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Gauge-invariant response functions in algebraic Fermi liquids
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1Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

2Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
~Received 29 April 2003; published 18 July 2003!

A method is developed that permits a simple evaluation of two-loop response functions for fermions coupled
to a gauge field. We employ this method to study the gauge-invariant response functions in the algebraic Fermi
liquid, a non-Fermi liquid state proposed to describe the pseudogap phase in the QED3 theory of cuprate
superconductors. The staggered spin susceptibility is found to exhibit a characteristic anomalous dimension
exponenth4, while other correlators show a behavior consistent with the conservation laws imposed by the
symmetries of the underlying theory.
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Low-energy effective theories of certain correlated el
tronic systems are known to be equivalent to~211!-
dimensional quantum electrodynamics (QED3).1–6 The latter
describesN species of massless ‘‘relativistic’’ Dirac fermion
coupled to a massless gauge fieldam . While the physics
behind these different reincarnations of QED3 varies from
case to case, these theories are all of considerable ge
interest for the following reason: In the so-called symme
phase of QED3, long-range interactions mediated by th
massless gauge field produce characteristic anomalous c
lations between electrons which decay on long length
time scales asnontrivial power laws. This symmetric phase
has been termed variously as the algebraic spin5 or algebraic
Fermi6 liquid ~AFL! and embodies a unique realization of
non-Fermi liquid state of electronic matter in 2 spatial
mensions.

The power law correlations are encoded in the ferm

propagator of the theory,G(x)5^C(x)C̄(0)&;x2(21h),
where h5(4/3p2N)(3j22) is the anomalous dimensio
exponent andj>0 is a gauge fixing parameter. The abo
fermionic propagator is gauge dependent, and therefor
cannot represent the behavior of the physical electron in
underlying theory. Much effort has gone into constructi
and calculating the proper gauge-invariant elect
propagator7–10 but the situation remains unclear. The mo

natural candidate,G(x2x8)5^ exp (i * x
x8amdsm)C(x)C̄(x8)&,

suffers from severe ultraviolet divergences due to the
integral of the gauge field, and is meaningless in the abse
of a physically motivated regularization scheme.9 Attempts
to evaluateG directly have yielded an unphysical negati
anomalous dimension.7,8,10

In this paper we search for anomalous power law co
lations in various physical response functions of QE3
which represent susceptibilities and conductivities of the s
and charge degrees of freedom in the underlying theory.
construction these quantities describe gauge-invariant ph
cal responses of the system to an external probe, and th
fore no difficulties arise as to the interpretation of the resu
We evaluate the requisite correlators to leading nontriv
order in the 1/N expansion.11 The principal technical hurdle
in any such calculation is the evaluation of the vertex corr
tion which is essential to preserve gauge invariance.12 In the
0163-1829/2003/68~2!/024508~4!/$20.00 68 0245
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typical treatment13,14 this leads to lengthy algebra due
overlapping singularities within Feynman diagrams. Here
devise a method for isolating the leading divergent behav
of such diagrams which reduces the task to computing
trace of small number of Dirac gamma matrices. We test
method against known results and derive additional res
with essentially no extra effort. We formulate a simple ge
eral rule for determining whether or not a given correla
exhibits any anomalous dimension and discuss this resu
terms of a theorem that prohibits the correlators of conser
operators from acquiring an anomalous dimension.15,16

In what follows we focus on the QED3 theory of cuprate
pseudogap as formulated in Refs. 6 and 9 but our techn
remains applicable to any other reincarnation of QED3.3–5 In
the former, QED3 emerges as a low-energy effective theo
for the nodal topological fermionsC l(x), in a phase-
disorderedd-wave superconductor (dSC!. The Lagrangian
density is

LD5(
l 51

2

C̄ l~x!gm~ i ]m2am!C l~x!1
1

2
Km~]3a!m

2 , ~1!

where the gauge fieldam encodes the topological frustratio
encountered by fermions as they propagate through
‘‘soup’’ of fluctuating unbound vortex–antivortex pairs.x
5(t,r ) denotes the space-time coordinate andgm(m
50,1,2) are 434 gamma matrices satisfying$gm ,gn%
52dmn . The bare dynamics of the gauge field
Maxwellian6,9,17 with stiffnessKm .

