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Superconducting fluctuations and the Nernst effect: A diagrammatic approach
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We calculate the contribution of superconducting fluctuations above the critical tempefatuoethe
transverse thermoelectric responsg , the quantity central to the analysis of the Nernst effect. The calculation
is carried out within the microscopic picture of BCS, and to linear order in magnetic field. We find that as
T—T,, the dominant contribution ta,, arises from the Aslamazov-Larkin diagrams, and is equal to the result
previously obtained from a stochastic time-dependent Ginzburg-Landau egllafigssishkin, S. L. Sondhi,
and D. A. Huse, Phys. Rev. Le®9, 287001(2002]. We present an argument which establishes this corre-
spondence for the heat current. Other microscopic contributions, which generalize the Maki-Thompson and
density of states terms for the conductivity, are less divergeit-ag3..
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I. INTRODUCTION AND DISCUSSION OF RESULTS Here, o is the conductivity tensork is a tensor of thermal

conductivity, anda, a are the thermoelectric tensafshich

In a superconductor, fluctuations of the superconductingey the Onsager relations=Te«). Applying the open cir-
order parameter above the transition temperafiyeffect it condition to Eq.(1), the Nernst coefficient is expressed

various properties such as the magnetic susceptibility angh terms of the conductivity and thermoelectric tensors,
transport coefficients. The study of superconducting fluctua-

tions has a long historyfor reviews, see, e.g., Refs. 1,2 E
More recently, interest in fluctuation phenomena was re-
newed with the discovery of high-temperature superconduct-
ors, where their short coherence lengths, high critical tem-

peratures, and layered structures imply a large regime for th&€ transverse thermoelectric respongg, the quantity on
observation of fluctuations. which this paper is focused, is of primary interest for under-

One experiment that has aroused particular interest rﬁsiltzpndsl?giégZ(:g%?;c%fs:gg%g%wUCtmg fluctuations on the

cently is that of the Nernst effect. In this experiment, a tem- In a recent paper, Sondhi, Huse, and the present author

perature gradient< VT)lIx is applied in the presence of a giscussed the contribution of superconducting fluctuations to
magnetic fieldB|/z, and the electric field respongi the  the thermoelectric and thermal conductivity tensors using a
absence of transport electric curreig measured in thg ~ Stochastic time-dependent ~ Ginzburg-Landau  equation

direction. BelowT, in the vortex state the Nernst effect is (TDGL) in the limit of Gaussian fluctuatiorié.In this paper,
large due to vortex motion, while in the normal state it is W€ revisit the calculation of the transverse thermoelectric

typically very small. In experiments in low-temperature su-T€SPONSeay, using a diagrammatic calculation within the
perconductors, no sign of superconducting fluctuations waB8CS theory. The details of this calculation are presented in
reported as the temperature was raised abgvé In con- subsequent sgctlons. In the remam.der of this section, we
trast, several different experiments did observe the appeaPr€Sent and discuss the results of this paper.

ance of a fluctuation tail above the critical temperature in the \We calculatea,, above the critical temperaturg;, to
Nernst signal of the high-temperature superconduttbrs linear order in the magnetic fiell|z, and to leading order in
(and also in the related Ettinghausen eftedvlore recently, T—T.. We find that, in two and three dimensio(2D and

the Nernst effect abové, has attracted considerable atten-3D), the contribution of superconducting fluctuations to the
tion with measurements showing a sizeable Nernst signdransverse thermoelectric response is

well aboveT,, in particular in the underdoped regirte!!

- y . 1 AxyOxx™— AxxOxy
N= —
(=VT)B B 0')2(X+ 0')2(y

)

While a Nernst experiment is carried out under open cir- 1 e &T)? 1
cuit conditions, the transport coefficients, which arise natu- oy, Y= for 2D,
: . - : 6mh ¢ T-T,
rally in a theoretical description, are those which relate the oPL= B 3)
transport electric and heat currents to the electric field and X 1 e&T)
temperature gradient, o for 3D.

12rh 2 (T-T,
e o o\ E Here, {g=(fc/eB)Y? is the magnetic length ang(T)o (T
(J”) :(~ ( ) 1) —T.) 2is the coherence length of the superconducting or-
ig) \a k)\=VT der parameter.
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It is well known (see, e.g., Refs. 1), 2hat superconducting the second term in the numerator of Eg) is small due to
fluctuations enhance the conductivity abovedue to both  considerations of particle-hole symmetry. Moreover, not too
the Aslamazov-Larkit? and the Maki-Thompsdfi'®contri-  close toT,, the conductivity is dominated by the normal-
butions(there are also density of states terms, which are lesstate contribution. It follows that the main contribution of
important for the conductivity A similar identification of the  superconducting fluctuations to the Nernst sigftallinear
microscopic contributions applies to other transport coeffi-order in B) is aﬁyL/gxx, with o, being the normal-state
cients. In the case of the transverse thermoelectric responsgsntribution.
as the superscript in E(B) suggests, we find that the leading  gjnce the result for™:

e : _ xy » EQ. (3), depends only on the
order contribution toay, is due to the Aslamazov-Larkin .jharence lengtli(T), and in a simple manner, a compari-

diagrams alone. The contribution of the Maki-Thompson andy,, \yith experiment should apparently be straightforward. In

density .Of states diagrams is Iess.dlv.ergenTasTc. Ref. 12, such a comparison for a high-temperature supercon-
Physically, the Aslamazov-Larkin diagrams correspond toductor was presented. On the other hand, in low-temperature
the contribution of thermal fluctuations of the order param- ) '

eter. Their contribution tay,, may be viewed either as the superconductors, for which the BCS theory is certainly ap-

transport heat current carried by such fluctuations when the _I|cable, the appearance of the fluctuation tail in the Nemst
ignal was not previously reported to the best of our

