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Superconducting fluctuations and the Nernst effect: A diagrammatic approach

Iddo Ussishkin
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

~Received 18 November 2002; revised manuscript received 28 February 2003; published 30 July 2003!

We calculate the contribution of superconducting fluctuations above the critical temperatureTc to the
transverse thermoelectric responseaxy , the quantity central to the analysis of the Nernst effect. The calculation
is carried out within the microscopic picture of BCS, and to linear order in magnetic field. We find that as
T→Tc , the dominant contribution toaxy arises from the Aslamazov-Larkin diagrams, and is equal to the result
previously obtained from a stochastic time-dependent Ginzburg-Landau equation@I. Ussishkin, S. L. Sondhi,
and D. A. Huse, Phys. Rev. Lett.89, 287001~2002!#. We present an argument which establishes this corre-
spondence for the heat current. Other microscopic contributions, which generalize the Maki-Thompson and
density of states terms for the conductivity, are less divergent asT→Tc .
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tin

an
ua

re
uc
m
t

r
m

a

is
is
u
wa

ea
th
s

n-
n

cir
tu
th
an

l

d

er-
the

thor
s to
g a
tion

tric
e

in
we

he

or-
I. INTRODUCTION AND DISCUSSION OF RESULTS

In a superconductor, fluctuations of the superconduc
order parameter above the transition temperatureTc affect
various properties such as the magnetic susceptibility
transport coefficients. The study of superconducting fluct
tions has a long history~for reviews, see, e.g., Refs. 1,2!.
More recently, interest in fluctuation phenomena was
newed with the discovery of high-temperature supercond
ors, where their short coherence lengths, high critical te
peratures, and layered structures imply a large regime for
observation of fluctuations.3

One experiment that has aroused particular interest
cently is that of the Nernst effect. In this experiment, a te

perature gradient (2“T)i x̂ is applied in the presence of

magnetic fieldBi ẑ, and the electric field response~in the

absence of transport electric current! is measured in theŷ
direction. BelowTc in the vortex state the Nernst effect
large due to vortex motion, while in the normal state it
typically very small. In experiments in low-temperature s
perconductors, no sign of superconducting fluctuations
reported as the temperature was raised aboveTc .4 In con-
trast, several different experiments did observe the app
ance of a fluctuation tail above the critical temperature in
Nernst signal of the high-temperature superconductor5–8

~and also in the related Ettinghausen effect9!. More recently,
the Nernst effect aboveTc has attracted considerable atte
tion with measurements showing a sizeable Nernst sig
well aboveTc , in particular in the underdoped regime.10,11

While a Nernst experiment is carried out under open
cuit conditions, the transport coefficients, which arise na
rally in a theoretical description, are those which relate
transport electric and heat currents to the electric field
temperature gradient,

S j tr
e

j tr
QD 5S s a

ã k D S E

2“TD . ~1!
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Here,s is the conductivity tensor,k is a tensor of therma
conductivity, anda, ã are the thermoelectric tensors~which
obey the Onsager relationsã5Ta). Applying the open cir-
cuit condition to Eq.~1!, the Nernst coefficient is expresse
in terms of the conductivity and thermoelectric tensors,

nN5
Ey

~2¹T!xB
5

1

B

axysxx2axxsxy

sxx
2 1sxy

2
. ~2!

The transverse thermoelectric responseaxy , the quantity on
which this paper is focused, is of primary interest for und
standing the effect of superconducting fluctuations on
Nernst signal~as discussed below!.

In a recent paper, Sondhi, Huse, and the present au
discussed the contribution of superconducting fluctuation
the thermoelectric and thermal conductivity tensors usin
stochastic time-dependent Ginzburg-Landau equa
~TDGL! in the limit of Gaussian fluctuations.12 In this paper,
we revisit the calculation of the transverse thermoelec
responseaxy using a diagrammatic calculation within th
BCS theory. The details of this calculation are presented
subsequent sections. In the remainder of this section,
present and discuss the results of this paper.

We calculateaxy above the critical temperatureTc , to
linear order in the magnetic fieldBi ẑ, and to leading order in
T2Tc . We find that, in two and three dimensions~2D and
3D!, the contribution of superconducting fluctuations to t
transverse thermoelectric response is

axy
AL55

1

6p

e

\

j~T!2

,B
2

}
1

T2Tc
for 2D,

1

12p

e

\

j~T!

,B
2

}
1

AT2Tc

for 3D.

~3!

Here, ,B5(\c/eB)1/2 is the magnetic length andj(T)}(T
2Tc)

21/2 is the coherence length of the superconducting
der parameter.
©2003 The American Physical Society17-1
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It is well known~see, e.g., Refs. 1,2! that superconducting
fluctuations enhance the conductivity aboveTc due to both
the Aslamazov-Larkin13 and the Maki-Thompson14,15 contri-
butions~there are also density of states terms, which are
important for the conductivity!. A similar identification of the
microscopic contributions applies to other transport coe
cients. In the case of the transverse thermoelectric respo
as the superscript in Eq.~3! suggests, we find that the leadin
order contribution toaxy is due to the Aslamazov-Larkin
diagrams alone. The contribution of the Maki-Thompson a
density of states diagrams is less divergent asT→Tc .

