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We analyze the ground-state energy and correlation energy of the Heisenberg model as a function of spin,
both in the ferromagnetic and the antiferromagnetic case, and in one, two and three dimensions. First, we
present a comparative analysis of known expressions for the ground-state &pé8yof homogeneous
Heisenberg models. In the one-dimensional antiferromagnetic case we propose an improved expression for
Eq(S), which takes into account Bethe-ansatz dataSerl/2. Next, we considenhomogeneoubleisenberg
models(e.g., exposed to spatially varying external figldd&/e prove a Hohenberg-Kohn-like theorem stating
that in this case the ground-state energy is a functional of the spin distribution and that this distribution
encapsulates the entire physics of the system, regardless of the external fields. Building on this theorem, we
then propose a local-density-type approximation that allows us to utilize the results obtained for homogeneous
systems in inhomogeneous situations too. We conjecture a scaling law for the dependence of the correlation
functional on dimensionality, which is well satisfied by existing numerical data. Finally, we investigate the
importance of the spin-correlation energy by comparing results obtained with the proposed correlation func-
tional to ones from an uncorrelated mean-field calculation, taking as our example a linear spin-density wave
state.
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[. INTRODUCTION whereB; can either be an externally applied field or an in-
In this paper we study the ground-state energy, correlatioternal field due to magnetism in the system. A variety of
energy, and related quantities of the Heisenberg model. Thdifferent sources and manifestations of the inhomogerigity
homogeneous Heisenberg model is defined by the Hamilas been studied in the recent literature, often in conjunction
tonian with the synthesis and investigation of real materials, whose
. .. magnetic properties are necessarily spatially inhomogeneous,
Hoz\](% S-S, (1) but stiII6t§> some extent describable by modified Heisenberg
& . PP models?® The interpretation of experimental data for realis-
wheres is a §p|n vector operator Sat'Sfy'@z|8m>_S(S_ tic materials in terrrpl)s of the Heisepnberg model, in particular
+1)[Sm) andS ,[Sm=m|Sm), andS andm are the spin iy the presence of staggered or otherwise spatially varying
quantum numbers of the particles under study. Although irmagnetic fields, must be based on a solid understanding of
accordance with common terminology th&s are called the behavior of the modéPR) in the presence of inhomoge-
spin operators, they really represent total angular momenturgity. . _ _ _
and are not restricted to be of purely spin origiij.) indi- The homogeneous Heisenberg modetiinl dimension
cates a sum over nearest neighbors on a lattice of dimensioAnd for S=1/2 has an exact analytical solution in terms of
ality d andJ is the spin-spin interaction constant, parametriz-the Bethe ans_a&, but the same ansatz does not work in
ing the exchange interaction of the underlying microscopi igher dimensions, in Wh|ch no exact solut|on_|s known. Itis
Hamiltonian!~3 For antiferromagnetisd>0, while for fer- also hard to generallze_to inhomogeneous situations. In the
romagnetismJ<<0. This model was originally proposed in prgsent paper we cqmblne exact and approximate resuits ob-
1926 to explain ferromagnetism in transition mefaisyut ta}med within a variety of dlfferent ap'proaches and tech-
has since found a large number of other applications to th@1dues: to provide a systematic analysis of the ground-state

magnetic properties of matts® Recent examples are anti- and correlation energy of the Heisenberg model in both the

ferromagnetic chains in complex oxides and other |OW_ferromagnetic and antiferromagnetic cases anddfeil,2,3
dimensions.

dimensional magnéetsor studies of magnetic effects on . . . .
In Sec. Il we provide a comparative analysis of available

crystal-field splittings in rare-earth compourfds. )
The inhomogeneous Heisenberg model, characterized H<Pressions for the ground-state energy of the homogeneous

broken translational symmetry, is obtained by adding a Spalje|senberg model as a functmn 9f spmdlmemopalltyd,

. . L ~ and coupling constani. This section also contains a pro-
tially varying magnetic field tdo, posal for an improved expression that goes beyond those
available in the literature in taking into account a Bethe an-
A :Jz éi &4+ 2 B;- S ’ ) satz result foiS=1/2. In Sec. Il we use concepts of density-

