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Electron-density stratification in two-dimensional structures tuned by an electric field
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We describe a kinetic instability mechanism which leads to electron-density stratification. The spatial period
of the arising space-charge and field configuration is found to be inversely proportional to the electric field and
can be tuned by applied voltage. The instability has no interpretation in the framework of a traditional
hydrodynamic approach, since it arises from the modulation of the electron distribution function in both the
coordinate and energy space. The phenomenon can be observed in two-dimensional nanostructures at relatively
low electron densities.
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Recent progress in microelectronics has largely been asdde the maxwellization of the electron BR°At lower elec-
sociated with controlled fabrication of low-dimensional tron densities occurring in typical gas discharges, the phe-
semiconductor systems, so there is much interest in the transemenon is of essentially kinetic nature. The DF
port properties of semiconductor nanostructures of both clagperturbation in the striations varies in both space and along
sical and quantum nature. The classical transport phenomeitiae energy axis:—*’and it is impossible to parametrize it in
involving density perturbations with characteristic scalesterms of the perturbations of electron density and tempera-
larger than the elastic mean free phtire usually described ture. The kinetic striation mechanism was first analyzed in
in the framework of a hydrodynamic approach. The kineticRefs. 11-13. It was argued in Ref. 11 that the necessary
effects are believed to dominate on smaller scales. Thesgonditions for kinetic stratification are the followin¢g) the
effects are treated theoretically in terms of the Boltzmanrmomentum relaxation is much faster than the energy relax-
equation. In this paper, we propose a purely classical instaation; (b) the energy relaxation is mostly controlled by the
bility mechanism, which involves relatively smootbom-  energy gain in the external field, and strong inelastic col-
pared tol) density distributions but, surprisingly, requires a lisions with a large fixed energy transféf,; (c) there should
kinetic description. The instability leads to electron-densityexist a mechanism of a weak continuous energy loss. In a
stratification (EDS) with a spatial period considerably ex- spatially modulated potentidl (z)=—Fqz+ 6U(z), 6U(2)
ceeding. In contrast to usual current and density instabilities= 6U(z+L), these conditions providE™® a resonant DF
in semiconductors; 3 the electron dynamics in this instabil- response al.=Lo/m, where Lo=W,/Fy, m=1,2,... .
ity cannot be described on the basis of local hydrodynamid his “resonant” behavior corresponds to the widely known
parameters, such as electronic density, drift velocity, an@mpirical Novak rul€-88The idea was put forwatd that
temperature. This implies that the phenomenon is of essemnder the conditionga)—(c), an instability develops leading
tially kinetic nature. The effect can be observed in two-to EDS with the same periodsy/m. In Refs. 11-13, the
dimensional2D) nanostructures with one type of free carri- electron kinetics was analyzed only in a fixed electric poten-
ers (here we consider 2D quantum wells of type) at tial profile U(z). However, a complete analysis of instability
relatively high applied voltages, when acoustic-phonon scatrequires a self-consistent calculation of the potential pertur-
tering is incapable to balance the heating by an electric fieldbation sU(z,t). Since the discharge field depends crucially
At such voltages, the energy balance in the system is mostlgn the ion motion and on the complex ion generation pro-
controlled by the gain in the electric field and the loss bycesses, even a linear instability problem for a gas discharge
optical-phonon scattering. In this case, a homogeneous solplasma is still lacking a self-consistent solution.
tion of the Boltzmann equation corresponds to usual Ohm’s In this paper we will demonstrate that the kinetic stratifi-
law. However, this solution is unstable, since the behavior otation can be, in principle, observed in low-dimensional
the system on the scales smaller than the optical-phonosemiconductor structuré® Moreover, it turns out that a rela-
emission lengthL is essentially nonequilibrium. We will tively simple self-consistent analytical solution can be found
show that the bunching of the electron distribution functionfor semiconductors. The main simplification follows from
(DF) on these scales leads to EDS with a spatial period of théhe fact that, in contrast to the gas discharge, a compensating
order ofL,. positive charge is fixed and uniform. The stratification con-

