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with ground planes

B. Vasilic,® E. Ott? T. Antonserf, P. Barbara and C. J. Lobb
ILaboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
’Department of Physics, Department of Electrical and Computer Engineering, and Institute for Research in Electronics
and Applied Physics, University of Maryland, College Park, Maryland 20904, USA
3Georgetown University, Department of Physics, Washington, DC 20057-0995, USA
“4Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
(Received 23 March 2003; published 31 July 2003

We present data from one-dimensional unshunted Josephson-junction arrays with ground planes, showing
resonant behavior for certain values of the critical current. Due to the hysteresis of the current-voltage char-
acteristics, the number of junction that oscillate on resonance can be controlled. The resonant frequency
decreases as more junctions are switched onto the resonance and increases as the array length is increased. We
develop a transmission-line model of the arrays that reproduces these experimental observations. We also
examine the microscopic origin of this model and compare it to existing models in the literature.
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[. INTRODUCTION On the other hand, traveling waves in the junction induce the
Eck peak! In both of these resonances the junction is inter-

Since the discovery of the Josephson effect, various res@cting with internal modes.
nant phenomena have been observed in Josephson junctionsJunctions can also interact with an external resonator, as is
and Josephson-junction arrays. They all reveal themselvabe case in the work by Larsest al? The system consisted
through a constant-voltage feature in the current-voltagef a small junction placed inside of a strip-line resonator. The
(1-V) characteristics. This feature is a consequence of theesonant cavity was external to the junction and constant-
Josephson relatiohs voltage features were observed in th&/ characteristic at

voltages set by the resonant modes of the strip line.
. d Constant-voltage features can also be observed in junc-
o Uy . ; ; ;
=——, I=Icsiny), (1)  tions which are externally driven. These are the well-known
2m dt Shapiro stepsthat occur at integer multiples of the voltage
corresponding to the driving frequency. These steps are due
whereV and y are the voltage- and gauge-invariant phaseto the junction locking to the driving signal and are not reso-
difference across the junction, the supercurrent flowing nant in origin.
through the junction, antl- and® the critical current and Underdamped arrays display a variety of geometrical
magnetic flux quantum. resonance$;® brought about by magnetic fields applipdr-

A constant voltage across a junction is accompanied bypendicularto the arrays or anisotropies inherent to the ar-
supercurrent oscillations with a frequentyhat is equal to  rays. The voltages of these steps are determined by the prop-
V/®,. Thus a constant voltage in a Josephson junction or arties of electromagnetic waves traveling through the
Josephson-junction array implies the presence of a preferrediscrete structure that the arrays form or the preferred con-
frequency.(An exception is the gap, a steplike feature infigurations of currents and voltages induced by the applied
underdamped junctions and arrays which is a consequence pérpendicular field.
quasiparticle tunneling rather than a resonant effect involv- In this work we present experimental observations of a
ing supercurrent oscillationsThere are three ways that a resonance in one-dimension&lD), underdamped arrays
preferred frequency can appear in a system involving Josephlwith ground planes above them. We also discuss a
son junctions: a resonance internal to the junction can selettansmission-line model that reproduces the main features of
a frequency, the environment in which the junction is embedthe experimental observations. Our resonance is due to the
ded can have resonance frequencies, or an external soun@sonant structure formed by the ground plane and junction
can force voltage or current oscillations across the junctionswiring. The resonance manifests itself through constant-

Let us consider a junction formed by two parallel slabs ofvoltage features in the-V characteristics of the arrays,
superconductor separated by a thin nonsuperconductingresent only for particular values of the critical current. We
layer. The two superconducting plates form the walls of ahave observéd® these self-induced resonant st¢p$RS’S
transmission line. Depending on the boundary conditions ain both 2D and 1D arrays. However, they appear to be dif-
the edges of the junction and its size, standing or travelindgerent in nature in 1D and 2D arrays and we will only discuss
waves can exist inside this transmission line. If standinghe case of 1D arrays here.
waves exist, they lead to the well-known Fiske steps, The rest of this paper will be organized as follows: We
constant-voltage feature in theV characteristic of the junc-  will first present and discuss data from 1D arrays. We will
tion corresponding to the frequency of the resonant modehen introduce a model for the arrays and compare its pre-
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FIG. 1. A micrograph of a one-dimensional array with one unit —8 12} 1X20 ]
cell outlined with a thick black line. Below is a circuit schematic of
the transmission-line model. 10F | A
dictions to the data. An approximate model will then be de- 8 I ]
rived and the resulting current-voltage characteristic will be 6k - |
calculated. In Sec. VI the Lagrangian and Hamiltonian of the
model will be derived and we will show that they present a 4 J Mﬁ w//‘
full description of the 1D arrays in the relevant limit. A com- :
parison of this model to other works will be made. In the 2 . L . .
final section we will draw conclusions from an analysis of 0 1 2 3 4 5 6
the data and model. Vpc [mV]
FIG. 2. Current-voltage characteristics of 10-junctionx(ll0)
[l. RESONANCES IN ONE-DIMENSIONAL ARRAYS and 20-junction (X 20) array, when their critical currents are sup-
WITH GROUND PLANES pressed to about 18A. Constant-voltage features are present, cor-

responding to different numbers of junctions oscillating on reso-

. . . . nance. Note that th¥ ,,~2.7 mV feature is not shown in these

Fig. 1. The junctions are form&at the overlaps of adjacent raphs.
niobium squares. At the overlap the squares are separated 8y
an aluminum-oxide tunneling barrier. The right side of the20-junction arrays and differeril, for each array. For a
array is terminated by a strip line, while the left side is given array, the step height in current depends on the number
grounded. The largest, light, rectangle is the niobium groun@f active junctions. For all measured arrays it reaches a
plane on top of the array. Different niobium layers are sepamaximum for some value dfl, smaller than 20.
rated by silicon dioxide. The dimensions of the squares A careful inspection of thé-V characteristics reveals that
closer to the ground plane are 12nx12 um, while the  the resonant voltage depends on the number of active junc-
ones below them are 16mx16 um. The nominal dimen- tions. To see this more easily, we normalize the voltage of
sions of the junctions are 4mx4 um. We current bias the each step by the number of active junctioNg,, correspond-
arrays through leads at each end and use the standard foitig to it, as shown in Fig. 3 for an array of ten junctions. In
point technique to measure the voltage. this way, we obtaif -V characteristics in which the voltage

