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Gauge-invariant response functions in algebraic Fermi liquids
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A method is developed that permits a simple evaluation of two-loop response functions for fermions coupled
to a gauge field. We employ this method to study the gauge-invariant response functions in the algebraic Fermi
liquid, a non-Fermi liquid state proposed to describe the pseudogap phase in thetk@eDy of cuprate
superconductors. The staggered spin susceptibility is found to exhibit a characteristic anomalous dimension
exponentz,, while other correlators show a behavior consistent with the conservation laws imposed by the
symmetries of the underlying theory.
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Low-energy effective theories of certain correlated electypical treatmert* this leads to lengthy algebra due to
tronic systems are known to be equivalent (@+1)-  overlapping singularities within Feynman diagrams. Here we
dimensional quantum electrodynamics (QD °The latter ~ devise a method for isolating the leading divergent behavior
describedN species of massless “relativistic” Dirac fermions 0f such diagrams which reduces the task to computing the
coupled to a massless gauge fielg. While the physics trace of sma_II number of Dirac gamma matrlces_. 'We test this
behind these different reincarnations of QFtaries from  Method against known results and derive additional results
case to case, these theories are all of considerable genel¥th essentially no exira effort. We formulate a simple gen-
interest for the following reason: In the so-called symmetric€"@! rule for determining whether or not a given correlator
phase of QED, long-range interactions mediated by the exhibits any anomalous dimension and discuss this result in

massless gauge field produce characteristic anomalous corf&ms of a theorem that prohibits the correlators of conserved

lations between electrons which decay on long length and pler:ajvﬂztfgglﬁgv?scwénfr:) %3:::?& agéslﬁggreni?fﬁ rate
time scales asontrivial power laws This symmetric phase ; y prate
has been termed variously as the algebraic’spiralgebraic pseudogap as formulated in Refs. 6 and 9 but our technique

Fermf liquid (AFL) and embodies a unique realization of a:ﬁm?ms appluI:EabIe to any other :emcarnaﬂonf(f)f (?E’Iftlhn
non-Fermi liquid state of electronic matter in 2 spatial di- e former, QER emerges as a low-energy effective theory

mensions. for the nodal topological fermionsl,(x), in a phase-

The power law correlations are encoded in the fermiond'S‘OrderEdd'WaVe superconductordS0. The Lagrangian

— - density is
propagator of the theoryG(x)=(W¥(x)¥(0))~x" (27,
where 7= (4/3m2N)(3£—2) is the anomalous dimension 2 1
exponent and=0 is a gauge fixing parameter. The above  Lp= >, W (x) Yulld,—a,)Vi(X)+5K, (9% a)?, (1
fermionic propagator is gauge dependent, and therefore it =1 2

cannot represent the behavior of the physical electron in thﬁ/here the gauge field,, encodes the topological frustration

gggerlzggufggr?ry‘ m:Ch ?gogr hasagogﬁn'\?;ﬁa%?nsglg(étt'rggencountered by fermions as they propagate through the
9 Prop gaug rl‘soup" of fluctuating unbound vortex—antivortex pairs.

—10 . . .
propagatof—1° but the situation remains unclear. The most:(T’r) denotes the space-ime coordinate ane(u

natural candidateG(x—x")=(exp( [ }a,ds)¥(¥(x)), =0,1,2) are &4 gamma matrices satisfyingy, ,y,}
suffers from severe ultraviolet divergences due to the line=25 . The bare dynamics of the gauge field is
integral of the gauge field, and is meaningless in the abseng@axwelliarf®1” with stiffnessk . .

of a physically. motivated regularization sche?pAttempts_ In the above theoryEq. (1)], ¥,(x) is a four component
to evaluateg directly h%/e yielded an unphysical negative spinor describing the fermionic excitations at fitie pair of
anomalous dimensioft antipodal nodes of the underlyirdSC. Its individual com-

In this paper we search for anomalous power law correponents are related to the original electron operatoys
lations in various physical response functions of QED through the singular gauge transformation
which represent susceptibilities and conductivities of the spin

and charge degrees of freedom in the underlying theory. By c,(r,m)=e%Dy (r,7), 2
construction these quantities describe gauge-invariant physi-

cal responses of the system to an external probe, and therdetailed in Refs. 6 and 9. The purpose of this transformation
fore no difficulties arise as to the interpretation of the resultsis to “unwind” the phasee(r,7)= ¢ (r,7) + _qol((r,r) of the