respond to an electric field, or as the transport electric curre 2 S
owledge: The reason for this is that low-temperature su-

carried by the fluctuations as they respond to a temperatu : |
gradient(all in the presence of the magnetic figl@he same perconductors are typically also good conductors in the nor-
L/ oy, the contribution of super-

physics is identically described by the Gaussian approximaal state. ConsequentIyQy
tion to a stochastic TDGL(We will have more to remark on conducting fluctuations to the Nernst signal, is strongly
the correspondence between the two approaches in subswppressed in bulk low-temperature superconductors.
quent sectiongIndeed, the result obtained in this paper, Eq. The situation can be improved considerably by looking at
(3), is identical to the result obtained in the Gaussian apa thin film, which is effectively a two-dimensional supercon-
proximation to the stochastic TDGL in Ref. 12. ductor if the coherence length is larger than the film thick-
The calculations in this paper are carried out assumingess. First, the fluctuation tail of,, is enhanced by going to
particle-hole symmetry, i.e., neglecting any contributionslower dimensionality, as is evident in E@). [The result for
which arise due to asymmetry around the Fermi surface ifwo dimensions in Eq(3) is to be divided by the film thick-
properties such as the density of states. Particle-hole symm@ess to obtain the result for a thin filSecond, such films
try implies thatoy, = axy= kxy=0 (and therefore in the cal- may have a significantly lower normal state conductivity.
culation of_ these transport coefficients, it_ is necessary tergken together, these effects may considerably enhance the
break particle-hole symmefryThe conventional result for — cqontribution of fluctuations to the Nernst signal. A similar
ayy in the normal metallic state also vanishes in this limit. ;i ation may occur in a layered structure with weak cou-

quever, It Is important to note that th|s_result IS not re- pling between the layers and with a low normal-state con-
q_u_lred by symmetry, and will not necessa_rlly hold wh_en ad'ductivity, as is the case for the high-temperature
ditional processes are taken into accogmithout breaking superconductor

the particle-hole symmetjylndeed, as we find in this paper, : . . . .
and as is evident in calculations using a stochastic In'closmg this sectloq, we note that a diagrammatic cal-
TDGL,12' the contribution of superconducting fluctuations U1ation of ax, was previously attempted by Varlamov and

. 19 .
to a,, does not vanish in the particle-hole symmetric limit. Livanov;”™ but was unfortunately marred by an incorrect

As the assumption of particle-hole symmetry is a very goootreatment of the heat curr_ent vertex. We also note an impor-
approximation for a BCS superconductor, it is therefore welfant aspect of the calculation ef,,,, namely, the role obulk
justified in the present case. magnetization currensand the need to subtract their
A second assumption made in this paper is that the ordegontributiort’ (discussed in the present context in Sec. )l A
parameter has-wave symmetry. In the context of the high- As discussed in Ref. 12, this issue was largely overlooked in
temperature superconductors, it is of interest to consider alshe literature.
the case ofl-wave symmetry in this approach. We note here In the remainder of this paper, we present the details of
that this will not affect the conclusions of this paper. Theour calculation. In Sec. Il, we present the Kubo formula for
results of the stochastic TDGL would still correspond to thea,,, and discuss the contribution of bulk magnetization cur-
Aslamazov-Larkin contribution; and the arguments showingents. For completeness, we also present known results for
that the Maki-Thompson and density of states terms are leshe propagator of superconducting fluctuations. The dia-
divergent remain valid in this case as w&ll(We do not grams that appear in the calculationaf,, and the physics
consider here the related issue of whether nodal quasipartiney describe, are discussed in Sec. lll. In Sec. IV, we discuss
cles, which appear when the temperature is lowered and thé@e calculation of the heat current vertex. A general argument
condensate is formed, contribute dQ, .) regarding its calculation is given, establishing the correspon-
We now return to the discussion of the Nernst coefficientdence to the heat current in the TDGL. In Sec. V, we calcu-
vy - As noted in Eq(2), vy is related to both the conductiv- late the Aslamazov-Larkin diagrams, and obtain &j. The
ity and the thermoelectric tensors. However, the main effecMaki-Thompson and density of states diagrams are consid-
of superconducting fluctuations on the Nernst signal abovered in Sec. VI. Finally, we summarize our discussion in Sec.
T, is due toe,y. Indeed, the contribution of fluctuations to VII.
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[l. FORMALISM necessary to subtract them from the total currents to obtain
the transport current response. In the presence of an applied

electric field, it was shown in Ref. 20 that the magnetization
In this section, we discuss the linear-response theory fogurrent is given by

the transverse thermoelectric response. We present the Kubo _
formula for ay,, and discuss the role of bulk magnetization jﬁ,ag=cM X E, (8)

currents and the subtraction of their contribution. whereM is the equilibrium magnetizatiofin the absence of

The t_hermoelectnc tensor is considered in th's. paper bthe electric fieldl. It then follows that the transverse thermo-
calculating the heat current response to an electric field. Al- . o
; . o X electric response is given by
ternatively, one could consider within the linear response

A. Kubo formula for e,

theory the electric current response to Luttinger’s “gravita- i
tional field.”?! The result fora,, is, of course, independent Zyyxz —szyz—y —cM,, 9
of which formulation is used, and results are presented in E
terms of one of them only for convenience. wherej/E is found using the Kubo formula, Eqé5) and

The heat current response to an electric field is related tg6). Using the Onsager relatiorms(y=’&xy/T.