We observe resonant features only in thé characteris-  corresponds to the voltage each active junction has when the
tics of 1D arrays that have specific boundary conditions anérray is biased on a given SIRS. As the number of active
a critical current suppressed to about /A8 by an external junctions is increased the voltage and frequency of the reso-
magnetic fieldgoarallel to the junctions. Only arrays with the nance decrease, as Fig. 3 shows. The same trend is observed
strip-line termination had the resonance. We analyze theser the other measured arrays.
constant-voltage features to determine the dependence of the Plots analogous to the one in Fig. 3 are shown in Fig. 4
resonant frequency on the number of juncti@usively os-  for an 80-junction array, with each step presented in a sepa-
cillating on resonance and on tetal number of junctions rate plot. The steps are shown separately because they split
in the array. and have a complicated fine structure. We have also observed

Because of the hysteresisee Fig. 2 inherent to under- this fine structure in the smaller arrays; however, in smaller
damped junctions, for bias currents below the critical currentrrays the splitting is much less pronounced. This fact com-
each junction in the array can have no voltage, the resonaficates the analysis of the 80-junction array since it is hard
voltageVes, Or the gap voltag¥ y,, across it. The junctions to determine which steps correspond to the same resonant
that have the resonant voltage across them, and are thus deature for different number of active junctions.
cillating with the resonant frequency, will be calledtive In all arrays as we increase the number of active junctions
and their number, will be denoted by,. Each timeN,  the voltage decreases are very small, less than 5%, which
junctions are active a SIRS is present in thé characteris- makes the step shape important. We are interested in steps
tic at a voltageNpV,es, as shown in Fig. 2 for 10- and that extend to high currents because they best approach the

A micrograph of a 1D array with 20 junctions is shown in
gap
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FIG. 3. Current-voltage characteristics for a ten-junction array  FIG. 5. The resonant voltage of a 10-, 20-, and 80-junction array
with the voltage of each constant-voltage feature normalized to th@s a function of the number of active junctions. Note how the reso-
number of junctions oscillating on resonance. The numbers correnant voltage increases with the length of the array.
spond to the number of active junctions for each resonant feature.

Note how the resonant voltage decreases as the number of actiygs resonant voltage we are at those currents.
rows increases. The horizontal line corresponds to the constant-

Using data obtained in this way we plot, in Fig. 5, the
current criterion discussed in the text. 9 y P g

resonant frequency as a function of the number of active
junctions for 10-, 20-, and 80-junction arrays. For the 80-
resonant freque.nc.y. Since most of the steps are fairly Shorﬁunction array we used only the highest-frequency branches
we need to optimize the number of steps we want to conyf the seventh, eighth and ninth step, assuming they belong
sider. We record the voltag¥,es of the selected SIRS at tg the same resonant feature. Apart from the previously men-
some reference bias current determined by the top of thgoned decrease of the resonant frequency with the increase
shortest step in the set of SIRS we have chosen, as in Fig. 3¢ N,, the second important property of the plot in Fig. 5 is
This criterion is consistent within a single array but is only the increase of frequency with array length. While we men-
q_ualitatively satisfactory Wher_1 comparing different arrays: intioned in the previous paragraph that we cannot make quan-
different arrays we choose different optimal currents to refyjtative comparisons of the frequencies between different ar-
erence the step voltages and we do not know how close tgyys, the last conclusion is still qualitatively correct. We

checked this by using different reference currents: This al-

8.0 7 ways Yielded higher frequencies for longer arrays, as did
;'g =3 "\IATS f visual inspection of more detailed overlayed plots of ithé
65 ] characteristics.
6.0 £ / /
gg ii /I /5 IIl. TRANSMISSION-LINE MODEL
45 r4uyss Rd iy To e . )
L . >§pla|n the features pf the resonan_t frgquency de
gp— 7 ! scribed in the previous section we use a circuit mtdef
— ;g N=6 ] N=7 the array that captures the interaction of the junctions and
§_ 65 i electromagnetic field confined and generated by the ground
=5 6.0 / / plane and array. If there is a voltage difference between a
055 / ¥/ niobium square and the ground plane above it, charges will
5.0 ,{’/ // accumulate in the square and ground plane surfaces. There
45 F""’ “g_#’// are two different types of squares, in two different niobium
75 ‘ — layers, that have capacitandgs andC, with respect to the
70 N=8 =9 ground plane as shown in the circuit in Fig. 1. When currents
6.5 { are flowing through the array and through the ground plane,
6.0 ./ / magnetic fields are generated. While the inductance of the
5.5 4{/ ,(/ two types of squares is different, each junction is surrounded
5.0 7 / / by one square of each kind, so the inductance of saujle
45 - — cell in the circuit is the same and equal lto BecauseC,
4'9,50 370 380 390 370 380 390 400 #C,, the unit cell of the array consists of twaingle-

Vpe /N, [1V] junction cells. o _
The left boundary of the circuit is shorted, as is the actual

FIG. 4. Detail of the resonant current-voltage characteristics ofifray. The strip line on the right of the array is modeled by a
an 80-junction array. The numbers correspond to the number ofapacitorC, and an inductol, , representing the charges
active junctions. Note that each constant-voltage feature splits intthat accumulate on the strip-line plates and the currents along
finer features in this long array. the plates. Each junction is modeled by the RCSJ model.
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If there areN junctions in the circuit, the system hadli2
degrees of freedon\l gauge-invariant phase differences
across the junctions, arkﬂchargesQﬁ on the capacitors. We
will introduce effective charge®, whose time derivatives

PHYSICAL REVIEW B68, 024521 (2003

We will set a=~0, since the dissipation is smalla(

=0.029). In order to analyze the resonances of this system
we will first linearize the nonlinear Josephson terms. This
can be done in two different ways depending on whether a

are the ac currents flowing through the junctions. These newarticular junction is active or inactive. For active junctions

charges are implicitly defined in terms of tb)f via

Q5=Qn—Qn-1. (2)

we will set the nonlinear term equal to zéfdnactive junc-
tions will be modeled by an inductdf.For small harmonic

oscillations around the equilibriuniq,(t)=q,e'“!, y,(t)