Physically, the Aslamazov-Larkin diagrams correspond
the contribution of thermal fluctuations of the order para
eter. Their contribution toaxy may be viewed either as th
transport heat current carried by such fluctuations when t
respond to an electric field, or as the transport electric cur
carried by the fluctuations as they respond to a tempera
gradient~all in the presence of the magnetic field!. The same
physics is identically described by the Gaussian approxi
tion to a stochastic TDGL.~We will have more to remark on
the correspondence between the two approaches in su
quent sections.! Indeed, the result obtained in this paper, E
~3!, is identical to the result obtained in the Gaussian
proximation to the stochastic TDGL in Ref. 12.16

The calculations in this paper are carried out assum
particle-hole symmetry, i.e., neglecting any contributio
which arise due to asymmetry around the Fermi surface
properties such as the density of states. Particle-hole sym
try implies thatsxy5axx5kxy50 ~and therefore in the cal
culation of these transport coefficients, it is necessary
break particle-hole symmetry!. The conventional result fo
axy in the normal metallic state also vanishes in this lim
However, it is important to note that this result is not r
quired by symmetry, and will not necessarily hold when a
ditional processes are taken into account~without breaking
the particle-hole symmetry!. Indeed, as we find in this pape
and as is evident in calculations using a stocha
TDGL,12,17 the contribution of superconducting fluctuatio
to axy does not vanish in the particle-hole symmetric lim
As the assumption of particle-hole symmetry is a very go
approximation for a BCS superconductor, it is therefore w
justified in the present case.

A second assumption made in this paper is that the o
parameter hass-wave symmetry. In the context of the high
temperature superconductors, it is of interest to consider
the case ofd-wave symmetry in this approach. We note he
that this will not affect the conclusions of this paper. T
results of the stochastic TDGL would still correspond to t
Aslamazov-Larkin contribution; and the arguments show
that the Maki-Thompson and density of states terms are
divergent remain valid in this case as well.18 ~We do not
consider here the related issue of whether nodal quasip
cles, which appear when the temperature is lowered and
condensate is formed, contribute toaxy .)

We now return to the discussion of the Nernst coeffici
nN . As noted in Eq.~2!, nN is related to both the conductiv
ity and the thermoelectric tensors. However, the main ef
of superconducting fluctuations on the Nernst signal ab
Tc is due toaxy . Indeed, the contribution of fluctuations t
02451
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the second term in the numerator of Eq.~2! is small due to
considerations of particle-hole symmetry. Moreover, not
close toTc , the conductivity is dominated by the norma
state contribution. It follows that the main contribution
superconducting fluctuations to the Nernst signal~to linear
order in B) is axy

AL/sxx , with sxx being the normal-state
contribution.

Since the result foraxy
AL , Eq. ~3!, depends only on the

coherence lengthj(T), and in a simple manner, a compar
son with experiment should apparently be straightforward
Ref. 12, such a comparison for a high-temperature super
ductor was presented. On the other hand, in low-tempera
superconductors, for which the BCS theory is certainly a
plicable, the appearance of the fluctuation tail in the Ner
signal was not previously reported to the best of o
knowledge.4 The reason for this is that low-temperature s
perconductors are typically also good conductors in the n
mal state. Consequently,axy

AL/sxx , the contribution of super-
conducting fluctuations to the Nernst signal, is strong
suppressed in bulk low-temperature superconductors.

The situation can be improved considerably by looking
a thin film, which is effectively a two-dimensional superco
ductor if the coherence length is larger than the film thic
ness. First, the fluctuation tail ofaxy is enhanced by going to
lower dimensionality, as is evident in Eq.~3!. @The result for
two dimensions in Eq.~3! is to be divided by the film thick-
ness to obtain the result for a thin film.# Second, such films
may have a significantly lower normal state conductivi
Taken together, these effects may considerably enhance
contribution of fluctuations to the Nernst signal. A simil
situation may occur in a layered structure with weak co
pling between the layers and with a low normal-state c
ductivity, as is the case for the high-temperatu
superconductors.12

In closing this section, we note that a diagrammatic c
culation of axy was previously attempted by Varlamov an
Livanov,19 but was unfortunately marred by an incorre
treatment of the heat current vertex. We also note an imp
tant aspect of the calculation ofaxy , namely, the role ofbulk
magnetization currents, and the need to subtract the
contribution20 ~discussed in the present context in Sec. II A!.
As discussed in Ref. 12, this issue was largely overlooke
the literature.

In the remainder of this paper, we present the details
our calculation. In Sec. II, we present the Kubo formula f
axy , and discuss the contribution of bulk magnetization c
rents. For completeness, we also present known results
the propagator of superconducting fluctuations. The d
grams that appear in the calculation ofaxy , and the physics
they describe, are discussed in Sec. III. In Sec. IV, we disc
the calculation of the heat current vertex. A general argum
regarding its calculation is given, establishing the corresp
dence to the heat current in the TDGL. In Sec. V, we cal
late the Aslamazov-Larkin diagrams, and obtain Eq.~3!. The
Maki-Thompson and density of states diagrams are con
ered in Sec. VI. Finally, we summarize our discussion in S
VII.
7-2
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SUPERCONDUCTING FLUCTUATIONS AND THE NERNST . . . PHYSICAL REVIEW B 68, 024517 ~2003!
II. FORMALISM

A. Kubo formula for axy

In this section, we discuss the linear-response theory
the transverse thermoelectric response. We present the K
formula for axy , and discuss the role of bulk magnetizatio
currents and the subtraction of their contribution.

The thermoelectric tensor is considered in this paper
calculating the heat current response to an electric field.
ternatively, one could consider within the linear respon
theory the electric current response to Luttinger’s ‘‘gravi
tional field.’’21 The result foraxy is, of course, independen
of which formulation is used, and results are presented
terms of one of them only for convenience.

The heat current response to an electric field is relate
the heat current-electric current correlator by using the s
dard Kubo formula. Here, we are interested in the calcula
of this response to linear order in the magnetic field. T
amounts to introducing an additional current vertex coup
to the magnetic field.22 Here, we present this result as th
Kubo formula for the linear response to both an electric a
a magnetic field. The electric fieldEi x̂ and the magnetic field
Bi ẑ are introduced at finite frequency and wavevector,
spectively, using the vector potential

A5
cE

iV
e2 iVt1

Bŷ

iQ
eiQ x̂•r. ~4!

The heat current in theŷ direction, in response to the electr
and magnetic fields~in the dc limit!, is given by

j y
Q

EB
52 lim

V,Q→0

1

VQc
Re@L~Q,Vm!#u iVm→V1 i0 . ~5!