Closely related striation phenomena are widely knownditions (a)—(c) can be easily achieved in semiconductors.
from gas discharge physics. The striated discharge has bed@ime momentum relaxation is usually fast compared to the
observed since the time of Faraday and is regarded as one efiergy relaxation. The requiremel(ts and(c) are also usu-
the most typical dischargés® In spite of this, there is still ally satisfied, and the scattering by optical phonons with en-
no consistent theory of striation. It has been realized in thergy W, and the scattering by acoustic phonons work as
past decades that the hydrodynamic description of striatestrong inelastic and weak quasielastic energy relaxation
discharges is valid only for very high electron densities whermrmechanisms. We will show that this effect can be observed in
the collisions between electrons are frequent enough to pr®D quantum wells of small thickness. The spatial periods of
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E. Inequality (1) implies that the acoustic-phonon scattering
f may be considered as a small perturbation. Due to the scat-

tering, the “staircase” diffusive trajectories move slowly
down (along the axisE) with velocity x. This also means
that the trajectories slowly drift with the velocisy= x/F
along thez axis[see Fig. 1a)]. Sinces, is inversely propor-
tional to the applied field, one can say that the motion of
trajectories demonstrates a negative differential mobility. It is
well known that the negative differential mobility should
lead to current instability;? but our case is more complicated
than the Gunn instability, because one has to follow the mo-
tion of diffusive trajectories rather than of individual elec-
trons. As for the latter, their average drift velocity obeys
Ohm's law v=Fy7/M and is much larger thas, [since
E (z,H)=U(z,1) inequalities(1) may be rewritten asy<v<\Wy/M]. The
fact that the instability can be observed in the Ohmic regime
indicates that the effect is purely kinetic and cannot be de-
scribed in terms of hydrodynamic parameters.

As far as the elastic collisions are domingste Eq(1)],
= —Fyz. The diffusive “staircase” trajectories slowly drift in the the DF is almost ISOtrOpl%’o' f(z,W,¢,1)~fi(z,W,1)

direction with velocityx/F,. (b) The motion in the modulated po- +fa(Z'W’_t)COS(‘P)' Here f_i IS th‘? |sotr0p|c_ part of t_he DF,
tential U(z,t) = — Foz+ 8U(2,t). facoslp) is the small anisotropic correction, ang is the

angle between the electron velocity and applied field. Denote

arising EDS equal ,/m and can be tuned by applied volt- J(z,w,t)=W/2Mf,. The equations forf; and J can be
age. We assume that the lattice temperaffige(which is  written ag22°

stabilized by a thermal baklas well as the Fermi energy are

ZI(E,t) ZZ(E,t) z

FIG. 1. (a) Motion of an electron in a uniform fieldJy(z)

small compared t&WV, (in what follows, we putTo=0 for of, of,

simplicity). The condition(b) requires that the electrons be J= _D(W)(E+ WV)’ (2)
“hot” and their energies be of the order af/y, i.e., the

electron gas is nondegenerate. We also assume that the elec-

tron concentration should be small and that the electron- afi 4 dJ ar

electron collisions can be neglected. stz T Faw T oW )

Let us consider the motion of an electron in an external
field Fy. The elastic scattering leads to a diffusion in thewhereD(W)=W7/M is an energy-dependent diffusion co-
coordinate space. If the energy relaxation processes asfficient. For simplicity, we assume thatand x are energy
“turned off,” the electron is infinitely heated by the fiekd,, independentsee below. The boundary condition€8C) for
diffusing over the kinetic energWw. Evidently, this diffusion  Egs. (2) and (3) read as fi|W=WO:0, (FI—«fi)|w=0
is strictly correlated with the diffusion in the coordinate =FJ|w_w, HereF(zt)=—dU(z1)/dz, andU(z1) is po-

space, since the full electron enerfy=W-Fyz is con- . S .
X . tential energy, which includes both the self-consistent poten-
served. In fact, an electron diffuses in treW/) space along tial created by the electrons and the external potential

the lineE=const. The optical-phonon emission restricts theU (2)= —Foz. The conditionf | —0 corresponds to
electron motion by a shell @QW<W,. Indeed, the kinetic ~°\*/~ 0% L TIW=W, °Sp