() i functional theory to extend the utility of the homogeneous
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results discussed in the preceeding section to inhomogeneous (U ~<eecm T T T T T T T
situations. This section includes a proof of a Hohenberg- SO FM
Kohn-type theorem for a large class of generalized Heisen- S
berg models, and a proposal for a simple local-density ap- -0 s
proximation. In Sec. IV we then study the correlation energy . (s) | o T d=l .
in homogeneous and inhomogeneous Heisenberg models, in ¢ < e
order to assess the importance of correlations and quantum -0 o ]
fluctuations as a function of dimensionality and spin. As an L N s
explicit example for a physically interesting type of inhomo- ~

geneity we consider a linear spin-density wave, and explore
the differences between a mean-field and a density- - . .
functional treatment of the resulting inhomogeneous spin \,

distribution. “«

Il. HOMOGENEOUS HEISENBERG MODELS: ~50 1 . I . I . L
GROUND-STATE ENERGY AS FUNCTION OF SPIN 1 2 S 3 4 5

This section provides a brief review of what is known £ 1. persite ground-state energy of the homogeneous ferro-
about the ground-state energy of homogeneous Heisenbefgagnetic Heisenberg model in one, two, and three dimensions.
models. Although the expressions collected below Jor
>0 andJ<0 andd=1,2,3 are given in various places in the corresponding ground-state fot— is known exactly by

literature, we have not found a systematic collection andyeans of the Bethe ansat$° The corresponding ground-
comparison in one single place. For the convenience of thgi;ia energy is

reader and future reference we therefore provide such a com-
parison below. We also add an expression to the[ks}.

(15)], which is a slight improvement on one of the earlier ~ E{™
results.

1 el 1
S=5.J,d=1|=Eg"| 5= 5,3,2=2| - INIn2.
)

A. Ferromagnetic case For the energy per site and interaction strength one obtains

Let us first consider the ferromagnetic case, which isffom this™
much simpler than the antiferromagnetic one. At zero tem-
perature all spins are parallel and the corresponding spin op- AEM
erators commute with each other. The exact ground-state en- €o
ergy is then the same as that obtained in the mean-field
approximation and is given by

1 1
T d—1]— T £AFM
5= 7.0 1) e

1 _>
s=3.3.d=1] ®

1
7 n2=-044314718. (1)
4

EG"(S3,2)=J5NS, &)

wherez is the number of nearest neighbors, which on linear, Similar exact results are not available in the general case,

square, and cubic lattices is related to the dimensionality bjor arbitrary S andd. However, a set of useful approximate

d=z/2 and, as abovel<0 for ferromagnetism. In Fig. 1 we expressions was derived in two early papers by

show the resulting curves for the energy per site and interadAnderson'™*?In the first of these it is shown by means of a

tion strength variational argument that the energy of the antiferromagnetic
ground state must lie in the interval

1
egM(S,d)zWESM(S,J,Z=2d)=—dSZ, (4) .
S

1+1
5 -

zS

z
<ef™(S,z2)<-— E82, (8)
for one, two, and three dimensions.

_ _ wherez=2d is again the coordination number of the linear,
B. Antiferromagnetic case square or cubic lattice under study. A simple estimate is ob-

The antiferromagneti(AFM) case is much more compli- tained by using the center of this intervéii.e.,
cated than the ferromagnetic one, because in spite of its
name the ground-state of the antiferromagnetic Heisenberg
model is not simply the “antiferromagnetic” state consisting
of alternating spin up and spin down states with respect to a
fixed direction(i.e., the Nel state, but a quantum superpo- but the quality of this estimate, which is quite good fbr
sition of states involving also spins along the perpendicular= 3, deteriorates fod=2 andd=1. A numerical calculation
axes. In the one-dimension&k 1/2 case the structure of the based on spin-wave theory leads to the more precise r&sults

(€)

4
er M(S,z)~— E52( 1+ Es)
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2
e M(S,d=1)=—-S?+ ;—1)5 (10
0.3633
=-S?( 1+ , (1)
S
0.15
es™(S,d=2)= —232( 1+ TB) (12)
0.09
ep™(S,d=3)=—-3% 1+T7)' (13
We can assess the quality of these expressions by substi-
tuting S=1/2 in the first of them. The resué;™(S= % ,d

=1)=-0.43169 is within 2.6% of the exact Bethe ansatz
value reported above. _ _

Indeed, significant improvement over EQ.0) has only FIG. 2. Per-site ground-state energy of the homogeneous anti-
been obtained recently, with the use of modern Computin@erromagnetic Heisenberg model in one, two, and three dimensions.
facilities and advanced numerical techniques. In such worlPashed lines: interval according to E@). Full lines: spin-wave
Lou et al® used(50 years after Ref. 22he density-matrix theory_ exprgssmn(il), (12), and(13), respectively. _FuII c!rclegn
renormalization groufDMRG) to calculate corrections to ©ne dimension only DMRG data of Ref. 13. The inset is a zoom
Eq. (10) for values ofSranging from 1/2 to 5 in steps of 1/2. 'Nto the low spin region of the main figure.

