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Spin-distribution functionals and correlation energy of the Heisenberg model
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We analyze the ground-state energy and correlation energy of the Heisenberg model as a function of spin,
both in the ferromagnetic and the antiferromagnetic case, and in one, two and three dimensions. First, we
present a comparative analysis of known expressions for the ground-state energyE0(S) of homogeneous
Heisenberg models. In the one-dimensional antiferromagnetic case we propose an improved expression for
E0(S), which takes into account Bethe-ansatz data forS51/2. Next, we considerinhomogeneousHeisenberg
models~e.g., exposed to spatially varying external fields!. We prove a Hohenberg-Kohn-like theorem stating
that in this case the ground-state energy is a functional of the spin distribution and that this distribution
encapsulates the entire physics of the system, regardless of the external fields. Building on this theorem, we
then propose a local-density-type approximation that allows us to utilize the results obtained for homogeneous
systems in inhomogeneous situations too. We conjecture a scaling law for the dependence of the correlation
functional on dimensionality, which is well satisfied by existing numerical data. Finally, we investigate the
importance of the spin-correlation energy by comparing results obtained with the proposed correlation func-
tional to ones from an uncorrelated mean-field calculation, taking as our example a linear spin-density wave
state.
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I. INTRODUCTION
In this paper we study the ground-state energy, correla

energy, and related quantities of the Heisenberg model.
homogeneous Heisenberg model is defined by the Ha
tonian

Ĥ05J(̂
i j &

Ŝi•Ŝj , ~1!

where Ŝi is a spin vector operator satisfyingŜi
2uSm&5S(S

11)uSm& and Ŝi ,zuSm&5muSm&, andS and m are the spin
quantum numbers of the particles under study. Although
accordance with common terminology the,Ŝi ’s are called
spin operators, they really represent total angular momen
and are not restricted to be of purely spin origin.^ i j & indi-
cates a sum over nearest neighbors on a lattice of dimens
ality d andJ is the spin-spin interaction constant, parametr
ing the exchange interaction of the underlying microsco
Hamiltonian.1–3 For antiferromagnetismJ.0, while for fer-
romagnetismJ,0. This model was originally proposed i
1926 to explain ferromagnetism in transition metals,4,5 but
has since found a large number of other applications to
magnetic properties of matter.1–3 Recent examples are ant
ferromagnetic chains in complex oxides and other lo
dimensional magnets6 or studies of magnetic effects o
crystal-field splittings in rare-earth compounds.7

The inhomogeneous Heisenberg model, characterize
broken translational symmetry, is obtained by adding a s
tially varying magnetic field toĤ0,

Ĥ5J(̂
i j &

Ŝi•Ŝj1(
i

Bi•Ŝi , ~2!
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whereBi can either be an externally applied field or an i
ternal field due to magnetism in the system. A variety
different sources and manifestations of the inhomogeneityBi
has been studied in the recent literature, often in conjunc
with the synthesis and investigation of real materials, wh
magnetic properties are necessarily spatially inhomogene
but still to some extent describable by modified Heisenb
models.6,8 The interpretation of experimental data for real
tic materials in terms of the Heisenberg model, in particu
in the presence of staggered or otherwise spatially vary
magnetic fields, must be based on a solid understandin
the behavior of the model~2! in the presence of inhomoge
neity.

The homogeneous Heisenberg model ind51 dimension
and for S51/2 has an exact analytical solution in terms
the Bethe ansatz,9,10 but the same ansatz does not work
higher dimensions, in which no exact solution is known. It
also hard to generalize to inhomogeneous situations. In
present paper we combine exact and approximate results
tained within a variety of different approaches and tec
niques, to provide a systematic analysis of the ground-s
and correlation energy of the Heisenberg model in both
ferromagnetic and antiferromagnetic cases and ford51,2,3
dimensions.

In Sec. II we provide a comparative analysis of availab
expressions for the ground-state energy of the homogen
Heisenberg model as a function of spinS, dimenionalityd,
and coupling constantJ. This section also contains a pro
posal for an improved expression that goes beyond th
available in the literature in taking into account a Bethe a
satz result forS51/2. In Sec. III we use concepts of densit
functional theory to extend the utility of the homogeneo
©2003 The American Physical Society23-1
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results discussed in the preceeding section to inhomogen
situations. This section includes a proof of a Hohenbe
Kohn-type theorem for a large class of generalized Heis
berg models, and a proposal for a simple local-density
proximation. In Sec. IV we then study the correlation ene
in homogeneous and inhomogeneous Heisenberg mode
order to assess the importance of correlations and quan
fluctuations as a function of dimensionality and spin. As
explicit example for a physically interesting type of inhom
geneity we consider a linear spin-density wave, and exp
the differences between a mean-field and a dens
functional treatment of the resulting inhomogeneous s
distribution.