energy increases in the process of diffusion with a constarff'® limit of a very strong interaction with optical phonons
total energyE. Reaching the poiritv=\W,, the electron loses (“black wall” condition). The second boundary cond!tlon is
the energyW, and starts a diffusive motion with a lower related_to_ the c_onser_\/{_:ltlon1 of the_ number of particles in-
total energyE—W,. The electron trajectory in the space volved in inelastic C0||ISIOH§: Equat|ons(2) and(3) at k=0
(E,2) is shown in Fig. 1a). The interaction with acoustic N@vé @ homogeneous stationary solutida Jo=nev/Wo,
phonons plays the role of a friction force leading to a con-fi= fio=(No/Wo)In(Wo/W), wheren, is the stationary elec-
tinuous loss of the electron energy with the ratelue to tr\</)vn concentratior{we a\zsume the following normalization
spontaneous emissideince we have assumed the§=0).  Jo fiodW=no). Since[,°JodW=ngv, the stationary solu-
There are three time scales in our problem: the transpottion corresponds to the Ohmic regime. According to Ref. 11,
scattering timer; the characteristic time of the electron heat- we rewrite Eqs(2) and(3) in the variables E,z,t),

ing by the electric fieldro~L3/Dg (hereLo=W,/Fq, Dy

=Wy7/M, and M is the electron effective massand the af;

time W,/ characterizing the rate of energy loss due to the J=-D(E-U)—, 4
emission of acoustic phonons. We will assume that

W, af a3 oU\ of;
ot

—_ _+__ —_
TSTo< @ gt az JE’
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where E=W+U(z,t) is the full energy of a particle. The Im()

motion of a particle in the space of new variables is restricted

by the curves E=E (z,t)=U(zt), E=Ey(zt)=W, A~ L~ o~

+U(z,t) [See Fig. 1b)]. BC can be rewritten as q, g, "q; q
file=g,zn=0, (FI=«f)|e=g,@zn=FIle=g,y - Since the _ N
total energy of an electron changes sloviyith the charac- FIG. 2. The instability increment as a function @f Instability

teristic time Wy/x), it will be useful to introduce the T€gions correspond Q== *27m/L,.

lectron-density distribution along tleaxis: . .
electron Sty distribut nd XS neglectingdf; /ot and gU/dt, since Eq.(8) providesw~«.

fZZ(E,t) Then Eq.(5) reduces ta?J/dz=0, which impliesJ(z,E,t)

N(E,t)= dzf;, (6)  =Ig(t). As a result, Eq(4) yields

7 (E)t)
wherez,(E,t), z,(E,t) are the inverse functions &;(z,t), 22 dz'
E,(z,t), respectively, and the quantilyfdE represents the fi(Z'E’t):|E(t)f _ / ' ©

P L . z D[E-U(zZ',1)]

number of electrons along the “staircase” trajectories re-
stricted byE andE+ dE [see Fig. 1b)]. The stationary value The small variation of the distribution functioéf; can be
of N is given by No=ng/Fq. Introducing the notation found by linearizing this equation with respectdh,,, U ,,
le(t)=Jd(z,,E,t) (the stationaryl¢ being equal taly), we  the functionsz; and z, being also linearized. The Poisson

find from Eq.(5) equation gives us the proportionality betweéb,, and
the Fourier transformén,, of the variation of the electron
Izy, E,0)=1g(t)+ szdZ i_fti_(K_ i_?)i_u concentrationén(z,t)z5[EidEfi. Here the variation in-
2

cludes the variation obf; as well as that of the integration
Taking into account thatdz,/dE=—1/F(z;,t), dz; /ot  limits Eq(z,t) and Ex(z,t). In this paper, we restrict our-
=(JUlat)IF(z,,t), and with BC, we get the continuitylike Selves to the case of a 2D semiconductor quantum well, as-

equation that governs the electron motion along the totafuming that the dielectric constaats the same inside and
energy axis: outside the quantum well. For such a structud),

=(2me?/€|qy|) oy, . Using now the linearized equatio(®

N @ U and(9), one can find the relation betweéN, andsU,,. To
9t OE N K_<E> =lerw,(=Te(®. () calculate the parameteéfF,, one should also average the
] variation of the potentiabU ,exp(qg,2) with the stationary
Here the angular brackets mean the averaging pver distribution functionf,y(E,z), since we solve the problem in
JU 1z auU a Ii_near approximatio_n. After cumbersome but rather
<W> = Nj dzﬁfi(z’E)_ straightforward calculations, we eventually get
Z