We evaluate the requisite correlators to leading nontriviafluctuating SC order parametér(r,7)=A,e'°\"” in favor
order in the 1N expansiort! The principal technical hurdle of coupling to the gauge field,, which is related to coarse-

in any such calculation is the evaluation of the vertex correcgrained gradients of phases,. The difficulty in computing
tion which is essential to preserve gauge invaridida.the  the gauge-invariant electron propagaféx —x’) stems from
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(a) (b) (©)
@(d)

in the sense thd(,, drops out and only reappears as an upper
cutoff of the theory A ~1/K.
The bare bubbl¢Fig. 1(a)] reads

© Xo(@)= jpTr[Go<p>r|Go<p—q>r.], @)

FIG. 1. Feynman diagrams for the susceptibilizg. (5)] to
leading order in M. Solid lines represent the bare fermion propa- WhereGg(p) = p/p*= p,ﬂ’ﬂ/pz is the free Dirac propagator,
gator, wavy lines represent the screened gauge-field propagator, aafid can be evaluated by standard methsds e.g. Appendix
the solid squares stand for vertEx. B of Ref. 9. One obtains

the necessity to evaluate the averages of such phase factors. _ 9 4.9

The latter are dominated by short length-scale physics that is Xo(@)=—Tr V”F'%F']M Ourt q®

not properly described by the effective thed¢Bq. (1)]. "
Here we focus on the charge and spin density correlator_gve observe that the structure of the bare bubble susceptibil-

which do not suffer from the above problem. Consider, in'Y is determined entirely by the commutation relation of the
particular, the spin susceptibility. " vertex with they matrices. We shall see that this property

remains true for the higher order diagrams as well.
_ B . Diagrams(b), (c), and(d) represent the leadingN/cor-
Xs(q,lw)=J dre' (T, S(7)S24(0)), (3 rections due to the gauge field and contain all the interesting
0 . . . . . .
physics. We note that their sumgguge invariant This fol-
with B=1T and Sé= fdzre‘q"zgac:r,(r)cg(r) the lows since they represent correlators of gauge invariant den-
z-component of the electron spin operator at wave vegtor Sity operators. One can explicitly verify that this is so by
The charge susceptibility® is defined as in Eq3) but with ~ employing the Ward identitg, *(p+k) —Gg '(K)=p,,7,, -
Sé replaced by the charge density operatgs, We are thus free to fix the gauge and in vyhat follows we
= [ d2re®'s cl(r)c,(r). Both spin and charge densities 2dopt the Feynman gauge{<1) in which D,,(q)
are gauge singlets with respectdg, i.e., they do not pick =(8/N)6,,/q. Diagrams(b) and(c) contain the self-energy
up any phase factors under the transformat®nFollowing  insertion and read
Ref. 9 we adopt the representation for the gamma matrices

given byy, = 03@ (05,01, — 3) with o the Pauli matrices. X(bﬂ)(q)zzf T Go(p)T',Go(p— )T, Go(P)S(P)].
We further definey;=0;®1 and ys=0,®1 and note that p

®

these anticommute with aly,’s. With these definitions we 9
may express the density operators as with 2 (p)=f«D ,.(K) v,Go(p—K) y,=— nep In (A/p), and
SZ(Q)} J — 4
=| ¥ r''w,(g—p), 4 -
o(a) . (P (g—p) (4) =g (10)

where vertexI'| takes the formI7=(iyq,iy,) and I'Y  the fermion anomalous dimension in the Feynman gduge.
=(—1iv9Y2,1y9yy) for spin and charge densities with mo- Inserting (p) into Eq.(9) and combining with Eq(8), one
mentum transfer close tg=(0,0), respectively, and} can express the divergent contribution as

=(v5,0), I''=(— v075,0) for momentum transfer neay

=Q,~(m, 7). We have switched to Euclidean notation with X(b+0)(@)=27ex0(q) IN(A/q). (1)
3-momentaq=(qo,q), [, denotes [d®p/(27)% and a
summation ovet=1,2 is assumed. The susceptibilities are
then given as