II. HOMOGENEOUS HEISENBERG MODELS:
GROUND-STATE ENERGY AS FUNCTION OF SPIN

This section provides a brief review of what is know
about the ground-state energy of homogeneous Heisen
models. Although the expressions collected below forJ
.0 andJ,0 andd51,2,3 are given in various places in th
literature, we have not found a systematic collection a
comparison in one single place. For the convenience of
reader and future reference we therefore provide such a c
parison below. We also add an expression to the list@Eq.
~15!#, which is a slight improvement on one of the earli
results.

A. Ferromagnetic case

Let us first consider the ferromagnetic case, which
much simpler than the antiferromagnetic one. At zero te
perature all spins are parallel and the corresponding spin
erators commute with each other. The exact ground-state
ergy is then the same as that obtained in the mean-
approximation and is given by

E0
FM~S,J,z!5J

z

2
NS2, ~3!

wherez is the number of nearest neighbors, which on line
square, and cubic lattices is related to the dimensionality
d5z/2 and, as above,J,0 for ferromagnetism. In Fig. 1 we
show the resulting curves for the energy per site and inte
tion strength

e0
FM~S,d!5

1

NuJu
E0

FM~S,J,z52d!52dS2, ~4!

for one, two, and three dimensions.

B. Antiferromagnetic case

The antiferromagnetic~AFM! case is much more compli
cated than the ferromagnetic one, because in spite o
name the ground-state of the antiferromagnetic Heisenb
model is not simply the ‘‘antiferromagnetic’’ state consistin
of alternating spin up and spin down states with respect
fixed direction~i.e., the Ne´el state!, but a quantum superpo
sition of states involving also spins along the perpendicu
axes. In the one-dimensionalS51/2 case the structure of th
02442
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corresponding ground-state forN→` is known exactly by
means of the Bethe ansatz.3,9,10 The corresponding ground
state energy is

E0
AFMS S5

1

2
,J,d51D5E0

FMS S5
1

2
,J,z52D2JNln2.

~5!

For the energy per site and interaction strength one obt
from this10

e0
AFMS S5

1

2
,d51D5

1

NJ
E0

AFMS S5
1

2
,J,d51D ~6!

5
1

4
2 ln2520.443 147 18. ~7!

Similar exact results are not available in the general ca
for arbitraryS andd. However, a set of useful approxima
expressions was derived in two early papers
Anderson.11,12 In the first of these it is shown by means of
variational argument that the energy of the antiferromagn
ground state must lie in the interval11

2
z

2
S2S 11

1

zSD<e0
AFM~S,z!<2

z

2
S2, ~8!

wherez52d is again the coordination number of the linea
square or cubic lattice under study. A simple estimate is
tained by using the center of this interval,12 i.e.,

e0
AFM~S,z!'2

z

2
S2S 11

1

2zSD , ~9!

but the quality of this estimate, which is quite good ford
53, deteriorates ford52 andd51. A numerical calculation
based on spin-wave theory leads to the more precise resu12

FIG. 1. Per-site ground-state energy of the homogeneous fe
magnetic Heisenberg model in one, two, and three dimensions
3-2
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e0
AFM~S,d51!52S21S 2

p
21DS ~10!

52S2S 11
0.363 38

S D , ~11!

e0
AFM~S,d52!522S2S 11

0.158

S D , ~12!

e0
AFM~S,d53!523S2S 11

0.097

S D . ~13!

We can assess the quality of these expressions by su

tuting S51/2 in the first of them. The resulte0
AFM(S5 1

2 ,d
51)520.431 69 is within 2.6% of the exact Bethe ansa
value reported above.

Indeed, significant improvement over Eq.~10! has only
been obtained recently, with the use of modern compu
facilities and advanced numerical techniques. In such w
Lou et al.13 used~50 years after Ref. 12! the density-matrix
renormalization group~DMRG! to calculate corrections to
Eq. ~10! for values ofS ranging from 1/2 to 5 in steps of 1/2
These authors propose a fit to their numerical data whic
our present notation reads

e0
AFM,fit1~S,d51!52S21S 2

p
21DS20.0326220.0030

1

S

2S 0.3382
0.28

S De2pScos~2pS!.

~14!

We note that forS51/2, where it predictse0
AFM,fit1(S5 1

2 ,d
51)520.516 459, this fit is actually worse than the earl
expression~11!, deviating by 17% from the exact Bethe a
satz value. On the other hand, as shown in Ref. 13 by c
parison with DMRG data and other highly precise numeri
results, the fit is excellent for higher values ofS.

