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Generic finite-size enhancement of pairing in mesoscopic Fermi systems
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The finite-size-dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assump-
tion that the BCS approach is valid and that the two-body force is size independent. Different systems are
investigated such as superconducting metallic grains and films as well as atomic nuclei. It is shown that the
finite size enhancement of pairing in these systems is in part due to the presence of a surface which accounts
quite well for the data of nuclei and explains a good fraction of the enhancement in Al grains.
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It has long been a well-known fact that in certain finit
size Fermi systems the gap is increased substantially from
bulk value. Such systems are, for instance, ultrasmall su
conducting metallic grains, of great present actuality,1–3 and
thin films4–7 but also superfluid atomic nuclei.8,9 There have
been theoretical studies in the past on the size dependen
pairing in the abovementioned systems.10–13 To our knowl-
edge for the condensed matter systems no satisfying ex
nation has been found12 whereas for the nuclear system
large scale Hartree-Fock-Bogolioubov~HFB! calculations
for nuclei have recently somewhat clarified the situation.10

In this investigation we will set a rather limiting frame
we assume that BCS theory is valid and that the pairing fo
v(r) is size independent. These are, of course, very se
restrictions, and obviously, other size-dependent featu
may be present in reality. Also for very small sizes BC
theory breaks down and quantal pair fluctuations take o
We will consider simplified systems. First we study metal
grains and films in a hard wall potential using the stand
schematic constant matrix element approximation with
adjustable strength parameter and a cutoff given by the
bye frequency. It will be shown that this model acounts fo
good fraction of the experimental size dependence. Sec
we apply the previously developed pocket formula to
mass number dependence of nuclear gaps. We will see
our simple theory describes the mass number~A! dependence
of nuclear pairing quite well. In all cases only the spin s
glet channel shall be considered.

Let us first present our general approach. As already m
tioned, we want to base our consideration on the validity
BCS theory. In finite systems the gap equation can there
be written in the standard form,9 where the statesun& are the
eigenvectors of the single particle Hamiltonianh5p2/2m*
1V(r ) with V(r ) the ~phenomenological! single particle po-
tential andm* 5m* (r ) the effective mass:

Dn52(
n8

^nn̄uvun8n̄8&Dn8/2En8 . ~1!
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In Eq. ~1! En are the quasiparticle energies withEn
25(en

2m)21Dn
2 and the single particles energiesen are the eigen-

values of h, i.e., hun&5enun&, the pairing matrix elemen

^nn̄uvun8n̄8& contains the time reversed statesun̄&, and the
chemical potentialm for finite systems is determined by th

‘‘particle number~N! condition’’ N5(n
1
2 @12(en2m)/En#.

This model, though quite schematic, will allow us to devel
the essential features of the size dependence of pairing.
further important hypothesis, as already mentioned, is
the pairing force from which the matrix elements in Eq.~1!
are constructed, does itself not depend on the size of
system. Still the matrix elements, via the wave functio
will be size dependent. One guesses that the other impo
sources of mass number dependence in Eq.~1! are the single
particle spectrum, respectively, the level densityg(e)
5(nd(e2«n), and the chemical potentialm.

We, at first, will apply a statistical approach.14,15 This es-
sentially consists of replacing the single particle density m
trix un&^nu by its value averaged over the energy shell15

r̂«n
5

1

g~«n! (
n8

d~«n2«n8!un8&^n8u

5
1

g~«n!
d~«n2h!. ~2!

An asymptotic expression forr̂«n
can then be derived

using the semi-classical method by Balian-Bloch for infin
hard wall potentials16 or the Thomas-Fermi~TF! or equiva-
lently Strutinsky averaging method for smooth potential9

Recognizing that the two body wave functions^r 1r 2unn̄& in
the pairing matrix elements can be written as^r 1r 2unn̄&
5^r 1un&^nur 2&, we can pass to the continuum limit and wri
for Eq. ~1!

D~e!52E de8g~e8!v~e,e8!D~e8!/2E~e8!. ~3!

The averaged pairing matrix element is given by
©2003 The American Physical Society07-1
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v~e,e8!5E E dGdG8 f f 8v~p2p8!d~R2R8!, ~4!

wheredG5dRdp/(2p)3 and v(p) is the Fourier transform
of the pairing force,f 5 f e(R,p) is the Wigner transform9 of
r̂« in Eq. ~2!, and a prime onG andf means that all variable
should be replaced by primed ones. The size dependenc
the gap parameterD5D(e5m) is then contained in the cor
rections to the bulk values of g(e), v(e,e8), andm.

