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Electron-density stratification in two-dimensional structures tuned by an electric field
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We describe a kinetic instability mechanism which leads to electron-density stratification. The spatial period
of the arising space-charge and field configuration is found to be inversely proportional to the electric field and
can be tuned by applied voltage. The instability has no interpretation in the framework of a traditional
hydrodynamic approach, since it arises from the modulation of the electron distribution function in both the
coordinate and energy space. The phenomenon can be observed in two-dimensional nanostructures at relatively
low electron densities.
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Recent progress in microelectronics has largely been
sociated with controlled fabrication of low-dimension
semiconductor systems, so there is much interest in the tr
port properties of semiconductor nanostructures of both c
sical and quantum nature. The classical transport phenom
involving density perturbations with characteristic sca
larger than the elastic mean free pathl are usually described
in the framework of a hydrodynamic approach. The kine
effects are believed to dominate on smaller scales. Th
effects are treated theoretically in terms of the Boltzma
equation. In this paper, we propose a purely classical in
bility mechanism, which involves relatively smooth~com-
pared tol ) density distributions but, surprisingly, requires
kinetic description. The instability leads to electron-dens
stratification ~EDS! with a spatial period considerably ex
ceedingl. In contrast to usual current and density instabilit
in semiconductors,1–3 the electron dynamics in this instabi
ity cannot be described on the basis of local hydrodyna
parameters, such as electronic density, drift velocity, a
temperature. This implies that the phenomenon is of es
tially kinetic nature. The effect can be observed in tw
dimensional~2D! nanostructures with one type of free car
ers ~here we consider 2D quantum wells ofn type! at
relatively high applied voltages, when acoustic-phonon s
tering is incapable to balance the heating by an electric fi
At such voltages, the energy balance in the system is mo
controlled by the gain in the electric field and the loss
optical-phonon scattering. In this case, a homogeneous s
tion of the Boltzmann equation corresponds to usual Oh
law. However, this solution is unstable, since the behavio
the system on the scales smaller than the optical-pho
emission lengthL0 is essentially nonequilibrium. We wil
show that the bunching of the electron distribution functi
~DF! on these scales leads to EDS with a spatial period of
order ofL0.

Closely related striation phenomena are widely kno
from gas discharge physics. The striated discharge has
observed since the time of Faraday and is regarded as o
the most typical discharges.4–8 In spite of this, there is still
no consistent theory of striation. It has been realized in
past decades that the hydrodynamic description of stria
discharges is valid only for very high electron densities wh
the collisions between electrons are frequent enough to
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vide the maxwellization of the electron DF.9,10At lower elec-
tron densities occurring in typical gas discharges, the p
nomenon is of essentially kinetic nature. The D
perturbation in the striations varies in both space and al
the energy axis,11–17 and it is impossible to parametrize it i
terms of the perturbations of electron density and tempe
ture. The kinetic striation mechanism was first analyzed
Refs. 11–13. It was argued in Ref. 11 that the necess
conditions for kinetic stratification are the following:~a! the
momentum relaxation is much faster than the energy re
ation; ~b! the energy relaxation is mostly controlled by th
energy gain in the external fieldF0 and strong inelastic col-
lisions with a large fixed energy transferW0; ~c! there should
exist a mechanism of a weak continuous energy loss. I
spatially modulated potentialU(z)52F0z1dU(z), dU(z)
5dU(z1L), these conditions provide11–13 a resonant DF
response atL5L0 /m, where L05W0 /F0 , m51,2, . . . .
This ‘‘resonant’’ behavior corresponds to the widely know
empirical Novak rule.6–8,18 The idea was put forward11 that
under the conditions~a!–~c!, an instability develops leading
to EDS with the same periodsL0 /m. In Refs. 11–13, the
electron kinetics was analyzed only in a fixed electric pot
tial profile U(z). However, a complete analysis of instabili
requires a self-consistent calculation of the potential per
bation dU(z,t). Since the discharge field depends crucia
on the ion motion and on the complex ion generation p
cesses, even a linear instability problem for a gas discha
plasma is still lacking a self-consistent solution.