We introduceQ,, since they yield simpler equations. Using =arcsin{pjas) +3’neiwt] and eI.iminating;n using the Jo-
the Josephson relation and equating the voltage drop arours@phson equations, we obtain the following set of linear
each loop to zero, we obtain the following closed system okquations for the oscillation amplitudes:

equations:
®oC;. Dy . , .
. Wt m)’“cSln(Yn):Qngias (n=1,... N),
(3
L D,. 1
Qnt+ Z')’n"_ m[Qn_Qn—l]
1
+ C [Qn_Qn+1]:Or (Sb)
m(n+1)
. Dy 1
LQq1+ E')/l—'— C_l[Ql_Qz]ZO, (30

L Dy 1 1
(L+L)Qn+ §7N+ %[QN_QNfl]—F C_LQN_?:;d)

where an overdot denotes the time derivatiVet. The in-
dexm(n) equals 1 fom even and 2 fon odd. These equa-

2
~ w ~ ~ ~
_wZBLQn+ 2 qn+77m(n)[Qn_Qn—1]
0=

+ 77m(n+1)[an_an+l]zov (78
~ 2 ~ ~ ~
—’BLay+ w2—§q1+ 71[01—02]=0, (7b)
- w? - - - -
—w?BLAOy+ gQN+ NmvLAn—An—1]+ 7LAN=0,

wz—

(70

where (= \/1—ib2ias and w is the angular frequency. The
corresponding frequency will be denoted witirhese equa-
tions are written assuming that all junctions are inactive. If
the nth junction is active{ will be set equal to zero in the
appropriate equation of Egé/a—(7¢), corresponding to an
infinite Josephson inductandghe supercurrent channel is

tions describe a finite portion of a transmission line withopen. In the rest of this section the dispersion relations of

Josephson junctions embedded in it. Equati@ér) describes
the shorted, left end of the transmission line and ([Bd) the
right, loaded end.

Normalizing frequencies tav,= (27lc)/(PoC;) and
currents to the critical current we rewrite Eqs(3a)—(3d)
as

5’n+a:}’n+5in('}’n)_qn_ibias:01 (4a)

IBLdn'I' :)’n+ 77m(n)|:Qn_ On-1]+ 77m(n+l)[qn_ On+1] :(()L,].b

BLd1+ v+ m[d1—0,]=0, (40
BLAGNT Yn+ DmyLAn—On-1]+ 7LAN=0,  (4d)

where an overdot now means a derivatd/el - with respect
to the dimensionless time and with the dimensionless pa-
rameters are defined as

= s a= _,

L@ V 2471 R2C,

== (x=1,2L) A=14lt (6)
77)( CX 1 1 L .

the infinite linearized system will be derived and an analysis
will be presented of the allowed frequencies for the finite
system.

We first consider two extreme cases of this linearized sys-
tem whenN—-oo, one in which all of the junctions are active
and the other in which all of the junctions are inactive. The
infinite linearized transmission line supports traveling waves
of the form

—ik2m ik(2m+1)

d2m= Qeven® v Q2m+1= Qodd® (8)
The dimensionlesk=ka is the product of the dimen-
sional wave numbek and the length of a single-junction
cell, a. We note again that a unit cell of the array consists of
two single-junction cellgsee Fig. L
The dispersion relations obtained by substituting &.

into Egs.(7a—(7c) are given by

11/1 1 1 ,
k(w)=arcsi > Z+% 1+ B’ 1)
L
+ (1+ ! - 2 ) 4]
amma\ " ((p-wd) (B-0?) |

(C)
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FIG. 7. A detail of the dispersion relations near 0. The solid
G. 6. Di . lati for th i ional h lines correspond to purely real valuesoftraveling waveswhile

'.:I L DlsperS|o_n refations for the one- Imensional array Whefyq gashed lines correspond to purely imaginary values(purely
?" ju_nctlons are a(_:tlvefa on the left, and when all junctions are evanescent wavisTwo lower-frequency curves correspond to the
inactive, f; on the ”ght'. Solid lines m_ark the real part of the wave case when all junctions are active, while the upper two curves cor-
nerberK gnd dashed Ilnlc(sshmark tlhe LTagln{ary parkoﬂ':z open respond to the case when all junctions are inactive. The solid square
circies and squares mar the real and imaginary partss SPEC”  marks the allowed mode closestis=0 in a ten-junction array for
tively, for the allowed frequencies of a ten-junction array. In thethe case when only one junction is active. The open square corre-

shaded regions only evanescent waves ¢is(«)#0]. Note that sponds to the case when all junctions are active in the same array.
« takes values only up tar/2.

These are shown in Fig. 6, calculated for the fitted values o¥Vhen C,=C, there is no gap and can take values from

the parameters given in Table I. How these values were od-— 7, 7] because the unit cell of the transmission line is now
tained is discussed further in the text. The dispersion relatiohalved. Also, there is an extra branch in the dispersion for the
corresponding to the case of active junctions is denoted bgase of inactive junctions. This branch is present due to the
fa(x), andf;(«) is the dispersion relation when all junctions extra degrees of freedom introduced by the Josephson induc-

are inactive. All frequencies are normalized to tances that are present in the inactive junctions.
We will now take a detailed look at the region aroufid
1 1 shown in Fig. 7. For a giverk the frequency is always
fo:ﬂ Jicy’ (10) higher for the dispersion corresponding to the case where all