the heat current-electric current correlator by using the stan- |t js evident from Eq(9) that ayy is obtained by subtract-

dard Kubo formula. Here, we are interested in the CalCUlatiOﬁhg the result of two independent calculations: the response
of this response to linear order in the magnetic field. Thisof the total current to the applied electric and magnetic fields,
amounts to introducing an additional current vertex couplethnd the magnetization currents as derived from the equilib-
to the magnetic field® Here, we present this result as the rjum magnetization. We note that these terms cannot be com-
Kubo formula for the linear response to both an electric anthined (to the best of our knowledgeinto a single Kubo

a magnetic field. The electric fie|x and the magnetic field formula, since one cannot write a local operator for the mag-

B||§ are introduced at finite frequency and wavevector, renetization or transport currents separately, only for the total

spectively, using the vector potential currents. o .
Therefore, we need the equilibrium magnetizatinfor

cE . By - the calculation ofa,, . Diagrammatically, it may be calcu-
A= mef'mﬁL EG'Q’”- (4)  lated to linear order ifB by considering the current response
to a magnetic field at a finite wavevector,

The heat current in thg direction, in response to the electric

and magnetic fieldgin the dc limip, is given by M= —21im |23 RETI(Q)], (10)
jQ 1 o—0Q“C
y .
EB- _legnlOQ_QCRd:A(Qan)“iQmﬂQJriO- ®)  where
. . B . ) )
Here, the three current correlataris defined by Q)= fo de dre"QX"(TTji(r,r)]ﬁ(O)). (11)
B . O ’
A(Q,Qm)=f drdr’e'“mTf drdr’e' (=1 The contribution of superconducting fluctuations to the mag-
0 netization is well knowrt:>?3In this paper, we will thus use
X(TijQ(r,r)j)‘f(r’,T’)ji(O)}, (6)  the known results for the magnetization, and concentrate on

the calculation of Egs(5) and (6) for the total current re-
whereQ,,=27mT is a bosonic Matsubara frequengyith sponse.
units in whichz =kg=1), and the upper limit of integration As mentioned above, the calculation @f, may proceed
over imaginary timesr and 7’ is the inverse temperatu®  via the alternative route of calculating the electric current
=1/T. In Eq. (5), an analytic continuation of),, to real  response to a “gravitational fieldi. In this case, a similar
frequencies is performed before the zero-frequency limit issituation arises, where in order to obtain the transport current
taken. the electric magnetization current has to be subtracted. The

An important aspect of the calculation of the transversdatter is given in this case BY

thermoelectric response, discussed in detail by Cooper, Hal-
perin, and Ruzif? is the need to account fdiulk magneti- Jmag= —CM X V. (12)
zation currents This issue arises because the microscopiqn
electric and heat currents, as calculated by the Kubo formul
are composed of transport and magnetization currents,

Ref. 12, the total heat current response to an electric field
a :
dnd the total current response to a temperature gradient were
calculated using the stochastic TDGL. The apparent discrep-
je_ie e iQ_iQ4iQ 7 ancy between the results for the total currents and the On-
"=l Jmag | Il P ]mag' ( ) . .
sager relations was invoked to demonstrate the need of sub-
The magnetization currents are currents that circulate in theracting out the magnetization currents. In contrast, in the
sample and do not contribute to the net currents which arénear-response formalism the calculation for the electric cur-
measured in a transport experiment. On the other hand, thegnt yields its response to a gravitational field gradient, and
do contribute to the total microscopic currents, and it is thughis apparent discrepancy does not arise. The magnetization
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(and the advanced fluctuation propagator lié(q,w)
q, Wm =[LR(q,w)]*). In Eq. (15), v is the density of states per
spin, e=In(T/T)~(T-Ty)/T, is the reduced temperature,

TBCS™ 7T/8TC f and
FIG. 1. Di for th i i icl D 1,01 ! ) w(l) ! zp(lﬂ
. 1. Diagram for the noninteracting two-particle propagator n=—D7g| | s+ —=— || 5| ———¢'| =] |.
I1(q,0,)- Lines with arrows are electronic Green functions, and 2 AmTcTe 2 AmTcTel 2

disorder is shown in the ladder approximation by dashed lines. )

Here, 74 is the elastic scattering time:):vﬁm/d is the
currents(and the total currentdrivially obey the same On- diffusion constant(for d dimensiony and ¢(x) is the di-
sager relations obeyed by the transport currents. Neverthgiamma function. The parameters in Ef5) are directly re-
less, the magnetization currents must be subtracted to obtalated to the coefficients appearing in a TDGL for the order
the correct result for the transport coefficients. parameter. In particulag(T) = \/m is the superconducting
coherence length anghsis the relaxation time for the order
parameter fluctuations.

B. Fluctuation propagator

The contribution of superconducting fluctuations to the
current correlator in Eq(6) is calculated in this paper for a
BCS superconductofwith sswave symmetry, with Hamil- In this section, we present the diagrams which appear in
tonian the calculation of the correlat@6), and discuss the physical

processes which they represent. For this purpose, the micro-
scopic picture is perhaps best recast in terms of a quantum
H=E EkCI’(er’(r‘f‘ E Uchqy(rck,U functional integral approach:?* We begin this section by
ko KG.o briefly discussing this approach.
The expectation value of a current opergtdwhich can
+A E Cl/,TCik%q,LC—k*—q,lck,T' (13 be either the electric current or the heat currémtresponse
kk'.q to a driving field¢ may be expressed in terms of an imagi-
nary time functional integral