In the above theory@Eq. ~1!#, C l(x) is a four component
spinor describing the fermionic excitations at thel th pair of
antipodal nodes of the underlyingdSC. Its individual com-
ponents are related to the original electron operatorscs

through the singular gauge transformation

cs~r ,t!5eiws(r ,t)cs~r ,t!, ~2!

detailed in Refs. 6 and 9. The purpose of this transforma
is to ‘‘unwind’’ the phasew(r ,t)5w↑(r ,t)1w↓(r ,t) of the
fluctuating SC order parameterD(r ,t)5D0eiw(r ,t) in favor
of coupling to the gauge fieldam which is related to coarse
grained gradients of phasesws . The difficulty in computing
the gauge-invariant electron propagatorG(x2x8) stems from
©2003 The American Physical Society08-1
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the necessity to evaluate the averages of such phase fa
The latter are dominated by short length-scale physics th
not properly described by the effective theory@Eq. ~1!#.

Here we focus on the charge and spin density correla
which do not suffer from the above problem. Consider,
particular, the spin susceptibility,

xs~q,iv!5E
0

b

dteivt^TtSq
z~t!S2q

z ~0!&, ~3!

with b51/T and Sq
z5 * d2reiq•r(sscs

†(r )cs(r ) the
z-component of the electron spin operator at wave vectoq.
The charge susceptibilityxc is defined as in Eq.~3! but with
Sq

z replaced by the charge density operatorrq

5 * d2reiq•r(scs
†(r )cs(r ). Both spin and charge densitie

are gauge singlets with respect toam , i.e., they do not pick
up any phase factors under the transformation~2!. Following
Ref. 9 we adopt the representation for the gamma matr
given bygm5s3^ (s2 ,s1 ,2s3) with s i the Pauli matrices.
We further defineg35s1^ 1 and g55s2^ 1 and note that
these anticommute with allgm’s. With these definitions we
may express the density operators as

Sz~q!

r~q!
J 5E

p
C̄ l~p!G lC l~q2p!, ~4!

where vertexG l takes the formG l
s5( ig0 ,ig0) and G l

c

5(2 ig0g2 ,ig0g1) for spin and charge densities with mo
mentum transfer close toq5(0,0), respectively, andG l

s

5(g5,0), G l
c5(2g0g5,0) for momentum transfer nearq

5Q1'(p,p). We have switched to Euclidean notation wi
3-momentaq5(q0 ,q), * p denotes * d3p/(2p)3 and a
summation overl 51,2 is assumed. The susceptibilities a
then given as

x~q!5E
p
E

p8
^C̄ l~p!G lC l~p1q!C̄ l~p8!G lC l~p82q!&.

~5!

We evaluatex(q) at T50 by formally consideringN/2
identical copies of fieldsC1 andC2. Then to leading order
in 1/N expansion11 we require four diagrams depicted
Figs. 1~a!–~d!. The wavy line represents the gauge fie
propagator that becomes universal at long wavelengths
to the screening by topological fermions,6

FIG. 1. Feynman diagrams for the susceptibility@Eq. ~5!# to
leading order in 1/N. Solid lines represent the bare fermion prop
gator, wavy lines represent the screened gauge-field propagato
the solid squares stand for vertexG l .
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Dmn~q!5
8

qN S dmn2
qmqn

q2 ~12j! D , ~6!

in the sense thatKm drops out and only reappears as an up
cutoff of the theory,L;1/K.

The bare bubble@Fig. 1~a!# reads

x0~q!5E
p
Tr@G0~p!G lG0~p2q!G l #, ~7!

whereG0(p)5p” /p2[pmgm /p2 is the free Dirac propagator
and can be evaluated by standard methods~see e.g. Appendix
B of Ref. 9!. One obtains

x0~q!52Tr@gmG lgnG l #
q

64S dmn1
qmqn

q2 D . ~8!

We observe that the structure of the bare bubble suscep
ity is determined entirely by the commutation relation of t
vertex with theg matrices. We shall see that this proper
remains true for the higher order diagrams as well.

Diagrams~b!, ~c!, and ~d! represent the leading 1/N cor-
rections due to the gauge field and contain all the interes
physics. We note that their sum isgauge invariant. This fol-
lows since they represent correlators of gauge invariant d
sity operators. One can explicitly verify that this is so b
employing the Ward identityG0

21(p1k)2G0
21(k)5pmgm .