Here, the three current correlatorL is defined by

L~Q,Vm!5E
0

b

dtdt8eiVmtE drdr 8eiQ x̂•(r82r )

3^Tt j y
Q~r ,t! j y

e~r 8,t8! j x
e~0!&, ~6!

whereVm52pmT is a bosonic Matsubara frequency~with
units in which\5kB51), and the upper limit of integration
over imaginary timest andt8 is the inverse temperatureb
51/T. In Eq. ~5!, an analytic continuation ofVm to real
frequencies is performed before the zero-frequency limi
taken.

An important aspect of the calculation of the transve
thermoelectric response, discussed in detail by Cooper,
perin, and Ruzin,20 is the need to account forbulk magneti-
zation currents. This issue arises because the microsco
electric and heat currents, as calculated by the Kubo form
are composed of transport and magnetization currents,

je5 j tr
e1 jmag

e , jQ5 j tr
Q1 jmag

Q . ~7!

The magnetization currents are currents that circulate in
sample and do not contribute to the net currents which
measured in a transport experiment. On the other hand,
do contribute to the total microscopic currents, and it is th
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necessary to subtract them from the total currents to ob
the transport current response. In the presence of an ap
electric field, it was shown in Ref. 20 that the magnetizat
current is given by

jmag
Q 5cM3E, ~8!

whereM is the equilibrium magnetization~in the absence of
the electric field!. It then follows that the transverse therm
electric response is given by

ãyx52ãxy5
j y
Q

E
2cMz , ~9!

where j y
Q/E is found using the Kubo formula, Eqs.~5! and

~6!. Using the Onsager relationsaxy5ãxy/T.
It is evident from Eq.~9! thataxy is obtained by subtract

ing the result of two independent calculations: the respo
of the total current to the applied electric and magnetic fiel
and the magnetization currents as derived from the equ
rium magnetization. We note that these terms cannot be c
bined ~to the best of our knowledge! into a single Kubo
formula, since one cannot write a local operator for the m
netization or transport currents separately, only for the to
currents.

Therefore, we need the equilibrium magnetizationM for
the calculation ofaxy . Diagrammatically, it may be calcu
lated to linear order inB by considering the current respons
to a magnetic field at a finite wavevector,

M52 ẑ lim
Q→0

B

Q2c2
Re@P~Q!#, ~10!

where

P~Q!5E
0

b

dtE dre2 iQ x̂•r^Tt j y
e~r ,t! j y

e~0!&. ~11!

The contribution of superconducting fluctuations to the m
netization is well known.1,2,23 In this paper, we will thus use
the known results for the magnetization, and concentrate
the calculation of Eqs.~5! and ~6! for the total current re-
sponse.

As mentioned above, the calculation ofaxy may proceed
via the alternative route of calculating the electric curre
response to a ‘‘gravitational field’’c. In this case, a similar
situation arises, where in order to obtain the transport cur
the electric magnetization current has to be subtracted.
latter is given in this case by20

jmag
e 52cM3“c. ~12!

In Ref. 12, the total heat current response to an electric fi
and the total current response to a temperature gradient
calculated using the stochastic TDGL. The apparent disc
ancy between the results for the total currents and the
sager relations was invoked to demonstrate the need of
tracting out the magnetization currents. In contrast, in
linear-response formalism the calculation for the electric c
rent yields its response to a gravitational field gradient, a
this apparent discrepancy does not arise. The magnetiza
7-3
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currents~and the total currents! trivially obey the same On-
sager relations obeyed by the transport currents. Never
less, the magnetization currents must be subtracted to ob
the correct result for the transport coefficients.

B. Fluctuation propagator

The contribution of superconducting fluctuations to t
current correlator in Eq.~6! is calculated in this paper for
BCS superconductor~with s-wave symmetry!, with Hamil-
tonian

H5(
k,s

ekck,s
† ck,s1 (

k,q,s
Uqck1q,s

† ck,s

1l (
k,k8,q

ck8,↑
† c2k81q,↓

† c2k1q,↓ck,↑ . ~13!

Here, ek5k2/2m is the kinetic energy of the electrons,s
5↑,↓ is their spin,Uq is the disorder potential~with the
usual Gaussian distribution!, andl,0 is the attractive BCS
interaction~where only states with energy differing from th
Fermi energy by at mostvD participate in the interaction
term!. The relevant diagrams for superconducting fluctu
tions are calculated using the finite-temperature diagr
matic technique. This approach is analogous to the one u
in the case of the conductivity, leading to th
Aslamazov-Larkin13 and Maki-Thompson14,15 contributions.
~For a detailed account of the diagrammatic calculation
the conductivity, see, e.g., Ref. 2.! A basic ingredient of the
diagrammatic calculation is the propagator of supercond
ing fluctuationsL. For the sake of completeness, we pres
here the known results forL.

Accounting for the electron-electron interaction in t
ladder approximation, the fluctuation propagatorL is related
to the noninteracting two-particle propagatorP through

L~q,vm!5@l212P~q,vm!#21 ~14!

~see Fig. 1 for the diagram ofP). To obtain the retarded
fluctuation propagator, the Matsubara frequency is ana
cally continued to the real axis (ivm→v1 i0) and P is
calculated to leading order inq and v. Assuming particle-
hole symmetry, the retarded fluctuation propagator is the

LR~q,v!52
1

n

1

e1hq22 ivtBCS

~15!

FIG. 1. Diagram for the noninteracting two-particle propaga
P(q,vm). Lines with arrows are electronic Green functions, a
disorder is shown in the ladder approximation by dashed lines.
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~and the advanced fluctuation propagator isLA(q,v)
5@LR(q,v)#* ). In Eq. ~15!, n is the density of states pe
spin, e5 ln(T/Tc)'(T2Tc)/Tc is the reduced temperature
tBCS5p/8Tc , and

h52DtelFcS 1

2
1

1

4pTctel
D2cS 1

2D2
1

4pTctel
c8S 1

2D G .
~16!

