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Generic finite-size enhancement of pairing in mesoscopic Fermi systems
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The finite-size-dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assump-
tion that the BCS approach is valid and that the two-body force is size independent. Different systems are
investigated such as superconducting metallic grains and films as well as atomic nuclei. It is shown that the
finite size enhancement of pairing in these systems is in part due to the presence of a surface which accounts
quite well for the data of nuclei and explains a good fraction of the enhancement in Al grains.
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It has long been a well-known fact that in certain finite- In Eq. (1) E, are the quasiparticle energies witf= (e,
size Fermi systems the gap is increased substantially from its ,)2+ A2 and the single particles energiesare the eigen-
bulk value. Such systems are, for instance, ultrasmall supetalues ofh, i.e., h|n)=¢€,|n), the pairing matrix element
conducting metallic grains, of great present actuaiifyand (nn|v|n’n’) contains the time reversed sta{@s, and the

thin films*~" but also superfluid atomic nucl®f. There have  chemical potentiag for finite systems is determined by the
been theoretical studies in the past on the size dependenced?)farticle number(N) condition” N=31[1— (e,— u)/E,]
—“n2 n ni-

.. . . _13
pzlrlng? mtrt]he abgveme;nont(id systte?ﬂsl. o out_r kqowl- IThis model, though quite schematic, will allow us to develop
edge for the condensed matter systems no satisfying exp #e essential features of the size dependence of pairing. One

nation has been fourf whereas for the nuclear systems e important hypothesis, as already mentioned, is that
large scale Hartree-Fock-Bogoliouba¥#FB) calculations 4 pairing force from which the matrix elements in Et)

for nuclei have recently somewhat clarified the situaffon. are constructed, does itself not depend on the size of the
In this investigation we will set a rather limiting frame: system. Still the matrix elements, via the wave functions,

we assume that BCS theory is valid and that the pairing forcgyill be size dependent. One guesses that the other important

v(r) is size independent. These are, of course, very seveipurces of mass number dependence in(Ecare the single

restrictions, and obviously, other size-dependent featuregarticle spectrum, respectively, the level densiiye)

may be present in reality. Also for very small sizes BCS=3 s(e—¢,), and the chemical potential.

theory breaks down and quantal pair fluctuations take over. \ve, at first, will apply a statistical approatht® This es-

We will consider simplified systems. First we study metallic sentially consists of replacing the single particle density ma-

grainS and films in a harq wall pOtential USi!ﬂg the Sta-nda.rqnx |n><n| by |tS Va'ue averaged over the energy S}?e”
schematic constant matrix element approximation with an

adjustable strength parameter and a cutoff given by the De- - 1
bye frequency. It will be shown that this model acounts for a Pe, =
good fraction of the experimental size dependence. Second
we apply the previously developed pocket formula to the
mass number dependence of nuclear gaps. We will see that =—6(en—h). (]
. . g(en)

our simple theory describes the mass nuniBgidependence
of nuclear pairing quite well. In all cases only the spin sin-
glet channel shall be considered.

Let us first present our general approach. As already me

m ; 5(8n_8n’)|n,><n,|

An asymptotic expression fo,fs‘gn can then be derived
ising the semi-classical method by Balian-Bloch for infinite
tioned, we want to base our consideration on the validity ofa"d wall potentiaf’ or the Thomas-FermiTF) or equiva-
BCS theory. In finite systems the gap equation can therefor§ntly Strutinsky averaging method for smooth potentials.
be written in the standard forfrwhere the stateln) are the ~ Recognizing that the two body wave functiofrsr,|nn) in
eigenvectors of the single particle Hamiltonias p%/2m* the pairing matrix elements can be written &@sr,/nn)
+V(r) with V(r) the (phenomenologicalsingle particle po-  =(r|n){n|r,), we can pass to the continuum limit and write
tential andm* =m™* (r) the effective mass: for Eq. (1)

- - A(f):—f de'g(e’)v(e, e )A(€')I2E(€"). 3)
Ap=—2 (nnjv|n'n")A,/2E,, . (1)
n’ The averaged pairing matrix element is given by
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) . ) ) straightforward to evaluate the pairing matrix elemght In
v(e € ):J J didr'ff'v(p—p)8(R-R"), (4  the case of ouw force, its Fourier transform is a constant
and one obtains