Let us first evaluateD for the case of metallic grains an
films. The electrons be confined by an infinite hard wall p
tential of arbitrary shape. As usual in condensed matter ph
ics, we approximate the attractive electron-electron inter
tion by ad function pseudopotential with a cutoff in energ
symmetrically on both sides of the Fermi energym of the
order of the Debye frequencyvD . In the bulk the pairing
matrix element is therefore given bŷk2kuvuk82k8&
52v0 /V for uek2mu, uek82mu<vD and zero otherwise
andV is the volume of the system. For a finite size grain o
main task will be to evaluate the pairing matrix elements~4!
for this case. The expression of the level density g(e) in
terms of volume, surface, and curvature contributions is w
known since long.16 For the matrix elements we also wi
employ the Balian-Bloch method16 using the method of im-
ages. To lowest order the distribution functions in Eq.~4! are
given by f e(R,p)}d(e2\2p2/2m) which is the bulk expres-
sion. In order to obtain the correction term, we transfo
back into coordinate representationf e(R,p)→re(r,r8) and
then replacez8 by 2z8, the z direction being the one per
pendicular to the surface. Back into phase space one ob
f e(R,p)5g(e)21@d(e2\2p2/2m)1d f # with

d f 52d~pz!
2m/\2

ke~px ,py!
cos@2Rke~px ,py!#, ~5!

where ke(px ,py)5$2m/\2@e2\2/2m(px
21py

2)#%1/2. Since
f e(R,p) is normalized to unity, one obtains from Eq.~5!, in
integrating over phase space, the classical result for the l
densityg(e)5(1/4p2)(2m/\2)3/2AeV2(S/16p)(2m/\2).16

An important point to be realized is that the volumeV and
surfaceS correspond to the borders of the hard wall. Sin
the density is diffuse at the surface, the relevant matter
ume VM,V is therefore given by the wall delimitatio
which encloses the correct number of particles. The relati
betweenV, SandVM , SM are worked out in Ref. 17 and ar
to lowest order given byV5VM1(3p/8kF)SM1••• andS
5SM1••• . The level density at the Fermi energy then b
comes

gF5g~e5m!5
VM

4p2

2m

\2
kFS 11

p

8kF

SM

VM
1••• D . ~6!

We remark that the sign of the surface term is now positi
that is, for a given volumeVM the level density isenhanced
by the presence of a diffuse surface which, in fact, is
usual situation. With Eq.~5! and the definition ofg(e) it is,
in considering that (d f )2 also contributes to orderSM /VM ,
02450
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straightforward to evaluate the pairing matrix element~4!. In
the case of ourd force, its Fourier transform is a consta
and one obtains

v~e,e8!5
2v0

V S 11
p

4

min~ke ,ke8!

keke8

S

V
1••• D

5
2v0

VM
S 11

p

4

min~ke ,ke8!

keke8

SM

VM

2
3p

8kF

SM

VM
1••• D . ~7!

We therefore see that, contrary to the level density, the
trix elementvF5v(m,m) diminishes in absolute size in th
presence of a surface. All ingredients are now prepared
one can solve the gap equation~3!, for instance, numerically.
However, there exists a well known and accurate analyt
solution which is more interesting.18 The result is D
52vDexp(1/vFgF). InsertinggF from Eq. ~6! andvF from
Eq. ~7! into the above expression, we notice that the prod
vFgF does not depend on the surface. However, one also
to account for the compression effect due to the surface
sion which increases the chemical potential or respectiv
the Fermi momentum, and thusgF . Finally this leads to an
enhancement of the gap for low system sizes. Elabora
one obtainskF5kF

B@11(p/8)(1/kF
B)(SM /VM)#, where kF

B

stands for the bulk value. Inserting into the expression for
gap one obtains

D5DBe2(1/vF
BgF

B)(p/8)(1/kF
B)(SM /VM), ~8!

wherevF
B andDB stand for bulk values. One clearly sees th

the gap becomes enhancend as the size of the sy
decreases.