In order to obtain a closed expression that can also
applied atS51/2, a slight modification to the fit by Lou
et al. is sufficient. To this end we propose the alternat
expression

e0
AFM,fit2~S,d51!

52S21S 2

p
21DS20.032 6220.0030

1

S
10.0015

1

S3

2S 0.3382
0.28

S
1

0.035

S3 De2pScos~2pS!, ~15!

which differs from Eq.~14! by the inclusion of two cubic
terms in 1/S. The value atS51/2 predicted by this expres

sion e0
AFM,fit2(S5 1

2 ,d51)520.446 253, deviates by onl
0.7% from the exact Bethe ansatz value.

Figures 2 and 3 display the various AFM energy expr
sions collected above. In Fig. 2 we compare the rigorous
rather wide interval provided by expression~8!, with the
02442
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spin-wave results~11!–~13! and ~in d51) the DMRG data
of Ref. 13. Obviously, on this scale the spin-wave express
~11! already provides an excellent approximation to t
DMRG data. Neither of the two fits~14! and ~15! can be
distinguished from the much simpler expression~11! on the
scale of the figure. Unfortunately, no highly precise nume
cal reference data, similar to the DMRG results of Ref. 1
seem to be available ind52 andd53, but the approxima-
tions leading to the simple analytical formulas given abo
are expected to work better asd increases. This expectatio
is corroborated by noting that the rigorous interval~8!
shrinks with increasingd.

Interestingly, both the numerically highly precise DMR

FIG. 2. Per-site ground-state energy of the homogeneous
ferromagnetic Heisenberg model in one, two, and three dimensi
Dashed lines: interval according to Eq.~8!. Full lines: spin-wave
theory expressions~11!, ~12!, and~13!, respectively. Full circles~in
one dimension only!: DMRG data of Ref. 13. The inset is a zoom
into the low spin region of the main figure.

FIG. 3. Same as in Fig. 2, but on a reduced scale. On the ver
axis the expression~11! has been subtracted to display only th
corrections to that result. Full circles: DMRG data of Ref. 1
dashed line: fit proposed in that reference, present Eq.~14!, full
line: fit proposed here, Eq.~15!.
3-3
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VALTER L. LÍ BERO AND K. CAPELLE PHYSICAL REVIEW B68, 024423 ~2003!
data of Ref. 13~in d51) and the spin-wave expression
~11!–~13! ~in d51,2,3) systematically lie closer to the mo
negative boundary of the interval than to the less nega
one, and ind51 the DMRG values are still a little closer t
this boundary than the curve predicted by Eq.~11!. This
shows that the lower bound in Eq.~8! is tighter than the
upper one. The simple estimate~9!, on the other hand, by
construction falls in the middle of the interval and becom
less reliable for lowerd. In the interest of readability we hav
not displayed the curves corresponding to this estimate in
figures.

Figure 3 shows that on a smaller scale the differen
between the more precise expressions become impor
Here we compare the two fits~14! and ~15! to the DMRG
data. To make the details of the fits, and the interesting
cillatory structure they display, clearly visible, we have su
tracted the spin-wave expression~11!, which is common to
both fits. The fit proposed above, Eq.~15!, is slightly inferior
to the one developed by Louet al., Eq. ~14!, around S
53/2, but unlike the latter recovers the exactly knownS
51/2 data point to within less than one percent.

In the present paper we are mainly concerned with
homogeneous or inhomogeneous Heisenberg model on
ear, square, and cubic lattices. Expressions~or numerical val-
ues! for the ground-state energy can also be derived for m
other variations of the Heisenberg model, such as latt
with helical boundary conditions,14 or with anisotropic
interactions.15 Although we do not consider such models
the present paper, many of our results can be extende
them in a straightforward way.

III. INHOMOGENEOUS HEISENBERG MODELS:
SPIN-DISTRIBUTION FUNCTIONALS

Based on the analysis of the preceeding section we
ommend the use of expressions~11!–~13! in calculations re-
quiring simple expressions for the ground-state energy of
homogeneous antiferromagnetic Heisenberg model in o
two, and three dimensions. In one dimension, where
simple expressions fare worst, either of the two fits~14! and
~15! provides a significant improvement in accuracy, b
only the latter recovers the Bethe ansatz value atS51/2.
However, the utility of any of these expressions is rath
limited due to the restriction to spatial homogeneity. Ext
nally applied magnetic fields that vary in space, calculatio
of magnetic effects on crystal-field splitting, description
nontrivial internal order, etc., require use of theinhomoge-
neousHeisenberg model.8 Unfortunately, if translational in-
variance is broken the Bethe ansatz, spin-wave the
DMRG, and most other approaches encounter very sig
cant computational difficulties.

