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We present data from one-dimensional unshunted Josephson-junction arrays with ground planes, showing
resonant behavior for certain values of the critical current. Due to the hysteresis of the current-voltage char-
acteristics, the number of junction that oscillate on resonance can be controlled. The resonant frequency
decreases as more junctions are switched onto the resonance and increases as the array length is increased. We
develop a transmission-line model of the arrays that reproduces these experimental observations. We also
examine the microscopic origin of this model and compare it to existing models in the literature.
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I. INTRODUCTION

Since the discovery of the Josephson effect, various re
nant phenomena have been observed in Josephson junc
and Josephson-junction arrays. They all reveal themse
through a constant-voltage feature in the current-volt
(I -V) characteristics. This feature is a consequence of
Josephson relations1

V5
F0

2p

dg

dt
, I 5I Csin~g!, ~1!

whereV and g are the voltage- and gauge-invariant pha
difference across the junction,I the supercurrent flowing
through the junction, andI C andF0 the critical current and
magnetic flux quantum.

A constant voltage across a junction is accompanied
supercurrent oscillations with a frequencyf that is equal to
V/F0. Thus a constant voltage in a Josephson junction o
Josephson-junction array implies the presence of a prefe
frequency.~An exception is the gap, a steplike feature
underdamped junctions and arrays which is a consequen
quasiparticle tunneling rather than a resonant effect invo
ing supercurrent oscillations.! There are three ways that
preferred frequency can appear in a system involving Jos
son junctions: a resonance internal to the junction can se
a frequency, the environment in which the junction is emb
ded can have resonance frequencies, or an external so
can force voltage or current oscillations across the junctio

Let us consider a junction formed by two parallel slabs
superconductor separated by a thin nonsuperconduc
layer. The two superconducting plates form the walls o
transmission line. Depending on the boundary condition
the edges of the junction and its size, standing or trave
waves can exist inside this transmission line. If stand
waves exist, they lead to the well-known Fiske steps,1 a
constant-voltage feature in theI -V characteristic of the junc
tion corresponding to the frequency of the resonant mo
0163-1829/2003/68~2!/024521~13!/$20.00 68 0245
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On the other hand, traveling waves in the junction induce
Eck peak.1 In both of these resonances the junction is int
acting with internal modes.

Junctions can also interact with an external resonator, a
the case in the work by Larsenet al.2 The system consisted
of a small junction placed inside of a strip-line resonator. T
resonant cavity was external to the junction and consta
voltage features were observed in theI -V characteristic at
voltages set by the resonant modes of the strip line.

Constant-voltage features can also be observed in ju
tions which are externally driven. These are the well-kno
Shapiro steps1 that occur at integer multiples of the voltag
corresponding to the driving frequency. These steps are
to the junction locking to the driving signal and are not res
nant in origin.

Underdamped arrays display a variety of geometri
resonances,3–5 brought about by magnetic fields appliedper-
pendicular to the arrays or anisotropies inherent to the
rays. The voltages of these steps are determined by the p
erties of electromagnetic waves traveling through
discrete structure that the arrays form or the preferred c
figurations of currents and voltages induced by the app
perpendicular field.

In this work we present experimental observations o
resonance in one-dimensional~1D!, underdamped array
with ground planes above them. We also discuss
transmission-line model that reproduces the main feature
the experimental observations. Our resonance is due to
resonant structure formed by the ground plane and junc
wiring. The resonance manifests itself through consta
voltage features in theI -V characteristics of the arrays
present only for particular values of the critical current. W
have observed6–8 these self-induced resonant steps~SIRS’s!
in both 2D and 1D arrays. However, they appear to be
ferent in nature in 1D and 2D arrays and we will only discu
the case of 1D arrays here.

The rest of this paper will be organized as follows: W
will first present and discuss data from 1D arrays. We w
then introduce a model for the arrays and compare its p
©2003 The American Physical Society21-1
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dictions to the data. An approximate model will then be d
rived and the resulting current-voltage characteristic will
calculated. In Sec. VI the Lagrangian and Hamiltonian of
model will be derived and we will show that they presen
full description of the 1D arrays in the relevant limit. A com
parison of this model to other works will be made. In t
final section we will draw conclusions from an analysis
the data and model.

II. RESONANCES IN ONE-DIMENSIONAL ARRAYS
WITH GROUND PLANES

A micrograph of a 1D array with 20 junctions is shown
Fig. 1. The junctions are formed9 at the overlaps of adjacen
niobium squares. At the overlap the squares are separate
an aluminum-oxide tunneling barrier. The right side of t
array is terminated by a strip line, while the left side
grounded. The largest, light, rectangle is the niobium grou
plane on top of the array. Different niobium layers are se
rated by silicon dioxide. The dimensions of the squa
closer to the ground plane are 12mm312 mm, while the
ones below them are 16mm316 mm. The nominal dimen-
sions of the junctions are 4mm34 mm. We current bias the
arrays through leads at each end and use the standard
point technique to measure the voltage.

We observe resonant features only in theI -V characteris-
tics of 1D arrays that have specific boundary conditions
a critical current suppressed to about 15mA by an external
magnetic fieldparallel to the junctions. Only arrays with th
strip-line termination had the resonance. We analyze th
constant-voltage features to determine the dependence o
resonant frequency on the number of junctionsactively os-
cillating on resonance and on thetotal number of junctions
in the array.

Because of the hysteresis~see Fig. 2! inherent to under-
damped junctions, for bias currents below the critical curr
each junction in the array can have no voltage, the reso
voltageVres, or the gap voltageVgap across it. The junctions
that have the resonant voltage across them, and are thu
cillating with the resonant frequency, will be calledactive
and their number, will be denoted byNA . Each timeNA
junctions are active a SIRS is present in theI -V characteris-
tic at a voltageNAVres , as shown in Fig. 2 for 10- and

FIG. 1. A micrograph of a one-dimensional array with one u
cell outlined with a thick black line. Below is a circuit schematic
the transmission-line model.
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20-junction arrays and differentNA for each array. For a
given array, the step height in current depends on the num
of active junctions. For all measured arrays it reache
maximum for some value ofNA smaller than 20.

A careful inspection of theI -V characteristics reveals tha
the resonant voltage depends on the number of active ju
tions. To see this more easily, we normalize the voltage
each step by the number of active junctions,NA , correspond-
ing to it, as shown in Fig. 3 for an array of ten junctions.
this way, we obtainI -V characteristics in which the voltag
corresponds to the voltage each active junction has when
array is biased on a given SIRS. As the number of act
junctions is increased the voltage and frequency of the re
nance decrease, as Fig. 3 shows. The same trend is obs
for the other measured arrays.