. K Am|lanp 2

Next, we consider the deviations from the stationary so- Om=Seqmt1 A % (10
lution in the linear approximation. A small periodic potential 0 mem
molulation along the coordinatel —Uy=oUq exp(—iot  where am:fgody[l—equq,.ry)]/y, Am=€%ng/meF,. It is
+ig2), induces the energy dependence of the quantiie®N  easy to check that Inaf,,)>0 for anym. Thus, the station-
in the form Ig—Jo=4lexp(—iwt—iqE/Fg), N—No  ary solution is unstable foq=gq,,. For a low field\,,=1,
= ONgexp(—iwt—iqE/Fp). We will demonstrate that fog  the increment is field independent, @) ~ x/W,. One can
~Qm=*2mm/Ly (Wherem=1,2,...), theimaginary part show that forq~q,,, the spectrum reads as(q)= w,
of w is positive, which implies that the stationary solution is + (q—q,,)v —iD* (q—q,,)?/4, where
unstable. Folg=q,,, the solution is a periodic function of
energy and EJr\,\,o(t)=IE(t). Then the linearization of Eg. Amam 2

* = —
(7) yields D7 =Do| 1+ 1+ Npam idmbo
K (we have neglected the small corrections of the ordek of
Om=E T AF, Im: (8)  tov andD*). This implies that the instability exists only
m

in the vicinity of q,, (see Fig. 2 leading to EDS with
whereAF = —iq,No(6U )/ SN,,. We see that the physics periodsLq/m.
of the problem is governed by the only parameter Next, we discuss the possibility of observing the effect in
(U 6Ny, (the subscripim implies that all quantities are a 2D n-type quantum well with a relatively large amount of
taken atg=qy,). The instability [Im(w,)>0] occurs at short-range impurities, which determine the electron-
Re(6U )/ SN,,>0. In order to find this parameter, one transport timer. In this caser is energy independent, as
should go beyond the averaged kinetic equati®rand solve  was assumed above. The instability increment is proportional
Egs.(4) and (5) together with the Poisson equation. As long to the rate of the energy losg, which can be calculated in
as Eq.(8) is proportional to a small parametef one can the full analogy with the 3D caseFor an infinitely deep
simplify the solution of Eqs(4) and (5) assumingk<=0 and  rectangular quantum well of width, the calculations yield
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k=C3m?M/pa’h. HereCy is a deformation potential con- scattering. A crude estimation of,, for hot electrons with
stant,p is the crystal density. This result justifies our assump-the characteristic energiy, gives Tgel~e4n0/ezﬁwo. Hav-
tion thatx does not depend oW. Also, we see thak rapidly ~ ing in mind Egs.(1) and (10), one can see that for low
increases with decreasirg The lawx~a~3 can be under- electron densitiese®ng/e*%i<«, there is a certain field
stood from simple estimates. The momentum transfer froniange, in which the instability can be observed. Simple esti-
an electron to a phonon in the direction normal to the quanmations for GaAs and GaN show that for thin quantum
tum well is of the order ofi/a. The emission of the phonon wells,a~30 A, the electron concentration is restricted by a
' . i 0 ~m—2
leads to the energy loss# S/a, whereSis the sound veloc- Small but quite reasonable value of10*° cm™2.
ity. The rate of the energy loss via the emission of longitu- | ne development of the instability must result in tunable
dinal phonons may be neglected due to a small faktar current oscillations in the terahertz range, which may lead to
wherek|| is the in-plane wave vector of the 2D electrc‘)ni Welmportant practical ap.pllcatlonesee R.Ef' .22 for a review
find that « is proportional to the integral ovedd, of the One can roughly estimate the oscillation frequencyvas

. ~dw(qg)/dqly~ 7o *~F2. We see thaw can be tuned by
product of the energy logsS/a and the squared matrix ele- . S
mentV§~q~1/a The upper limit of the integral is of the applied voltage. It follows from Eq.l) that the oscillations

o g : in the terahertz range are possiblerat10 % s.
same order, B, yielding x~a"". This means thatthe insta- | conclusion, we have presented a self-consistent linear

bility is more likely to be observed in thin 2D structures. On theory of kinetic stratification. We have shown that the spa-

the other hand, the instability is suppressed by electrongy, periods of the strata equify/Fom and can be tuned by
electron collisions, which leads to the DF maxwellization.app”ed voltage.

Thus, the instability condition is given by Im(,) > 1/7q,
where 7., is the characteristic time of electron-electron  The work was supported by RFBR and NATO.
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