IIl. DIAGRAMS AND INTERPRETATION

Here, e,=k?/2m is the kinetic energy of the electrons,

=1,| is their spin,U, is the disorder potentialwith the — 43

usual Gaussian distributipnand\ <0 is the attractive BCS j DyDyje SVl
interaction(where only states with energy differing from the )= —. (17)
Fermi energy by at mosbp participate in the interaction J D yD ye~ Sl 9]

term). The relevant diagrams for superconducting fluctua-
tions are calculated using the finite-temperature diagram|-_| re, andJare the fermion fields. and the actiGhis
matic technique. This approach is analogous to the one usegcﬁen’ by '

in the case of the conductivity, leading to the
Aslamazov-Larkin® and Maki-Thompsoh*® contributions. s o
(For a detailed account of the diagrammatic calculation of Szf drf dx E Po(X)0 (X)) +H(X) |, (18
the conductivity, see, e.g., Ref) A basic ingredient of the 0 v

diagrammatic calculation is the propagator of superconductWhereB is the inverse temperature=(x,7), and’ is the
ing fluctuationsL. For the sake of completeness, we present,, itonian density. Introducing a’pair’ing, field via the

herAe the kr)owr} reSlI:IIHS f(ljr. | ) ion in th usual Hubbard-Stratonovich transformation, the expectation
ccounting for the electron-electron interaction in the ..o of the current may be rewritten as
ladder approximation, the fluctuation propagdtds related

to the noninteracting two-particle propagaldrthrough

f DADK<j>AK¢e_Seﬁ[A,K,¢]

o1 . ()= . (19
L(q,wm) =[N""=T1(q,0m)] (19 fDADKefseﬁ[A,K,z/)]

(see Fig. 1 for the diagram dfl). To obtain the retarded

fluctuation propagator, the Matsubara frequency is analytiHere,Sg is the effective action for the pairing field which is
cally continued to the real axisig,—w+i0) andIl is  obtained by integrating out the fields (Ref. 26 and
calculated to leading order ig and w. Assuming particle-

hole symmetry, the retarded fluctuation propagator is then D ¢D ] o~ Sol ¥, 61+ FdTdX(A gy + A i)
<j>AK¢= - _ ’
1 1 f D /D dre— Sol vt g1+ Fdrdx(A gy g + Ay )
LR(qw)=—— ————— (15 i
Vet nQ°—lwtpcs (20)
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FIG. 2. Diagrams arising in the calculation of the transverse thermoelectric respmes&qs(5)—(6)]. A wavy line represents the
fluctuation propagator, and the lines with arrows are the electronic Green functions. The vertices are the heat currja?n(apaexircle},
the electric current vertex coupled to the electric figldfull circle), and the electric current vertex coupled to the magnetic figltho
circle). “Mirror image” diagrams, which may be obtained by reversing the arrow direction on each of the electronic Green functions in the
diagrams abovgexcept diagraméb), (d), and(f), for which the mirror image is not a new diagrgrare not presente&ee Fig. 4 below for
the mirror image of diagranfa)]. Also not presented are the different possibilities of adding disorder to each of these diagrams.

whereS, is the part of the actio® which is quadratic ing. into account Before proceeding a word on nomenclature,
The calculation of the contribution of superconducting fluc-while the situation here is a bit different than in the case of
tuations to the current proceeds by applying a Gaussian aphe conductivity, we will refer to the diagrams corresponding
proximation to Eq.(19). More specifically, this involves ex- to the TDGL contribution as the Aslamazov-Larkin dia-
panding bothS,q{ A,A,¢] and(j)sr,4 to second order i grams; all other diagrams will be collectively referred to as
andA. Maki-Thompson and density of states diagrams, although

Consider first the calculation of the conductivity, in which they do not correspond to corrections to the normal-state
case¢ is the electric field. In Eq(19), the field appears in transverse thermoelectric response only, as discussed below.
two places, namely, ifj)5, and in the effective action ~ The diagram in Fig. @) and its “mirror image” are the
Seﬁ[A,K, #]. The Aslamazov-Larkin approximation involves Aslamazov-Larkin diagrams, which correspond to the contri-
keeping the field dependence in the effective action only. Th&ution of the stochastic TDGL. To obtain these diagrams, the
resulting expression is equivalent to a calculation using £lectric and magnetic fields are retained in the effective ac-
stochastic TDGL also done at Gaussian order. The quantitffon in Eq.(19) only, and the average over the current opera-
(i)aa is the current associated with the order parameter cortor (which in this case, is the average over the heat current
figuration. The response of the order parameter to the field isperator,(j°),1) gives the heat current associated with the
described by the effective action, which is identical to theorder parameter configuration. Moreover, the motion of the
TDGL description. In particular, note that, in the TDGL, the order parameter described by these diagrams is that of the
electric field is coupled to linear order to the current associ-TDGL, with the electric and magnetic fields coupled to lin-
ated with the order parameter, as is described by thear order to the electric currents associated with the order
Aslamazov-Larkin diagram. Not included in the Aslamazov-parameter configuration. This correspondence will be revis-
Larkin approximation are the terms obtained by keeping théted below. In Sec. IV, we discuss the heat current associated
field in (j)aag. These describe corrections to the normal-with the motion of the order parametgR),,» and its con-
state response modified by the presence of the order paramection to the heat current in the TDGL. In Sec. V, we cal-
eter, and are the Maki-Thompson and density of states coculate the Aslamazov-Larkin diagrams fay, and find that
rections. they give the same contribution as that found using a sto-

The situation for the transverse thermal response is somehastic TDGL in Ref. 12.
what different than it is for the conductivity as we are con- The rest of the diagrams describe a variety of processes
sidering the linear response to two fiel@snce we are con- which involve corrections to normal-state properties, and
sidering the heat current response to both electric anthay be understood along similar lines. Diagrafimsand (c)
magnetic fields The resulting diagrams are presented in Fig.of Fig. 2 describe a correction to the normal-state thermo-
2 (in most cases, the diagrams have “mirror images” whichelectric response due to the order parameter fluctuations,
are not presented in the figure, but are, of course, also takemith Maki-Thompsor{diagram(b)] and density of statfdia-
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q+Q/2, directly related to the current which appears in the TDGL.
Wit /2 é N> Accordingly, while the microscopic current vertex is denoted
q, W with j, we denote the current vertex presented by the dia-

gram in Fig. 3a) with J.