These authors propose a fit to their numerical data which in )
our present notation reads spin-wave result§11)—(13) and (in d=1) the DMRG data

of Ref. 13. Obviously, on this scale the spin-wave expression
2 1 (11) already provides an excellent approximation to the
;—1)5— 0.03262-0.003¢ DMRG data. Neither of the two fit§14) and (15) can be
distinguished from the much simpler expressiaf) on the
0.28 scale of the figure. Unfortunately, no highly precise numeri-
—(0_338— —) e "Scog27S). cal reference data, similar to the DMRG results of Ref. 13,
S (14) seem to be available id=2 andd=3, but the approxima-
tions leading to the simple analytical formulas given above
We note that forS=1/2, where it predictgh™'(s=1 d are expected to work better dsincreases. This expectation

=1)=—0.516 459, this fit is actually worse than the earlier!S corroborated by noting that the rigorous interva)

expression(11), deviating by 17% from the exact Bethe an- SNfiNks with increasingi. _ , ,
satz value. On the other hand, as shown in Ref. 13 by com- Interestingly, both the numerically highly precise DMRG

parison with DMRG data and other highly precise numerical

eéFM,fitl(S’d: 1) — SZ+

results, the fit is excellent for higher values $f -0.01 T T T T T
In order to obtain a closed expression that can also be 1D
applied atS=1/2, a slight modification to the fit by Lou - .
et al. is sufficient. To this end we propose the alternative
expression w —002f -
eQFM’mZ(S, d=1) fT ~0.03262 - 0.003/5 + b/S’ — (0338 - 0.28/5 + /S & "cos2nS
¥ - b = 0.0015 e
5 1 1 K% ¢ =0.0350
=-S5+ (; - 1) S—-0.03262- 0.00303—+0.0015§ = _onk i
0.28 0.03 i -
—10.338- <t e "Scog27S), (15)
which differs from Eq.(14) by the inclusion of two cubic ~0.04 — ; . "‘ —

terms in 18. The value atS=1/2 predicted by this expres-

sion e;™"(S= 3 ,d=1)=—0.446253, deviates by only  [ig. 3. sameasin Fig. 2, but on a reduced scale. On the vertical
0.7% from the exact Bethe ansatz value. axis the expressioiill) has been subtracted to display only the

Figures 2 and 3 display the various AFM energy exprescorrections to that result. Full circles: DMRG data of Ref. 13,
sions collected above. In Fig. 2 we compare the rigorous budashed line: fit proposed in that reference, present(E4), full
rather wide interval provided by expressi@8), with the line: fit proposed here, Eq15).
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data of Ref. 13(in d=1) and the spin-wave expressions explore how DFT can become a useful tool also in studies of
(11)—(13) (in d=1,2,3) systematically lie closer to the more the inhomogeneous Heisenberg model. To this end we prove,
negative boundary of the interval than to the less negativén Sec. Il A, a Hohenberg-Kohn-type theorem for a wide
one, and ind=1 the DMRG values are still a little closer to class of generalized Heisenberg modelswhich the models
this boundary than the curve predicted by Efjl). This discussed above are special casksSec. |l B we then use
shows that the lower bound in E¢B) is tighter than the this theorem and the explicit expressions discussed in Sec. Il
upper one. The simple estimat®), on the other hand, by to construct a simple local-density approximation for inho-
construction falls in the middle of the interval and becomesmogeneous Heisenberg models.

less reliable for lowed. In the interest of readability we have

fryot displayed the curves corresponding to this estimate inthe A ohenberg-Kohn theorem for generalized Heisenberg
igures.

Figure 3 shows that on a smaller scale the differences ) .
between the more precise expressions become important, A first question that must be answered before DFT can be
Here we compare the two fitd4) and (15) to the DMRG g;efully employed is what the fundamgntal vangble |s§khn
data. To make the details of the fits, and the interesting oghitioc DFT one mostly chooseslt6h<138part|cle densiy) or its
cillatory structure they display, clearly visible, we have sub-SPin-resolved counterpant,(r),™ "although other choices
tracted the spin-wave expressiétl), which is common to aré occasionally usefﬁﬁ‘ In the case of the Hubbard
both fits. The fit proposed above, H45), is slightly inferior mogelzzthe basic variable is the site occupation number
to the one developed by Loetal, Eq. (14), aroundS M- llnt_he present case we propose to use the spin vector
—3/2, but unlike the latter recovers the exactly knosn . Which is the only fundamental dynamical variable ap-
—1/2 data point to within less than one percent. pearing in the definition of .the'Helsenberg mode].

