the phase@Fig. 4~a!#, while the opposite situa-
tion is found for large enoughU @Fig. 4~d!#. In the interme-
diate region@Figs. 4~b! and 4~c!# the even and odd energ

se

FIG. 3. Phase diagram for the simple model of Sec. III.
5-4
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levels cross. This level crossing corresponds to the trans
between 0 andp junction behavior in the full model. Thep
state thus corresponds to a situation in which the dot
quires a finite magnetization.

The exact ground-state energy of this simple model
now be used to check the accuracy of the different appr
mations discussed in Sec. II. For the sake of simplicity
shall restrict this comparison to thee052U/2 case. In Fig. 5
we show the comparison between the exact, the mean-
and second-order self-energy results for the ground-state
ergy for different values ofU/D. At small values ofU/D
@Fig. 5~a!#, the energy of the mean-field approximation li
slightly above the exact result both in the nonmagnetic
in the magnetic case. When increasingU/D @Fig. 5~b!#, the
nonmagnetic mean-field solution increasingly deviates fr
the exact result. In contrast, in the magnetic case, the de

FIG. 4. Energy levels for the model in the zero bandwidth lim
with tL5tR51.2D, e/D5210, andU/D511 ~a!, 13 ~b!, 15 ~c!,
and 18~d!. Dotted and full lines correspond to the even~ground and
first excited states! and odd cases, respectively.

FIG. 5. Comparison of the ground-state energy in the zero ba
width limit obtained by different approximations: exact diagon
ization ~full lines!, mean-field approximation~dotted lines!, and
second-order self-energy~dashed lines!. The values of the param
eters aree52U/2, tL5tR51.2D, with U/D52.5 ~a! and U/D
510 ~b!.
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tion between the exact and the mean-field solution first
creases in the smallU range while it progressively decreas
for largeU. This is due to the fact that the exact ground st
corresponds to a localized spin at the central site forU
→`, which is correctly described by the magnetic mea
field solution.

The inclusion of the second-order self-energy subst
tially improves the results of the mean-field approximati
both in the magnetic and in the nonmagnetic cases for sm
and moderate values ofU. In the nonmagnetic case the im
provement is considerable in the whole range of values oU
@Figs. 5~a! and 5~b!#. On the other hand, in the magnetic ca
the improvement due to the inclusion of correlation effe
progressively becomes less important as the mean field t
to the exact solution in the largeU limit.

Finally, it is interesting to analyze the phase diagram
the model in the zero bandwidth limit, which turns out
contain the essential features of the full model with the fo
types of solutions 0, 08, p8, andp appearing in the previous
section. In this discrete model the different phases can
identified by the phase dependence of the ground-state
ergy.

The exact phase diagram for the zero bandwidth limit
shown in Fig. 6~a!. Only the regionU.0 ande,0 is shown
as for all other regions the only possible phase is 0 ty
Roughly, thep state is found forU/G and 2e0 /G suffi-
ciently large, while the 0 state appears either forU/G or
2e0 /G sufficiently small. The 08 and thep8 behavior is
found in the intermediate regime. It is interesting to noti
that for 2e0 /G,1 andU/G→` the 0 state is always the
more stable. An extrapolation of this result to the full mod
would imply the absence ofp junction behavior in the so-
called mixed valence regime, as has been predicted in Re

For comparison, the mean-field diagram is also shown
Fig. 5~b!. Notice that although the overall behavior is ca
tured in the mean-field solution, correlation effects displa
the p region to much larger values ofU/G and 2e0 /G.
Neglecting the induced order parameter in the dot as don
Ref. 8 does not qualitatively change the phase diagram
though the full self-consistent solution is somewhat close
the exact result.

d-

FIG. 6. Phase diagram in the zero bandwidth limit withtL5tR

5D obtained by exact diagonalization~a! and within the mean-field
approximation~b!.
5-5
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V. RESULTS FOR THE FULL MODEL

The mean-field approximation for the full model has be
analyzed in Ref. 8. Although in this work self-consistency
the induced order parameter was neglected, its effects on
total energy is small as already discussed for the zero b
width limit. In the present section we will concentrate
discussing the effects of electronic correlations beyond
mean-field solution. We will consider the electron-hole sy
metric situation (e052U/2) in which electron correlation
effects are expected to be more important.