junctions are inactivef;(«)>f,(«), as Fig. 7 shows. There-
which is the frequency corresponding to the=0 mode fore, one would expect that as more junctions become
when all junctions are active. Since the system we are corictive”® the frequency would grow smaller, similar to the
sidering is periodic, with a period of two junctions,sym-  observed behavior shown in Fig. 5, finally reaching the fre-
metrically takes values in the interviat- 7/2,7/2]. quency lying onf, when all junctions are active. To test this
The shaded regions in Fig. 6 mark frequencies for whicHdea quantitatively we will next turn to the finite system and
the excitations are evanescent waves, siades a nonzero calculate the allowed frequenciésormal modes
imaginary part, corresponding to an exponentially decaying Using Mathematica, we calculated the determinant of the
or increasing(in spacé amplitude of the wave. Frequencies System(7a—(7¢) of N linear equations that determine the
above g, are above the gap frequency and would be diffi-oscillation amplitudesy,. The zeros of the determinant are
cult to excite because of increased dissipation above the gahe allowed frequencies of the finite systémie numeri-
which lowers the quality factor of the system. cally calculated the normal-mode frequencies for different
We are interested in frequencies ndgy since the value numbers of active junctions and different array lengths in
of fy calculated from our estimates of the array parameters isrder to make a comparison to the ddla.the experiment,
close to the experimentally observed frequency. Before conwhen the array is biased on thgth step we only know that
centrating on this region of the dispersion relation, oneN, junctions are active but we do not know which particular
should note two facts. Because of the difference in the cajunctions those argFor the range of parameters relevant to
pacitancesC; andC,, there is a gap in the dispersigthe  our systems, the numerically determined frequencies did not
middle shaded regignn which only evanescent waves exist. change appreciably as we changed the st péctive junc-

TABLE |. Nominal values of the array parameters and their values that give the best fit to the data, all calculbted3@u A and
R=150Q.

C,[fF] Cy[fF] C,[fF] C, [fF] L [pH] L. [pH] 71 72 L BL A @
Nominal 60090 103 14+3 40040 2.4:05 2.1+x0.2 60+t24 43+17 1504 0.22 1905 0.029
Fit 380 10 14 360 2.4 1.9 38 27 1.05 0.22 1.79 0.029
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378

———————T— line model. While we do not have a complete understanding

376} o© 8 . of why only modes neak =0 are excited, these modes seem
374} o) . physically compelling since at those frequencies all junctions
S' 372} = o] . see approximately the same embedding impedance and their
3. 370f g ® 2 ] phases are all approximately the sate.
o 368} g 8o
>“ 366 q IV. APPROXIMATE MODEL: ANALYTIC SOLUTIONS
s64r = ] ile Egs.(3a—(3d) give a complete description of the
362 @ o0 N=20 o 1 array, solution is only possible numerically. To make head-
BT 2 3 456 7 8 910 way, we now derive a reduced set of equations that describes
NA the properties of a state in whidd, of the junctions are

active and locked in phase. Two time scales are of impor-
FIG. 8. The resonant voltage as a function of the number of@nce in the model. First there is a fast time scale given by
active junctions. Open symbols represent values calculated from tHé&e high-frequency oscillations af,= 1/{LC;. Each depen-
linear limit of the transmission-line model while solid symbols rep- dent variable in the circuit equations will contain a compo-
resent measured values for a 10- and 20-junction array. nent oscillating at this frequency. Second, there is a slow
time scale that describes the relaxation of the voltages and

tions. Because of this, we calculated the frequencies\for currents to the Iocked state. In addition, the slgw Fime scale
active junctions using a random choice for their configura-descrlbes small shifts in frequency of the oscillations from
tion. the reference frequenay,. According to the assumption of
The calculated allowed frequencies for the cases when allvo time scales, we represent the current throughritie
junctions are active and only one junction is active in a tenjunction, | ,=Qp+ 55, as follows:
junction array are marked in Figs. 6 and 7. For only one _ R ,
junction active, the frequency of the mode nearest toxhe In(t)=1n(t) + Refl,(t)€' 0}, (11
=0 mode lies on the part of the dispersion wheris purely
imaginary. This means that the standing wave set up in th
space between the array and transmission line is a line
combination of exponentially decaying solutions. For fre
guencies smaller than, but close tg, the real part ok is 0
with the decay length larger than the array length, makin
these evanescent solutions approximately the same as t
exactk=0 mode. For frequencies larger than, but close to
fo, shown in Fig. 7, the wavelength of traveling waves is

where we use the convention that a quantity with an overbar
f§ the slowly varying part of a variable and a quantity with a
aret is the slowly varying complex amplitude of the oscil-
“latory part of a variable. As a consequence of this represen-
tation, each equation in the syste®a)—(3d) will have a

igh- and a low-frequency version. In order to work with the

ction currentd , instead of the charge®,, we take the

time derivative of Eqs(3b)—(3d),

also larger than the array length, making them approximately D). 1
equivalent to thec=0 mode. Lot ot g [n=lh-1d+ g [In=1h+1]=0,
Figure 8 shows a comparison between the calculated fre- m(n) m(n+1) (12)

guency of the mode closest to=0 and experimental data,

for differentN, in two arrays with 10 and 20 total junctions. where the form of this equation for the boundaries is analo-

The fitted parameters that were used in the calculation argous to Egs(3c) and (3d).

given in Table I. They were determined from the array ge- Like the currents, the gauge-invariant phase of each junc-

ometry and then adjusted to obtain the best-fit graph in Figtion can be expressed in a similar fashion. An important dif-

8. Nominal and fitted values of the dimensional and theirference between active and inactive junctions is that the

corresponding dimensionless parameters are given in Tablephase of active junctions increases steadily with time with

All but one of the dimensionless fitted parameters are withirfate wg. Thus, we write

the error of the nominal estimates. The fitted value of the _ . )

junction capacitance is not within the error of its nominal Yn(t) = wot+ ya(t) + Re{yn(t)e' o'} (133

estimate. One reason for this is overetching in the fabricatio

process that diminishes the junction afead thus the ca-
acitance and could be seen in micrographs of the arrays. o - i ont

P The calculation correctly predicts tf?e splope of the de?o/en- Yn(t) = ya(t) + Re{yp(t)e'“0} (13b)

dence of the resonant frequency as a functioNgf It also  for inactive junctions.

reproduces the fact that the frequency grows as the array If one substitutes the expressions for junction phase into

length is increased. This calculation shows that in our arraythe formula for the superconducting junction current, one

the mode nearest to the=0 mode is excited. In the 80- finds that, in general, the junction currents possess a spec-

junction array we observed a fine structure in the resonarttum that includes all harmonics of the reference frequency

features, as shown in the first section. The spacing of these,. We will retain only the low frequencyaverage compo-

fine structure features is similar to the spacing of normaheny of this current and the component@g. Our basis for

modes neak =0, as calculated from the linear transmission-dropping higher harmonics is the assumption that the array is