In the present paper we are mainly concerned with the In the interest of gen_erallty, in the present section we con-
homogeneous or inhomogeneous Heisenberg model on li§ider a generalized Heisenberg model of the form
ear, square, and cubic lattices. Expressi@nsiumerical val-
ueg for the ground-state energy can also be derived for many
other variations of the Heisenberg model, such as lattices
with helical boundary condition, or with anisotropic
interactions'® Although we do not consider such models in Unlike in Egs.(1) and (2) the sum in the first term on the
the present paper, many of our results can be extended tight-hand side is not restricted to nearest neighbors, and the
them in a straightforward way. interactionJ;; can depend in any way on the indices of the

involved sites. In particular, it can extend to next-nearest

neighbors and beyond, or alternate between ferromagnetic

IlI. INHOMOGENEOUS HEISENBERG MODELS: and antiferromagnetic along some direction in the crystal.
SPIN-DISTRIBUTION FUNCTIONALS Both of these features are found in realistic magnetic crys-

Based on the analysis of the preceeding section we red@ls. This relaxation of constraints drmay appear a consid-
ommend the use of expressiofid)—(13) in calculations re- erable complication, but |t_ turns 0L_Jt that the proof of the
quiring simple expressions for the ground-state energy of thElohenberg-Kohn theorem is essentially unaffected by the ex-
homogeneous antiferromagnetic Heisenberg model in ondf@ generality.(As pointed out above, we do not consider
two, and three dimensions. In one dimension, where th@nisotropic Heisenberg models, in whidhcouples differ-
simple expressions fare worst, either of the two (itd) and ~ €ntly to different components o, in this paper, but the
(15) provides a significant improvement in accuracy, butgenerallz_atmn of the theorem to this case is straightforward.
only the latter recovers the Bethe ansatz valu&atl/2. Following the steps of Hohenberg and Kohn, we now
However, the utility of any of these expressions is ratheiconsider two Hamiltonians with same interactidp, but
limited due to the restriction to spatial homogeneity. Exter-€xposed to two different magnetic fiel@s andB; . Thus
nally applied magnetic fields that vary in space, calculations
of magnetic effects on crystal-field splitting, description of
nontrivial internal order, etc., require use of tihomoge-
neousHeisenberg modé&l.Unfortunately, if translational in-
variance is broken the Bethe ansatz, spin-wave theory,
DMRG, and most other approaches encounter very signifi- H'\y’:[Z Jijg.éj+2 5B/
cant computational difficulties. L '

In the case ofab initio calculations a many-body tech- , L i
nique that has had considerable success in the application s%hereEo,and Eo are the ground-state energies in the fields
inhomogeneous systems is density-functional theoryi @ndB;', and¥ and " are the corresponding ground-
(DFT),**~8 but it is not very common to apply DFT to State wave functions. o o
model Hamiltonians also. However, following pioneering As a consequence of the variational principle we have the
work by Gunnarsson and Sailtammert® DFT was recently ~ inequality
formulated and applied for the one-dimensional Hubbard
model?®~2? In this section we build on this experience to Eo=(W|H|W)<(¥'|H|¥"), (19

models

ngiEj Jijs-éj+2i 5-B;. (16)

A= V=E, ¥, (17

VI =EW', (19
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sinceWV’ is not the ground-state wave function belonging to E.[S]= min(\P|I:||\If> (26)
H (assumed nondegeneratBy adding and subtracting the VoS

term Eié, -B{ on the right-hand side, the inequality becomeswhose minimum is the ground-state energy.

An immediate consequence of either formulation of the
E0=<W|F||‘I’><(\P’|F|'|\P’)+Z <‘I"|3‘(Bi—5{)|‘1">- proof is tAha_t the ground-s_tate expectatlgn v_alug of any ob-
i servableO, is also a functional of the spin distribution, de-
(20 fined via

Here the first term on the right-hand side is just the ground-

state energ¥,, of HamiltonianH’. With the abbreviations O[S1=(¥ISloNvIs, @7
AB=B;—B/, S=(¥|§|¥), andS =(¥'|§|¥’) the pre- and this functional is the same regardless of the strength and
ceeding equation then becomes direction of the magnetic fiel®;, i.e., it is universal with
respect to external fields. Note that the theorem applies to
any ground-state observable. For example, it implies that
Eo< E{)+E S -AB;. (21)  also all multispin correlation functions of the general form
I