Here, tel is the elastic scattering time,D5vF
2tel /d is the

diffusion constant~for d dimensions!, and c(x) is the di-
gamma function. The parameters in Eq.~15! are directly re-
lated to the coefficients appearing in a TDGL for the ord
parameter. In particular,j(T)5Ah/e is the superconducting
coherence length andtBCS is the relaxation time for the orde
parameter fluctuations.

III. DIAGRAMS AND INTERPRETATION

In this section, we present the diagrams which appea
the calculation of the correlator~6!, and discuss the physica
processes which they represent. For this purpose, the m
scopic picture is perhaps best recast in terms of a quan
functional integral approach.25,24 We begin this section by
briefly discussing this approach.

The expectation value of a current operatorj ~which can
be either the electric current or the heat current! in response
to a driving fieldf may be expressed in terms of an imag
nary time functional integral

^ j &5

E DcDc̄ je2S[c,c̄,f]

E DcDc̄e2S[c,c̄,f]

. ~17!

Here, c and c̄ are the fermion fields, and the actionS is
given by

S5E
0

b

dtE dxF(
s

c̄s~x!]tcs~x!1H~x!G , ~18!

whereb is the inverse temperature,x5(x,t), andH is the
Hamiltonian density. Introducing a pairing fieldD via the
usual Hubbard-Stratonovich transformation, the expecta
value of the current may be rewritten as

^ j &5

E DDDD̄^ j &DD̄fe2Seff[D,D̄,f]

E DDDD̄e2Seff[D,D̄,f]

. ~19!

Here,Seff is the effective action for the pairing field which i
obtained by integrating out the fieldsc ~Ref. 26! and

^ j &DD̄f5

E DcDc̄ je2S0[c,c̄,f] 1*dtdx(Dc̄↑c̄↓1D̄c↓c↑)

E DcDc̄e2S0[c,c̄,f] 1*dtdx(Dc̄↑c̄↓1D̄c↓c↑)

,

~20!

r

7-4



in the

SUPERCONDUCTING FLUCTUATIONS AND THE NERNST . . . PHYSICAL REVIEW B 68, 024517 ~2003!
FIG. 2. Diagrams arising in the calculation of the transverse thermoelectric response@see Eqs.~5!–~6!#. A wavy line represents the
fluctuation propagator, and the lines with arrows are the electronic Green functions. The vertices are the heat current vertexj y

Q ~open circle!,
the electric current vertex coupled to the electric fieldj x

e ~full circle!, and the electric current vertex coupled to the magnetic fieldj y
e ~no

circle!. ‘‘Mirror image’’ diagrams, which may be obtained by reversing the arrow direction on each of the electronic Green functions
diagrams above@except diagrams~b!, ~d!, and~f!, for which the mirror image is not a new diagram#, are not presented@See Fig. 4 below for
the mirror image of diagram~a!#. Also not presented are the different possibilities of adding disorder to each of these diagrams.
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whereS0 is the part of the actionS which is quadratic inc.
The calculation of the contribution of superconducting flu
tuations to the current proceeds by applying a Gaussian
proximation to Eq.~19!. More specifically, this involves ex
panding bothSeff@D,D̄,f# and ^ j &DD̄f to second order inD
and D̄.

Consider first the calculation of the conductivity, in whic
casef is the electric field. In Eq.~19!, the field appears in
two places, namely, in̂ j &DD̄f and in the effective action
Seff@D,D̄,f#. The Aslamazov-Larkin approximation involve
keeping the field dependence in the effective action only. T
resulting expression is equivalent to a calculation usin
stochastic TDGL also done at Gaussian order. The quan
^ j &DD̄ is the current associated with the order parameter c
figuration. The response of the order parameter to the fie
described by the effective action, which is identical to t
TDGL description. In particular, note that, in the TDGL, th
electric field is coupled to linear order to the current asso
ated with the order parameter, as is described by
Aslamazov-Larkin diagram. Not included in the Aslamazo
Larkin approximation are the terms obtained by keeping
field in ^ j &DD̄f . These describe corrections to the norm
state response modified by the presence of the order pa
eter, and are the Maki-Thompson and density of states
rections.

The situation for the transverse thermal response is so
what different than it is for the conductivity as we are co
sidering the linear response to two fields~since we are con-
sidering the heat current response to both electric
magnetic fields!. The resulting diagrams are presented in F
2 ~in most cases, the diagrams have ‘‘mirror images’’ whi
are not presented in the figure, but are, of course, also ta
02451
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into account!. Before proceeding a word on nomenclatu
while the situation here is a bit different than in the case
the conductivity, we will refer to the diagrams correspondi
to the TDGL contribution as the Aslamazov-Larkin di
grams; all other diagrams will be collectively referred to
Maki-Thompson and density of states diagrams, althou
they do not correspond to corrections to the normal-s
transverse thermoelectric response only, as discussed b

The diagram in Fig. 2~a! and its ‘‘mirror image’’ are the
Aslamazov-Larkin diagrams, which correspond to the con
bution of the stochastic TDGL. To obtain these diagrams,
electric and magnetic fields are retained in the effective
tion in Eq.~19! only, and the average over the current ope
tor ~which in this case, is the average over the heat curr
operator,̂ jQ&DD̄) gives the heat current associated with t
order parameter configuration. Moreover, the motion of
order parameter described by these diagrams is that of
TDGL, with the electric and magnetic fields coupled to li
ear order to the electric currents associated with the o
parameter configuration. This correspondence will be re
ited below. In Sec. IV, we discuss the heat current associa
with the motion of the order parameter^ jQ&DD̄ and its con-
nection to the heat current in the TDGL. In Sec. V, we c
culate the Aslamazov-Larkin diagrams foraxy and find that
they give the same contribution as that found using a s
chastic TDGL in Ref. 12.