For a fixed value ofU, the physical behavior of the mode
is controlled by the dimensionless parameterD/G. Is is in-
teresting to analyze in detail the two opposite limitsD/G
@1 andD/G!1

D/G@1 limit. This situation corresponds to a dot ve
weakly coupled to the leads. In this limit the exact soluti
can be obtained due to the fact that the problem can
mapped into a two-level Hamiltonian describing the dyna
ics of the Andreev states. This can be shown by first con
ering the noninteracting (U50) situation. In this case, th
spectral density of the dot exhibits bound states at ener
vs562G cosf/2 and the continuous part becomes neg
gible. Consequently, the retarded Green function at the
can be simply written as

Ĝr~v!→S v 2vs

2vs v
D 21

, ~16!

indicating that the corresponding effective Hamiltonian
given by Ĥeff5vs@ ĉ↑ĉ↓1 ĉ↓

†ĉ↑
†#. When introducing a finite

U, the diagonal level at2U/2 is canceled by the Hartre
term and the remaining part of the Hamiltonian associa
with the Coulomb interaction becomesU(n↑21/2)(n↓
21/2)2U/4. This term vanishes for the case of an emp
and a doubly occupied dot, while it yields an energy2U/2
for the single electron case. As a consequence, the gro
state of the system is either the symmetric combination
empty and doubly occupied configurations~with energy
2vs) or the doubly degenerate single occupied state~with
energy2U/2). Thus, the transition to the magneticp state
takes place whenU/2.2G.

D/G!1 limit. In this opposite limit one would expect t
recover gradually the properties of a normal system. In p
ticular, for U.G the features associated with the Kondo
fect should emerge. Figure 7 shows the dot spectral den
in this regime for increasing values ofU obtained in the
second-order self-energy approximation. For comparison
spectral density in the normal state is also shown. As can
observed, the spectral density is similar to the one found
the normal state except for the superimposed features in
gap region. The overall shape evolves as in the normal c
from a single Lorentzian broad resonance forU,G to the
three peaked structure characteristic of the Kondo reg
when U.G. In this regime the relevant energy scale is
by the Kondo temperatureTK which essentially measures th
width of the Kondo resonance in the normal state. Within
second-order self-energy approximationTK;G/(12a0),
wherea05(]S/]v)(0). In thesymmetric case
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a052S U

2pG D 2S 32
p2

4 D , ~17!

which coincides with the perturbative result of Ref. 26 f
the Anderson model. Although this approach fails to give
exponential decay of the Kondo temperature withU it gives
a rather good description of the spectral density in the m
erateU/G range.23

The coexistence of the Kondo and Josephson effects
be expected as far asTK.D. When U is further increased
the system should evolved into the magneticp state with the
suppression of the Kondo effect.

Let us analyze the self-energy in this limit. The effecti
one-electron problem in this case is characterized by
presence of Andreev states which, from Eq.~11!, are located
at vs5DA12t sin2f/2, where t54G2/(eeff

2 14G2) is the
normal transmission in the effective problem~in the electron-
hole symmetric case considered hereeeff50 and t51),
similar to the case of a single channel point contact. T
weight of the Andreev states at the dot site decreases asD/G
according to the expressionDusinf/2u/4G. Also the induced
order parameter tends to zero asD/G in this limit.

The electron self-energy can then be evaluated retain
only terms of orderD/G. The contributions labeled as 11~b!
and 21~a! can be altogether neglected as they involve m
than one anomalous propagator and are thus of o
(D/G)2. On the other hand, from the general expressions
the second-order self-energy, Eqs.~A1!, ~A4! in the Appen-
dix, it should be noticed that there are three types of con
butions toS (2): one involving only the discrete part of th
one-electron spectral densities, another one involving o
the continuous part; and terms in which both the localiz

FIG. 7. Density of states for the symmetric case in the regi
G.D. The values of the parameters areD/G50.2 andU/G55 ~a!,
10 ~b!, and 20~c!. The dotted lines indicate the corresponding r
sults for the normal state.
5-6
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states and the continuous spectrum are mixed. The firs
these contributions is of order (D/G)3 and can be neglected
The resulting expression forS2) up to first order inD/G for
uvu,D is

S11
(2)~v!.2S U

2pG D 2S 32
p2

4 Dv, ~18!

S12
(2)~v!.S U

2pG D 2FUsin~f/2!U12S 11
1

p D cos~f/2!GD.

~19!

These expressions for the self-energies allow one to
termine the renormalization of the states inside the gap
to the interactions. For moderate values ofU (U,10G) the
renormalized states have approximately the same phase
pendence as in the noninteracting case@i.e., ;cos(f/2)] but
with a narrower dispersion given byṽs(0).D@1
2(U/U0)2#, where (U0 /G)25(G/D)p2/(2p12). For
larger values ofU the phase dependence of the states star
deviate from this simple law. This is illustrated in Fig. 8.

The evolution of the renormalized Andreev states indic
that the critical currents are suppressed as;@12(U/U0)2#
in this limit ~for moderate values ofU). One can summarize
the results for the full model in the symmetric case by d
cussing the phase diagram shown in Fig. 9. In this figure
compare the results of the mean-field and the second-o
self-energy approximations for the criticalU, Uc , defining
the transition to thep state. As can be observed both a
proximations yield the same result in theG/D!1 limit. A
close inspection of this regime, illustrated by the inset in F
9, shows that the transition takes place forUc;4G when
G→0 in agreement with the exact result. AsG/D increases
the predictions of the two approaches start to deviate.
mean field predicts an almost linear relation betweenUc and
G although with a larger slope than in theG!D limit. On the
other hand, the second-order self-energy predicts a faste
crease ofUc with G. Notice that in the normal state (D
→0) there should be no transition into a magnetic state

FIG. 8. Renormalized bound states within the gap in the reg
G@D with U/G50, 10, 14, 18, and 20.
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finite U. We also show as a reference the line whereTK in
the normal state, given by the second-order self-energy
proximation, matchesD. It can be observed that the crite
rium TK;D for the transition to thep state is a rather good
for G sufficiently large.