wheredI'=dRdp/(27)® and v(p) is the Fourier transform

of the pairing forcef =f (R,p) is the Wigner transforthof b(ere) = “vol LT min(k,,K.) §+ o
p. in Eq.(2), and a prime od” andf means that all variables ’ \Y 4 kk, V
should be replaced by primed ones. The size dependence of _
the gap parametek=A(e= ) is then contained in the cor- _ Vo m min(k,,Ke) Sy
rections to the bulk values of g), v(e,€’), andu. TV 4 Kk, Vu
Let us first evaluaté for the case of metallic grains and
films. The electrons be confined by an infinite hard wall po- 37 Sy
tential of arbitrary shape. As usual in condensed matter phys- - 8_k,: W+ e (7)

ics, we approximate the attractive electron-electron interac-

tion by a6 function pseudopotential with a cutoff in energy \ye therefore see that, contrary to the level density, the ma-
symmetrically on both sides of the Fermi energyof the  tix elementy=v(u,u) diminishes in absolute size in the
order of the Debye frequenayp . In the bulk the paiing  presence of a surface. All ingredients are now prepared and
matrix element is therefore given byk—k|v|k'=k')  one can solve the gap equatie), for instance, numerically.
=—vo/V for |e—ul, |ex—p|<wp and zero otherwise However, there exists a well known and accurate analytical
andV is the volume of the system. For a finite size grain ourspjytion which is more interesting. The result is A
main j[ask will be to evaluatg the pairing matrix elgme(@)s =2wpexp(lbege). Insertingge from Eq.(6) andvg from
for this case. The expression of the level density)gh  Eq. (7) into the above expression, we notice that the product
terms of volume, surface, and curvature contributions is well,_q_ does not depend on the surface. However, one also has
1 6 H . N . 1]

known since |0_nd- For the matrix elements we also will {5 account for the compression effect due to the surface ten-
employ the Balian-Bloch methofiusing the method of im-  sjon which increases the chemical potential or respectively
ages. To lowest order the distribution functions in E).are  ine Fermi momentum. and thgs . Finally this leads to an

; 212 P ; ! ’ . .
given byf (R,p) > 6(e—7"p/2m) which is the bulk expres-  enhancement of the gap for low system sizes. Elaborating
sion. In order to obtain the correction term, we transformg,q obtainskF=kE[1+(w/8)(1/k,E§)(SM IVy)1, where kE

back into coordinate representatiép(R,p) —p(r,r') and  gtands for the bulk value. Inserting into the expression for the
then replacez’ by —z', the z direction being the one per- gap one obtains

pendicular to the surface. Back into phase space one obtains

f(RP)=0g(e) [ 8(e—A2p?2m)+ 5t] with A= A ge- (U EaB B UD Sy My ®
2m/h? wherev,? andAg stand for bulk values. One clearly sees that
6f=—5(pz)mcoi2Rk€(px,py)], (®  the gap becomes enhancend as the size of the system
armery decreases
where K (py,py) ={2m/i%[ e~ f2/2m(p2+p2) 12 Since It is fortunate that formula8) can be tested on a very

f (R.p) is normalized to unity, one obtains from E@), in  €arly quantum mechanical solution of Ed) for a'slab?? In
integrating over phase space, the classical result for the levliS case one haSy /Vy=2/L, whereL is the film thick-
densityg(e) = (1/4m2) (2m/#2)¥2\/eV — (S/167) (2m/42) .18 nesg. Bln Ref. 1ZB the constants in E@) were chosen

; - _ ~1
An important point to be realized is that the voluvieand ~ — UF9F=0.3 andkg=0.84x 10° cm™*. It can be seen from
surfaceS correspond to the borders of the hard wall. SinceF'9- 1 that our pocket formula pasges on average well
the density is diffuse at the surface, the relevant matter volthrough the quantum mechanical valdés. .
ume Vy<V is therefore given by the wall delimitation In Refs. 2—.5 it is indicated that in the case of Al grains
which encloses the correct number of particles. The relation@n€ obtains with respect to the bulk, an enhancement for the
betweerV, SandVy, Sy are worked out in Ref. 17 and are Cfitical temperaturel; by roughly a factor of 2 for a grain
to lowest order given by =V + (3/8kg)Sy + - - andS diameter of 45 A. For a spherical grain witty,=47R%/3