We are thus free to fix the gauge and in what follows
adopt the Feynman gauge (j51) in which Dmn(q)
5(8/N)dmn /q. Diagrams~b! and~c! contain the self-energy
insertion and read

x (b1c)~q!52E
p
Tr@G0~p!G lG0~p2q!G lG0~p!S~p!#,

~9!

with S(p)5*kDmn(k)gmG0(p2k)gn52hFp” ln (L/p), and

hF5
4

3p2N
~10!

the fermion anomalous dimension in the Feynman gau9

InsertingS(p) into Eq. ~9! and combining with Eq.~8!, one
can express the divergent contribution as

x (b1c)~q!.2hFx0~q! ln ~L/q!. ~11!

Diagram~d! contains the vertex correction and reads

x (d)~q!5 E
k
E

p
Tr„@G0~p2q!G lG0~p!#gm@G0~p2k!

3G lG0~p2k2q!#gn…Dmn~k!. ~12!

As mentioned above the direct evaluation of this type
integral presents a significant challenge.13,14 We are inter-
ested in the leadingq→0 behavior ofx(q). In this limit the
p integral has singularities asp→0 andp→k, corresponding
to divergences in the first and second terms in the squ
brackets, respectively. The main contribution to the integ
therefore comes from the vicinity of these two points, and

nd
8-2
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may evaluate it by expanding the regular part of the in
grand at the singular point. Retaining only the leading te
thus gives

x (d)~q!.E
k
E

p
Tr„@G0~p2q!G lG0~p!#

3gm@G0~2k!G lG0~2k2q!#gn…Dmn~k!

1E
k
E

p
Tr„@G0~k2q!G lG0~k!#gm

3@G0~p2k!G lG0~p2k2q!#gn…Dmn~k!.

~13!

Performing a variable shiftp→p1k in the second term we
may simplify the above expression as

x (d)~q!52TrS V l~q!E
p
@G0~p2q!G lG0~p!# D , ~14!

with V l(q)5*kgm@G0(k)G lG0(k2q)#gnDmn(k). The last
integral is again easy to evaluate and gives

V l~q!5@gmgnG lgngm#hF ln ~L/q!. ~15!

We now notice that for vertices composed of products
gamma matrices~such as those entering the spin and cha
densities defined above! it holds that

gmgnG lgngm5lG l , ~16!

wherel is a number. In particular we shall encounter tw
types of vertices. Type-I vertices commute or anticomm
with all gm’s ~e.g., G l51,g3 ,g5 ,g3g5) and in this casel
59. Type-II vertices anticommute with one or two ofgm’s
and commute with the rest~e.g.,G l5g0 ,g0g1 , . . . ). In this
casel51. With this insight Eq.~14! becomes

x (d)~q!52hFl ln ~L/q!E
p
Tr@G0~p!G lG0~p2q!G l #.

Combining this result with Eqs.~11! and~7! we can write the
result for the full susceptibility to 1/N order:

x~q!5x0~q!@122hF~12l! ln ~L/q!#. ~17!

This correction may be interpreted as the leading term o
power law,11 so that we have

x~q!;x0~q!S L

q D h4

, h45
8~l21!

3p2N
. ~18!

The anomalous dimension exponenth4 is entirely deter-
mined by the algebraic properties of the vertexG l through
Eq. ~16!. In particular for a type-I vertex (l59),

h45
64

3p2N
, ~19!

while for a type-II vertex,h450.
Returning back to physics we see that the vertex for s

gered spin susceptibility is type I and will therefore exhi
02450
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nontrivial anomalous dimension exponent@Eq. ~19!#, in
agreement with the result of Ref. 14 obtained by laborio
direct evaluation of the vertex correction. The uniform sp
susceptibility has a type-II vertex and therefore does not
quire anomalous dimension from diagrams~b!-~d!, again in
agreement with Ref. 14. In addition both charge susceptib
ties are type II and will not exhibit anomalous dimension

Finally we note that ifG l coincides with one of thegm’s
then diagrams of the type shown in Fig. 1~e! are nonvanish-
ing and must be included in the leading order. One can sh
that the complete resummation of diagrams~e! modifies the
x0(q);q behavior in Eq.~8! to q2. This can be viewed as
another type of anomalous dimension due to the coupling
the gauge field, and we shall discuss it more fully elsewhe

The formalism we have developed allows us to study s
and charge conductivities in the AFL. These can be cal
lated through the Kubo formula as s i j (v)
52ImP i j

ret(v)/v, whereP i j
ret(v)5P i j ( iv→v1 id) with

P i j ~ iv!52E
0

b

dteivt^Tt j i~t! j j~0!& ~20!