Plots analogous to the one in Fig. 3 are shown in Fig
for an 80-junction array, with each step presented in a se
rate plot. The steps are shown separately because they
and have a complicated fine structure. We have also obse
this fine structure in the smaller arrays; however, in sma
arrays the splitting is much less pronounced. This fact co
plicates the analysis of the 80-junction array since it is h
to determine which steps correspond to the same reso
feature for different number of active junctions.

In all arrays as we increase the number of active juncti
the voltage decreases are very small, less than 5%, w
makes the step shape important. We are interested in s
that extend to high currents because they best approach

t

FIG. 2. Current-voltage characteristics of 10-junction (1310)
and 20-junction (1320) array, when their critical currents are su
pressed to about 15mA. Constant-voltage features are present, c
responding to different numbers of junctions oscillating on re
nance. Note that theVgap'2.7 mV feature is not shown in thes
graphs.
1-2
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OBSERVATION AND A MODEL FOR RESONANCES IN . . . PHYSICAL REVIEW B68, 024521 ~2003!
resonant frequency. Since most of the steps are fairly sh
we need to optimize the number of steps we want to c
sider. We record the voltageVres of the selected SIRS a
some reference bias current determined by the top of
shortest step in the set of SIRS we have chosen, as in Fi
This criterion is consistent within a single array but is on
qualitatively satisfactory when comparing different arrays:
different arrays we choose different optimal currents to r
erence the step voltages and we do not know how clos

FIG. 3. Current-voltage characteristics for a ten-junction ar
with the voltage of each constant-voltage feature normalized to
number of junctions oscillating on resonance. The numbers co
spond to the number of active junctions for each resonant fea
Note how the resonant voltage decreases as the number of a
rows increases. The horizontal line corresponds to the cons
current criterion discussed in the text.

FIG. 4. Detail of the resonant current-voltage characteristics
an 80-junction array. The numbers correspond to the numbe
active junctions. Note that each constant-voltage feature splits
finer features in this long array.
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the resonant voltage we are at those currents.
Using data obtained in this way we plot, in Fig. 5, th

resonant frequency as a function of the number of ac
junctions for 10-, 20-, and 80-junction arrays. For the 8
junction array we used only the highest-frequency branc
of the seventh, eighth and ninth step, assuming they be
to the same resonant feature. Apart from the previously m
tioned decrease of the resonant frequency with the incre
of NA , the second important property of the plot in Fig. 5
the increase of frequency with array length. While we me
tioned in the previous paragraph that we cannot make qu
titative comparisons of the frequencies between different
rays, the last conclusion is still qualitatively correct. W
checked this by using different reference currents: This
ways yielded higher frequencies for longer arrays, as
visual inspection of more detailed overlayed plots of theI -V
characteristics.

III. TRANSMISSION-LINE MODEL

To explain the features of the resonant frequency
scribed in the previous section we use a circuit model10 of
the array that captures the interaction of the junctions
electromagnetic field confined and generated by the gro
plane and array. If there is a voltage difference betwee
niobium square and the ground plane above it, charges
accumulate in the square and ground plane surfaces. T
are two different types of squares, in two different niobiu
layers, that have capacitancesC1 andC2 with respect to the
ground plane as shown in the circuit in Fig. 1. When curre
are flowing through the array and through the ground pla
magnetic fields are generated. While the inductance of
two types of squares is different, each junction is surroun
by one square of each kind, so the inductance of eachsingle
cell in the circuit is the same and equal toL. BecauseC1
ÞC2, the unit cell of the array consists of twosingle-
junction cells.

The left boundary of the circuit is shorted, as is the act
array. The strip line on the right of the array is modeled b
capacitorCL and an inductorLL , representing the charge
that accumulate on the strip-line plates and the currents a
the plates. Each junction is modeled by the RCSJ mode
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FIG. 5. The resonant voltage of a 10-, 20-, and 80-junction ar
as a function of the number of active junctions. Note how the re
nant voltage increases with the length of the array.
1-3
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If there areN junctions in the circuit, the system has 2N
degrees of freedom,N gauge-invariant phase differencesgn

across the junctions, andN chargesQn
C on the capacitors. We

will introduce effective chargesQn whose time derivatives
are the ac currents flowing through the junctions. These n
charges are implicitly defined in terms of theQn

C via

Qn
C5Qn2Qn21 . ~2!

We introduceQn since they yield simpler equations. Usin
the Josephson relation and equating the voltage drop aro
each loop to zero, we obtain the following closed system
equations:

F0CJ

2p
g̈n1

F0

2pR
ġ1I Csin~gn!5Q̇n1I bias ~n51, . . . ,N!,

~3a!

LQ̈n1
F0

2p
ġn1

1

Cm(n)
@Qn2Qn21#

1
1

Cm(n11)
@Qn2Qn11#50, ~3b!

LQ̈11
F0

2p
ġ11

1

C1
@Q12Q2#50, ~3c!

~L1LL!Q̈N1
F0

2p
ġN1

1

Cm(n)
@QN2QN21#1

1

CL
QN50,

~3d!

where an overdot denotes the time derivatived/dt. The in-
dex m(n) equals 1 forn even and 2 forn odd. These equa
tions describe a finite portion of a transmission line w
Josephson junctions embedded in it. Equation~3c! describes
the shorted, left end of the transmission line and Eq.~3d! the
right, loaded end.

Normalizing frequencies tovp5A(2pI C)/(F0CJ) and
currents to the critical currentI C we rewrite Eqs.~3a!–~3d!
as

g̈n1aġn1sin~gn!2q̇n2 i bias50, ~4a!

bLq̈n1ġn1hm(n)@qn2qn21#1hm(n11)@qn2qn11#50,
~4b!

bLq̈11ġ11h1@q12q2#50, ~4c!

bLLq̈N1ġN1hm(N)@qN2qN21#1hLqN50, ~4d!

where an overdot now means a derivatived/dt with respect
to the dimensionless timet and with the dimensionless pa
rameters are defined as

bL5
2pLI C

F0
, a5A F0

2pI CR2CJ

, ~5!

hx5
CJ

Cx
~x51,2,L !, L511

LL

L
. ~6!
02452
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We will set a'0, since the dissipation is small (a
50.029). In order to analyze the resonances of this sys
we will first linearize the nonlinear Josephson terms. T
can be done in two different ways depending on whethe
particular junction is active or inactive. For active junctio
we will set the nonlinear term equal to zero.11 Inactive junc-
tions will be modeled by an inductor.12 For small harmonic
oscillations around the equilibrium@qn(t)5q̃neivt,gn(t)
5arcsin(i bias)1g̃neivt# and eliminatingg̃n using the Jo-
sephson equations, we obtain the following set of line
equations for the oscillation amplitudesq̃n :

2v2bLq̃n1
v2

v22z
q̃n1hm(n)@ q̃n2q̃n21#

1hm(n11)@ q̃n2q̃n11#50, ~7a!