In the case ofab initio calculations a many-body tech
nique that has had considerable success in the applicatio
inhomogeneous systems is density-functional the
~DFT!,16–18 but it is not very common to apply DFT to
model Hamiltonians also. However, following pioneerin
work by Gunnarsson and Scho¨nhammer,19 DFT was recently
formulated and applied for the one-dimensional Hubb
model.20–22 In this section we build on this experience
02442
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explore how DFT can become a useful tool also in studies
the inhomogeneous Heisenberg model. To this end we pr
in Sec. III A, a Hohenberg-Kohn-type theorem for a wid
class of generalized Heisenberg models~of which the models
discussed above are special cases!. In Sec. III B we then use
this theorem and the explicit expressions discussed in Se
to construct a simple local-density approximation for inh
mogeneous Heisenberg models.

A. Hohenberg-Kohn theorem for generalized Heisenberg
models

A first question that must be answered before DFT can
usefully employed is what the fundamental variable is. Inab
initio DFT one mostly chooses the particle densityn(r ) or its
spin-resolved counterpartns(r ),16–18although other choices
are occasionally useful.23–25 In the case of the Hubbard
model the basic variable is the site occupation num
ni .19–22In the present case we propose to use the spin ve
Si , which is the only fundamental dynamical variable a
pearing in the definition of the Heisenberg model.

In the interest of generality, in the present section we c
sider a generalized Heisenberg model of the form

Ĥg5(
i j

Ji j Ŝi•Ŝj1(
i

Ŝi•Bi . ~16!

Unlike in Eqs.~1! and ~2! the sum in the first term on the
right-hand side is not restricted to nearest neighbors, and
interactionJi j can depend in any way on the indices of t
involved sites. In particular, it can extend to next-near
neighbors and beyond, or alternate between ferromagn
and antiferromagnetic along some direction in the crys
Both of these features are found in realistic magnetic cr
tals. This relaxation of constraints onJ may appear a consid
erable complication, but it turns out that the proof of t
Hohenberg-Kohn theorem is essentially unaffected by the
tra generality.~As pointed out above, we do not consid
anisotropic Heisenberg models, in whichJ couples differ-
ently to different components ofS, in this paper, but the
generalization of the theorem to this case is straightforwa!

Following the steps of Hohenberg and Kohn, we no
consider two Hamiltonians with same interactionJi j , but
exposed to two different magnetic fieldsBi andBi8 . Thus

ĤC5F(
i , j

Ji j Ŝi•Ŝj1(
i

Ŝi•Bi GC5E0C, ~17!

Ĥ8C85F(
i , j

Ji j Ŝi•Ŝj1(
i

Ŝi•Bi8GC85E08C8, ~18!

whereE0 andE08 are the ground-state energies in the fie
Bi and Bi8 , and C and C8 are the corresponding ground
state wave functions.

As a consequence of the variational principle we have
inequality

E05^CuĤuC&,^C8uĤuC8&, ~19!
3-4



to
e
e

nd

th

at
tio

r
v
l

t
e
b

H

vy
Th
de
ni-

he
ob-
-

and

s to
hat

lue
r
-
fini-

ted
/or
le,

la-
l’s
by

s,
be

of
g
n-
pin

rns
the

n
ns.

re is
en-
rst
ms
e

i-
n, a
d-

SPIN-DISTRIBUTION FUNCTIONALS AND . . . PHYSICAL REVIEW B68, 024423 ~2003!
sinceC8 is not the ground-state wave function belonging
Ĥ ~assumed nondegenerate!. By adding and subtracting th
term ( iŜi•Bi8 on the right-hand side, the inequality becom

E05^CuĤuC&,^C8uĤ8uC8&1(
i

^C8uŜi•~Bi2Bi8!uC8&.

~20!

Here the first term on the right-hand side is just the grou
state energyE08 , of HamiltonianĤ8. With the abbreviations

DBi5Bi2Bi8 , Si5^CuŜi uC&, andSi85^C8uŜi uC8& the pre-
ceeding equation then becomes

E0,E081(
i

Si8•DBi . ~21!

Now we repeat the same argument starting with
HamiltonianĤ8. The variational principle guarantees that

E085^C8uĤ8uC8&,^CuĤ8uC&. ~22!

By adding and subtracting the term( iŜi•Bi , we obtain, in
the same way as before,

E08,E02(
i

Si•DBi . ~23!

Addition of Eqs.~21! and ~23! leads to

E01E08,E01E081(
i

~Si82Si !DBi . ~24!