Bor active junctions and

024521-6



OBSERVATION AND A MODEL FOR RESONANCES IN . ..

being resonantly excited at the frequensy. Thus, its re-
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For the nominal values of the parameté€Fable |) the quality

sponse to this frequency component is large compared witfactor describing dissipation in the shunt resistd@g

the response to the higher harmonics. Based on this argumestw R C;~

we write
lesinl ya(t)]=Tcn(t) + Re{lcp(De 0}, (14
where for active junctions we have
() ~n = & =
cn=lc 1(|7"|)(7§e'7”+7ne"7") (159
2|7n|
and
. I'y Iy )
len=lc—=~ Jo(1val) + 32| 7a]) ﬁ , (15b)
n
while for inactive junctions we have
Ten=lcdo(| D), (150
- 23,17 — |-
cn—lc — OS¥Yn|¥n- (150
|'Yn|

In deriving Eqs(1589—(15d) we have made use of the Bessel

identity

E Jm(z)eim(0+ﬂ'/2)'

m=—w

eiz cos(9) — ( 1 6)

whereJ,(2) is themth-order, ordinary Bessel function.

761, so the previous equation approximates to

. Cy . .
" —J(In—l

m(n)

2QR

nfl)_ (in+1_|An)

Cm(n+ 1)
(20

Equation(20) includes the effects of excitation of the cells
by active junctions, the frequency shift induced by inactive
junctions, coupling to adjacent cells, and losses due to the
junction shunt resistance. Again, we need to modify @6)

to describe the end cells=1 andn=N. Since the coupling
terms derive from the voltages across the coupling capaci-
tors, these terms are the ones which are modified. In particu-
lar, the left side of the array is shorted, implying

:Icn.

2| d wqo
_ _+ _
dt  2Qg
The right side of the array is connected to a IGAd=R,
+iX, , which implies
2i d
2Qr

il_C_i(TZ_Tl):TC1- (21a

('N In-1) +iweCiZ Ty=Tcy.
(21b
Note that we have now included a resistive part in the load.
Equation (20) along with the boundary condition®3)

determines the structure of the high-frequency mode in the
array. In the absence of losses and excitation by the current

We now _derive an equation fo_r the oscillating cu_rrents iNsources representing the junctions E20) reproduces the
the array. First we consider the high-frequency version of Eqdispersion relatior{9) nearx=0, shown in Fig. 7. Accord-

(12). We substitute expression&l) and (14) into Eq. (12
and multiply the resulting equation 1y, . After performing

ing to our results in Sec. 1V, the tendency is for the currents
to form a mode in which all the currents are nearly equal.

the indicated differentiailtions we only keep terms with up toThis is a consequence of the coupling being strong, thus
first time derivatives of and the term that has no time de- forcing the values of current to be close to one another. The

rivatives of the amplitud€ 5

. 2idi,  ®,.C,. G,

Tt — +——[l,—Tn_
I wg dt w 2 Yn Cm(n)[ln lh-1]

17

Again keeping only terms proportional tp this amplitude
can be expressed by substituting E4s3) and (14) into Eq.
(3a):
A~ 2
i wO(I)O R71+ i (1)0CJ

(I=Tcn)- (18

Using Eq.(18) to substitute&n into Eq. (17) we obtain

1 2| d ~ inRCJ ~
et — |t ———
l+|(1)oRCJ [Oh) dt 1+|(1)0RC_]
C; . . C, . .
+ (Ih=Th-1)+ = (In=ln11)=0. 19
Cm(n) Cm(n+1)

values of fluctuating current are not all the same because
some junctions are active while other are inactive. Further,
power must flow in the direction of the load, which also

causes the junction currents to be slightly different. To treat

this case in our model we write,=1+ 51, wherel is the

large common value of current in each cell aﬁﬁ;l, is the
small deviation, which is important only in the coupling
terms. We eliminate the unknown deviations by summing
Eqg. (20) over cell numbers and using the boundary condi-
tions (23). The result is an evolution equation for the com-

mon amplitudd

2| d wqo
— a'ﬁ‘ 2—QR+

Here we see that the load contributes an additional damping
mechanism(and frequency shift if it is reactiyethat de-
creases with the number of cells in the array. The term on the
right is the sum of the high-frequency components of the
junction source current given by Eq45b) or (150 depend-

ing on whether the junction is active or inactive. The effect
of the active junctions will be to excite the mode while the

(22
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effect of the inactive junctions is to shift its frequency. This It follows from Egs.(15b) and(25) that the phase of the

will become more apparent when we solve EZR). oscillating supercurrent for active junctions will advance at
We now focus on the low-frequency voltages, currentsthe ratedw. In turn, this implies through Eq$20) and (26)

and phases. Substituting expressi@h&a and(14b) into the  that the array current and junction phase will also oscillate at

junction equatior(4a) and using expansion45a and(15¢ this rate. Thus we write

gives _ _
,}n: '\,yaei[&ut-*— Yn(0)] — | ,}alei[qﬁy-%— Swt+ yn(O)], (27@
—_®eCy Py, Do dyy N ~
lbias=In =75 12 " 2R gt T edollval)sin(yn) =1 ello0t+ 7(0)] 27b)
(23)  and
for inactive junctions and - Cei[gthr;n(o)][‘JO(lA7a|)+\]2(|’\7a|)92i¢7]1
_ _ 27¢
| _—_q)OC.] d®y, D %+ . . 279
bias™In" "o 42 | 2wR\ dt 0 where the complex amplitudeg, andl, are steady in time.

Substituting Eqs(26) and (32) into expression22) for

Iy -~ — . = the array current yields
lc lz(l“ynb(vﬁe'wr e ' (29)
7l _O__iNAQT J0(|ya|)+J2(|ya|)e2'¢7__EA
for active junctions. These equations, along with mode equa- |- N 1+iQ TECE
tion (22) and the relation between oscillating junction phase (28)

and array curren¢l8), determine the dynamics of the one-

, . . . ) where
dimensional array of junctions in our reduced model.