Now we repeat the same argument starting with the Consina. =WISSeaSeea W) 8
HamiltonianA’. The variational principle guarantees that ~are uniquely determined by the single-spin expectation value
S,=(¥|S,|¥). This is trivially true for the nearest-neighbor
Eb= (W' | |0y <(¥|[| D). (220  correlation function Cﬂf’rﬂl of a homogeneous one-
dimensional system, which as a consequence of the defini-
By adding and subtracting the terhS - B;, we obtain, in tion of the homogeneous Hamiltoni&b) is simply given by

the same way as before, 1
Cont =13 Eo(S), (29
E(<Eo— >, S-AB;. (23) ,
i but the above proof guarantees that the more complicated
correlation functions involving more than two spins and/or
Addition of Egs.(21) and(23) leads to spatially inhomogeneous spin distributions are, in principle,
also functions ofS only.
Eo+Eq<Eo+Eg+2 (S —S)AB. (24 _ .y
i B. Local-density approximation
Another consequence of this Heisenberg-model formula-
tion of the Hohenberg-Kohn theorem is that the model’s
quound-state energy and spin distribution can be obtained by
application of the variational principle to spin distributions,
instead of wave functions. In complex situations this can be
a major simplification, but to extract this information is, of
course, still highly nontrivial. The most straightforward thing
to do would be to set up an approximation for the total en-
This contradiction shows that two distinct nondegenerat%rgy of the System under Study as a functional of the Spin
ground states can never lead to the same spin distributiogyjstribution, and to minimize with respect &. In ab initio
Hence, given some arbitrary spin distributi§nthere isat  DFT this is not the preferred way to proceed because it turns
most onewave function which gives rise to it. In other out to be hard to conceive good density functionals for the
words: the spin distribution uniquely determines the wavekinetic energy. In practical applications ab initio DFT one
function. This means that the wave function is a fUﬂCti%‘i’]a' therefore Commomy emp|0ys an indirect minimization
of the spin distribution, i.e ¥ =W[§]. This is the statement scheme, leading to the widely used Kohn-Sham equations.
of the Hohenberg-Kohn theorem for the Heisenberg model.Although this could also be done in the present case, there is
For completeness we mention that the above proof by,o need for introducing a Kohn-Sham system for the Heisen-
contradiction, patterned after the one first presented by Hoberg model, since there is no kinetic-energy term in the first
henberg and Kohn in thab initio case’’ is not the only  place. Direct minimization of total-energy expressions seems
possible one. The constrained-search technique of ®evy much more conveniertand more analogous to the way the
and Lielf® is also easily adapted to the present case. Thenodel is usually treated in statistical physi¢san indirect
ground-state wave function in this approach is uniquely deminimizations. In order to explore how such a direct mini-
fined by its spin distribution as the wave function that mini- mization can proceed we first construct, in this subsection, a
mizes(\lf||:||\If> and reproduces; . This minimization de- local-density approximation for the simpler Heisenberg mod-
fines the functional els discussed in the preceding section.

If we now assume tha® =S, i.e., that the two spin distri-
butions corresponding to the two different wave functidhs
andWV' are identical, then the previous equation reduces t
the contradiction

Eo+E(<Eg+Ejg. (25
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Let us write the two contributions to the ground-state en-mation for the correlation energy of amhomogeneouanti-
ergy of the inhomogeneous Heisenberg modét aandEg, ferromagnetic Heisenberg model in one dimension becomes
which are the ground-state expectation values of the first and

second terms on the right-hand side of E2), respectively. 2
The mean-field approximation fd#; yields Ecarm,a—1[S1=1J —-1 Z IS, (36)
MFr g 7 — — MF h d Eql0) f S). Of Eqs(14
EY [S]_JiEj S,SjJrzi S-B=EVS]+Eg[S], where we used Eq10) for ey(S) course Eqs(14) or

(15) can be used in the same waydr1, and Eqs(12) and
(300 (13 in d=2 andd=3, respectively. The full ground-state

. . energy is then for angd approximated as
where, as above§=(¥|S|¥). In Sec. IV we quantify the