2v2bLq̃11
v2

v22z
q̃11h1@ q̃12q̃2#50, ~7b!

2v2bLLq̃N1
v2

v22z
q̃N1hm(N)@ q̃N2q̃N21#1hLq̃N50,

~7c!

where z[A12 i bias
2 and v is the angular frequency. Th

corresponding frequency will be denoted withf. These equa-
tions are written assuming that all junctions are inactive
the nth junction is active,z will be set equal to zero in the
appropriate equation of Eqs.~7a!–~7c!, corresponding to an
infinite Josephson inductance~the supercurrent channel i
open!. In the rest of this section the dispersion relations
the infinite linearized system will be derived and an analy
will be presented of the allowed frequencies for the fin
system.

We first consider two extreme cases of this linearized s
tem whenN→`, one in which all of the junctions are activ
and the other in which all of the junctions are inactive. T
infinite linearized transmission line supports traveling wav
of the form

q̃2m5q̃evene
2 ik2m, q̃2m115q̃odde

ik(2m11). ~8!

The dimensionlessk5ka is the product of the dimen
sional wave numberk and the length of a single-junctio
cell, a. We note again that a unit cell of the array consists
two single-junction cells~see Fig. 1!.

The dispersion relations obtained by substituting Eq.~8!
into Eqs.~7a!–~7c! are given by

k~v!5arcsinF1

2 S 1

h1
1

1

h2
D S 11

1

zbL2v2D v2

1
1

4h1h2
S 11

1

~zbL2v2!
2

2

zbL2v2D v4G .

~9!
1-4



o
o
tio

b
s

o

ic

in
s

ffi
g

s
o
n
c

t.

ow
the
the
duc-

all
-
me
e
re-
is
nd

the

e

nt
in

lar
to
not

e
e
ve

he

e
cor-
uare

rre-
rray.

OBSERVATION AND A MODEL FOR RESONANCES IN . . . PHYSICAL REVIEW B68, 024521 ~2003!
These are shown in Fig. 6, calculated for the fitted values
the parameters given in Table I. How these values were
tained is discussed further in the text. The dispersion rela
corresponding to the case of active junctions is denoted
f a(k), andf i(k) is the dispersion relation when all junction
are inactive. All frequencies are normalized to

f 05
1

2p

1

ALCJ

, ~10!

which is the frequency corresponding to thek50 mode
when all junctions are active. Since the system we are c
sidering is periodic, with a period of two junctions,k sym-
metrically takes values in the interval@2p/2,p/2#.

The shaded regions in Fig. 6 mark frequencies for wh
the excitations are evanescent waves, sincek has a nonzero
imaginary part, corresponding to an exponentially decay
or increasing~in space! amplitude of the wave. Frequencie
above 8f 0 are above the gap frequency and would be di
cult to excite because of increased dissipation above the
which lowers the quality factor of the system.

We are interested in frequencies nearf 0, since the value
of f 0 calculated from our estimates of the array parameter
close to the experimentally observed frequency. Before c
centrating on this region of the dispersion relation, o
should note two facts. Because of the difference in the
pacitancesC1 and C2, there is a gap in the dispersion~the
middle shaded region! in which only evanescent waves exis

FIG. 6. Dispersion relations for the one-dimensional array wh
all junctions are active,f a on the left, and when all junctions ar
inactive, f i on the right. Solid lines mark the real part of the wa
numberk and dashed lines mark the imaginary part ofk. The open
circles and squares mark the real and imaginary parts ofk, respec-
tively, for the allowed frequencies of a ten-junction array. In t
shaded regions only evanescent waves exist@ Im(k)Þ0#. Note that
k takes values only up top/2.
02452
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When C15C2 there is no gap andk can take values from
@2p,p# because the unit cell of the transmission line is n
halved. Also, there is an extra branch in the dispersion for
case of inactive junctions. This branch is present due to
extra degrees of freedom introduced by the Josephson in
tances that are present in the inactive junctions.

We will now take a detailed look at the region aroundf 0,
shown in Fig. 7. For a givenk the frequency is always
higher for the dispersion corresponding to the case where
junctions are inactive,f i(k). f a(k), as Fig. 7 shows. There
fore, one would expect that as more junctions beco
active13 the frequency would grow smaller, similar to th
observed behavior shown in Fig. 5, finally reaching the f
quency lying onf a when all junctions are active. To test th
idea quantitatively we will next turn to the finite system a
calculate the allowed frequencies~normal modes!.

Using Mathematica, we calculated the determinant of
system~7a!–~7c! of N linear equations that determine theN

oscillation amplitudesq̃n. The zeros of the determinant ar
the allowed frequencies of the finite system.14 We numeri-
cally calculated the normal-mode frequencies for differe
numbers of active junctions and different array lengths
order to make a comparison to the data.~In the experiment,
when the array is biased on theNAth step we only know that
NA junctions are active but we do not know which particu
junctions those are.! For the range of parameters relevant
our systems, the numerically determined frequencies did
change appreciably as we changed the set ofNA active junc-

n

FIG. 7. A detail of the dispersion relations neark50. The solid
lines correspond to purely real values ofk ~traveling waves! while
the dashed lines correspond to purely imaginary values ofk ~purely
evanescent waves!. Two lower-frequency curves correspond to th
case when all junctions are active, while the upper two curves
respond to the case when all junctions are inactive. The solid sq
marks the allowed mode closest tok50 in a ten-junction array for
the case when only one junction is active. The open square co
sponds to the case when all junctions are active in the same a
9

TABLE I. Nominal values of the array parameters and their values that give the best fit to the data, all calculated forI C530 mA and
R5150 V.