the current-current correlation function. Indicesi , j 51,2 la-
bel the spatial components of the 3-currentj m . The spin

current is given asj m
s (x)5C̄ l(x)gmC l(x), while the electric

current is given as j m
e (x)5(C̄1g0g2C12C̄2g0g1C2 ,

2C̄1g1g2C1 ,2C̄2g1g2C2). To leading 1/N order the

computation of correlator~20! involves the same diagram
depicted in Fig. 1 and we can therefore simply adopt
result obtained for the susceptibility in Eq.~18!. We see that
the vertices involved inj m

s and j m
e are all type II, and there-

fore neither spin nor charge conductivity will exhibit anom
lous dimension;1/N arising from correlations.

We may conclude that of all quantities considered o
the staggered spin susceptibility will bear the unique sig
ture of the AFL in that its frequency, momentum and te
perature dependence will be controlled by the anomal
dimension exponenth4 given in Eq.~19!. The other quanti-
ties will behave essentially as if the theory was uncorrelat

The fact that some quantities remain essentially un
fected by strong long range correlations can be traced
field theoretic theorem15,16 which states that the correlator o
conserved currents~i.e., currents satisfying]m j m50) must
exhibit a scaling dimension which agrees with its engine
ing dimension. Physically this means that some quantities
constrained by their conservation laws to such a degree
correlations cannot alter their long-distance scaling behav
As an example consider the spin currentj m

s . It is a conserved
current]m j m

s 50 guaranteed by the gauge invariance of t
theory @i.e. invariance under local symmetryC l(x)
→eiu(x)C l(x)]. As we have verified by explicit calculation
neither spin conductivity nor uniform spin susceptibility e
hibit anomalous dimension (;1/N) beyond thex0;q2 be-
havior mentioned above, in accord with the theorem. Und
standing the behavior of the charge conductivity is le
straightforward, as we do not expect the quasiparticle cur
to be conserved in a~phase-disordered! superconductor. In-
8-3
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deed there is no symmetry that would guaranteej m
e conser-

vation. However, the theory is known to possess a ‘‘chir
symmetry (C l→eig3g5f lC l)

18 which produces two con

served currents:j m
( l )5C̄ lgm( ig3g5)C l ~no sum overl ). By

virtue of the identityg0g3g552g1g2 these are related to
the spatial components ofj m

e , explaining the lack of anoma
lous dimension in the electrical conductivity.

In the 434 representation of Dirac gamma matrices th
are four type-I vertices listed below Eq.~16!. Thus there
should be three other physical observables which exh
anomalous scaling dimensions. What are these? In turns
thatg3 corresponds to the staggered spin susceptibility at
wave vectorQ1̄52Q1, while 1 andg3g5 correspond to sus
ceptibilities to the formation of subdominant~phase-
incoherent! SC order ins andp channels, respectively. Thes
quantities are members of the QED3 chiral manifold,17,18

which is the manifold of broken-symmetry states occurr
for N,Nc'32/p253.24 at zero temperature. This pheno
enon is known as spontaneous chiral symmetry breaking.19,20

The anomalous dimension exponenth4 that we find in the
above susceptibilities appears to anticipate the transition
the chiral symmetry broken phase. Indeed if we comb
x0(q) from Eq. ~8! with Eq. ~18! we find x(q);q12h4,
implying divergent q→0 susceptibility for N,64/3p2

5 2
3 Nc .
e

B
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In the context of the QED3 theory of cuprates6 we expect
the experimental manifestations of the nontrivial anomalo
dimension to appear in the quantities inhabiting the QE3
chiral manifold, most prominently the staggered spin susc
tibility that is directly measurable by neutron scattering.
addition, a similar nontrivial response should obtain in t
charge channel near (0,p) as a consequence of enlarged c
ral manifold discussed in Ref. 18. This particular respons
unique to the present theory, and will not be present in
SU~2! theory of Ref. 14.

We conclude by observing that the physics of the al
braic Fermi liquid bears a distinct similarity to that of on
dimensional Luttinger liquids. While the single particle pro
erties are distinctly non-Fermi-liquid like, only certai
measurable physical responses exhibit the unique fingerp
of the AFL in the form of anomalous scaling dimension. T
method developed here allows us to easily identify th
quantities, and helps in our search for situations where o
quantities might develop anomalous behavior.
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