The result for the electric current verték is well known
(and is needed, e.g., for the conducti¥ly Our main con-
cern here is with the heat current vertd®, for which we
establish the following result: AQ=Q,,=0 [for conven-
tions regarding incoming and outgoing energies and mo-
menta, see Fig.(8)], the electric and heat current vertices
are related by

JQ: - z—eJe. (21)

Heuristically, this form is expected for a preformed pair of
charge— 2e; but this is the BCS limit, for which an explicit
calculation is needed. Together with the known resultJfor
[see Eg.(24) below], this allows the calculation of the
Aslamazov-Larkin diagrams in Sec. V, as well as obtaining
the expression for the heat current in the TDBL.

For completeness, we consider first the calculation of the
electric current vertex). The vertexJ® is needed in the
calculation of the Aslamazov-Larkin diagram to leading or-
der in external frequencies and momenta, and it is thus suf-
ficient to set the external frequencies to zey,= w,,=0,
and consider linear order in the wavevectqrandQ. There
is no linear term inQ; indeed, it is straightforward to show
. . . that J%(q=Q,,= w,,=0) is symmetric inQ.?’ In the calcu-
FIG. 3. Diagrams used in the text for evaluation of the currentiation of the electric current vertex, we thus @0,

vertices J° and J° appearing in the Aslamazov-Larkin diagrams. _ . _( and calculate the vertex to linear order an
Lines with arrows are electronic Green functions, and dashed line e(qri1 ’ ,

denote disorder, shown here in the ladder approximation. The mi-
croscopic current vertexrepresents either the electric current ver-
tex j®= —ev, or the heat current vertg®=i e,y .

SettingQ=Q,,= w,=0 in J¢, the diagram for the elec-
tric current vertex is as in Fig.(B), but with w,,=0 (and]j
=jf=—ev,, wherev,=k/m). The same diagram may be
obtained by inserting an electric current vertex in the dia-
gram for I1(gq,w,=0), given in Fig. 1(and correctly ac-

gram (c)] contributions, but with the order parameter re- counting for the spin indicesUsing the relation

sponding to linear order to the magnetic field. Likewise, dia-
grams(d) and (e) describe the normal-state response to a _ 2
magnetic field in the presence of superconducting fluctua- ViG(k, em) =Gk, em)”, (22)
tions affected by the electric field. Diagrartf$ and(g) de- whereG(k, €,,) is the electron Green function, the following
scribe the heat current associated with an order parametg&q it is obtained:
configuration(as in the Aslamazov-Larkin diagrajmsbut
with the dynamics of the order parameter modified by a term Je=—2eV,I1(q,wn=0). (23)
not captured by the TDGL(It is interesting to note that in e m
the microscopic picture, there are corrections to the TDGL inote the appearance of the Cooper pair charg@e (de-
the order parameter motion in this cgskinally, diagrams noted below ase*). The expansion of Eq(23) to linear
(h)—(m) describe corrections to the normal-state transversgrder inq gives the result for the electric current verféx,
thermoelectric response,, .
J%(a)=—4enrq (29)
V- RELATION BETWEEN CURRENT VERTICES (7 andv were defined in Sec. Il B The familiar expression
In this section, we consider the calculation of the triangu-for the electric current in the TDGlin the absence of fieldls
lar block appearing in the Aslamazov-Larkin diagrgsee follows from this result. More precisely, E(4) is the elec-
Fig. 3@]. In this diagram, the microscopic current verjex tric current associated with a pairing field configuratin
can be either an electric current vertgxor a heat current =¢€'9"", using
vertex j9. This diagram corresponds to the current in the
presence of an order parameter configuration, and is thus Je=e* n[A*(—iVA)+c.cl. (25
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[The conventional TDGL form, with 1/2* replacingnv  where the functior results from integration over all internal
(as in, e.g., Ref. 11 is obtained after rescaling the pairing momenta in the diagrams. The important point here is that
field.] the functionf that appears in Eq26) is identicalto the one
We now reconsider the calculation of the electric currentthat appears in Eq28). Equation(28) may be rewritten as
vertex, this time with an arbitrarg,,, as a first step towards
establishing Eq(21). SettingQ=(,,=0, the electric current
vertexJ® is presented in Fig.(®) (with j=j¢=—ev,). Using
Eq. (22), the expansion ai® to linear order i is equivalent
to introducing a second velocity vertex. The verf&jis then
written asq times the contribution of square diagrams as in
Fig. 3(c) (with j=j€). The following observation follows
from the structure of these diagrams: To linear ordef,ibut
at an arbitraryw,, the electric current vertex has the struc-

ture Here, the first term on the right-hand side can be shown to
vanish using Eq(27). On comparing the second term with
Eqg. (26), we find the relation between the current vertices,
Je=—eq, f(€n,— €mt om), (26)  Eq.(2D).
€m We note that to this order of the calculatidR does not

i i , , have a branch cut after an analytic continuationwf, to the
where the functiorf results from integration over all internal | plane. After the analytic continuation, we thus have to
momenta in the diagrams. The functibdepends only onthe  ;aar order ing and ’

energy variables appearing in the electronic Green functions,

and running along the two sides of the diagramie use here

the fact that disorder scattering is elastin addition, be- ®

cause of the symmetric structure of the diagrams in Fig), 3 J%(q,0)=— Z_eJe(q) =2nvwq. (30
we have

i
JQ:QE (iem_ %)f(emv_em_"wm)