CJ @fF# C1 @fF# C2 @fF# CL @fF# L @pH# LL @pH# h1 h2 hL bL L a

Nominal 600690 1063 1463 400640 2.460.5 2.160.2 60624 43617 1.560.4 0.22 1.960.5 0.029
Fit 380 10 14 360 2.4 1.9 38 27 1.05 0.22 1.79 0.02
1-5
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tions. Because of this, we calculated the frequencies forNA
active junctions using a random choice for their configu
tion.

The calculated allowed frequencies for the cases when
junctions are active and only one junction is active in a t
junction array are marked in Figs. 6 and 7. For only o
junction active, the frequency of the mode nearest to thk
50 mode lies on the part of the dispersion wherek is purely
imaginary. This means that the standing wave set up in
space between the array and transmission line is a lin
combination of exponentially decaying solutions. For fr
quencies smaller than, but close to,f 0, the real part ofk is 0
with the decay length larger than the array length, mak
these evanescent solutions approximately the same as
exactk50 mode. For frequencies larger than, but close
f 0, shown in Fig. 7, the wavelength of traveling waves
also larger than the array length, making them approxima
equivalent to thek50 mode.

Figure 8 shows a comparison between the calculated
quency of the mode closest tok50 and experimental data
for differentNA in two arrays with 10 and 20 total junctions
The fitted parameters that were used in the calculation
given in Table I. They were determined from the array g
ometry and then adjusted to obtain the best-fit graph in F
8. Nominal and fitted values of the dimensional and th
corresponding dimensionless parameters are given in Tab
All but one of the dimensionless fitted parameters are wit
the error of the nominal estimates. The fitted value of
junction capacitance is not within the error of its nomin
estimate. One reason for this is overetching in the fabrica
process that diminishes the junction area~and thus the ca-
pacitance! and could be seen in micrographs of the array

The calculation correctly predicts the slope of the dep
dence of the resonant frequency as a function ofNA . It also
reproduces the fact that the frequency grows as the a
length is increased. This calculation shows that in our arr
the mode nearest to thek50 mode is excited. In the 80
junction array we observed a fine structure in the reson
features, as shown in the first section. The spacing of th
fine structure features is similar to the spacing of norm
modes neark50, as calculated from the linear transmissio

FIG. 8. The resonant voltage as a function of the number
active junctions. Open symbols represent values calculated from
linear limit of the transmission-line model while solid symbols re
resent measured values for a 10- and 20-junction array.
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line model. While we do not have a complete understand
of why only modes neark50 are excited, these modes see
physically compelling since at those frequencies all junctio
see approximately the same embedding impedance and
phases are all approximately the same.15

IV. APPROXIMATE MODEL: ANALYTIC SOLUTIONS

While Eqs.~3a!–~3d! give a complete description of th
array, solution is only possible numerically. To make hea
way, we now derive a reduced set of equations that descr
the properties of a state in whichNA of the junctions are
active and locked in phase. Two time scales are of imp
tance in the model. First there is a fast time scale given
the high-frequency oscillations atv051/ALCJ. Each depen-
dent variable in the circuit equations will contain a comp
nent oscillating at this frequency. Second, there is a s
time scale that describes the relaxation of the voltages
currents to the locked state. In addition, the slow time sc
describes small shifts in frequency of the oscillations fro
the reference frequencyv0. According to the assumption o
two time scales, we represent the current through thenth
junction, I n5Q̇n1I bias , as follows:

I n~ t !5 Ī n~ t !1Re$ Î n~ t !eiv0t%, ~11!

where we use the convention that a quantity with an over
is the slowly varying part of a variable and a quantity with
caret is the slowly varying complex amplitude of the osc
latory part of a variable. As a consequence of this repres
tation, each equation in the system~3a!–~3d! will have a
high- and a low-frequency version. In order to work with th
junction currentsI n instead of the chargesQn we take the
time derivative of Eqs.~3b!–~3d!,

LÏ n1
F0

2p
g̈n1

1

Cm(n)
@ I n2I n21#1

1

Cm(n11)
@ I n2I n11#50,

~12!

where the form of this equation for the boundaries is ana
gous to Eqs.~3c! and ~3d!.

Like the currents, the gauge-invariant phase of each ju
tion can be expressed in a similar fashion. An important d
ference between active and inactive junctions is that
phase of active junctions increases steadily with time w
ratev0. Thus, we write

gn~ t !5v0t1ḡn~ t !1Re$ĝn~ t !eiv0t% ~13a!

for active junctions and

gn~ t !5ḡn~ t !1Re$ĝn~ t !eiv0t% ~13b!

for inactive junctions.
If one substitutes the expressions for junction phase

the formula for the superconducting junction current, o
finds that, in general, the junction currents possess a s
trum that includes all harmonics of the reference freque
v0. We will retain only the low frequency~average compo-
nent! of this current and the component atv0. Our basis for
dropping higher harmonics is the assumption that the arra

f
he
1-6
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OBSERVATION AND A MODEL FOR RESONANCES IN . . . PHYSICAL REVIEW B68, 024521 ~2003!
being resonantly excited at the frequencyv0. Thus, its re-
sponse to this frequency component is large compared
the response to the higher harmonics. Based on this argu
we write

I Csin@gn~ t !#5 Ī Cn~ t !1Re$ Î Cn~ t !eiv0t%, ~14!

where for active junctions we have

Ī Cn5I C

J1~ uĝnu!

2uĝnu
~ ĝn* ei ḡn1ĝne2 i ḡn! ~15a!

and

Î Cn5I C

ei ḡn

i FJ0~ uĝnu!1J2~ uĝnu!
~ ĝne2 i ḡn!2

uĝnu2
G , ~15b!

while for inactive junctions we have

Ī Cn5I CJ0~ uĝnu!, ~15c!

Î Cn5I CF2J1~ uĝnu!

uĝnu
cosḡnG ĝn . ~15d!

In deriving Eqs.~15a!–~15d! we have made use of the Bess
identity

eiz cos(u)5 (
m52`

`

Jm~z!eim(u1p/2), ~16!

whereJm(z) is themth-order, ordinary Bessel function.
We now derive an equation for the oscillating currents

the array. First we consider the high-frequency version of
~12!. We substitute expressions~11! and ~14! into Eq. ~12!
and multiply the resulting equation byCJ . After performing
the indicated differentiations we only keep terms with up
first time derivatives ofÎ and the term that has no time d
rivatives of the amplitude16 ĝ:

2 Î n1
2i

v0

dÎn

dt
2v2

F0CJ

2p
ĝn1

CJ

Cm(n)
@ Î n2 Î n21#

1
CJ

Cm(n11)
@ Î n2 Î n11#50. ~17!