In this paper we will demonstrate that the kinetic strat
cation can be, in principle, observed in low-dimension
semiconductor structures.19 Moreover, it turns out that a rela
tively simple self-consistent analytical solution can be fou
for semiconductors. The main simplification follows fro
the fact that, in contrast to the gas discharge, a compensa
positive charge is fixed and uniform. The stratification co
ditions ~a!–~c! can be easily achieved in semiconducto
The momentum relaxation is usually fast compared to
energy relaxation. The requirements~b! and~c! are also usu-
ally satisfied, and the scattering by optical phonons with
ergy W0 and the scattering by acoustic phonons work
strong inelastic and weak quasielastic energy relaxa
mechanisms. We will show that this effect can be observe
2D quantum wells of small thickness. The spatial periods
©2003 The American Physical Society08-1
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arising EDS equalL0 /m and can be tuned by applied vol
age. We assume that the lattice temperatureT0 ~which is
stabilized by a thermal bath! as well as the Fermi energy ar
small compared toW0 ~in what follows, we putT050 for
simplicity!. The condition~b! requires that the electrons b
‘‘hot’’ and their energies be of the order ofW0 , i.e., the
electron gas is nondegenerate. We also assume that the
tron concentration should be small and that the electr
electron collisions can be neglected.

Let us consider the motion of an electron in an exter
field F0 . The elastic scattering leads to a diffusion in t
coordinate space. If the energy relaxation processes
‘‘turned off,’’ the electron is infinitely heated by the fieldF0,
diffusing over the kinetic energyW. Evidently, this diffusion
is strictly correlated with the diffusion in the coordina
space, since the full electron energyE5W2F0z is con-
served. In fact, an electron diffuses in the (z,W) space along
the lineE5const. The optical-phonon emission restricts t
electron motion by a shell 0,W,W0. Indeed, the kinetic
energy increases in the process of diffusion with a cons
total energyE. Reaching the pointW5W0, the electron loses
the energyW0 and starts a diffusive motion with a lowe
total energyE2W0. The electron trajectory in the spac
(E,z) is shown in Fig. 1~a!. The interaction with acoustic
phonons plays the role of a friction force leading to a co
tinuous loss of the electron energy with the ratek due to
spontaneous emission~since we have assumed thatT050).
There are three time scales in our problem: the trans
scattering timet; the characteristic time of the electron hea
ing by the electric field,t0;L0

2/D0 ~hereL05W0 /F0 , D0

5W0t/M , and M is the electron effective mass!; and the
time W0 /k characterizing the rate of energy loss due to
emission of acoustic phonons. We will assume that

t!t0!
W0

k
. ~1!

FIG. 1. ~a! Motion of an electron in a uniform field,U0(z)
52F0z. The diffusive ‘‘staircase’’ trajectories slowly drift in thez
direction with velocityk/F0. ~b! The motion in the modulated po
tential U(z,t)52F0z1dU(z,t).
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Inequality ~1! implies that the acoustic-phonon scatteri
may be considered as a small perturbation. Due to the s
tering, the ‘‘staircase’’ diffusive trajectories move slow
down ~along the axisE) with velocity k. This also means
that the trajectories slowly drift with the velocitys05k/F0
along thez axis @see Fig. 1~a!#. Sinces0 is inversely propor-
tional to the applied field, one can say that the motion
trajectories demonstrates a negative differential mobility. I
well known that the negative differential mobility shou
lead to current instability,1,2 but our case is more complicate
than the Gunn instability, because one has to follow the m
tion of diffusive trajectories rather than of individual ele
trons. As for the latter, their average drift velocity obe
Ohm’s law v5F0t/M and is much larger thans0 @since
inequalities~1! may be rewritten ass0!v!AW0 /M ]. The
fact that the instability can be observed in the Ohmic regi
indicates that the effect is purely kinetic and cannot be
scribed in terms of hydrodynamic parameters.

As far as the elastic collisions are dominant@see Eq.~1!#,
the DF is almost isotropic,20 f (z,W,w,t)' f i(z,W,t)
1 f a(z,W,t)cos(w). Here f i is the isotropic part of the DF
f acos(w) is the small anisotropic correction, andw is the
angle between the electron velocity and applied field. Den
J(z,W,t)5AW/2M f a . The equations forf i and J can be
written as1,2,20

J52D~W!S ] f i

]z
1F

] f i

]WD , ~2!