Diagram(d) contains the vertex correction and reads

B B X((Q)= fk JpTf([Go(p—Q)FlGo(p)]m[Go(p—k)
X(Q)Iff (U)W (p+ o)Wy (p" )Wy (p'—q)).
pJp’ XT'1Go(p—k—=0a)]7,)D ., (K). (12

5
© As mentioned above the direct evaluation of this type of
We evaluatey(q) at T=0 by formally considering\/2 integral presents a significant challerideé? We are inter-

identical copies of field&; and¥,. Then to leading order ested in the leading— 0 behavior ofy(q). In this limit the
in 1/N expansioit we require four diagrams depicted in pintegral has singularities gs—0 andp—k, corresponding
Figs. 1a)—(d). The wavy line represents the gauge fieldto divergences in the first and second terms in the square
propagator that becomes universal at long wavelengths du@ackets, respectively. The main contribution to the integral
to the screening by topological fermiohs, therefore comes from the vicinity of these two points, and we
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may evaluate it by expanding the regular part of the intenontrivial anomalous dimension exponefq. (19)], in
grand at the singular point. Retaining only the leading termagreement with the result of Ref. 14 obtained by laborious
thus gives direct evaluation of the vertex correction. The uniform spin
susceptibility has a type-Il vertex and therefore does not ac-
_ _ quire anomalous dimension from diagrafig-(d), again in
X)(Q)= fk prr([Go(p DT1Go(p)] agreement with Ref. 14. In addition both charge susceptibili-
ties are type Il and will not exhibit anomalous dimension.
XYulGo(=K)T1Go(—k=a)]7,)D () Finally we note that ifl"; coincides with one of they,’s
then diagrams of the type shown in Figellare nonvanish-
+f f Tr((Go(k—a)[Go(K) 1, ing and must be included in the leading order. One can show
kJp that the complete resummation (2)1‘ diagra@smodifies the
_ L x0(q) ~qg behavior in Eq.(8) to g°. This can be viewed as
X[Go(P=KT1Go(P=k=a)]7,)D (k). another type of anomalous dimension due to the coupling to
(13)  the gauge field, and we shall discuss it more fully elsewhere.
Performing a variable shify—p+k in the second term we 1he formalism we have developed allows us to study spin
may simplify the above expression as and charge conductivities in the AFL. These can be calcu-
lated through the Kubo formula as ojj(w)
=~ ImII{f(w)/w, wherellf{ ) =11;;(iw— w+i5) with

X(d)(Q):ZTr<Q|(Q)jp[Go(p_Q)F|Go(p)] . (14 .

. . B . .
with Q(q) = [« y.[Go(K)T'1Go(k—a)]v,D . (K). The last Hij("“):_f dre'“(T,ji(7)];(0)) (20)
integral is again easy to evaluate and gives 0

Q@) =[y, 717 v]meIn(AlQ). (15  the current-current correlation function. Indide$=1,2 la-
bel the spatial components of the 3-currgnt The spin

We now notice that for vertices composed of products of L S (x) =T ¥ hile the electri
gamma matricegsuch as those entering the spin and chargé:urrent is given ag, (x) =¥(x) Ve (%), w lle the electric

densities defined aboyé holds that current is given asjy(x)=(¥1y072¥1=V2yon1 V2,
_‘*I,l'yl')/z\lrl,_qf_z'yl')/zqu) TO Iead|ng lN Order the
’yu’yvrl?,V’yM:)\Fl ’ (16) . . .

_ _ computation of correlatof20) involves the same diagrams
where\ is a_number. In partl_cular we shall encognter two depicted in Fig. 1 and we can therefore simply adopt the
types of vertices. Type-I vertices commute or anticommutéesult obtained for the susceptibility in EG.8). We see that
with all y,'s (e.9.,I'1=1,73,75,73ys) and in this casé.  the vertices involved i}, andj¢, are all type II, and there-
=9. Type-Il vertices anticommute with one or two 9f's  fore neither spin nor charge conductivity will exhibit anoma-