Again keeping only terms proportional toĝ this amplitude
can be expressed by substituting Eqs.~13! and~14! into Eq.
~3a!:

ĝn5
2p

iv0F0

1

R211 iv0CJ

~ Î 2 Î Cn!. ~18!

Using Eq.~18! to substituteĝn into Eq. ~17! we obtain

S 2
1

11 iv0RCJ
1

2i

v0

d

dtD Î n1
iv0RCJ

11 iv0RCJ
Î Cn

1
CJ

Cm(n)
~ Î n2 Î n21!1

CJ

Cm(n11)
~ Î n2 Î n11!50. ~19!
02452
th
ent
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For the nominal values of the parameters~Table I! the quality
factor describing dissipation in the shunt resistorsQR
5v0RCJ'76@1, so the previous equation approximates

2i

v0
S d

dt
1

v0

2QR
D Î n1

CJ

Cm(n)
~ Î n2 Î n21!2

CJ

Cm(n11)
~ Î n112 Î n!

5 Î Cn . ~20!

Equation~20! includes the effects of excitation of the cel
by active junctions, the frequency shift induced by inacti
junctions, coupling to adjacent cells, and losses due to
junction shunt resistance. Again, we need to modify Eq.~20!
to describe the end cellsn51 andn5N. Since the coupling
terms derive from the voltages across the coupling cap
tors, these terms are the ones which are modified. In part
lar, the left side of the array is shorted, implying

2i

v0
S d

dt
1

v0

2QR
D Î 12

CJ

C1
~ Î 22 Î 1!5 Î C1 . ~21a!

The right side of the array is connected to a loadZL5RL
1 iXL , which implies

2i

v0
S d

dt
1

v0

2QR
D Î N1

CJ

C1
~ Î N2 Î N21!1 iv0CJZLÎ N5 Î CN .

~21b!

Note that we have now included a resistive part in the lo
Equation ~20! along with the boundary conditions~23!

determines the structure of the high-frequency mode in
array. In the absence of losses and excitation by the cur
sources representing the junctions Eq.~20! reproduces the
dispersion relation~9! neark50, shown in Fig. 7. Accord-
ing to our results in Sec. IV, the tendency is for the curre
to form a mode in which all the currents are nearly equ
This is a consequence of the coupling being strong, t
forcing the values of current to be close to one another. T
values of fluctuating current are not all the same beca
some junctions are active while other are inactive. Furth
power must flow in the direction of the load, which als
causes the junction currents to be slightly different. To tr
this case in our model we writeÎ n5 Î 1d Î n , where Î is the
large common value of current in each cell andd Î n is the
small deviation, which is important only in the couplin
terms. We eliminate the unknown deviations by summ
Eq. ~20! over cell numbers and using the boundary con
tions ~23!. The result is an evolution equation for the com
mon amplitudeÎ ,

2i

v0
S d

dt
1

v0

2QR
1

v0
2CJZL

2N D Î 5
1

N (
n51

N

Î Cn . ~22!

Here we see that the load contributes an additional damp
mechanism~and frequency shift if it is reactive! that de-
creases with the number of cells in the array. The term on
right is the sum of the high-frequency components of
junction source current given by Eqs.~15b! or ~15d! depend-
ing on whether the junction is active or inactive. The effe
of the active junctions will be to excite the mode while th
1-7
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VASILIĆ , OTT, ANTONSEN, BARBARA, AND LOBB PHYSICAL REVIEW B68, 024521 ~2003!
effect of the inactive junctions is to shift its frequency. Th
will become more apparent when we solve Eq.~22!.

We now focus on the low-frequency voltages, curren
and phases. Substituting expressions~14a! and~14b! into the
junction equation~4a! and using expansions~15a! and~15c!
gives

I bias5 Ī n5
F0CJ

2p

d2ḡn

dt2
1

F0

2pR

dḡn

dt
1I CJ0~ uĝnu!sin~ ḡn!

~23!

for inactive junctions and

I bias5 Ī n5
F0CJ

2p

d2ḡn

dt2
1

F0

2pR
S dḡn

dt
1v0D

1I C

J1~ uĝnu!

2uĝnu
~ ĝn* ei ḡn1ĝne2 i ḡn! ~24!

for active junctions. These equations, along with mode eq
tion ~22! and the relation between oscillating junction pha
and array current~18!, determine the dynamics of the on
dimensional array of junctions in our reduced model.

V. APPROXIMATE MODEL: EQUILIBRIA

We now look for an equilibrium state in which a specifie
number of junctions,NA , is active. It is already clear from
our approximate mode evolution equation~22! that only the
number of active junctions is important, while their locatio
is irrelevant. We look for solutions in which the phase of t
active junctions increases at a slow steady rate,

ḡn~ t !5dvt1ḡn~0!, ~25!

wheredv represents a small frequency shift from the ref
ence frequency andḡn(0) is an initial phase which we wil
find is the same for all active junctions and whose value
arbitrary. For inactive junctions the frequency shift is abse
and the value ofḡn(0) will adjust itself according to Eq.~23!
to balance the bias current.

We now note that according to Eq.~22! if the quality
factor is large, the frequency shift is small compared with
reference frequency, and if the fraction of active junctions
not too small, the fluctuating current excited in each cell w
be much larger than the critical currentI C . This is basically
a statement that the array is excited resonantly by the ac
junctions, and it simplifies the calculation of the fluctuati
phase given by Eq.~18!. Namely, we dropÎ Cn compared
with Î n' Î ,

ĝn52
2p

v0
2F0CJ

Î 52
L

LJ

Î

I C
, ~26!

where we have introduced the nominal inactive junction
ductanceLJ5F0 /(2pI C)5L/bL , where bL is defined in
Eq. ~5!. We have also used the same approximation as in
~20!.
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It follows from Eqs.~15b! and ~25! that the phase of the
oscillating supercurrent for active junctions will advance
the ratedv. In turn, this implies through Eqs.~20! and~26!
that the array current and junction phase will also oscillate
this rate. Thus we write

ĝn5ĝaei [dvt1ḡn(0)]5uĝauei [fg1dvt1ḡn(0)], ~27a!