i
+q2 Tmf(emv_em"’_wm)- (29

fl€m,— €mtom) =f(—€ntomn,en). (27)  This result is used below in the calculation of the
Aslamazov-Larkin diagrams, and may be used to obtain the
The structure of the result fal* as presented in Eq$26) heat current in the TDGI? (again, note the appearance of the
and(27) is sufficient for establishing Eq21) to linear order ~ Cooper pair charge-2e). To be precise, Eq30) is the heat
in q; it is unnecessary to evaluatexplicitly. current associated with a pairing field configuratidn
As with the electric current vertex, for the calculation of =e'9""~'*!  using[cf. Eq. (25)]

the Aslamazov-Larkin diagram, we only need the heat cur-
rent vertexJ? to leading order in wavevectors and frequen-
cies. As it turns oufcf. Eq. (21)], this is one order higher 0
than the leading order id°. By symmetry of the structure of J
the diagrams for the current vertices, they are invariant under
Q,0,——Q,—Q,,. For the expansion of®, this shows

that there is no term I'near @ or {}y, alone, but dpes not several authors, beginning with the work of Caroli and
exclude a term proporuongl tQQ,,. In the calcul_at|on be- Maki.?® However, Eqs(21) and (30) do not appear to have
low, we use the fact that in the Aslamazov-Larkin diagrams " (e q p}evious[ye before Ref. 1with the cor-
[Fig. Z(_a) ang |t_5 m|_rror imagk vye need tAhe heat current rect facto® The same result may, of course, be obtained by
vertex in they direction, perpendicular tQ[x, and thus do  an explicit (out more cumbersomecalculation of the heat
not consider such a term. current vertexJ°. However, in addition to their being more
We tgu.s proceed by settir@=Q,=0. Tge heat current - gyrajghtforward, the arguments presented in this section have
vertexJ~ is then given in Fig. &) (with j=j~=ienV\; S€€  the advantage of being very general, applicable to arbitrary
comments at the end of this sectioAs in the case of the gisorder strength and rang@ote that the important ingre-
electric current vertex®, the expansion al® to linear order  gient used to obtain Eqg$26)—(29) is just the absence of
in g amounts to the introduction of a second velocity vertex,nelastic scattering.Finally, we have shown here that Eq.
resulting in square diagrams as in Figel3with j=j9). It (21) holds to linear order irg; we note that the argument
follows from the structure of these diagrams that to linearmay pe extended to higher ordersgras well.
order inq (and at an arbitraryoy,), the heat current vertex | the remainder of this section, we comment briefly on
has the structure the microscopic heat current vert¢X used in the calcula-
tion. The microscopic energy current operator, and therefore
the microscopic heat current operator, has two different
JQ:QZ iemf(€m,— €mt Om), (29 representations—see, e.g., Ref. 30. The first involves a time
€m derivative,

IA*
ot

=—7v VA+c.c.|. (31

Previously, the heat current vertd® was considered by
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1 . resentation is used for the microscopic heat current operator,
=§ kE [ViCy, (10— p)Cy o+ H.CJ, (32 one obtains several different diagrams contributing%o*
However, the result fod®? is identical whether Eq(32) or
leading to the microscopic heat current vertakzero wave- (33) is used for the microscopic heat current operator, as we
vector and frequendyj®=ie. v, used above. The second have verified explicitly in both the clean and the disordered
representation uses the equation of motion for the electronitimits. In our discussion above, we have used B4) as it is
operators to replace the time derivative with the Hamiltonianof a much simpler form, and can be used to obtain [2d)
(13), leading to the heat current operator using the general arguments presented above.

V. CALCULATION OF THE ASLAMAZOV-LARKIN

jQ= €.— W)V Gl Cp .+ Ugvicr c
j gr( k— M)ViCx »Ck, o qua qVkCk+ q/2,0Ck—q/2,0 DIAGRAMS

a + + In this section, we calculate the Aslamazov-Larkin contri-

2 Gk 1C-kr+q, Ck+a,1Ck 1 - (33 bution to @,y. The starting point is the expression for the

kk'.q Aslamazov-Larkin diagrams depicted in Fig. 4. To leading

The three terms in Eq33) represent the contribution to the order in momentum and energy, the current vertices depend
heat current of the kinetic energy, the disorder potential, andnly on momentum and energy flowing from one fluctuation
the interaction energy, respectively. Diagrammatically, thepropagator to the other, as in Ed24) and(30). It follows
second(third) terms give rise to vertices where the disorderthat the Aslamazov-Larkin contribution to the current cor-
(interaction lines connect with the fermion lines. If this rep- relator A [see Eq.6)] is given by

AAL(Q,iQm)=—'B - f {35(a,+ Q)5 IP(Ay T 0m 1 Qi /2) LG, 0m) L(G+ QX i @) L(A+ QX i+ Q)

(2m)°
+ 3800 Iy IX(Cy i 0+ 1 2/ 2)L (0T @)L (G 0+ 1 Q) L(G+ QX 0t Q) (34)

Following the standard procedure, the sum over Matsubara frequencies may be expressed as an integral over the contour
presented in Fig. 5. The resulting expression, after the analytic continuélign-€+i0, is given by

1 (= . .
AHQ,0)=— ;J don(w) S0+ Q)5 (ay){IR(ay , 0+ Q/2)LR(g+Qx, 0+ Q) IM[LT(q,0)LR(g+Qx,0)]

+32(qy 0= Q/2)LA(0, 0 — Q)LA(g+ Qx,0— Q) IM[L¥(q+ QX,w) 1}
+J5(a0)35(ay){IR(ay 0+ Q/2)LR(g, 0+ Q)L (g+Qx, 0+ Q) IM[LR(g,0)]