The rest of the diagrams describe a variety of proces
which involve corrections to normal-state properties, a
may be understood along similar lines. Diagrams~b! and~c!
of Fig. 2 describe a correction to the normal-state therm
electric response due to the order parameter fluctuati
with Maki-Thompson@diagram~b!# and density of state@dia-
7-5
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IDDO USSISHKIN PHYSICAL REVIEW B68, 024517 ~2003!
gram ~c!# contributions, but with the order parameter r
sponding to linear order to the magnetic field. Likewise, d
grams ~d! and ~e! describe the normal-state response to
magnetic field in the presence of superconducting fluct
tions affected by the electric field. Diagrams~f! and ~g! de-
scribe the heat current associated with an order param
configuration ~as in the Aslamazov-Larkin diagrams!, but
with the dynamics of the order parameter modified by a te
not captured by the TDGL.~It is interesting to note that in
the microscopic picture, there are corrections to the TDGL
the order parameter motion in this case.! Finally, diagrams
~h!–~m! describe corrections to the normal-state transve
thermoelectric responseaxy .

IV. RELATION BETWEEN CURRENT VERTICES

In this section, we consider the calculation of the triang
lar block appearing in the Aslamazov-Larkin diagram@see
Fig. 3~a!#. In this diagram, the microscopic current vertexj
can be either an electric current vertexje or a heat current
vertex jQ. This diagram corresponds to the current in t
presence of an order parameter configuration, and is

FIG. 3. Diagrams used in the text for evaluation of the curr
verticesJe and JQ appearing in the Aslamazov-Larkin diagram
Lines with arrows are electronic Green functions, and dashed l
denote disorder, shown here in the ladder approximation. The
croscopic current vertexj represents either the electric current ve
tex je52evk or the heat current vertexjQ5 i emvk .
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directly related to the current which appears in the TDG
Accordingly, while the microscopic current vertex is denot
with j , we denote the current vertex presented by the d
gram in Fig. 3~a! with J.

The result for the electric current vertexJe is well known
~and is needed, e.g., for the conductivity13!. Our main con-
cern here is with the heat current vertexJQ, for which we
establish the following result: AtQ5Vm50 @for conven-
tions regarding incoming and outgoing energies and m
menta, see Fig. 3~a!#, the electric and heat current vertice
are related by

JQ52
ivm

2e
Je. ~21!

Heuristically, this form is expected for a preformed pair
charge22e; but this is the BCS limit, for which an explici
calculation is needed. Together with the known result forJe

@see Eq. ~24! below#, this allows the calculation of the
Aslamazov-Larkin diagrams in Sec. V, as well as obtain
the expression for the heat current in the TDGL.12

For completeness, we consider first the calculation of
electric current vertexJe. The vertexJe is needed in the
calculation of the Aslamazov-Larkin diagram to leading o
der in external frequencies and momenta, and it is thus
ficient to set the external frequencies to zero,Vm5vm50,
and consider linear order in the wavevectorsq andQ. There
is no linear term inQ; indeed, it is straightforward to show
that Je(q5Vm5vm50) is symmetric inQ.27 In the calcu-
lation of the electric current vertex, we thus setQ5Vm
5vm50, and calculate the vertex to linear order inq,
Je(q).

SettingQ5Vm5vm50 in Je, the diagram for the elec
tric current vertex is as in Fig. 3~b!, but with vm50 ~and j
5 je52evk , wherevk5k/m). The same diagram may b
obtained by inserting an electric current vertex in the d
gram for P(q,vm50), given in Fig. 1~and correctly ac-
counting for the spin indices!. Using the relation

“kG~k,em!5vkG~k,em!2, ~22!

whereG(k,em) is the electron Green function, the followin
result is obtained:

Je522e“qP~q,vm50!. ~23!

Note the appearance of the Cooper pair charge,22e ~de-
noted below ase* ). The expansion of Eq.~23! to linear
order inq gives the result for the electric current vertex,13

Je~q!524ehnq ~24!

(h andn were defined in Sec. II B!. The familiar expression
for the electric current in the TDGL~in the absence of fields!
follows from this result. More precisely, Eq.~24! is the elec-
tric current associated with a pairing field configurationD
5eiq•r, using

Je5e* hn@D* ~2 i“D!1c.c.#. ~25!
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@The conventional TDGL form, with 1/2m* replacinghn
~as in, e.g., Ref. 1!, is obtained after rescaling the pairin
field.#

We now reconsider the calculation of the electric curr
vertex, this time with an arbitraryvm , as a first step toward
establishing Eq.~21!. SettingQ5Vm50, the electric current
vertexJe is presented in Fig. 3~b! ~with j5 je52evk). Using
Eq. ~22!, the expansion ofJe to linear order inq is equivalent
to introducing a second velocity vertex. The vertexJe is then
written asq times the contribution of square diagrams as
Fig. 3~c! ~with j5 je). The following observation follows
from the structure of these diagrams: To linear order inq, but
at an arbitraryvm , the electric current vertex has the stru
ture

Je52eq(
em

f ~em ,2em1vm!, ~26!

where the functionf results from integration over all interna
momenta in the diagrams. The functionf depends only on the
energy variables appearing in the electronic Green functio
and running along the two sides of the diagrams~we use here
the fact that disorder scattering is elastic!. In addition, be-
cause of the symmetric structure of the diagrams in Fig. 3~c!,
we have

f ~em ,2em1vm!5 f ~2em1vm ,em!. ~27!

The structure of the result forJe as presented in Eqs.~26!
and~27! is sufficient for establishing Eq.~21! to linear order
in q; it is unnecessary to evaluatef explicitly.