Sw—Aw
V. APPROXIMATE MODEL: EQUILIBRIA QZZQTw—O (29

We now look for an equilibrium state in which a specified (g resents the frequency shift of the junction oscillations

number of junctionsN,, is active. It is already clear from 4y the array resonance normalized to the total width of the
our approximate mode evolution equati(#®) that only the resonance an@;leal_’_Q[l is the total quality factor

.”“.mber of active junctions is _impolrtant,.while their Iocationfor the array including local losses due to the shunt resis-
is |rrele'vant'. We 'Iook for solutions in which the phase of thetance Qg and the losses due to the loadd,
active junctions increases at a slow steady rate, =N/(woC;R). Finally, the array resonance is shifted from
the reference frequenay, by two effects:

Ya(t) =St +7,(0), (25)
where So represents a small frequency shift from the refer- @0 L N=Na 23(|7al) cog 7 — woCyXL
ence frequency angt,(0) is an initial phase which we will 2L, N |l " 2N
find is the same for all active junctions and whose value is (30

arbitrary. For inactive junctions the frequency shift is absent,

and the value oﬂ(O) will adjust itself according to Eq23)
to balance the bias current.

The first term represents the frequency shift due to the
inductance of the inactive junctions. This shift is responsible
. . . for the dependence of resonant voltage on the number of
We now note that according to E¢R2) if the quality active junctions shown in Fig. 9. The frequency is upshifted

factor is large, the frequency shift is small compared with th . Lo L2 . .
reference frequency, and if the fraction of active junctions igbecause the inactive junction inductance is effectively added

not too small, the fluctuating current excited in each cell will In parallel to the circuit inductande The voltages across the

be much larger than the critical currdg. This is basically coupling capacitors &, and C,) are all the same for the

a statement that the array is excited resonantly by the acti\/lt(ewveSt'Order mode of the structure, reducing the total induc-

junctions, and it simplifies the calculation of the fluctuatingtance and raising the resonant frequency. The secoqd term
i N represents a frequency shift that depends on the reactive part
phase given by Eq(18). Namely, we droplc, compared . the |oad impedance.

with T,~T, This term is independent of the number of active junc-
A tions. The resonant nature of the excitation of the array cur-
- 27 . L I rent is apparent in Eq28). The array current will be largest
=T o =TT (26) at resonance(} =0) and is proportional to the quality factor
wO(I)OCJ LJ IC

of the array and the number of active junctions. There is a

where we have introduced the nominal inactive junction in-complicated dependence on the amplitude and phasg a$
ductancel ;=®,/(27lc)=L/B,, where B, is defined in contained in the quantity in the square brackets. This will
Eq. (5). We have also used the same approximation as in Edimit the size of the resonance through the relation between
(20). the array current and fluctuating junction ph&2@). Further,
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11F N=10 ]
fop 20 ] ~-Bleieisielielels
3 A Y (29I L DB sy |
ol 4v ] [TTTITT
i 8 A gD ]
o, 7e
- 8o FIG. 10. A schematic of a side view of two niobium squares
el 9= E with the ground plane above them. The lines inside the squares
show the currents. The lines in the space between the squares and
s ..-.'.. ] the ground plane illustrate the electric field lines. The crossed
.::OZAA circles represent the magnetic field perpendicular to the plane of the
LW ADA,DE ] drawing. Below is the same side view drawn to scale.
45\9% Yﬁ O L L L L

320 325 330 335 340 345 350 355 360 that the circuit equation$3a—(3d) completely and accu-
Ve /Na [UV] rately describe the 1D arrays in the relevant limit. For nota-
tional simplicity we will setC,=C,=C which will not in-
FIG. 9. Normalized current-voltage plots calculated accordingfj ence our conclusions in any significant way.

to Eg.(31). These plots are analogous to the measured ones shown It is straightforward to check that the Lagrange’s equa-
in Fig. 3 and are in good agreement with them. The parameters usqﬂ)ns for the following Lagrangian:

to obtain these plots werde.=15 A, C;=380 fF,L=2.4 pH,R
=100Q), andR, =0.50.

the location in frequency of the resonance depends on th( Yn:¥n:Qn.Qn)

bias current through E¢30). The bias current in equilibrium C./P.\2N LNt
is determined by Eq(24) with the slow phase advance in- - _J(_O) S e - > Q2
serted: 2 \2m) =1 " n=1 "
- N N
lbias L Ji(lval) ~, - L+L., Dol
o =g (w0t dw)+ m(7a+7’a)- (31) R QN'Hbiasngl Yt 5o ngl cog vn)
Numerical solution of the equilibrium equations can be 1 Nt , , Do

carried out as follows. For a given set of circuit parameters ~5C 2 (Qn=Qn+1)— oc N5 Z ¥nCQn,
L, L;, Qr, andN and for a specified number of active junc- n=t L n=t
tions, N,, Eq. (28) can be solved to find the normalized (32

frequency shift) and junction phasé., as functions of the

quantity |y,|. We then compute the array resonance fre-reproduce Eqs(3a—(3d), excluding dissipative terms. The
quency shiftA  from Eq.(30) assuming the shift due to the symbolx, denotes the whole set of variablps, . .. Xy}
reactive part of the loac , is negligible. From Eq(29) we To analyze the physical origin of the terms in the La-
can find the frequency shift of the locked stadey. Finally,  grangian we will consider all fields and sources in the sys-
from Eq.(31) we compute the bias current and plot it versustem. Figure 10 shows a schematic of two squares viewed
the per junction voltag¥ y./Na= (27) " 1®o(wo+ dw). Re-  from the side. The distance from the ground plane to the
sults for representative parameters are displayed in Fig. @rray (=0.3 um) is much smaller than the lateral dimen-
These can be compared with the experimental results of Figions of each squarex12 um). Because of this, the electric

3. As can be seen, the behavior of the measured and calcfield between the array and ground plane only has an appre-
lated current-voltage characteristics is similar. Both plotsciable component perpendicular to the ground plane. The
show a shift to lower voltages with increasing number ofmagnetic field in this space is also approximately parallel to
junctions. Further, both plots show that the peak current inithe ground plane(The magnetic field also penetrates the
tially increases with the number of active junctions and thersuperconductors, decaying over a penetration deptfihis
saturates. In addition, both plots show that for two activeeffect is included in the estimate of the inductance of each
junctions the current-voltage characteristic has a roundegell) These fields are produced by the char@;ﬁsthat ac-
maximum while for a greater number of junctions it developscumulate on the surfaces of the squares and the currents
a cusp. flowing through them which, due to charge conservation,