+39(ay,0—Q/2)LA(g,0— Q) IM[LR(q,0)LR(g+Qx, ) 1}). (35

Here, n(w) = 3coth@/2T), and LR(q,w) and LA(g,w) are  With the identification of the superconducting coherence
the analytic continuation df(q,i ) on the two sides of the length £(T)=\/7/e, this result is identical to the one ob-
cut at Imw=0. The main contribution to the integrals is tained by considering the Gaussian fluctuations in a stochas-
from small wavevectors and frequencies; to leading order inic TDGL.1>17

T—-T,, n(w)=T/w, and the fluctuation propagatdr and As discussed in Sec. Il A, it is necessary to subtract the
current verticesl® andJ? are given by Eqs(15), (24), and magnetization currer]t,%ag cM X E from this result to ob-
(30), respectively. Next, the expression is expanded to lineatain the correct transport response. The corresponding con-
order inQ and(}, the integrals are calculated, and using Eq.tribution of superconducting fluctuations to the magnetiza-

(5), we obtain for two and three dimensions, tion is given by
e2 e’TB n
TB 7 for 2D,
for 2D, 2
iQ - 2mC € e
y _ (36) M= (37)

E 2 e’TB
E _ € TB\/E for 3D. — \/E for 3D.
41C € 6c2 €
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show here that these terms are less divergent than the
Aslamazov-Larkin diagrams 8s— T, . In addition, a similar
conclusion can be drawn for the magnetization. We thus find
that in the microscopic calculation af,,, the Aslamazov-
Larkin result, Eq.(3), is the most divergent contribution as
T-T..

We note that a similar result may or may not hold for
different transport coefficients, and each case must be exam-
q+QX, Wm+m ined separately. Indeed, in the case of the conductivity in

three dimensions, the Maki-Thompson contribution has the
same divergence as the Aslamazov-Larkin contributfon.

9, Wm two dimensions the Maki-Thompson diagram diverges at any
temperature in a naive calculation, a divergence which is
regularized by introducing a pair breaking mechantarif:*®
After this regularization, the Maki-Thompson contribution
has a form which is somewhat different than the power law
of the Aslamazov-Larkin term, and its ultimate divergence is
only logarithmic. Nevertheless, this is an important micro-
scopic contribution to the conductivifgxcept very close to
T.). In contrast, a different situation may hold for other
FIG. 4. Aslamazov-Larkin diagrams contributingj@/EB [See tLani/lpokr.t__?LOpertles' Fo(; %Xam.ple’ flt was recentlyfargrl:edhtha_t
Egs.(5)—(6)]. The wavy lines correspond to the fluctuation propa—t e Maki-Thompson and density of states terms for the ther
gatorL; electric and heat current vertices are indicated in the figure.mal ponductlylty(flrsgdlscussed in Ref. 34ead to a nondi-

verging contributior?

The method that we use here to obtain our result is that of

. . : power counting, applied to each of the diagrams indepen-
We note that in the Aslamazov-Larkin calculation, the MaY Gently. We thus avoid the explicit calculation of the dia-

netization currents contribute two thirds of the total Curremgrams, which would be needed if subleading terms are de-
in both two and three dimensions.

The final it for the Asl Larki tribution t sired. In each of these diagrams, after each of the electronic
e |kr)1a_rezu ftor he S rgmazc_)v- a][ 'R contribution 105045 is calculated, the structure that remains is that of an

ayy 1S obtained after the subtraction of the magnetlzatloqmegral over momentum and energy, with the integrand be-
currents. The result is given in E¢B), where we introduce

back % d t th It in t f th h ing composed of fluctuation propagators and electronic
ackn, and present the result in terms ot (€ Conerencey oeqi s we apply power counting arguments to this integral

length£(T) = v/ e. to find the dependence of each diagram on the reduced tem-
peraturee. (This procedure does not exclude the possibility
VI. MAKI-THOMPSON AND DENSITY OF STATES that the Coefficﬁent of thiS power is actually zero anq that the
TERMS power of the diagram is therefore lower, nor does it exclude

the possibility that the diagram is identically zero.

In this section, we consider the Maki-Thompson and den-  For the purpose of clarification, we begin by considering
sity of states diagramfdiagrams(b)—(m) in Fig. 2]. We  the Aslamazov-Larkin diagrafiFig. 2a)], which was calcu-
lated explicitly in Sec. V. The power counting is thus applied
to Eq.(35); we now count powers of in the integral explic-

-7 * ~< itly. In the integrand, there are three fluctuation propagators
. ® ~ L (contributing a powek ! each, two electric current ver-

. . ticesJ® (e'? each, and one heat current vertd® (9. To
L A obtainj?/EB [see Eq.(5)], the integral is expanded in ex-
' ternal frequencyQ (e ') and external wavevectoQ
? ' (e Y?). The integration over momentum gives anotk&?,
Imw = -Q, while there is no contribution associated with the integration
N . S over energybecause of tha(w) factor]. Accounting for all
h . contributions, we obtain a divergence &f?~2. Similar ar-

~. - guments give an identical result for the divergence of the

~—_.lo--- magnetization, givinga’g';oc €272 in agreement with our

exact calculation, E¢3).