If we now assume thatSi85Si , i.e., that the two spin distri-
butions corresponding to the two different wave functionsC
andC8 are identical, then the previous equation reduces
the contradiction

E01E08,E01E08 . ~25!

This contradiction shows that two distinct nondegener
ground states can never lead to the same spin distribu
Hence, given some arbitrary spin distributionSi there isat
most onewave function which gives rise to it. In othe
words: the spin distribution uniquely determines the wa
function. This means that the wave function is a functiona26

of the spin distribution, i.e.,C5C@Si #. This is the statemen
of the Hohenberg-Kohn theorem for the Heisenberg mod

For completeness we mention that the above proof
contradiction, patterned after the one first presented by
henberg and Kohn in theab initio case,27 is not the only
possible one. The constrained-search technique of Le28

and Lieb29 is also easily adapted to the present case.
ground-state wave function in this approach is uniquely
fined by its spin distribution as the wave function that mi
mizes ^CuĤuC& and reproducesSi . This minimization de-
fines the functional
02442
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ELL@Si #5 min
C→Si

^CuĤuC&, ~26!

whose minimum is the ground-state energy.
An immediate consequence of either formulation of t

proof is that the ground-state expectation value of any
servableÔ, is also a functional of the spin distribution, de
fined via

O@Si #5^C@Si #uÔuC@Si #&, ~27!

and this functional is the same regardless of the strength
direction of the magnetic fieldBi , i.e., it is universal with
respect to external fields. Note that the theorem applie
any ground-state observable. For example, it implies t
also all multispin correlation functions of the general form

Cn,n11,n12, . . .ª^CuŜnŜn11Ŝn12•••uC& ~28!

are uniquely determined by the single-spin expectation va
Sn5^CuŜnuC&. This is trivially true for the nearest-neighbo
correlation function Cn,n11

hom of a homogeneous one
dimensional system, which as a consequence of the de
tion of the homogeneous Hamiltonian~1! is simply given by

Cn,n11
hom 5

1

NJ
E0~S!, ~29!

but the above proof guarantees that the more complica
correlation functions involving more than two spins and
spatially inhomogeneous spin distributions are, in princip
also functions ofSi only.

B. Local-density approximation

Another consequence of this Heisenberg-model formu
tion of the Hohenberg-Kohn theorem is that the mode
ground-state energy and spin distribution can be obtained
application of the variational principle to spin distribution
instead of wave functions. In complex situations this can
a major simplification, but to extract this information is,
course, still highly nontrivial. The most straightforward thin
to do would be to set up an approximation for the total e
ergy of the system under study as a functional of the s
distribution, and to minimize with respect toSi . In ab initio
DFT this is not the preferred way to proceed because it tu
out to be hard to conceive good density functionals for
kinetic energy. In practical applications ofab initio DFT one
therefore commonly employs an indirect minimizatio
scheme, leading to the widely used Kohn-Sham equatio
Although this could also be done in the present case, the
no need for introducing a Kohn-Sham system for the Heis
berg model, since there is no kinetic-energy term in the fi
place. Direct minimization of total-energy expressions see
much more convenient~and more analogous to the way th
model is usually treated in statistical physics! than indirect
minimizations. In order to explore how such a direct min
mization can proceed we first construct, in this subsectio
local-density approximation for the simpler Heisenberg mo
els discussed in the preceding section.
3-5
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VALTER L. LÍ BERO AND K. CAPELLE PHYSICAL REVIEW B68, 024423 ~2003!
Let us write the two contributions to the ground-state e
ergy of the inhomogeneous Heisenberg model asEJ andEB ,
which are the ground-state expectation values of the first
second terms on the right-hand side of Eq.~2!, respectively.
The mean-field approximation forEJ yields

E0
MF@Si #5J(

i j
Si•Sj1(

i
Si•Bi[EJ

MF@Si #1EB@Si #,

~30!

where, as above,Si5^CuŜi uC&. In Sec. IV we quantify the
error made by the neglect of correlation effects arising fr
use ofEJ

MF@Si # in place ofEJ@Si #.
A guideline for the construction of better functionals th

EJ
MF@Si # is provided byab initio DFT ~Ref. 16! or recent

work on the Hubbard model.20–22 In the former, the total
energy of an arbitrarily inhomogeneous system is written

E0@n~r !#5Ts@n~r !#1EH@n~r !#1Ev@n~r !#1Exc@n~r !#,
~31!

whereTs is the noninteracting kinetic energy,

EH@n~r !#5
1

2E d3r E d3r 8
n~r !n~r 8!

ur2r 8u
~32!

the Hartree energy, andEv the potential energy arising from
the external fieldv(r ). The local-density approximation
~LDA ! for the exchange-correlation~xc! energy is

Exc@n~r !#'Exc
LDA@n~r !#5E d3rexc~n!un→n(r ) . ~33!