Î 5 Î 0ei [dvt1ḡn(0)] ~27b!

and

Î Cn52 i I Cei [dvt1ḡn(0)]@J0~ uĝau!1J2~ uĝau!e2ifg#,
~27c!

where the complex amplitudesĝa and Î 0 are steady in time.
Substituting Eqs.~26! and ~32! into expression~22! for

the array current yields

Î 0

I C
52 i

NAQT

N

J0~ uĝau!1J2~ uĝau!e2ifg

11 iV
52

LJ

L
ĝa ,

~28!

where

V52QT

dv2Dv

v0
~29!

represents the frequency shift of the junction oscillatio
from the array resonance normalized to the total width of
resonance andQT

215QR
211QL

21 is the total quality factor
for the array including local losses due to the shunt re
tance (QR) and the losses due to the load,QL
5N/(v0CJRL). Finally, the array resonance is shifted fro
the reference frequencyv0 by two effects:

Dv5
v0

2

L

LJ

N2NA

N

2J~ uĝau!

uĝau
cos~ ḡn!2

v0CJXL

2N
.

~30!

The first term represents the frequency shift due to
inductance of the inactive junctions. This shift is responsi
for the dependence of resonant voltage on the numbe
active junctions shown in Fig. 9. The frequency is upshift
because the inactive junction inductance is effectively ad
in parallel to the circuit inductanceL. The voltages across th
coupling capacitors (C1 and C2) are all the same for the
lowest-order mode of the structure, reducing the total ind
tance and raising the resonant frequency. The second
represents a frequency shift that depends on the reactive
of the load impedance.

This term is independent of the number of active jun
tions. The resonant nature of the excitation of the array c
rent is apparent in Eq.~28!. The array current will be larges
at resonance (V50) and is proportional to the quality facto
of the array and the number of active junctions. There i
complicated dependence on the amplitude and phase ofĝa as
contained in the quantity in the square brackets. This w
limit the size of the resonance through the relation betw
the array current and fluctuating junction phase~26!. Further,
1-8
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OBSERVATION AND A MODEL FOR RESONANCES IN . . . PHYSICAL REVIEW B68, 024521 ~2003!
the location in frequency of the resonance depends on
bias current through Eq.~30!. The bias current in equilibrium
is determined by Eq.~24! with the slow phase advance in
serted:

I bias

I C
5

LJ

R
~v01dv!1

J1~ uĝau!

2uĝau
~ ĝa* 1ĝa!. ~31!

Numerical solution of the equilibrium equations can
carried out as follows. For a given set of circuit paramet
L, LJ , QT , andN and for a specified number of active jun
tions, NA , Eq. ~28! can be solved to find the normalize
frequency shiftV and junction phasefg as functions of the
quantity uĝau. We then compute the array resonance f
quency shiftDv from Eq.~30! assuming the shift due to th
reactive part of the load,XL , is negligible. From Eq.~29! we
can find the frequency shift of the locked state,dv. Finally,
from Eq.~31! we compute the bias current and plot it vers
the per junction voltageVdc /NA5(2p)21F0(v01dv). Re-
sults for representative parameters are displayed in Fig
These can be compared with the experimental results of
3. As can be seen, the behavior of the measured and c
lated current-voltage characteristics is similar. Both pl
show a shift to lower voltages with increasing number
junctions. Further, both plots show that the peak current
tially increases with the number of active junctions and th
saturates. In addition, both plots show that for two act
junctions the current-voltage characteristic has a roun
maximum while for a greater number of junctions it develo
a cusp.

VI. LAGRANGIAN AND HAMILTONIAN APPROACH:
MICROSCOPIC ORIGIN OF THE CIRCUIT MODEL

In this section we introduce the Lagrangian of the syst
and derive the corresponding Hamiltonian. We also sh

FIG. 9. Normalized current-voltage plots calculated accord
to Eq. ~31!. These plots are analogous to the measured ones sh
in Fig. 3 and are in good agreement with them. The parameters
to obtain these plots wereI C515 mA, CJ5380 fF, L52.4 pH, R
5100 V, andRL50.5 V.
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that the circuit equations~3a!–~3d! completely and accu-
rately describe the 1D arrays in the relevant limit. For no
tional simplicity we will setC15C2[C which will not in-
fluence our conclusions in any significant way.

It is straightforward to check that the Lagrange’s equ
tions for the following Lagrangian:

L~gn ,ġn ,Qn ,Q̇n!

5
CJ

2 S F0

2p D 2

(
n51

N

ġn
21

L

2 (
n51

N21

Q̇n
2

1
L1LL

2
Q̇N

2 1I bias(
n51

N

gn1
F0I C

2p (
n51

N

cos~gn!

2
1

2C (
n51

N21

~Qn2Qn11!22
1

2CL
QN

2 2
F0

2p (
n51

N

ġnQn ,

~32!

reproduce Eqs.~3a!–~3d!, excluding dissipative terms. Th
symbolxn denotes the whole set of variables$x1 , . . . ,xN%.

To analyze the physical origin of the terms in the L
grangian we will consider all fields and sources in the s
tem. Figure 10 shows a schematic of two squares view
from the side. The distance from the ground plane to
array ('0.3 mm) is much smaller than the lateral dime
sions of each square (.12 mm). Because of this, the electri
field between the array and ground plane only has an ap
ciable component perpendicular to the ground plane. T
magnetic field in this space is also approximately paralle
the ground plane.~The magnetic field also penetrates t
superconductors, decaying over a penetration depthl. This
effect is included in the estimate of the inductance of ea
cell.! These fields are produced by the chargesQn

C that ac-
cumulate on the surfaces of the squares and the curr
flowing through them which, due to charge conservati
equalQ̇n

C2Q̇n11
C . There are also charges that accumulate

the surfaces of the Josephson junctions, producing an ele
field perpendicular to the surface of the junction. Since o
junctions are small and in the parallel-plate capacitor lim
the surface currents are weak and the magnetic field en

g
wn
ed

FIG. 10. A schematic of a side view of two niobium squar
with the ground plane above them. The lines inside the squ
show the currents. The lines in the space between the square
the ground plane illustrate the electric field lines. The cros
circles represent the magnetic field perpendicular to the plane o
drawing. Below is the same side view drawn to scale.
1-9
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VASILIĆ , OTT, ANTONSEN, BARBARA, AND LOBB PHYSICAL REVIEW B68, 024521 ~2003!
stored in the junction is small, we neglect this higher-ord
correction to the dominant electric field energy. In the f
quency range of interest~close to f 0) each cell is in the
lumped limit. This fact and the previously described char
teristics of the arrays allow us to model the fields in t
arrays as static fields of parallel-plate capacitors and s
line inductors.