As with the electric current vertex, for the calculation
the Aslamazov-Larkin diagram, we only need the heat c
rent vertexJQ to leading order in wavevectors and freque
cies. As it turns out@cf. Eq. ~21!#, this is one order highe
than the leading order inJe. By symmetry of the structure o
the diagrams for the current vertices, they are invariant un
Q,Vm→2Q,2Vm . For the expansion ofJQ, this shows
that there is no term linear inQ or Vm alone, but does no
exclude a term proportional toQVm . In the calculation be-
low, we use the fact that in the Aslamazov-Larkin diagra
@Fig. 2~a! and its mirror image#, we need the heat curren
vertex in theŷ direction, perpendicular toQi x̂, and thus do
not consider such a term.

We thus proceed by settingQ5Vm50. The heat curren
vertexJQ is then given in Fig. 3~b! ~with j5 jQ5 i emvk ; see
comments at the end of this section!. As in the case of the
electric current vertexJe, the expansion ofJQ to linear order
in q amounts to the introduction of a second velocity vert
resulting in square diagrams as in Fig. 3~c! ~with j5 jQ). It
follows from the structure of these diagrams that to line
order inq ~and at an arbitraryvm), the heat current vertex
has the structure

JQ5q(
em

i emf ~em ,2em1vm!, ~28!
02451
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where the functionf results from integration over all interna
momenta in the diagrams. The important point here is t
the functionf that appears in Eq.~26! is identical to the one
that appears in Eq.~28!. Equation~28! may be rewritten as

JQ5q(
em

S i em2
ivm

2 D f ~em ,2em1vm!

1q(
em

ivm

2
f ~em ,2em1vm!. ~29!

Here, the first term on the right-hand side can be shown
vanish using Eq.~27!. On comparing the second term wit
Eq. ~26!, we find the relation between the current vertice
Eq. ~21!.

We note that to this order of the calculationJQ does not
have a branch cut after an analytic continuation ofivm to the
v plane. After the analytic continuation, we thus have
linear order inq andv

JQ~q,v!52
v

2e
Je~q!52hnvq. ~30!

This result is used below in the calculation of th
Aslamazov-Larkin diagrams, and may be used to obtain
heat current in the TDGL12 ~again, note the appearance of th
Cooper pair charge22e). To be precise, Eq.~30! is the heat
current associated with a pairing field configurationD
5eiq•r2 ivt, using@cf. Eq. ~25!#

JQ52hnF]D*

]t
“D1c.c.G . ~31!

Previously, the heat current vertexJQ was considered by
several authors, beginning with the work of Caroli a
Maki.28 However, Eqs.~21! and ~30! do not appear to have
been obtained previously~i.e., before Ref. 12! with the cor-
rect factor.29 The same result may, of course, be obtained
an explicit ~but more cumbersome! calculation of the heat
current vertexJQ. However, in addition to their being mor
straightforward, the arguments presented in this section h
the advantage of being very general, applicable to arbitr
disorder strength and range.@Note that the important ingre
dient used to obtain Eqs.~26!–~28! is just the absence o
inelastic scattering.# Finally, we have shown here that Eq
~21! holds to linear order inq; we note that the argumen
may be extended to higher orders inq as well.

In the remainder of this section, we comment briefly
the microscopic heat current vertexjQ used in the calcula-
tion. The microscopic energy current operator, and there
the microscopic heat current operator, has two differ
representations—see, e.g., Ref. 30. The first involves a t
derivative,
7-7
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ĵQ5
1

2 (
k,s

@vkck,s
† ~ i ] t2m!ck,s1H.c.#, ~32!

leading to the microscopic heat current vertex~at zero wave-
vector and frequency! jQ5 i emvk used above. The secon
representation uses the equation of motion for the electr
operators to replace the time derivative with the Hamilton
~13!, leading to the heat current operator31

ĵQ5(
k,s

~ek2m!vkck,s
† ck,s1 (

k,q,s
Uqvkck1q/2,s

† ck2q/2,s

1l (
k,k8,q

q

m
ck8,↑

† c2k81q,↓
† c2k1q,↓ck,↑ . ~33!

The three terms in Eq.~33! represent the contribution to th
heat current of the kinetic energy, the disorder potential,
the interaction energy, respectively. Diagrammatically,
second~third! terms give rise to vertices where the disord
~interaction! lines connect with the fermion lines. If this rep
is
r

e
q
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resentation is used for the microscopic heat current opera
one obtains several different diagrams contributing toJQ.31

However, the result forJQ is identical whether Eq.~32! or
~33! is used for the microscopic heat current operator, as
have verified explicitly in both the clean and the disorder
limits. In our discussion above, we have used Eq.~32! as it is
of a much simpler form, and can be used to obtain Eq.~21!
using the general arguments presented above.

V. CALCULATION OF THE ASLAMAZOV-LARKIN
DIAGRAMS

In this section, we calculate the Aslamazov-Larkin cont
bution to axy . The starting point is the expression for th
Aslamazov-Larkin diagrams depicted in Fig. 4. To leadi
order in momentum and energy, the current vertices dep
only on momentum and energy flowing from one fluctuati
propagator to the other, as in Eqs.~24! and ~30!. It follows
that the Aslamazov-Larkin contribution to the current co
relatorL @see Eq.~6!# is given by
e contour
LAL~Q,iVm!52
1

b (
vm

E dq

~2p!d
$Jx

e~qx1Q!Jy
e~qy!Jy

Q~qy ,ivm1 iVm /2!L~q,ivm!L~q1Qx̂,ivm!L~q1Qx̂,ivm1 iVm!

1Jx
e~qx!Jy

e~qy!Jy
Q~qy ,ivm1 iVm /2!L~q,ivm!L~q,ivm1 iVm!L~q1Qx̂,ivm1 iVm!%. ~34!