This expression locally substitutes thexc energy of the in-
homogeneous system by the one of a homogeneous sy
of same density. The necessary input expression forexc(n) is
obtained by subtracting the Hartree and noninteracting
netic energy from the ground-state energy of the homo
neous systeme0(n).

In the present context we write, in analogy to Eq.~31!,

E0@Si #5EJ
MF@Si #1EB@Si #1Ec@Si #, ~34!

whereEJ
MF is defined in Eq.~30!, EB is the potential energy

arising from the external fieldBi , andEc is by definition the
difference between the mean-field result and the correct
i.e., the correlation energy.~There is no Heisenberg-mode
counterpart to the kinetic energy term, and we avoid
expression ‘‘exchange-correlation energy’’ because in co
mon terminology the entire Heisenberg Hamiltonian is due
‘‘exchange.’’!

To obtain an explicit scheme we now propose to appro
mate, in analogy to Eq.~33!,

Ec@Si #'Ec
LDA@Si #5(

i
ec~S!uS→uSi u

, ~35!

whereec(S) is obtained by subtracting the mean-field ener
2dS2 from the homogeneous expressions fore0(S) dis-
cussed in Sec. II. As an explicit example, the LDA appro
02442
-

d

s

em

i-
e-

e,

e
-

o

i-

y

-

mation for the correlation energy of aninhomogeneousanti-
ferromagnetic Heisenberg model in one dimension becom

Ec,AFM,d51
LDA @Si #5JS 2

p
21D(

i
uSi u, ~36!

where we used Eq.~10! for e0(S). Of course Eqs.~14! or
~15! can be used in the same way ind51, and Eqs.~12! and
~13! in d52 andd53, respectively. The full ground-stat
energy is then for anyd approximated as

E0@Si #'E0
LDA@Si #5EJ

MF@Si #1EB@Si #1Ec
LDA@Si #.

~37!

Clearly Eq. ~35! is a rather simple approximation, whos
quality may vary widely depending on the circumstanc
~e.g., values ofJ and d, or spatial dependence ofBi). At
present it is motivated mainly by the considerable practi
success of its counterpart inab inito DFT,16–18 and by the
encouraging results obtained recently with a Bethe-an
based LDA for inhomogeneous Hubbard models.20–22 It is
clear, however, that the LDA contains essential correlat
effects not accounted for by the mean-field expression~30!.
In spite of the extra term, minimization of Eq.~34! with ~35!
is no more complicated than that of Eq.~30!. Equation~35!
thus shows one way in which the expressions listed in Se
for homogeneous systems can be applied to inhomogen
situations. A simple application of these ideas is worked
in Sec. IV B.

C. A scaling hypothesis

An interesting feature of the functionals obtained by co
bining Eq. ~35! with the explicit formulas of Sec. II is tha
the resulting expressions depend explicitly on the interac
J and the dimensionalityd. The dependence of theab initio
functionals on the interaction and the dimensionality is n
well known, and in particular thed dependence of the func
tional is still subject of many ongoing investigations.30 Even
in the much simpler case of the Hubbard model it is only
interaction dependence which is featured explicitly in t
available functionals,19–22 whereas the dependence on d
mensionality is essentially unknown. In this context it m
be useful to have, for the Heisenberg model, a numbe
simple expressions that depend explicitly on dimensiona
and interaction, so that the role of these parameters in
functional can be explored in a simplified environment.

As an explicit example, we consider scaling properties
the functional as a function of dimensionalityd. The Hartree-
like term}S2 in Eqs.~11! to ~13! clearly scales linearly with
d. Hence

eJ
MF~d!5deJ

MF~d51!. ~38!

Interestingly, the correlation energy contribution}S also
obeys a similar, albeit less obvious, scaling law. From
explicit expressions~11!–~13! for e0

AFM(d) one obtains for
the relation between the ratio of the correlation energies
the ratio of the dimensionalities
3-6
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ec~d52!

ec~d51!
50.8705S 2

1D x

~39!

and

ec~d53!

ec~d52!
50.9215S 3

2D y

, ~40!

wherex andy are exponents to be determined. Numerica
one findsx520.201 andy520.203. The near equality o
these two exponents among each other and to the int
fraction 21/5 leads us to conjecture the following dime
sional scaling law:

ec~d!5d2hec~d51!, ~41!

where the scaling exponenth51/5. This scaling law ac-
counts for the numbers in Eqs.~11!–~13! to within '1023.