] f i

]t
1

]J

]z
1F

]J

]W
5k

] f i

]W
, ~3!

whereD(W)5Wt/M is an energy-dependent diffusion co
efficient. For simplicity, we assume thatt andk are energy
independent~see below!. The boundary conditions~BC! for
Eqs. ~2! and ~3! read as f i uW5W0

50, (FJ2k f i)uW50

5FJuW5W0
. HereF(z,t)52]U(z,t)/]z, andU(z,t) is po-

tential energy, which includes both the self-consistent pot
tial created by the electrons and the external poten
U0(z)52F0z. The condition f i uW5W0

50 corresponds to
the limit of a very strong interaction with optical phonon
~‘‘black wall’’ condition!. The second boundary condition
related to the conservation of the number of particles
volved in inelastic collisions.21 Equations~2! and~3! at k50
have a homogeneous stationary solutionJ5J05n0v/W0 ,
f i5 f i05(n0 /W0)ln(W0 /W), wheren0 is the stationary elec-
tron concentration~we assume the following normalizatio
*0

W0f i0dW5n0). Since*0
W0J0dW5n0v, the stationary solu-

tion corresponds to the Ohmic regime. According to Ref.
we rewrite Eqs.~2! and ~3! in the variables (E,z,t),

J52D~E2U !
] f i

]z
, ~4!

] f i

]t
1

]J

]z
5S k2

]U

]t D ] f i

]E
, ~5!
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where E5W1U(z,t) is the full energy of a particle. The
motion of a particle in the space of new variables is restric
by the curves E5E1(z,t)5U(z,t), E5E2(z,t)5W0
1U(z,t) @See Fig. 1~b!#. BC can be rewritten as
f i uE5E2(z,t)50, (FJ2k f i)uE5E1(z,t)5FJuE5E2(z,t) . Since the
total energy of an electron changes slowly~with the charac-
teristic time W0 /k), it will be useful to introduce the
electron-density distribution along theE axis:

N~E,t !5E
z1(E,t)

z2(E,t)

dz fi , ~6!

wherez1(E,t), z2(E,t) are the inverse functions ofE1(z,t),
E2(z,t), respectively, and the quantityNdE represents the
number of electrons along the ‘‘staircase’’ trajectories
stricted byE andE1dE @see Fig. 1~b!#. The stationary value
of N is given by N05n0 /F0. Introducing the notation
I E(t)5J(z2 ,E,t) ~the stationaryI E being equal toJ0), we
find from Eq.~5!

J~z1 ,E,t !5I E~ t !1E
z1

z2
dzF] f i

]t
2S k2

]U

]t D ] f i

]EG .
Taking into account that]z1 /]E521/F(z1 ,t), ]z1 /]t
5(]U/]t)/F(z1 ,t), and with BC, we get the continuitylike
equation that governs the electron motion along the t
energy axis:

]N

]t
2

]

]E S NFk2 K ]U

]t L G D5I E1W0
~ t !2I E~ t !. ~7!

Here the angular brackets mean the averaging overz,

K ]U

]t L 5
1

NEz1

z2
dz

]U

]t
f i~z,E!.

Next, we consider the deviations from the stationary
lution in the linear approximation. A small periodic potenti
molulation along the coordinate,U2U05dUqexp(2ivt
1iqz), induces the energy dependence of the quantitiesI E , N
in the form I E2J05dI qexp(2ivt2iqE/F0), N2N0
5dNqexp(2ivt2iqE/F0). We will demonstrate that forq
'qm562pm/L0 ~wherem51,2, . . . ), theimaginary part
of v is positive, which implies that the stationary solution
unstable. Forq5qm , the solution is a periodic function o
energy andI E1W0

(t)5I E(t). Then the linearization of Eq
~7! yields

vm5
k

F01DFm
qm , ~8!

whereDFm52 iqmN0^dUm&/dNm . We see that the physic
of the problem is governed by the only parame
^dUm&/dNm ~the subscriptm implies that all quantities are
taken at q5qm). The instability @ Im(vm).0# occurs at
Rê dUm&/dNm.0. In order to find this parameter, on
should go beyond the averaged kinetic equation~7! and solve
Eqs.~4! and~5! together with the Poisson equation. As lon
as Eq.~8! is proportional to a small parameterk, one can
simplify the solution of Eqs.~4! and ~5! assumingk50 and
03330
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neglecting] f i /]t and ]U/]t, since Eq.~8! providesv;k.
Then Eq.~5! reduces to]J/]z50, which impliesJ(z,E,t)
5I E(t). As a result, Eq.~4! yields

f i~z,E,t !5I E~ t !E
z

z2 dz8

D@E2U~z8,t !#
. ~9!