We will now show that the Lagrangian~32! accounts for
all energies in our system. The first term is the charg
energy of the junctions, since the charge across each junc
is set by the voltage across the junction which is (F0/2p)ġ.
The second term is the magnetic energy stored in the s
between the ground plane and array. These are the two
netic terms; the rest are all potential terms. The third term
the Josephson coupling energy present in each junction
to the Josephson effect. The next two terms represent
energy of the electric field present between the array
ground plane. Finally the last term is the interaction te
between the two sets of charge distributions: the charge
the junctions and the charges on the square surfaces.
term reflects the fact that these charge distributions ar
physical contact so that the charge on one capacitor aff
the potential of the other. The fringing fields are small a
the energy stored in each capacitor is determined only by
own charge.

To simplify further expressions we setI bias50, LL50,
and CL50. The assumptions thatC15C2 , LL50, andCL
50 only affect the spatial dependence~shape! and frequency
of the normal modes. These terms can be straightforwa
included in the calculation but do not introduce any chan
relevant for the following discussion.

The momentum conjugate togn , nn
J5]L/]ġn , and the

momentum conjugate toQn , fn5]L/]Q̇n, are

fn5LQ̇n andnn
J5CJS F0

2p D 2

ġn2
F0

2p
Qn . ~33!

After expressingġn as a function ofnn
J andQn , and express-

ing Q̇n as a function offn , one obtains the Hamiltonian
corresponding to Eq.~32!:

H~gn ,nn
J ;Qn ,fn!5HJ~gn ,nn

J!1HTL~Qn ,fn!

1HI~nn
J ,Qn!, ~34a!

HJ~gn ,nn
J!5

1

2CJ
S 2p

F0
D 2

(
n51

N

~nn
J!22

F0I C

2p (
n51

N

cos~gn!,

~34b!

HTL~Qn ,fn!5
1

2L (
n51

N

fn
21

1

2C (
n51

N21

~Qn2Qn11!2

1 (
n51

N
1

2CJ
Qn

2 , ~34c!

HI~nn
J ,Qn!5 (

n51

N
2p

F0
nn

J 1

CJ
Qn . ~34d!
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The potential term of the transmission-line Hamiltonian is
symmetric quadratic form and can be diagonalized. To m
this explicit, we introduce a canonical transformation whi
changes the momenta of the junctions to charges and in
duces the normal modes of the transmission line as its c
dinates:

gn5
2p

F0
Gn , nn

J5
F0

2p
qn

J , Qn5 (
m51

N

Mnmqm ,

fn5 (
m51

N

MnmFm ~n51, . . . ,N!. ~35!

The chargeqn
J conjugate toGn is the charge that gets trans

ferred across the junction only through Cooper-pair tunn
ing. From its definition and Eq.~33! we see thatqn

J is the
difference of charge on the junction capacitor and the cha
whose motion generates the total current flowing through
junction. The Hamiltonian in these new coordinates is

H~Gn ,qn
J ,qn ,Fn!

5
1

2CJ
(
n51

N

qn
J21

1

2L (
n51

N

Fn
22

F0I C

2p (
n51

N

cosS 2p

F0
GnD

1 (
n51

N
1

2Cn
TL

qn
21

1

CJ
(

m51

N

qm(
n51

N

Mnmqn
J , ~36!

with the capacitancesCn
TL defined via the frequencies of th

normal modes,vn51/ALCn
TL. The mth column (Mnm , n

51, . . . ,N) of the matrixM is themth normal mode of the
transmission line. Our system thus consists of the Joseph
junctions and theN mutually noninteracting modes of th
transmission line. The junctions and normal modes inter
through the last term in the Hamiltonian.

When the junctions are in the voltage state in the sub
region, they act as a small harmonic drive to the transmiss
line. If the frequency of the junction oscillations is not ne
~within resonance width! any of the normal modes, the tran
mission line does not get excited. If the junctions oscilla
with the frequency of one of the normal modes, that mo
gets resonantly excited and a constant-voltage feature is
served in the current-voltage characteristic.

If the modes are well separated, it is sufficient to ke
only a single mode in the Hamiltonian, the one near
frequency of interest. Our arrays are finite, discrete syste
with a small number of degrees of freedom and a high qu
ity factor, so the modes are indeed well separated.
Hamiltonian for the case when only themth mode is excited
is

Hm~Gn ,qn
J ,qm ,Fm!

5
1

2CJ
(
n51

N

qn
J22

F0I C

2p (
n51

N

cosS 2p

F0
GnD1

1

2L
Fm

2

1
1

2Cm
TL

qm
2 1

1

CJ
qm(

n51

N

Mnmqn
J . ~37!
1-10
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VII. COMPARISON TO OTHER MODELS

The interaction of a Josephson junction or a Josephs
junction array with a single mode of the electromagne
field has been studied extensively.17–24In the past three year
researchers have introduced different 1D models21–24 to de-
scribe the operation of our 2D arrays.6,8 The emphasis in
these works was on explaining the high power outputs of
2D arrays. The model introduced here completely descr
the operation of our experimental 1D arrays, and we w
compare it to the other models using the derived Lagrang
and Hamiltonian.

The system studied by Filatrellaet al.21 is a special case
of our transmission-line model. One can check that the
grangian and corresponding Hamiltonian~for I bias50) that
reproduce the equations used in Ref. 21 are

LFil ~gn ,ġn ,Q,Q̇!

5
CJ

2 S F0

2p D 2

(
n51

N

ġn
21

L

2
Q̇21

F0I C

2p (
n51

N

cos~gn!

2
1

2C
Q22

F0

2p (
n51

N

ġnQ, ~38!

HFil ~Gn ,qn
J ;q,F!

5
1

2CJ
(
n51

N

qn
J21

1

2L
F22

F0I C

2p (
n51

N

cosS 2p

F0
GnD

1
1

2C
q21

1

CJ
q(

n51

N

qn
J . ~39!

A comparison of Eq.~39! with Eq. ~37! shows that the
former is obtained whenMnm51, for all n in Eq. ~37!,
which is the case for thek50 mode. Since our system i
operating atk'0, Eq.~39! is an adequate model for our 1
arrays when they are biased on a constant-voltage featu

The following Hamiltonian was used by Almaas an
Stroud24:

HAlm~fm8 ,nm8 ;qr8 ,pr8!