Following the standard procedure, the sum over Matsubara frequencies may be expressed as an integral over th
presented in Fig. 5. The resulting expression, after the analytic continuationiVm→V1 i0, is given by

LAL~Q,V!52
1

pE2`

`

dvn~v!E dq

~2p!d
„Jx

e~qx1Q!Jy
e~qy!$Jy

Q~qy ,v1V/2!LR~q1Qx̂,v1V!Im@LR~q,v!LR~q1Qx̂,v!#

1Jy
Q~qy ,v2V/2!LA~q,v2V!LA~q1Qx̂,v2V!Im@LR~q1Qx̂,v!#%

1Jx
e~qx!Jy

e~qy!$Jy
Q~qy ,v1V/2!LR~q,v1V!LR~q1Qx̂,v1V!Im@LR~q,v!#

1Jy
Q~qy ,v2V/2!LA~q,v2V!Im@LR~q,v!LR~q1Qx̂,v!#%…. ~35!
ce
-

has-

the

con-
za-
Here, n(v)5 1
2 coth(v/2T), and LR(q,v) and LA(q,v) are

the analytic continuation ofL(q,ivm) on the two sides of the
cut at Imv50. The main contribution to the integrals
from small wavevectors and frequencies; to leading orde
T2Tc , n(v)'T/v, and the fluctuation propagatorL and
current verticesJe andJQ are given by Eqs.~15!, ~24!, and
~30!, respectively. Next, the expression is expanded to lin
order inQ andV, the integrals are calculated, and using E
~5!, we obtain for two and three dimensions,

j y
Q

E
5H 2

e2TB

2pc

h

e
for 2D,

2
e2TB

4pc
Ah

e
for 3D.

~36!
in

ar
.

With the identification of the superconducting coheren
length j(T)5Ah/e, this result is identical to the one ob
tained by considering the Gaussian fluctuations in a stoc
tic TDGL.12,17

As discussed in Sec. II A, it is necessary to subtract
magnetization currentjmag

Q 5cM3E from this result to ob-
tain the correct transport response. The corresponding
tribution of superconducting fluctuations to the magneti
tion is given by1,2

M55 2
e2TB

3pc2

h

e
for 2D,

2
e2TB

6pc2
Ah

e
for 3D.

~37!
7-8



g
n

to
io

nc

en

the

nd

s

or
am-
in

the

any
is

n
aw
is

o-

er
that
er-

t of
en-
a-
de-
onic
an

be-
nic
ral
tem-
ity
the
de

ng

ed

ors

-

ion

the

less
ia-
ia-

d

a
re

e

is

SUPERCONDUCTING FLUCTUATIONS AND THE NERNST . . . PHYSICAL REVIEW B 68, 024517 ~2003!
We note that in the Aslamazov-Larkin calculation, the ma
netization currents contribute two thirds of the total curre
in both two and three dimensions.

The final result for the Aslamazov-Larkin contribution
axy is obtained after the subtraction of the magnetizat
currents. The result is given in Eq.~3!, where we introduce
back \, and present the result in terms of the cohere
lengthj(T)5Ah/e.

VI. MAKI-THOMPSON AND DENSITY OF STATES
TERMS

In this section, we consider the Maki-Thompson and d
sity of states diagrams@diagrams~b!–~m! in Fig. 2#. We

FIG. 4. Aslamazov-Larkin diagrams contributing toj y
Q/EB @See

Eqs.~5!–~6!#. The wavy lines correspond to the fluctuation prop
gatorL; electric and heat current vertices are indicated in the figu

FIG. 5. Contour in the complexv plane used for expressing th
sum over Matsubara frequenciesvm in Eq. ~34! as an integral,
leading to Eq.~35!. The contour runs along the cuts ofL(q,v) and
L(q,v1 iVm), and is closed at a distance from the origin which
taken to infinity. The dots are the poles ofn(v) at ivm .
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show here that these terms are less divergent than
Aslamazov-Larkin diagrams asT→Tc . In addition, a similar
conclusion can be drawn for the magnetization. We thus fi
that in the microscopic calculation ofaxy , the Aslamazov-
Larkin result, Eq.~3!, is the most divergent contribution a
T→Tc .

We note that a similar result may or may not hold f
different transport coefficients, and each case must be ex
ined separately. Indeed, in the case of the conductivity
three dimensions, the Maki-Thompson contribution has
same divergence as the Aslamazov-Larkin contribution.14 In
two dimensions the Maki-Thompson diagram diverges at
temperature in a naive calculation, a divergence which
regularized by introducing a pair breaking mechanism.15,32,33

After this regularization, the Maki-Thompson contributio
has a form which is somewhat different than the power l
of the Aslamazov-Larkin term, and its ultimate divergence
only logarithmic. Nevertheless, this is an important micr
scopic contribution to the conductivity~except very close to
Tc). In contrast, a different situation may hold for oth
transport properties. For example, it was recently argued
the Maki-Thompson and density of states terms for the th
mal conductivity~first discussed in Ref. 34! lead to a nondi-
verging contribution.35

The method that we use here to obtain our result is tha
power counting, applied to each of the diagrams indep
dently. We thus avoid the explicit calculation of the di
grams, which would be needed if subleading terms are
sired. In each of these diagrams, after each of the electr
blocks is calculated, the structure that remains is that of
integral over momentum and energy, with the integrand
ing composed of fluctuation propagators and electro
blocks. We apply power counting arguments to this integ
to find the dependence of each diagram on the reduced
peraturee. ~This procedure does not exclude the possibil
that the coefficient of this power is actually zero and that
power of the diagram is therefore lower, nor does it exclu
the possibility that the diagram is identically zero.!

For the purpose of clarification, we begin by consideri
the Aslamazov-Larkin diagram@Fig. 2~a!#, which was calcu-
lated explicitly in Sec. V. The power counting is thus appli
to Eq.~35!; we now count powers ofe in the integral explic-
itly. In the integrand, there are three fluctuation propagat
L ~contributing a powere21 each!, two electric current ver-
ticesJe (e1/2 each!, and one heat current vertexJQ (e3/2). To
obtain j y

Q/EB @see Eq.~5!#, the integral is expanded in ex
ternal frequencyV (e21) and external wavevectorQ
(e21/2). The integration over momentum gives anothered/2,
while there is no contribution associated with the integrat
over energy@because of then(v) factor#. Accounting for all
contributions, we obtain a divergence ofed/222. Similar ar-
guments give an identical result for the divergence of
magnetization, givingaxy

AL}ed/222, in agreement with our
exact calculation, Eq.~3!.