Of course, at present the scaling law~41! is only a con-
jecture, but one that is consistent with the numbers of sp
wave theory. It also correctly predicts that asd→` the cor-
relation energy vanishes, leaving behind only the mean-fi
contribution to the total energy. Since very little is know
about the dimension dependence of density functionals
cannot say at present whether the existence of such a la
a mere coincidence, a particular property of the Heisenb
model, or a general phenomenon, but we hope that our
servation of dimensional scaling stimulates further resea
along these lines.

One practical use that can be made of Eq.~41! is to con-
vert an approximate functional obtained for some value od
into one for another dimensionality. Counterparts to t
property for other Hamiltonians are interesting not only
ab initio calculations~in which many results are known fo
d53, but much less ind52 or d51),30 but also in the case
of the Hubbard model, in which the LDA functional i
known only ford51.20–22

IV. CORRELATION ENERGY OF THE
ANTIFERROMAGNETIC HEISENBERG MODEL

In this section we apply the results obtained above t
study of the correlation energy of the antiferromagne
Heisenberg model. In Sec. IV A we compare the homo
neous expressions of Sec. II with their mean-field appro
mation, to assess the importance and behavior of the co
lation energy. In Sec. IV B we study a physically interesti
inhomogeneity, a spin-density wave, with the LDA fun
tional ~36!.

A. Homogeneous system

As in the previous section we define the correlation
ergy as the difference between the total ground-state en
and its mean-field approximation. For a homogeneous
tem on a linear, square or cubic lattice the latter yields

E0
MF~S,J,d!52JdNS2 ~42!

and thuse0(S)52dS2. In the inset of Fig. 4 we plot the
difference between this value and the total energy exp
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sions Eqs.~11!, ~12!, and ~13!. For one dimension we also
plot the difference between the mean-field result and
more precise expression~15!. These differences represent th
absolutesize of the correlation energy. In the main part
Fig. 4 we display therelative size of the correlation energ
as compared to the mean-field energy. Several conclus
can be drawn from inspection of these curves.

~i! The inset of Fig. 4 shows that the absolute size of
correlation energy increases towards larger spins. This se
counterintuitive, because larger spins should more clos
mimick the classical limit, in which there are no quantu
fluctuations and the mean-field approximation becomes e
in the ground state. However, as shown in the main figu
the relative weight of the correlation energy as compared
the mean-field energy decreases towards larger spins. I
estingly, the naive expectation that correlations should
come less important near the classical limit is thus only t
in relative terms, but not in absolute ones.

~ii ! On similar grounds one would expect that correlatio
become less important for larger dimensionality. This is co
firmed both by the main figure and the inset, showing t
correlations decrease in absolute size and relative to
mean-field energy asd increases. The way thed dependence
approaches the classical limit is thus qualitatively differe
from the way the spin dependence does.

~iii ! The mean-field energy is not reliable for any dime
sionalityd<3 andS,5, leading to errors that can be larg
thanJ in absolute size and larger than 50% in relative term
This observation puts tight limits on the reliability of th
rather widely used approximation.

~iv! The improved treatment of correlations ind51, rep-
resented by the curves labeled ‘‘DMRG fit,’’ does not inva
date conclusions~i!, ~ii !, and ~iii !, obtained on the basis o
the spin-wave expressions~11!–~13!. However, both the

FIG. 4. Correlation energy of the antiferromagnetic homog
neous Heisenberg model in one, two, and three dimensions,
function of spin. The curves labeledd51,2,3 are obtained by sub
tracting the mean-field energy from the expressions~11!–~13!, and
the one labeled ‘‘d51 DMRG fit’’ is obtained by using our fit Eq.
~15! instead of Eq.~11!. Main figure: correlation energy relative t
mean-field energy. Inset: absolute size of correlation energy.
3-7
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main figure and the inset of Fig. 4 show that it enhances
importance of correlations with respect to the mean-field v
ues, as compared to the simpler expressions.

B. Example of an inhomogeneous system:
a linear spin-density wave

As an example of a truly inhomogeneous situation,
which our LDA functional~35! can be applied, we now con
sider a simple but physically interesting inhomogene
namely, a spin-density wave~SDW! imposed by an externa
field on a chain with antiferromagnetic coupling.

We model the SDW state by taking

Sn5Suxcosfn , ~43!

where fn52p(n21)/l and ux denotes the unit vector in
the x direction. This choice describes a linear SDW of a
plitudeSand wave lengthl, polarized along thex direction.
~The lattice is taken to be a chain along thez direction.! The
corresponding mean-field energy is

E0
MF@Si #5J (

n51

N21

Sn•Sn111 (
n51

N

Sn•Bn[EJ
MF@Si #1EB@Si #,

~44!

whereN is the number of lattice sites andBn is a magnetic
field that can be thought of as either externally applied@thus
forcing the system into a state with spin distribution~43!# or
generated self-consistently, or a combination of both. T
LDA approximation for the ground-state energy is, on t
other hand,

E0
LDA@Si #5E0

MF@Si #1Ec
LDA@Si #5EJ

MF@Si #1EB@Si #

1 (
n51

N

ec
AFM~S!uS→uSi u

[EJ
LDA@Si #1EB@Si #,

~45!

where we use, for simplicity, Eq.~36! for Ec
LDA@Si #.