—Sy+--- . The level density at the Fermi energy then be-°ne obtainsS,,/Vy,=3/R. However, grains are rather pan-
comes cake shaped than spheriéaf For an oblate ellipsoid with

short diameter half the one of a sphere with the same volume
the increase of5,,/V,, is 44%. Probably grains are even
1My (e tria_xial (see Ref. 19, Fig. )Za_nd we takeSy, /VM=9/(2_R)
8kr Vu which corresponds to a 50% increase over the spherical case.
Taking in Eq. (8) the bulk values for Al that iskE
We remark that the sign of the surface term is now positive=1.75 A"* and —vEgE=0.168, we obtain from Eq8) for
that is, for a given volum&,, the level density i®nhanced A/Ag an enhancement30% at R~45 A which is a size-
by the presence of a diffuse surface which, in fact, is theable fraction of the experimental value. However, in such
usual situation. With Eq(5) and the definition of(e) itis,  small grains the electron levels are discrete and it is well
in considering that §f)? also contributes to orde®y, /V,,, knowr? that the gap equation has no solution, if the average

VM 2m a SM

= = :——k
gr=9(e=pu) a2 12
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20— — ] on average the gap is larger than the one we have calculated
18- § and correspondinglfR; is smaller. However, a precise esti-
161 ] mate of the effect is difficult. The gap can also be calculated
T from the exact solution of the picket fence modste Ref.
147 ] 21). It turns out that this “quantal” definition of the gaps
<12r

1 yields, around the phase transition region, substantially
. larger values than those from the mean field BCS theory,
again enhancing the ratid/Ag. The quantal values ok
N also can be obtained for sizes quite a bit smaller tRan
10 15 L(A2(; 25 30 =R, of BCS theory. We therefore think to have isolated an
important enhancement mechanism of pairing in metallic
FIG. 1. Dependence of the gap, for the case of a superconducBanograins, stemming from the presence of a surface. Other
ing homogeneous film, on the film thicknessThe sawtooth line  effects, such as, e.g., the size dependence of the phonon
corresponds to a quantum mechanical calculati@ef. 12, spectrum, should be taken into account to obtain quantitative
whereas the smooth curve corresponds to forn@)laThe horizon-  agreement with experimental data.
tal line represents the bulk valude; for aluminum. The dots repre- In nuclear physics it is well known since decades that
sent the center of gravity of the triangles in which they are g pajring is stronger in lighter nuclei than in heavier ones. An
crude way to estimate an average of the quantal rgsults empirical formulaA = 12/JA with A=N+ Z the sum of neu-
tron (N) and proton(Z) numbers had been used in the past to
level distanced>Ag . We therefore solved the gap equation fit the dataf*® However, more recently Satuét al?? pointed
(1) for the picket fence modelequally spaced levels with oyt that the data used so far to extract the gap values were

Kramers degeneragyfor wp =395 K which is the value for  oyerestimated and contaminated by the Jahn-Teller effect.
Al. The number of levels) in the window 2vp was esti- A new analysis using the filteA = 2[EN*1+ EN"1—2EN]

mated to bei) n3,=2wpgk if we take only the lowest order

for neutron numbeN odd only,E'g being the measured bind-

%erm in Eq.(6) and (Ai) |”W:| Zdeg_F Wger? including _thefsur— ing energies of nuclei, revealed that the mass number depen-
ace correction to the level densitgnd the one coming from dence ofA is substantially weaker than the 32 law. In

u, see above For the dimensionless interaction constant Wepiclear phvsics it is common use to solve the gap equation
take —N=vrgr=0vBgE[1+ (m/8)(1KE)(Sy/Vy)], with phy g2p eq

BB F (1) either, as for the metallic grains, also usingsdorce
vEQF as above. In this way we also can calculd®As  pseydopotential with a cutdff or more sophisticated finite
quantally in the picket fence model. We find thefA raises  range forces are employed for the matrix elements in(Ex.
from A/Ag=1 for R=o to A/Ag~1.2 at R~60 A, fol-  not necessitating any cutoff. One of the best tested and suc-
lowing quite accurately our pocket formula. For smaller cessful forces of the latter type is the Gogny D1S fdrce
grain sizes the solution of the gap equation quickly breaksyinciple for nuclei it is more appropriate to work with
down, the critical size occurring aR2=40 A. The situation  smooth potentials like the Woods Saxon or harmonic oscil-
is summarized in Table I. It therefore seems within our SCheI‘ator potentia]s and to use for the average density matrix on
matic model that one can only reach a moderate enhancgne energy shel(3) the well known Wigner-Kirkwood?
ment of 20-30 % depending on whether or not one believegxpansior?. This procedure is, however, more cumbersome
into a continuation of the increase into the pair-fluctuatinggnd does not lead to such a handy formula as (By.For
regime. Several comments are, however, in order: Equajpace reason we cannot present this here and it will be pub-
level spacing is the most unfavorable situation which canjshed separately in the future. For the time being we will
exist . Usually a certain percentage of grains have some symyjso use Eq(8) for finite nuclei as a generic formula. In
metries which can enhance the gage Ref. 20) Therefore clear physics the convention is such thamE=vo/VM

=G and gE=%(6/7-r2)a where the level density parameter
TABLE I. Number of levels in the windowr(y), size (R), 72 2m*

(2R) and gap(A), (A) without and with surface correction, respec- & A MeV™'. An average value from Skyrme and

B

tively. The gap obtained using E(B) is also given. 4 hszz . 1 .