It is fortunate that formula~8! can be tested on a ver
early quantum mechanical solution of Eq.~1! for a slab.12 In
this case one hasSM /VM52/L, whereL is the film thick-
ness. In Ref. 12 the constants in Eq.~8! were chosen
2vF

BgF
B50.3 andkF

B50.843108 cm21. It can be seen from
Fig. 1 that our pocket formula passes on average w
through the quantum mechanical values.12

In Refs. 2–5 it is indicated that in the case of Al grai
one obtains with respect to the bulk, an enhancement for
critical temperatureTc by roughly a factor of 2 for a grain
diameter of 45 Å. For a spherical grain withVM54pR3/3
one obtainsSM /VM53/R. However, grains are rather pan
cake shaped than spherical.2,19 For an oblate ellipsoid with
short diameter half the one of a sphere with the same volu
the increase ofSM /VM is 44%. Probably grains are eve
triaxial ~see Ref. 19, Fig. 2! and we takeSM /VM59/(2R)
which corresponds to a 50% increase over the spherical c
Taking in Eq. ~8! the bulk values for Al that iskF

B

51.75 Å21 and2vF
BgF

B50.168, we obtain from Eq.~8! for
D/DB an enhancement;30% at 2R;45 Å which is a size-
able fraction of the experimental value. However, in su
small grains the electron levels are discrete and it is w
known9 that the gap equation has no solution, if the avera
7-2
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level distanced@DB . We therefore solved the gap equatio
~1! for the picket fence model~equally spaced levels with
Kramers degeneracy!1 for vD5395 K which is the value for
Al. The number of levelsnW in the window 2vD was esti-
mated to be~i! nW

B 52vDgF
B if we take only the lowest orde

term in Eq.~6! and~ii ! nW52vDgF when including the sur-
face correction to the level density~and the one coming from
m, see above!. For the dimensionless interaction constant
take 2l[vFgF5vF

BgF
B@11(p/8)(1/kF

B)(SM /VM)#, with
vF

BgF
B as above. In this way we also can calculateD/DB

quantally in the picket fence model. We find thatD/DB raises
from D/DB51 for R5` to D/DB;1.2 at 2R;60 Å, fol-
lowing quite accurately our pocket formula. For smal
grain sizes the solution of the gap equation quickly bre
down, the critical size occurring at 2Rc.40 Å. The situation
is summarized in Table I. It therefore seems within our sc
matic model that one can only reach a moderate enha
ment of 20–30 % depending on whether or not one belie
into a continuation of the increase into the pair-fluctuat
regime. Several comments are, however, in order: Eq
level spacing is the most unfavorable situation which c
exist . Usually a certain percentage of grains have some s
metries which can enhance the gap~see Ref. 20!. Therefore

FIG. 1. Dependence of the gap, for the case of a supercond
ing homogeneous film, on the film thicknessL. The sawtooth line
corresponds to a quantum mechanical calculation~Ref. 12!,
whereas the smooth curve corresponds to formula~8!. The horizon-
tal line represents the bulk valueDB for aluminum. The dots repre
sent the center of gravity of the triangles in which they are lying~a
crude way to estimate an average of the quantal results!.

TABLE I. Number of levels in the window (nW), size (2R̃),
(2R) and gap~D̃!, ~D! without and with surface correction, respe
tively. The gap obtained using Eq.~8! is also given.

nW 2R̃@Å # 2R@Å # D̃@K# D@K# Eq. ~8! @K#

60 41.49 40.83 0.00 0.00 1.34
80 45.73 45.06 0.00 0.00 1.31
100 49.30 48.64 0.00 0.83 1.28
200 62.22 61.55 0.95 1.18 1.22
300 71.26 70.60 1.00 1.18 1.19
400 78.46 77.79 1.00 1.16 1.17
500 84.53 83.86 1.00 1.15 1.15
1000 106.54 105.87 1.00 1.12 1.12
02450
e

r
s

-
e-
s

al
n
m-

on average the gap is larger than the one we have calcu
and correspondinglyRc is smaller. However, a precise est
mate of the effect is difficult. The gap can also be calcula
from the exact solution of the picket fence model~see Ref.
21!. It turns out that this ‘‘quantal’’ definition of the gap
yields, around the phase transition region, substanti
larger values than those from the mean field BCS theo
again enhancing the ratioD/DB . The quantal values ofD
also can be obtained for sizes quite a bit smaller thanR
5Rc of BCS theory. We therefore think to have isolated
important enhancement mechanism of pairing in meta
nanograins, stemming from the presence of a surface. O
effects, such as, e.g., the size dependence of the pho
spectrum, should be taken into account to obtain quantita
agreement with experimental data.