The small variation of the distribution functiond f i can be
found by linearizing this equation with respect todI m ,dUm ,
the functionsz1 and z2 being also linearized. The Poisso
equation gives us the proportionality betweendUm and
the Fourier transformdnm of the variation of the electron
concentrationdn(z,t)5d*E1

E2dE fi . Here the variation in-

cludes the variation ofd f i as well as that of the integratio
limits E1(z,t) and E2(z,t). In this paper, we restrict our
selves to the case of a 2D semiconductor quantum well,
suming that the dielectric constante is the same inside and
outside the quantum well. For such a structure,dUm
5(2pe2/euqmu)dnm . Using now the linearized equations~6!
and~9!, one can find the relation betweendNm anddUm . To
calculate the parameterDFm , one should also average th
variation of the potentialdUmexp(iqmz) with the stationary
distribution functionf i0(E,z), since we solve the problem in
a linear approximation. After cumbersome but rath
straightforward calculations, we eventually get

vm5s0qm1 i
k

W0

lmuamu2

11lmam
, ~10!

where am5*0
L0dy@12exp(iqmy)#/y, lm5e2n0 /meF0. It is

easy to check that Im(vm).0 for anym. Thus, the station-
ary solution is unstable forq5qm . For a low field,lm*1,
the increment is field independent, Im(vm);k/W0. One can
show that for q'qm , the spectrum reads asv(q)5vm
1(q2qm)v2 iD * (q2qm)2/4, where

D* 5D0S 11
lmam*

11lmam

2

iqmL0
D

~we have neglected the small corrections of the order ok
to v and D* ). This implies that the instability exists onl
in the vicinity of qm ~see Fig. 2!, leading to EDS with
periodsL0 /m.

Next, we discuss the possibility of observing the effect
a 2D n-type quantum well with a relatively large amount
short-range impurities, which determine the electro
transport timet. In this caset is energy independent, a
was assumed above. The instability increment is proportio
to the rate of the energy loss,k, which can be calculated in
the full analogy with the 3D case.2 For an infinitely deep
rectangular quantum well of widtha, the calculations yield

FIG. 2. The instability increment as a function ofq. Instability
regions correspond toq'qm562pm/L0.
8-3



-
p

o
an
n

tu

e

-

-
n
o
n

n

sti-
m
a

le
to

ear
a-

-

d in

BRIEF REPORTS PHYSICAL REVIEW B68, 033308 ~2003!
k5C0
2p2M /ra3\. HereC0 is a deformation potential con

stant,r is the crystal density. This result justifies our assum
tion thatk does not depend onW. Also, we see thatk rapidly
increases with decreasinga. The lawk;a23 can be under-
stood from simple estimates. The momentum transfer fr
an electron to a phonon in the direction normal to the qu
tum well is of the order of\/a. The emission of the phono
leads to the energy loss;\S/a, whereS is the sound veloc-
ity. The rate of the energy loss via the emission of longi
dinal phonons may be neglected due to a small factorkuua,
wherekuu is the in-plane wave vector of the 2D electron. W
find that k is proportional to the integral overdqz of the
product of the energy loss\S/a and the squared matrix ele
ment Vq

2;q;1/a The upper limit of the integral is of the
same order, 1/a, yieldingk;a23. This means that the insta
bility is more likely to be observed in thin 2D structures. O
the other hand, the instability is suppressed by electr
electron collisions, which leads to the DF maxwellizatio
Thus, the instability condition is given by Im(vm).1/tee,
where tee is the characteristic time of electron-electro
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21;e4n0 /e2\W0. Hav-
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range, in which the instability can be observed. Simple e
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wells, a'30 Å, the electron concentration is restricted by
small but quite reasonable value of;1010 cm22.

The development of the instability must result in tunab
current oscillations in the terahertz range, which may lead
important practical applications~see Ref. 22 for a review!.
One can roughly estimate the oscillation frequency asn
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21;F0
2. We see thatn can be tuned by

applied voltage. It follows from Eq.~1! that the oscillations
in the terahertz range are possible att&10212 s.

In conclusion, we have presented a self-consistent lin
theory of kinetic stratification. We have shown that the sp
tial periods of the strata equalW0 /F0m and can be tuned by
applied voltage.
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