~C__AC
VI LAGRANGIAN AND HAMILTONIAN APPROACH: equalQ;— Qg ;. There are also charges that accumulate on

MICROSCOPIC ORIGIN OF THE CIRCUIT MODEL the surfaces (_)f the Josephson junctions, prodgcmg an electric
field perpendicular to the surface of the junction. Since our

In this section we introduce the Lagrangian of the systenmjunctions are small and in the parallel-plate capacitor limit
and derive the corresponding Hamiltonian. We also showhe surface currents are weak and the magnetic field energy
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stored in the junction is small, we neglect this higher-orderThe potential term of the transmission-line Hamiltonian is a
correction to the dominant electric field energy. In the fre-symmetric quadratic form and can be diagonalized. To make
quency range of interegtlose tof,y) each cell is in the this explicit, we introduce a canonical transformation which
lumped limit. This fact and the previously described characchanges the momenta of the junctions to charges and intro-
teristics of the arrays allow us to model the fields in theduces the normal modes of the transmission line as its coor-
arrays as static fields of parallel-plate capacitors and stripdinates:
line inductors.

We will now show that the Lagrangiai32) accounts for 2 @, |
all energies in our system. The first term is the charging 7n=¢TOFn' Mh=5_"0n: Qn=mE:l MumAm,
energy of the junctions, since the charge across each junction

is set by the voltage across the junction whichdg,(27) y.

The second term is the magnetic energy stored in the space d’n:m§=:1 Mnm®m  (n=1,...N). (39
between the ground plane and array. These are the two ki-

netic terms; the rest are all potential terms. The third term iSThe chargeqf1 conjugate tdl,, is the charge that gets trans-
the Josephson coupling energy present in each junction dderred across the junction only through Cooper-pair tunnel-
to the Josephson effect. The next two terms represent thgag. From its definition and Eq33) we see thaqﬂ is the
energy of the electric field present between the array andifference of charge on the junction capacitor and the charge
ground plane. Finally the last term is the interaction termwhose motion generates the total current flowing through the

between the two sets of charge distributions: the charges ganction. The Hamiltonian in these new coordinates is
the junctions and the charges on the square surfaces. This

term reflects the fact that these charge distributions are iW(Fn,qﬂ,qn,CI)n)

physical contact so that the charge on one capacitor affects N

the potential of the other. The fringing fields are small and 1 S g2 2 2
the energy stored in each capacitor is determined only by its — 2C, Gn + 2L ®h-

N

n=1
own charge. " . "
To simplify further expressions we s&f;,s=0, L, =0, 1
andC,_=0. The assumptions th&,=C,, L, =0, andC, +nzl ZCTLQﬁJFC—J m; angl Ml (36)

=0 only affect the spatial dependenshap¢ and frequency
of the normal modes. These terms can be straightforwardlyith the capacitance§ " defined via the frequencies of the
included in the calculation but do not introduce any changes,oymal modes,wn—ll\/@—[ The mth column M, n

relevant for the following discussion. , =1,... N) of the matrixM is themth normal mode of the
The momentum conjugate tg,, nn_— dLldy,, and the  transmission line. Our system thus consists of the Josephson
momentum conjugate tQ,, ¢,=dL/JQ,, are junctions and theN mutually noninteracting modes of the
, transmission line. The junctions and normal modes interact
. . d through the last term in the Hamiltonian.
— I_c |20, 0 g
$n=LQn andnn_CJ(zw) Tn ZWQ“' (33 When the junctions are in the voltage state in the subgap

. region, they act as a small harmonic drive to the transmission
After expressingy, as a function oﬁﬂ andQ,, and express- line. If the frequency of the junction oscillations is not near

ing Qn as a function Ofd)n! one obtains the Hamiltonian (Wlthln resonance W|dﬂ'ﬁny of the normal mOdes, the trans-

corresponding to Eq.32): mission line does not get excited. If the junctions oscillate
with the frequency of one of the normal modes, that mode
H(¥n N0 Qn s dn) =Hy(Yn Mp) +Hr(Qn, br) gets resonantly excited and a constant-voltage feature is ob-
served in the current-voltage characteristic.
+H, (N, Qn), (343 If the modes are well separated, it is sufficient to keep

only a single mode in the Hamiltonian, the one near the
N Dyl frequency of interest. Our arrays are finite, discrete systems,
Hy(yn.p) = ( ) Z (np)?— o 21 cos ¥n), with a small number of degrees of freedom and a high qual-
- " (34b) ity factor, so the modes are indeed well separated. The
Hamiltonian for the case when only thheth mode is excited
N-1 is

1
HrL(Qn én) = 2 it 56 2, (Qn=Qnin)?

Hm<rn.qi.qm,cbm>
N

1 c - 27 1
— - B2
=~ ZC an (34C) - ZCJ E q ngl CO{ (I)OFFI + 2|_ CI)m
N 1 1 N
27 .1 2, J
H(n).Qu=2, cITOngC—JQn. (34d) + oot qumn; Ml - (37)
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VII. COMPARISON TO OTHER MODELS

The interaction of a Josephson junction or a Josephso
junction array with a single mode of the electromagnetic
field has been studied extensivéfy?*In the past three years

researchers have introduced different 1D modeféto de-
scribe the operation of our 2D arra$8.The emphasis in

these works was on explaining the high power outputs of th

PHYSICAL REVIEW B8, 024521 (2003

with Q=1/\/LCmE and using the same notation as in Eq.

{39). The Hamiltonian(40) looks very similar to the single-

mode Hamiltonian of the transmission-line model. However,

there are some key differences. The next to last term in Eq.
(40), describing the coupling of the mode to the junctions,

does not have the same coupling constant ag&#). In the

éAImaas—Stroud model, the coupling constanis related to

2D arrays. The model introduced here completely describeg‘e integral of the vector potential across the junction. This

the operation of our experimental 1D arrays, and we wil
compare it to the other models using the derived Lagrangia

and Hamiltonian.