FIG. 5. Contour in the complex plane used for expressing the ~ Next we consider diagramé)—(g) in Fig. 2. In these
sum over Matsubara frequencies, in Eq. (34) as an integral, diagrams, the number of fluctuation propagators is one less
leading to Eq(35). The contour runs along the cutslofq,w) and  than in the Aslamazov-Larkin diagram. If any of these dia-
L(g,0+iQ,,), and is closed at a distance from the origin which is grams is to be as divergent as the Aslamazov-Larkin dia-
taken to infinity. The dots are the polesfw) atiwy,. gram, then this loss of a power ef ! must be compensated
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(as it is in the case of the Maki-Thompson diagram in theextended beyond this approximation: by considering the ad-
conductivity). A power of e~ ! is regained when considering ditional microscopic contributiongas we did in this papgr

the electronic block of the diagram which has two micro-or by going beyond the Gaussian approximation in the sto-
scopic current vertices in it, provided they are in the samehastic TDGL(cf. Ref. 12. We would like to emphasize that
direction. Here, this will only occur for diagrantd) and(e),  these approaches are of a very different nature, and their
in which the two vertices which are in the same blockjire regime of validity is also different.

andjf,?. Indeed, in the Aslamazov-Larkin diagram, the ver- The stochastic TDGL is traditionally understood as the
tices J¢ and JS contribute€2. In diagrams(d) and (e), the ~ model for the critical dynamics of a superconductoodel

block containing the verticei andj$ contributes only one A in the classification of Hohenberg and Halpéfin As
power ofe.8 Moreover, for these two diagrams to diverge asSuch, the TDGL should give the relevant contribution as the

the Aslamazov-Larkin diagram, the expansion in extemafemperature approachd in the critical regime(which for

wavevectorQ and external frequenc§ should give powers |OW-temperature superconductors is very narrow, as ex-
of e Y2ande ", respectively, as it does for the Aslamazov- pressed by the Ginzburg criterfonAdditional microscopic

Larkin diagram. The expansion {i indeed gives a power of tergs bﬁcomﬁ |rrre]:le\ijanft |nhth|s reglmfe. in th .
e 1, since the external frequency appears explicitly in the n the other hand, further away frofi, in the region

fluctuation propagatotand also due to a diffusive pole as in where the microscopic calculation is valid, additional micro-
the case of the Maki-Thompson conductivity diagram scopic contributions may arigas they do for the conductiv-

However, the important point in this analysis is that in dia-ity)' To reiterate, for the transverse thermoelectric response,

grams(d) and (¢), the expansion in external momentu@ we f_ind thaF thgy are less divergent than the Aslamazov-
does not gain a power af Y but instead accounts fat'? Larkin contribution asT—T,.

in the power counting. The reason for this is that the external T‘_) connect the microscopic approaqh with the critical _dy-
momentum, which flows from thjﬁ vertex to thej$ vertex, hamics, one may expect that in the microscopic approxima-

. ._tion, as the temperature is lowered, the Maki-Thompson and
does not flow through the fluctuation propagators of the dia- . .
ensity of states terms would become less important as the

gram. The expansion in external momentum is thus Iimite(ﬂ ! !
to the electron block which includes these two vertices, ehawqr becomes govemed by the StOCh.aSt'C TDG_L' For
this clearly occurs in the microscopic calculatin.

o . . . axy,
where it is straightforward to check thatzexpansmn n the‘I’his work thus provides further justification for using the
external momentum leads to a power &f?. Finally, dia-

; : TDGL also as the temperature increases away fignnto
grams(h)—(m) involve only one fluctuation propagator and . . o .
will clearly be less divergent than the Aslamazov-Larkinthe Gaussian regimgvhich is the approach taken in Ref.

12).
term. N .
We have demonstrated by power counting arguments that We note that, in this paper, we assumed that the system is

while the Aslamazov-Larkin diagram, Fig(&, diverges as particle-hole symr_netric. The cor_wventional _result fgy in a .
¢¥2-2 4|l other diagrams in Fig. 2 e{re Iess, divergentTas normal metal vanishes under this assumption. We emphasize

—T.. Similar arguments hold for the fluctuation contribu- that th|s.result Is not required by _part|c|e-ho|e symmetry.
. - . . Indeed, in a superconductor, we find that the Aslamazov-
tion to the magnetization, and hence tgy, . In view of this

. . arkin diagrams lead to a finite contribution te,, above
conclusion, we do not calculate the Maki-Thompson anc# . y )
density of diagrams explicithfWe note that diagraméb)— <. We have shown that the Maki-Thompson and density of

(9) in Fig. 2, as well as the Maki-Thompson and density c)fstates corrections are less divergent; however, we did not

states diagrams in the calculation of the magnetization, Willnvestlgate the possibility that these normal-state corrections

L ) . . vanish in the particle-hole symmetric case.
have a logarithmic divergence in two dimensions &S : .
LT ] Interest in the Nernst signal has grown recently due to the
-

measurements in high-temperature superconductors, where

the fluctuations signal can be observed well abdye'®*

On the other hand, the contribution of superconducting fluc-
VII. CONCLUSIONS tuations to the Nernst signal is yet to be observed in a low-

The main result of this paper is that the leading contributemperature superconductor, for which the BCS microscop-
tion in the microscopic calculation of,, arises from the iCs considered in this paper are applicable. As discussed in
Aslamazov-Larkin diagramS, which Correspond to the Contri_the |ntrOdUCt|0n, we expeCt the fluctuation tail to be observ-
bution of Gaussian fluctuations in the stochastic TDGL. Theable in the Nernst signal of a suitably chosen superconduct-
Maki-Thompson and density of states terms are less diveing thin film. It would certainly be of interest to verify this
gent asT—T.. In concluding this paper, we comment on Prediction experimentally.
several aspects of this result.

It is well known that in calculating the contribution of
superconducting fluctuations to the conductivity, the
Aslamazov-Larkin diagrams correspond to the Gaussian ap- | thank Shivaji Sondhi and David Huse, my collaborators
proximation of a stochastic TDG}? In establishing the cor- on ongoing related work on thermal transport and the Nernst
rect form for the heat current vertex in Sec. 1V, we verify this effect in superconductors, for numerous illuminating discus-
correspondence also for thermal transport. sions. | would also like to acknowledge discussions with

There are two directions in which the calculation may beVadim Oganesyan and Austen Lamacraft.
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