5
~2e!2

CJ
(

m51

N

~n8!m
2 1

\V

2
~pr8!22

F0I C

2p (
m51

N

cos~fm8 !

1
\V

2
~gr8!21g\VS (

m51

N

nm8 D 2

2\VA2gpr8 (
m51

N

nm8 ,

~40!

where one can formally identify26

nm8 5
qm

J

2e
, pr85S 1

\
ACm

TL

L
D 1/2

F, ~41a!

fm8 5
2p

F0
Gn, qr85S 1

\
A L

Cm
TLD 1/2

q, ~41b!
02452
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with V51/ALCm
TL and using the same notation as in E

~39!. The Hamiltonian~40! looks very similar to the single-
mode Hamiltonian of the transmission-line model. Howev
there are some key differences. The next to last term in
~40!, describing the coupling of the mode to the junction
does not have the same coupling constant as Eq.~37!. In the
Almaas-Stroud model, the coupling constantg is related to
the integral of the vector potential across the junction. T
implies that the coupling is mediated through the field th
the mode producesinsidethe junction. Also, the last term o
Eq. ~40! is not present in Eq.~37!. This term couples, with
equal amplitude, all junction charges. It is not clear to wh
kind of physical situation this corresponds.

Bonifacio et al. considered19,20 the interaction of a
Josephson-junction array with a single mode of the elec
magnetic field. The interaction Hamiltonian they used19 was
of the form

i\gS â†(
n51

N

Ŝn2â(
n51

N

Ŝn
†D , ~42!

where â† and â are the creation and annihilation operato
for the resonant mode of the electromagnetic field, withŜn

†

and Ŝn representing Cooper-pair tunneling from left to rig
and vice versa across thenth junction. ~Unnerstall and
Rieckers25 give an excellent derivation of the Josephson
fect and provide much insight into the operator formalism!
To compare to our model we rewrite the interaction term
Eq. ~37! in terms of quantum mechanical operators,

i S \~2e!2

2CJ
2
ACm

TL

L D 1/2S â†(
n51

N

MnmŜn
z2â(

n51

N

MnmŜn
zD ,

~43!

defining

q̂m[ i S \

2
ACm

TL

L
D 1/2

~ â†2â!, ~44!

F̂m[S \

2A L

Cm
TLD 1/2

~ â†1â!, ~45!

q̂n
J

2e
[Ŝn

z , vm5
1

ALCm
TL

, ~46!

wherevm is the resonant frequency of themth normal mode.
If we setMmn51 for all n, the difference between Eqs.~42!
and~43! becomes apparent. While Eq.~42! has a coupling of
the mode to thesupercurrent, represented byŜn

† andŜn , our

Hamiltonian~43! couples the junctioncharges Sˆ n
z to the reso-

nant mode.
Interaction terms analogous to Eq.~42!, used by various

authors,17,19,20,27are derived from the expression

E
V
j s~r !•A~r !dV, ~47!
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VASILIĆ , OTT, ANTONSEN, BARBARA, AND LOBB PHYSICAL REVIEW B68, 024521 ~2003!
which is the electromagnetic interaction of the Joseph
supercurrentj s(r ) with a normal mode of the fieldA(r ) in-
side the junction barrier. This is a distinctly different physic
situation then what is present in our arrays, in which
resonant mode is external to the junctions and the energ
the mode is stored in the field between the array and gro
plane. Because of this, we find Hamiltonians derived fr
Eq. ~47! inapplicable to our arrays.28 These Hamiltonians
would be appropriate, for example, for an array of junctio
that all share a single insulating layer as their tunneling b
rier, which is also a dielectric resonator.

VIII. CONCLUSIONS

In measurements of 2D arrays we have observed6,8 high-
efficiency emission of millimeter-wave radiation. A thresho
number of active junctions is necessary for coherent ra
tion to be detected; otherwise, the power is low and incoh
ent.

The 1D transmission-line model that we have just d
scribed does not explain this behavior. The only nonlin
term in Eqs.~3a!–~3d! is the supercurrent in the RCSJ equ
tions, Eq.~3a!. As was mentioned before, when the junctio
are in the voltage state this term acts as a small harm
drive to the rest of the equations~3b!–~3d!, which are linear.
As the oscillation frequency of the active junctions a
proaches the resonant frequency of the nearest mode th
tive junctions emit waves that get reflected off the arr
boundaries and resonantly excite all other junctions. T
phases of the junctions are set by the shape of the m
being excited, and as long as the array is biased on a S
these phases will remain the same because of the reso
nature of the excitation. We have extensively observed
kind of behavior in numerical simulations of Eqs.~3a!–~3d!.
In the model,when the arrays are biased on a constan
voltage feature they are always coherent. There is no thre
old in our 1D model.
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We have also developed an analytic model for lock
states with a specified number of active junctions. T
model successfully reproduces a number of characteristic
the current versus voltage curves observed in the experim
In particular, the dependence of the shape of the current
sus voltage curve on the number of active junctions as w
as the peak value of bias current is calculated by the mo

The other models24,21 described in the previous sectio
show a threshold of a different nature than the one obser
in the experiments. In these models the height in curren
the resonant features depends on the number of ac
junctions29 and decreases with decreasing number of ac
junctions. If the bias current is too high, for a low number
junctions that have a voltage across them, the resonant
does not exist and the oscillations are not resonant. If
bias current is fixed and the number of active junctions
creased, when enough junctions are switched to the vol
state, so that the resonant feature exists, a sudden increa
output power is observed. This is because the juncti
switch from the subgap voltage state to the now availa
resonant state that radiates more power. However, if on
careful to always bias the junctions on a resonant feature
array is always coherent andno threshold can be observed a
the number of active junctions is varied.30

Even though the synchronization of the 2D arrays rema
an open question, the transmission-line model describe
this work provides a satisfying description of the 1D arra
We showed how the linear limit of this model reproduces
observed dependence of the resonant frequency as the
ber of active junctions, as well as the array length, is vari
The Lagrangian and Hamiltonian for the transmission-l
model can be used to compare this model to other mode
the literature. The transmission-line model completely d
scribes the physical situation of interest for our arrays, a
we believe that its 2D generalization should provide valua
insight into the operation of the radiating 2D arrays.
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