The system studied by Filatrelkt al?!

grangian and corresponding Hamiltoniéor |;,=0) that
reproduce the equations used in Ref. 21 are

EFiI(')’n 1.7n 1Q1Q)

R
Hei (T, 0530, P)
- i T i cof T
+%q2+ Cijqn%l G- 39

A comparison of EQ.(39) with Eq. (37) shows that the
former is obtained wheM ,,=1, for all n in Eq. (37),

which is the case for th&=0 mode. Since our system is

operating atk~0, Eq.(39) is an adequate model for our 1D

arrays when they are biased on a constant-voltage feature.
The following Hamiltonian was used by Almaas and

Stroud*
Haim( bm Ny ,Pr)
N ®

_(2e)? L, hO | Dole ,
=, &, (Mt 5 (PP 5 = 2 cod gy

N

2 N
) 102D, 3,

T
+7(gr) +9hQ

m=1
(40)
where one can formally identif§
J TL\ 172
, Om ., (1 [Cy
M= 5e pr—(g\/T @, (413
112

, 2w L1 L
¢m=¢TOFny “=l7z Ve @ (41b)

m

is a special case
of our transmission-line model. One can check that the La*

iimplies that the coupling is mediated through the field that

the mode produceissidethe junction. Also, the last term of
Eq. (40) is not present in Eq37). This term couples, with
equal amplitude, all junction charges. It is not clear to what
kind of physical situation this corresponds.

Bonifacio et al. consideret!?° the interaction of a
Josephson-junction array with a single mode of the electro-
magnetic field. The interaction Hamiltonian they uSadas

of the form

(42

wherea™ anda are the creation and annihilation operators
for the resonant mode of the electromagnetic field, vith

andS, representing Cooper-pair tunneling from left to right
and vice versa across theth junction. (Unnerstall and
Riecker$® give an excellent derivation of the Josephson ef-
fect and provide much insight into the operator formaljsm.
To compare to our model we rewrite the interaction term of
Eq. (37) in terms of quantum mechanical operators,

1/2 N N
(h(2e)? [ea\ T, o o
| 2C§ T a nZJ_ MnmSn—anZ,l MnmSn ,
(43)
defining
N L .
qmz.(E T’“ (a'-a), (44)
A L 1/2
- _[h /_ Ap L n
CIDm—< 2\t (a'+a), (45)
~J
h_ g 1
—=S, 0=——, (46)
2 " JyLc!t

wherew, is the resonant frequency of theh normal mode.
If we setM,,=1 for all n, the difference between Eqgl2)
and(43) becomes apparent. While E¢-2) has a coupling of

the mode to thesupercurrentrepresented b§! andS,, our
Hamiltonian(43) couples the junctionhargesﬁ to the reso-
nant mode.

Interaction terms analogous to E@-2), used by various
authorst"19292’are derived from the expression

ijs(r)~A(r)dV, (47)
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which is the electromagnetic interaction of the Josephson We have also developed an analytic model for locked
supercurrenjg(r) with a normal mode of the field(r) in-  states with a specified number of active junctions. This
side the junction barrier. This is a distinctly different physical model successfully reproduces a number of characteristics of
situation then what is present in our arrays, in which thethe current versus voltage curves observed in the experiment.
resonant mode is external to the junctions and the energy of particular, the dependence of the shape of the current ver-
the mode is stored in the field between the array and groungys voltage curve on the number of active junctions as well
plane. Because of this, we find Hamiltonians derived fromas the peak value of bias current is calculated by the model.
Eq. (47) inapplicable to our array¥. These Hamiltonians The other modefé?! described in the previous section
would be appropriate, for example, for an array of junctionsgpq\, 4 threshold of a different nature than the one observed
that all share a single insulating layer as their tunneling barg, the experiments. In these models the height in current of
rier, which is also a dielectric resonator. the resonant features depends on the number of active
junction€® and decreases with decreasing number of active
junctions. If the bias current is too high, for a low number of

In measurements of 2D arrays we have obsér¥digh-  junctions that have a voltage across them, the resonant state
efficiency emission of millimeter-wave radiation. A threshold does not exist and the oscillations are not resonant. If the
number of active junctions is necessary for coherent radiabias current is fixed and the number of active junctions in-
tion to be detected; otherwise, the power is low and incoherereased, when enough junctions are switched to the voltage
ent. state, so that the resonant feature exists, a sudden increase in

The 1D transmission-line model that we have just de-output power is observed. This is because the junctions
scribed does not explain this behavior. The only nonlineaswitch from the subgap voltage state to the now available
term in Egs.(3a—(3d) is the supercurrent in the RCSJ equa-resonant state that radiates more power. However, if one is
tions, Eq.(3a). As was mentioned before, when the junctionscareful to always bias the junctions on a resonant feature, the
are in the voltage state this term acts as a small harmoniarray is always coherent amad threshold can be observed as
drive to the rest of the equatioiidb)—(3d), which are linear. the number of active junctions is varidd.

As the oscillation frequency of the active junctions ap- Even though the synchronization of the 2D arrays remains
proaches the resonant frequency of the nearest mode the am open question, the transmission-line model described in
tive junctions emit waves that get reflected off the arraythis work provides a satisfying description of the 1D arrays.
boundaries and resonantly excite all other junctions. Th&Ve showed how the linear limit of this model reproduces the
phases of the junctions are set by the shape of the modsbserved dependence of the resonant frequency as the num-
being excited, and as long as the array is biased on a SIRSer of active junctions, as well as the array length, is varied.
these phases will remain the same because of the resonartie Lagrangian and Hamiltonian for the transmission-line
nature of the excitation. We have extensively observed thisnodel can be used to compare this model to other models in
kind of behavior in numerical simulations of Eq8a)—(3d). the literature. The transmission-line model completely de-
In the model,when the arrays are biased on a constant- scribes the physical situation of interest for our arrays, and
voltage feature they are always coherent. There is no threshae believe that its 2D generalization should provide valuable
old in our 1D model. insight into the operation of the radiating 2D arrays.
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