Next we consider diagrams~b!–~g! in Fig. 2. In these
diagrams, the number of fluctuation propagators is one
than in the Aslamazov-Larkin diagram. If any of these d
grams is to be as divergent as the Aslamazov-Larkin d
gram, then this loss of a power ofe21 must be compensate

-
.
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~as it is in the case of the Maki-Thompson diagram in
conductivity!. A power ofe21 is regained when considerin
the electronic block of the diagram which has two micr
scopic current vertices in it, provided they are in the sa
direction. Here, this will only occur for diagrams~d! and~e!,
in which the two vertices which are in the same block arej y

e

and j y
Q . Indeed, in the Aslamazov-Larkin diagram, the ve

tices Jy
e and Jy

Q contributee2. In diagrams~d! and ~e!, the
block containing the verticesj y

e and j y
Q contributes only one

power ofe.36 Moreover, for these two diagrams to diverge
the Aslamazov-Larkin diagram, the expansion in exter
wavevectorQ and external frequencyV should give powers
of e21/2 ande21, respectively, as it does for the Aslamazo
Larkin diagram. The expansion inV indeed gives a power o
e21, since the external frequency appears explicitly in
fluctuation propagator~and also due to a diffusive pole as
the case of the Maki-Thompson conductivity diagram!.
However, the important point in this analysis is that in d
grams~d! and ~e!, the expansion in external momentumQ
does not gain a power ofe21/2, but instead accounts fore1/2

in the power counting. The reason for this is that the exter
momentum, which flows from thej y

e vertex to thej y
Q vertex,

does not flow through the fluctuation propagators of the d
gram. The expansion in external momentum is thus limi
to the electron block which includes these two vertic
where it is straightforward to check that expansion in
external momentum leads to a power ofe1/2. Finally, dia-
grams~h!–~m! involve only one fluctuation propagator an
will clearly be less divergent than the Aslamazov-Lark
term.

We have demonstrated by power counting arguments
while the Aslamazov-Larkin diagram, Fig. 2~a!, diverges as
ed/222, all other diagrams in Fig. 2 are less divergent asT
→Tc . Similar arguments hold for the fluctuation contrib
tion to the magnetization, and hence foraxy . In view of this
conclusion, we do not calculate the Maki-Thompson a
density of diagrams explicitly.@We note that diagrams~b!–
~g! in Fig. 2, as well as the Maki-Thompson and density
states diagrams in the calculation of the magnetization,
have a logarithmic divergence in two dimensions asT
→Tc .]

VII. CONCLUSIONS

The main result of this paper is that the leading contrib
tion in the microscopic calculation ofaxy arises from the
Aslamazov-Larkin diagrams, which correspond to the con
bution of Gaussian fluctuations in the stochastic TDGL. T
Maki-Thompson and density of states terms are less di
gent asT→Tc . In concluding this paper, we comment o
several aspects of this result.

It is well known that in calculating the contribution o
superconducting fluctuations to the conductivity, t
Aslamazov-Larkin diagrams correspond to the Gaussian
proximation of a stochastic TDGL.1,2 In establishing the cor-
rect form for the heat current vertex in Sec. IV, we verify th
correspondence also for thermal transport.

There are two directions in which the calculation may
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extended beyond this approximation: by considering the
ditional microscopic contributions~as we did in this paper!,
or by going beyond the Gaussian approximation in the s
chastic TDGL~cf. Ref. 12!. We would like to emphasize tha
these approaches are of a very different nature, and t
regime of validity is also different.

The stochastic TDGL is traditionally understood as t
model for the critical dynamics of a superconductor~model
A in the classification of Hohenberg and Halperin37!. As
such, the TDGL should give the relevant contribution as
temperature approachesTc in the critical regime~which for
low-temperature superconductors is very narrow, as
pressed by the Ginzburg criterion2!. Additional microscopic
terms become irrelevant in this regime.

On the other hand, further away fromTc in the region
where the microscopic calculation is valid, additional micr
scopic contributions may arise~as they do for the conductiv
ity!. To reiterate, for the transverse thermoelectric respon
we find that they are less divergent than the Aslamaz
Larkin contribution asT→Tc .

To connect the microscopic approach with the critical d
namics, one may expect that in the microscopic approxim
tion, as the temperature is lowered, the Maki-Thompson
density of states terms would become less important as
behavior becomes governed by the stochastic TDGL.
axy , this clearly occurs in the microscopic calculation38

This work thus provides further justification for using th
TDGL also as the temperature increases away fromTc into
the Gaussian regime~which is the approach taken in Re
12!.

We note that, in this paper, we assumed that the syste
particle-hole symmetric. The conventional result foraxy in a
normal metal vanishes under this assumption. We empha
that this result is not required by particle-hole symmet
Indeed, in a superconductor, we find that the Aslamaz
Larkin diagrams lead to a finite contribution toaxy above
Tc . We have shown that the Maki-Thompson and density
states corrections are less divergent; however, we did
investigate the possibility that these normal-state correcti
vanish in the particle-hole symmetric case.

Interest in the Nernst signal has grown recently due to
measurements in high-temperature superconductors, w
the fluctuations signal can be observed well aboveTc .10,11

On the other hand, the contribution of superconducting fl
tuations to the Nernst signal is yet to be observed in a lo
temperature superconductor, for which the BCS microsc
ics considered in this paper are applicable. As discusse
the Introduction, we expect the fluctuation tail to be obse
able in the Nernst signal of a suitably chosen supercond
ing thin film. It would certainly be of interest to verify this
prediction experimentally.
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