In nuclear physics it is well known since decades th
pairing is stronger in lighter nuclei than in heavier ones.
empirical formulaD512/AA with A5N1Z the sum of neu-
tron ~N! and proton~Z! numbers had been used in the past
fit the data.8,9 However, more recently Satulaet al.22 pointed
out that the data used so far to extract the gap values w
overestimated and contaminated by the Jahn-Teller effe22

A new analysis using the filterD5 1
2 @E0

N111E0
N2122E0

N#
for neutron numberN odd only,E0

N being the measured bind
ing energies of nuclei, revealed that the mass number de
dence ofD is substantially weaker than the 12/AA law. In
nuclear physics it is common use to solve the gap equa
~1! either, as for the metallic grains, also using ad-force
pseudopotential with a cutoff8,9 or more sophisticated finite
range forces are employed for the matrix elements in Eq.~1!
not necessitating any cutoff. One of the best tested and
cessful forces of the latter type is the Gogny D1S force.23 In
principle for nuclei it is more appropriate to work wit
smooth potentials like the Woods Saxon or harmonic os
lator potentials and to use for the average density matrix
the energy shell~3! the well known Wigner-Kirkwood\
expansion.9 This procedure is, however, more cumberso
and does not lead to such a handy formula as Eq.~8!. For
space reason we cannot present this here and it will be p
lished separately in the future. For the time being we w
also use Eq.~8! for finite nuclei as a generic formula. In
nuclear physics the convention is such that2vF

B5v0 /VM

5G and gF
B5 1

4 (6/p2)a where the level density paramete

a5
p2

4
2m*

\2kF
B2

A MeV21. An average value from Skyrme an

Gogny forces isa;A/20 MeV21. A typical value for G
which can be found in the literature9,24 is G525/A MeV. We
also checked, using the methods of Ref. 15, that this la
value is compatible with the Gogny D1S force.

On average nuclei are spherical and thenSM /VM53/R
where R5r 0A1/3 is the nuclear radius. The product kF

Br 0

5(9p/8)1/3 is a universal number and then, in addition
DB , all constants in Eq.~8! are fixed also for the nuclea
case. The bulk value of the gap is a quantity which in nucl
physics is quite uncertain because the mass number rang
nuclei is too small to extrapolate to infinite nuclear mat
without the guidance of a reliable formula. We expect Eq.~8!

ct-
7-3
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to be such an expression which allows to pin downDB
within certain limits. In Fig. 2 we show that a good fit to th
data with the above values fora andG is obtained withDB
50.37 MeV. Using fora5A/16 MeV21 which is obtained
with m5m* and which is the standard Fermi gas value us
in phenomenological models, the fit yieldsDB50.45. This
gives a slightly flatter but still acceptable curve than the o
shown in Fig. 2 and shows that formula~8!, for the nuclear
case, is quite robust. These values forDB are of the same
order of magnitude as the asymptotic valueDB50.58 MeV
calculated from the D1S force.23 In Fig. 2 theA-dependence
has been converted into anN dependence via the relationA
2N5A/(1.9810.0155A2/3) which defines the valley of sta

FIG. 2. Average nuclear gaps as a function of neutron numbeN
along the valley ofb stability of the nuclear chart. The experime
tal points have been taken from Ref. 10. Broken line:
asymptotic valueDB50.37 MeV to which the full line converges
d

.

Va

ys

02450
d
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bility of the nuclear chart.25 Therefore for nuclei the pocke
formula ~8! gives a very satisfying reproduction of the da
and we thus conclude that it contains the essentials of
physics.

In conclusion, we isolated in this work an important a
generic enhancement factor of pairing in finite Fermi s
tems. This stems from the surface corrections to their resp
tive bulk values of level density, pairing matrix element, a
chemical potential. We derived a pocket formula for the e
hancement factorD/DB which is very general and depend
exponentially on the ratio surface to volume of systems
arbitrary shape. It remains valid for level spacingsd<1.4D
because for larger spacings the solution of the gap equa
breaks down. Our theory explains satisfactorily the aver
experimental mass number dependence of nuclei. For
grains we obtain within the picket fence model a maximu
enhancement ofD/DB;1.2 at a grain diameter of;6 nm.
We checked that the situation is similar for the case of
grains.19 This estimate is based on BCS theory. We, howev
argue that in a more realistic theory the corresponding
may exist for smaller grains because quantal pair fluctuati
enhance a suitably defined ‘‘quantal gap parameter,’’1 yield-
ing a more important fraction of the experimental results21

Other effects mentioned above can give additional enhan
ments. Studies in this direction are planned for the future
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