and commute with the rese.g.,I'i= y0,70¥1, - . . ). Inthis  Jous dimension~1/N arising from correlations.
case\ =1. With this insight Eq(14) becomes We may conclude that of all quantities considered only
the staggered spin susceptibility will bear the unique signa-
X(@) (@) =27\ In(A/q)f T Go(p)T Go(p—q)T 1. ture of the AFL in that its frequency, momentum and tem-
p perature dependence will be controlled by the anomalous

dimension exponeny, given in Eq.(19). The other quanti-
ties will behave essentially as if the theory was uncorrelated.
The fact that some quantities remain essentially unaf-
_ _ _ fected by strong long range correlations can be traced to a
X(@=xo(@[1=27e(1=0) In(A/g)]. (7 field theoretic theorefi*®which states that the correlator of
This correction may be interpreted as the leading term of @onserved current§.e., currents satisfying,j,=0) must
power law!! so that we have exhibit a scaling dimension which agrees with its engineer-
ing dimension. Physically this means that some quantities are
ﬁ 7 :8()‘_ 1) (18) constrained by their conservation laws to such a degree that
q) '’ 74T T3 AN correlations cannot alter their long-distance scaling behavior.
The anomalous dimension exponenj is entirely deter- As an example consider the spin currjaj)t It is a conserved

Combining this result with Eq$11) and(7) we can write the
result for the full susceptibility to N order:

X(q)~Xo(q)(

mined by the algebraic properties of the veriéxthrough f#é(rﬁ;t?itje Z:i?“/%lﬁ; r?:;eegn?érthelo?:gluggylr?:r?gt?;;ixo)f the
H - — . . |
Eq. (16). In particular for a type-I vertexN=9), —e %0 (x)]. As we have verified by explicit calculation
64 neither spin conductivity nor uniform spin susceptibility ex-
N4=3 2 (190 hibit anomalous dimension~1/N) beyond they,~q? be-
havior mentioned above, in accord with the theorem. Under-
while for a type-ll vertex,n,=0. standing the behavior of the charge conductivity is less

Returning back to physics we see that the vertex for stagstraightforward, as we do not expect the quasiparticle current
gered spin susceptibility is type | and will therefore exhibitto be conserved in gphase-disordergdsuperconductor. In-

024508-3



FRANZ, PEREG-BARNEA, SHEEHY, AND TESNOVIC

deed there is no symmetry that would guararjl%e:onser—

PHYSICAL REVIEW B 68, 024508 (2003

In the context of the QERtheory of cupratéswe expect

vation. However, the theory is known to possess a “chiral”the experimental manifestations of the nontrivial anomalous

symmetry @,—e'7375%¥)18 which produces two con-

served currentsj:ﬂ):\i (i ¥3y5)¥, (no sum over). By
virtue of the identityyyys3ys=— 17, these are related to
the spatial components lj)i, explaining the lack of anoma-

lous dimension in the electrical conductivity.

are four type-l vertices listed below E§l6). Thus there

should be three other physical observables which exhibi
anomalous scaling dimensions. What are these? In turns o
that y5 corresponds to the staggered spin susceptibility at th

wave vectorQ;= — Qq, while 1 and y5ys correspond to sus-
ceptibilities to the formation of subdominantphase-
incoherent SC order ins andp channels, respectively. These
quantities are members of the QE[zhiral manifold’8

which is the manifold of broken-symmetry states occurring
for N<N,~32/m?=3.24 at zero temperature. This phenom-

enon is known as spontaneous chiral symmetry breakify.
The anomalous dimension exponept that we find in the

dimension to appear in the quantities inhabiting the QED
chiral manifold, most prominently the staggered spin suscep-
tibility that is directly measurable by neutron scattering. In
addition, a similar nontrivial response should obtain in the
charge channel near (®) as a consequence of enlarged chi-

eraI manifold discussed in Ref. 18. This particular response is

unigue to the present theory, and will not be present in the
§U(2) theory of Ref. 14.

¢ We conclude by observing that the physics of the alge-
graic Fermi liquid bears a distinct similarity to that of one-

imensional Luttinger liquids. While the single particle prop-
erties are distinctly non-Fermi-liquid like, only certain
measurable physical responses exhibit the unique fingerprint
of the AFL in the form of anomalous scaling dimension. The
method developed here allows us to easily identify these
quantities, and helps in our search for situations where other
quantities might develop anomalous behavior.
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