VI. CONCLUSIONS AND FINAL REMARKS

We have presented a theoretical analysis of the Josep
transport through a strongly correlated level coupled to
perconducting electrodes. The analysis has been speciall
cused in the effect of electron correlations on the sub
Andreev states. These states determine to a large exten
current-phase relation in this system. The transition to ap
state can be understood as a result of the intercrossing o
subgap states induced by an increasing Coulomb interac
Within this model this transition corresponds to a truly qua
tum phase transition in which the ground state becomes
generate having a localized magnetic moment at the dot l
as already noticed in Ref. 10. It is worth noticing that th
situation cannot exist in the absence of superconductivity
fact, this behavior can be traced to the suppression of
Kondo effect~in which the electrons at the dot level coup
to a singlet! due to the absence of low-energy excitations
the superconducting leads.

In the present analysis we have used different approxi
tion methods. In order to get insight on the behavior of t
Andreev states in the transition to thep state we have first
analyzed a simple mean-field model in which the elect
interactions are represented by a local exchange field.
have also studied the zero bandwidth limit which allows
an exact diagonalization. It has been shown that the stud
this limit already illustrates the different types of behavio
that can be found in the full model. These results have a

e FIG. 9. Phase diagram in the symmetric case for the full mod
The full and the dashed lines correspond to the onset of thep state
within the second-order self-energy and the mean-field approxi
tion, respectively. The dash-dotted line corresponds toTK5D
within the second-order self-energy approximation. Inset: clo
view of the G!D region showing the behavior of the mean-fie
approximation. The dotted lines indicate the different slopes in
G!D andG.D regimes.
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been used to determine the accuracy of the self-energy
proach, showing that it considerably improves the results
the mean-field approximation for moderate values of
Coulomb interaction. Finally, we have presented results
the full model in different regimes. In the limitD@G we
have shown that the problem can be solved exactly, its
namics being described by a two level Hamiltonian cor
sponding to the Andreev states. On the other hand, foG
@D there is a coexistence of Kondo and Josephson eff
for TK.D, the main effect of electron correlations bein
included in a renormalization of the critical current.

The present work constitutes a first step in the study of
transport properties of a quantum dot coupled to superc
ducting leads in a nonequilibrium situation, i.e., with an a
-
cc

he

n

r,

.
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plied bias voltage. This would allow one to analyze an e
perimental situation such as the one of Ref. 3. Work alo
this line is under progress.
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APPENDIX

The different contributions to the self-energy represen
in Fig. 1 can then be written in terms of the one-electr
propagators in the following way:
S r (2)~v!11,a52
U2

~2p i !3E de1E de2E de3

G11
(0)12~e1!G22

(0)12~e2!G22
(0)21~e3!2G11

(0)21~e1!G22
(0)21~e2!G22

(0)12~e3!

v2e12e21e31 i01
,

~A1!

S r (2)~v!11,b52
U2

~2p i !3E de1E de2E de3

G12
(0)12~e1!G21

(0)12~e2!G22
(0)21~e3!2G12

(0)21~e1!G21
(0)21~e2!G22

(0)12~e3!

v2e12e21e31 i01
,

~A2!

S r (2)~v!21,a52
U2

~2p i !3E de1E de2E de3

G21
(0)12~e1!G12

(0)12~e2!G21
(0)21~e3!2G21

(0)21~e1!G12
(0)21~e2!G21

(0)12~e3!

v2e12e21e31 i01
,

~A3!

S r (2)~v!21,b52
U2

~2p i !3E de1E de2E de3

G22
(0)12~e1!G11

(0)12~e2!G21
(0)21~e3!2G22

(0)21~e1!G11
(0)21~e2!G21

(0)12~e3!

v2e12e21e31 i01
.

~A4!
s.
rgy

tic
Notice thatG(0)12/2p i andG(0)21/2p i in the above equa
tions correspond, respectively, to the occupied and uno
pied states in the dot spectral density.

The total self-energy is obtained by adding t
contributions labeled by ~a! and ~b! in the above
equations. The remaining self-energy compone
u-

ts

(S22
r (2) and S12

r (2)) are obtained by similar expression
In the nonmagnetic case the diagonal self-ene
components are related byS22

r (2)(v)52S11
a(2)(2v).

This relation does not hold in the general magne
case, except whene052U/2 for which S11

r (2)(v)
5S22

r (2)(v).
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