error made by the neglect of correlation effects arising from ~ELDAr e 1_ EMF LDA
use of EV[S ] in place ofE,[S . EolS1~Eq [SI=E; [S]+Es[SI+EC[S]. -
A guideline for the construction of better functionals than
Eg"F[S] is provided byab initio DFT (Ref. 16 or recent Clearly Eq.(35) is a rather simple approximation, whose
work on the Hubbard modé?~2?? In the former, the total quality may vary widely depending on the circumstances
energy of an arbitrarily inhomogeneous system is written age.g., values of) and d, or spatial dependence &;). At
present it is motivated mainly by the considerable practical
Eoln(r)]=Tdn(r) ]+ Ex[n(r) ]+ E,[n(r)]+Exdn(r)], success of its counterpart @b inito DFT,'*~*® and by the
(3D encouraging results obtained recently with a Bethe-ansatz
based LDA for inhomogeneous Hubbard mod8? It is
clear, however, that the LDA contains essential correlation
1 n(rn(r’) effec?s not accounted for by t_he_ m_ean-field exprgs(;m))l.
Enln(r)]= _j d3rf d3rr —L—~ 7 (32)  Inspite of the extra term, minimization of E4) with (35)
2 [r—r’] is no more complicated than that of E§0). Equation(35)
. . thus shows one way in which the expressions listed in Sec. II
the Hartree energy, arid, the potential energy arising from ¢, ), 0geneous systems can be applied to inhomogeneous

the external fieldv(r). The Ioc_al—density approximation situations. A simple application of these ideas is worked out
(LDA) for the exchange-correlatioixc) energy is in Sec. IVB.

whereT is the noninteracting kinetic energy,

Exc[n(r)]wE)&EA[n(r)]zf d*rewe(Mlnngy - (39 C. A scaling hypothesis

. . . . An interesting feature of the functionals obtained by com-
This expression locally substitutes the energy of the in-  pining £q.(35) with the explicit formulas of Sec. Il is that

homogeneous system by the one of a homogeneous systgR), resyiting expressions depend explicitly on the interaction
of same density. The necessary input expressio,f@n) is 3 anq the dimensionalitg. The dependence of theb initio
obtained by subtracting the Hartree and noninteracting Kiynctionals on the interaction and the dimensionality is not
netic energy from the ground-state energy of the homoge&e|| known, and in particular the dependence of the func-
neous systengo(n). o tional is still subject of many ongoing investigatioif<Even
In the present context we write, in analogy to E8{), in the much simpler case of the Hubbard model it is only the
ME interaction dependence which is featured explicitly in the
Eol SI=Ey"[S]1+Ee[SI+EJLS], (34 available functionald®-22 whereas the dependence on di-
whereE}" is defined in Eq(30) E is the potental energy =Bt = CeSEtey Lo e e ot

arising from the external fielB; , andE, is by definition the : . e . . .
difference between the mean-field result and the correct oné:'Imple expressions that depend explicitly on dimensionality

ie. the correlation energyThere is no Heisenberg-model and interaction, so that the role of these parameters in the
o gy 9 functional can be explored in a simplified environment.

counterpart to the kinetic energy term, and we avoid the As an explicit example, we consider scaling properties of
expression “exchange-correlation energy” because in com;, P pe, g prop

mon terminology the entire Heisenberg Hamiltonian is due tci[.he funcﬂonzzallas a function of d|men3|onaldyThe Hartree-
“exchange.”) ike term «S° in Egs.(11) to (13) clearly scales linearly with

To obtain an explicit scheme we now propose to approxi-d' Hence

mate, in analogy to Eq33), eV (d)—delF(d=1). 39

EC[S]*EEDA[S]ZZ e(S)ls-s (35 Interestingly, the correlation energy contributiers also
obeys a similar, albeit less obvious, scaling law. From the

wheree,(S) is obtained by subtracting the mean-field energyexplicit expressiong11)—(13) for e;™(d) one obtains for
—d$? from the homogeneous expressions &(S) dis-  the relation between the ratio of the correlation energies and

cussed in Sec. Il. As an explicit example, the LDA approxi-the ratio of the dimensionalities
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e/(d=2) 0 8702(2>X 39 0.8 I .
e(d=1) 1 g
s
and 0.6 [,
ex(d=3) 3 |
— N y - ", DMRGfit
e.(d=2) 0.92% AR (40 v Dl
04 ¥
wherex andy are exponents to be determined. Numerically \'{‘
one findsx=—0.201 andy=—0.203. The near equality of ’

these two exponents among each other and to the integer
fraction —1/5 leads us to conjecture the following dimen- 0.2
sional scaling law:

e.(d)=d e, (d=1), (41)