For the given spin distribution~43! we now compare the
predictions of the mean-field and LDA expressions for
interaction energyEJ . Note that this is not a self-consiste
calculation, but a comparison of the two expressions~44!
and~45! for a fixed distribution specified by Eq.~43!. In Fig.
5 we plotEJ

MF , EJ
LDA , andEc

LDA as functions ofl, the wave
length of the SDW. Since the termEB , arising from the
magnetic field, is the same in both approximations we o
display the interaction energyEJ . The presence of an exte
nal field with symmetry different from the one of the groun
state of the unperturbed antiferromagnetic system gives
to a rich physics. Particularly, we note the following poin

~i! Addition of the correlation energy to the mean-fie
result lowers the total energy considerably. This is, qual
tively, the same behavior we found previously in homog
neous systems and illustrates again the importance of g
beyond the mean-field expression for the energy.

~ii ! As l→` the SDW approaches a ferromagnetic sp
configuration. Since the unperturbed homogeneous mod
antiferromagnetic this state is energetically unfavored,
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corresponds to a maximum of theE versusl curves. In the
opposite limit the spatial modulation of the SDW can ta
local advantage of the AFM tendency of the underlying h
mogeneous system. This leads to a lowering of the energ
l→0.

~iii ! Oncel is larger than approximately 10 lattice con
stants theE versusl curves saturate. We interpret this
terms of the correlation length of the antiferromagne
model by noting that once the SDW modulation takes pla
on a scale larger than a few correlation lengths, the sys
will be relatively insensitive to further approximation to th
ferromagnetic state.

~iv! The overall downshift of the LDA curve compared
the mean-field one implies that the ferromagnetic configu
tion is energetically less unfavorable in the former appro
mation than in the latter. Physically this is reasonable,
cause the correlations accounted for byEc break up the rigid
AFM pattern of the Ne´el state found in the mean-field ap
proximation, and replace it by a complex ground state
volving spins along all three directions in space.

V. SUMMARY AND OUTLOOK

Density-functional theory is commonly applied to theab
initio Hamiltonian, in the context of electronic structure ca
culations of molecules or solids.16–18Applications to model
Hamiltonians are rare, although they can be useful both
the analysis of these models in the presence of inhomog
ity ~broken translational invariance!, and for further develop-
ment of DFT. The present work on the Heisenberg mo
serves to exemplify these two complementary aspects.

The Heisenberg Hamiltonian is much simpler than t
Hubbard Hamiltonian, which describes the charge degree
freedom in addition to the spin ones, or than theab initio

FIG. 5. Interaction energyEJ of a spin-density wave imposed o
an antiferromagnetic chain, as a function of wave length of the s
modulation. Upper curve: mean-field approximation, defined by
~44!. Lower curve: local-density approximation for the correlatio
energy, as given by Eq.~36!. Middle curve: LDA result for interac-
tion energy, obtained as sum of the two other curves.
3-8
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Hamiltonian involving the long-range Coulomb interactio
between charges in a real crystal. The Heisenberg model
therefore be considered a simplified environment in wh
concepts and methods of DFT can be tested and analy
An interesting example is the study of the interaction a
dimension dependence ofxc functionals, about which little
is known in theab initio case.

On the other hand, the LDA for inhomogeneous Heis
berg models is no more complicated, formally, than
mean-field approximation, but it accounts by construction
essential correlation effects missed by the latter. Analysis
the correlation energy of homogeneous and inhomogene
Heisenberg models, as function of spin and dimensiona
illustrates that such effects are crucial for a quantitative
scription of the ground state. The above LDA functional m
thus be useful in studies of the behavior of the Heisenb
model in spatially varying external fields or in the presen
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of internal magnetic order that breaks translational symm
try.

The simple LDA-type correlation functional based o
Eqs.~35! and~11! is seen to produce significant quantitativ
change and qualitative improvement over the mean-field
proximation, at very little extra computational cost. This o
servation encourages us to envisage more complex app
tions of this functional, such as to impurity states in t
Heisenberg model. An extension of the present work to
study of the thermodynamics of inhomogeneous Heisenb
models@employing theT.0 formulation of DFT~Ref. 31!#
is also planned for the future.
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