Gogny forces isa~A/20 MeV™ *. A typical value for G
Ny JR(A] 2RIA] A[K] A[K] Eq.@®][K]  Whichcan be foundin the literatuit&'is G=25/A MeV. We

also checked, using the methods of Ref. 15, that this latter
60 41.49 40.83 0.00 0.00 1.34 value is compatible with the Gogny D1S force.
80 45.73 45.06 0.00 0.00 1.31 On average nuclei are spherical and tr&p/Vy=3/R
100 49.30 48.64 0.00 0.83 1.28 where R=r,A'? is the nuclear radius. The producgrk
200 62.22 61.55 0.95 1.18 1.22 =(97/8)® is a universal number and then, in addition to
300 71.26 70.60 1.00 1.18 1.19 Ag, all constants in Eq(8) are fixed also for the nuclear
400 78.46 77.79 1.00 1.16 1.17 case. The bulk value of the gap is a quantity which in nuclear
500 84.53 83.86 1.00 1.15 1.15 physics is quite uncertain because the mass number range of
1000 106.54 105.87 1.00 1.12 1.12 nuclei is too small to extrapolate to infinite nuclear matter

without the guidance of a reliable formula. We expect (9.
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2 - | - - - bility of the nuclear charf® Therefore for nuclei the pocket
formula (8) gives a very satisfying reproduction of the data
and we thus conclude that it contains the essentials of the

[ ]
[}
L5l :‘0‘ _ physics.
® % In conclusion, we isolated in this work an important and
- * ‘\\ . g generic enhancement factor of pairing in finite Fermi sys-
tems. This stems from the surface corrections to their respec-
tive bulk values of level density, pairing matrix element, and
chemical potential. We derived a pocket formula for the en-
hancement factoA/Ag which is very general and depends
- exponentially on the ratio surface to volume of systems of
arbitrary shape. It remains valid for level spacirys1.4A
because for larger spacings the solution of the gap equation
o i ! . | : ! . breaks down. Our theory explains satisfactorily the average
0 % 10 1%0 X experimental mass number dependence of nuclei. For Al
N (number of neutrons ) grains we obtain within the picket fence model a maximum
enhancement oA/Ag~1.2 at a grain diameter of 6 nm.
We checked that the situation is similar for the case of Sn
grains®® This estimate is based on BCS theory. We, however,
argue that in a more realistic theory the corresponding gap
may exist for smaller grains because quantal pair fluctuations
enhance a suitably defined “quantal gap parameteyigld-
ing a more important fraction of the experimental restiits.
Other effects mentioned above can give additional enhance-
ments. Studies in this direction are planned for the future.

A (MeV)

0.5~

FIG. 2. Average nuclear gaps as a function of neutron nuriNber
along the valley of3 stability of the nuclear chart. The experimen-
tal points have been taken from Ref. 10. Broken line: the
asymptotic valueAg=0.37 MeV to which the full line converges.

to be such an expression which allows to pin dowpg
within certain limits. In Fig. 2 we show that a good fit to the
data with the above values farand G is obtained withAg
=0.37 MeV. Using fora=A/16 MeV ! which is obtained
with m=m* and which is the standard Fermi gas value used We gratefully acknowledge extended discussions with and
in phenomenological models, the fit yieldg=0.45. This  information from G. Deutscher. We also appreciate interest
gives a slightly flatter but still acceptable curve than the oneand discussions with J-F. Berger, O. Bohigas, O. Buisson, J.
shown in Fig. 2 and shows that formul@), for the nuclear Dukelsky, M. Girod, S. Hilaire, P. Leboeuf, P. Noms, N.
case, is quite robust. These values fog are of the same Pavloff, J. Pekola, and W. Satula. X.V. acknowledges finan-
order of magnitude as the asymptotic valug=0.58 MeV  cial support from DG(Spain under Grant No. BFM2002-
calculated from the D1S forc€.In Fig. 2 theA-dependence 01868 and from DGR (Catalonia under Grant No.
has been converted into &hdependence via the relatigh  2001SGR00064. F.H. was supported by Institut Universitaire
—N=A/(1.98+0.01550?3) which defines the valley of sta- de France.
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