where the scaling exponeni=1/5. This scaling law ac-
counts for the numbers in Eq&l1)—(13) to within ~10° 3.
Of course, at present the scaling l&l) is only a con- FIG. 4. Correlation energy of the antiferromagnetic homoge-
jecture, but one that is consistent with the numbers of spinneous Heisenberg model in one, two, and three dimensions, as a
wave theory. It also correctly predicts thatds>~ the cor- function of spin. The curves labelet=1,2,3 are obtained by sub-
relation energy vanishes, leaving behind only the mean-fieltracting the mean-field energy from the expressidis—(13), and
contribution to the total energy. Since very little is known the one labeled d=1 DMRG fit” is obtained by using our fit Eq.
about the dimension dependence of density functionals wéL5 instead of Eq(11). Main figure: correlation energy relative to
cannot say at present whether the existence of such a law mean-field energy. Inset: absolute size of correlation energy.
a mere coincidence, a particular property of the Heisenberg
model, or a general phenomenon, but we hope that our olsions Eqgs(11), (12), and(13). For one dimension we also
servation of dimensional scaling stimulates further researchlot the difference between the mean-field result and the
along these lines. more precise expressi@h5). These differences represent the
One practical use that can be made of ) is to con-  absolutesize of the correlation energy. In the main part of
vert an approximate functional obtained for some valud of Fig. 4 we display theelative size of the correlation energy
into one for another dimensionality. Counterparts to thisas compared to the mean-field energy. Several conclusions
property for other Hamiltonians are interesting not only forcan be drawn from inspection of these curves.
ab initio calculations(in which many results are known for (i) The inset of Fig. 4 shows that the absolute size of the
d=3, but much less in=2 ord=1),** but also in the case correlation energy increases towards larger spins. This seems
of the Hubbard model, in which the LDA functional is counterintuitive, because larger spins should more closely

known only ford=1.2°-22 mimick the classical limit, in which there are no quantum
fluctuations and the mean-field approximation becomes exact
IV. CORRELATION ENERGY OF THE in the ground state. However, as shown in the main figure,
ANTIFERROMAGNETIC HEISENBERG MODEL the relative weight of the correlation energy as compared to

the mean-field energy decreases towards larger spins. Inter-
In this section we apply the results obtained above to &stingly, the naive expectation that correlations should be-

study of the correlation energy of the antiferromagneticcome less important near the classical limit is thus only true
Heisenberg model. In Sec. IV A we compare the homogein relative terms, but not in absolute ones.
neous expressions of Sec. Il with their mean-field approxi- (ji) On similar grounds one would expect that correlations
mation, to assess the importance and behavior of the corrgecome less important for larger dimensionality. This is con-
lation energy. In Sec. IV B we study a physically interestingfirmed both by the main figure and the inset, showing that
inhomogeneity, a spin-density wave, with the LDA func- correlations decrease in absolute size and relative to the
tional (36). mean-field energy ag increases. The way theedependence

approaches the classical limit is thus qualitatively different

A. Homogeneous system from the way the spin dependence does.

As in the previous section we define the correlation en- . (iii) The mean-field energy is not reliable for any dimen-

ergy as the difference between the total ground-state energyPn@lity d<3 andS<5, leading to errors that can be larger
and its mean-field approximation. For a homogeneous syt anJ in absolute size and larger than 50% in relative terms.

tem on a linear, square or cubic lattice the latter yields This observation puts tight ””.‘“S on the reliability of this
rather widely used approximation.

EgAF(S,J,d): —JdNS (42) (iv) The improved treatment of correlationsda=1, rep-

resented by the curves labeled “DMRG fit,” does not invali-

and thusey(S)=—d<%. In the inset of Fig. 4 we plot the date conclusionsi), (ii), and (iii), obtained on the basis of
difference between this value and the total energy expresghe spin-wave expressiondl)—(13). However, both the
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main figure and the inset of Fig. 4 show that it enhances the 0.2 T I T I T I T I T
importance of correlations with respect to the mean-field val-
ues, as compared to the simpler expressions. E‘,MF
B. Example of an inhomogeneous system: i ’
a linear spin-density wave

As an example of a truly inhomogeneous situation, to EJLDA
which our LDA functional(35) can be applied, we now con- 0 =
sider a simple but physically interesting inhomogeneity,
namely, a spin-density wau&DW) imposed by an external
field on a chain with antiferromagnetic coupling. E LDA

We model the SDW state by taking i ¢ ]

Sy=Su,cospy, (43
where ¢,=2mw(n—1)/\ andu, denotes the unit vectorin g2L— L o L ., 1 . 1
the x direction. This choice describes a linear SDW of am- 10 20 A 30 40 50
plitude Sand wave length, polarized along the direction.
(The lattice is taken to be a chain along theirection) The FIG. 5. Interaction energk, of a spin-density wave imposed on
corresponding mean-field energy is an antiferromagnetic chain, as a function of wave length of the spin
modulation. Upper curve: mean-field approximation, defined by Eq.
N—-1 N (44). Lower curve: local-density approximation for the correlation
E('\)"F[S]zJ 21 S Shiat 21 S, BnEEg"F[S]—i— Eg[S], energy, as given by E§36). Middle curve: LDA result for interac-
n= n=

(44) tion energy, obtained as sum of the two other curves.
whereN is the number of lattice sites arig}, is a magnetic  corresponds to a maximum of tlkeversus\ curves. In the
field that can be thought of as either externally applibdis  opposite limit the spatial modulation of the SDW can take
forcing the system into a state with spin distributi@i®)] or local advantage of the AFM tendency of the underlying ho-
generated self-consistently, or a combination of both. Thenogeneous system. This leads to a lowering of the energy as
LDA approximation for the ground-state energy is, on thex—0.
other hand, (i) OnceN\ is larger than approximately 10 lattice con-
LDA VIE LDA VIE stants theE versus\ curves saturate. We interpret this in
Eo [SI=Eg [SI+EC[SI=E; [S]+Eg[S] terms of the correlation length of the antiferromagnetic
N model by noting that once the SDW modulation takes place
AFM — ELDA on a scale larger than a few correlation lengths, the system
+21 Ce (S)|%|3|_EJ [SI+EslS ], will be relatively insensitive to further approximation to the
(45) ferromagnetic state.
(iv) The overall downshift of the LDA curve compared to
where we use, for simplicity, Ed36) for ESPA[S 1. the mean-field one implies that the ferromagnetic configura-
For the given spin distributiofd3) we now compare the tion is energetically less unfavorable in the former approxi-
predictions of the mean-field and LDA expressions for themation than in the latter. Physically this is reasonable, be-
interaction energfe ;. Note that this is not a self-consistent cause the correlations accounted forthybreak up the rigid
calculation, but a comparison of the two expressi¢hd AFM pattern of the Nel state found in the mean-field ap-
and(45) for a fixed distribution specified by E¢43). In Fig. ~ proximation, and replace it by a complex ground state in-
5 we plotE}F, E;A, andELP” as functions of, the wave ~ Volving spins along all three directions in space.
length of the SDW. Since the terfg, arising from the
magnetic field, is the same in both approximations we only
display the interaction enerdy;. The presence of an exter-
nal field with symmetry different from the one of the ground-  Density-functional theory is commonly applied to tab
state of the unperturbed antiferromagnetic system gives ris@itio Hamiltonian, in the context of electronic structure cal-
to a rich physics. Particularly, we note the following points. culations of molecules or solid§*8 Applications to model
(i) Addition of the correlation energy to the mean-field Hamiltonians are rare, although they can be useful both for
result lowers the total energy considerably. This is, qualitathe analysis of these models in the presence of inhomogene-
tively, the same behavior we found previously in homoge-ity (broken translational invariangeand for further develop-
neous systems and illustrates again the importance of goingent of DFT. The present work on the Heisenberg model
beyond the mean-field expression for the energy. serves to exemplify these two complementary aspects.
(i) As N— the SDW approaches a ferromagnetic spin The Heisenberg Hamiltonian is much simpler than the
configuration. Since the unperturbed homogeneous model idubbard Hamiltonian, which describes the charge degrees of
antiferromagnetic this state is energetically unfavored, andreedom in addition to the spin ones, or than #ie initio

V. SUMMARY AND OUTLOOK
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Hamiltonian involving the long-range Coulomb interaction of internal magnetic order that breaks translational symme-
between charges in a real crystal. The Heisenberg model mayy.
therefore be considered a simplified environment in which The simple LDA-type correlation functional based on
concepts and methods of DFT can be tested and analyzeHgs.(35) and(11) is seen to produce significant quantitative
An interesting example is the study of the interaction andchange and qualitative improvement over the mean-field ap-
dimension dependence &t functionals, about which little  proximation, at very little extra computational cost. This ob-
is known in theab initio case. servation encourages us to envisage more complex applica-
On the other hand, the LDA for inhomogeneous Heisentions of this functional, such as to impurity states in the
berg models is no more complicated, formally, than theHeisenberg model. An extension of the present work to a
mean-field approximation, but it accounts by construction forstudy of the thermodynamics of inhomogeneous Heisenberg
essential correlation effects missed by the latter. Analysis ofmodels[employing theT>0 formulation of DFT(Ref. 31)]
the correlation energy of homogeneous and inhomogeneous also planned for the future.
Heisenberg models, as function of spin and dimensionality,
illustrates that such effects are crucial for a quantitative de-
scription of the ground state. The above LDA functional may
thus be useful in studies of the behavior of the Heisenberg This work was supported by FAPESP. We thank L. N.
model in spatially varying external fields or in the presenceOliveira and N. A. Lima for useful discussions.
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