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Dipolar localization of quantized spin-wave modes in thin rectangular magnetic elements
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Dipole-exchange spectrum of quantized spin wave modes of a tangentially magnetized rectangular thin-film
magnetic element is calculated using the method of tensorial Green’s functions. The strong inhomogeneity of
the internal bias magnetic field along the magnetization direction leads to the localization of spin wave modes
either at the edge&xchange localizationor at the centefdipolar localization of the element. The mode
intensity distributions along the other in-plane direction are determined by the dipolar boundary conditions and
have the usual cosinusoidal form. The approximate theory developed in the paper gives a quantitative descrip-
tion of the resonance fields and qualitative description of the spatial distributions of quantized spin wave modes
in a thin square permalloy elemefih plane sizes 5850 um?, thickness 0.1um) recently observed by
space-resolved Kerr spectroscopy. The theory shows also that the mode localization in tfiis tbeselement
centeyj is of the dipolar nature.
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INTRODUCTION rectangular cross-section magnetiziedigitudinally (along
the stripe axis™?* In the case of a long stripe only one
The experiments performed on patterned magnetic film§omponentalong the stripe widthof the SW wave vector is
with the patterns in the form of micrometer-sized rectangulafluantized, so the quantization process is one dimensional
magnetic stripes or dots have demonstrated that the spﬁ"ﬂd relatively simple. Also, in that case the internal bias

- : 1 magnetic field in the stripe is homogeneous and equal to the
wave(SW) spectrum of these patterned films is quantized. external bias field, while the weak inhomogeneity of thye

The observed geometrical quantization is a direct conse:

" namic demagnetizing field leads to the effective “pinning”
guence of the boundary conditions at the lateral edges of thgf the dynagr]nic ma%netization at the lateral edg%s ofgthe

magnetic elements forming a pattern. Similar results, i.e., th tripe that can de described by effective dipolar boundary
geometrical quantization of the SW spectrum, were Obtaineaonditions?a Thus, the lowest quantized spin wave modes in
on the arrays of submicrometer-sized tangentially magnegs case are essentially a result of quantization of the
tized elliptica? and cylindrical doté (see also Ref. 7, and pamon-Eshbach surface magnetostatic mbdender the
references therejn boundary condition$?

The calculation of the eigenfrequencies of quantized SW  Further experiment&!! performed ontransversely(per-
modes in small magnetic elemenisr resonatorsis non-  pendicular to the stripe axisnagnetized permalloy stripes
trivial and important for several reasons. First of all, the spin(width 1 um, thickness 0.03um) have demonstrated that
wave mode quantization in small magnetic elements is funguantization of dynamic magnetization in this case is dra-
damentally interesting due to the nonellipsoidal shape ofnatically different from the case of longitudinal magnetiza-
most of these elements. The internal bias magnetic field ition. First of all, in the transverse case the waves from which
nonellipsoidal magnetic resonators is inhomogeneous, whicthe quantized spin wave mode is formed digole-exchange
leads to the coordinate-dependent variation of the wave nunackward volumepin waves having wave vectors parallel to
bers of resonant spin wave modes and to the appearancef@ﬁ bias magnetic field. At the small wave vector magnitudes

“turning points” and effective “potential wells” for spin (or/and in the nonexchange limithe frequency of these
waves inside the magnetic elemefis! waves decreases with the increase of their wave véttor.

On the other hand, there is a practical necessity to calcu>€cond, the internal bias field along the stripe width is
late the eigenfrequencies of spin wave modes of stsalb- strongly inhomogeneous, and the quantized spin wave mode
micron sizé magnetic elements. In order to avoid unwanted®f @ fixed frequency is composed of many plane waves hav-
“ringing” in the re-magnetization process of a pattern ele- Ing different magnitudes of the wave vector. Thus, in trans-

ment, the duration of the “writing” pulse should be equal to versely magnetized narrow permalloy stripes the lowest

. . ) uantized spin wave modes turn out to be of mostly ex-
the half period of the lowest spin-wave eigenmode of thed : - : »
elementlzp'm Also. one of the m(?st importangt] limitations in change nature and are localized in “potential wells” formed

. . . by the strongly inhomogeneous bias magnetic field near the
operation of magnetic sensors and recording hétdd, es- Ia{eral edgeg gf the stri%&“ g

sentially, are small magn_etic elemannmr_king in the micro- Recently, the quantization of SW modes has been ob-
wave frequency range is the magnetic ndisé that has  served in tangentially magnetized and relatively large square
spectral maxima near the frequencies of SW eigenmodes ifermalloy film elementsgin plane sizes 58 50 wm?, thick-
these elements. ness 0.1 um) by means of space-resolved Kerr
The experiment$;* where the quantization effect in pat- spectroscopy and by inductive FMR spectroscopy.In
terned metal films was clearly demonstrated and understoodpntrast with previous studies of rectangular magnetic
were performed on the pattern of long permalloy stripes withelements;>*° where the quantized spin wave spectra were
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observed, the experiméfitgave not only the resonance z
fields (or frequencies but also the spatial distributions of

variable magnetization in the observed quantized spin wave

modes. Thus, it is very interesting to compare the experimen- I m, I
tal result$® with the theory.

The quantization of spin wave modes in a thin rectangular (0 =
magnetic elementor dof) havingtwo finite in-plane dimen-
sions is much more complicated than the one-dimensional

. . . . . 510,11 LT
spin wave quantization in the long stripe$>1®|n a tan- |
gentially magnetized rectangular dot the quantization is two- -w/2
dimensional, and the cases of longitudinal and transverse _
magnetization occur simultaneously for two perpendicular FIG. 1. Geometry of the problefithin rectangular elemehand
components of the resonant in-plane wave vector. the system of coordinates. Bias fidgfdand static magnetization are

The goal of this paper is to analyze theoretically the two-n the element plane.

dimensional problem of spin wave quantization in a nonel- - . .
lipsoidal rectangular magnetic element and to derive an ag€rnal magnetic field is directed along th®©y axis in the

proximate analytical expression for the dipole-exchangélément plane. We assume that the static magnetization
spectrum of the discrete spin wave modes of this element/s(") (Wherer=xe +ye,+ze;, ande,, ¢, ande, are the
that takes into account the boundary conditions at the elgJnit vectors along the axes y, andz correspondingly of
ment lateral edges, the inhomogeneity of the bias magneti&'® element is uniform or nearly uniform, except at the ele-

field inside the element, and describes, in particular, the rel€nt edges. We consider the case of a flat rectangular par-
sults of the experimerif ticle (L/I<1,L/w<1), and assume uniform distribution of

microwave magnetization along tl@z axis.
The theory of the dipole-exchange spin wave spectrum in
CALCULATION METHOD a magnetic film having finite thickneds and infinite in-

Our theoretical approach is based on the tensorial Green%Iane sizes has been developed in Ref. 20, where an approxi-

f : . T " mate explicit expression for the dipole-exchange SW disper-
unctions formalism for infinite in-plane magnetic filffs, . S
which takes into account both dipole-dipole and exchangg"on.equat'om_f(kx ‘.kY’kZ) (note changg OF to f) was
I : : Obtained[see Eq.45) in Ref. 20. To take into account the
contributions to the SW spectra. Later this formalism was
modified in Ref. 21 to describe finite in-plane sizes of a thin
magnetic element. In the limit of a very thin magnetic ele- .
ment similar formalism as used in Ref. 1 was derived on tht%l:aitlzlfd values for the SW wave vectdr components
basis of the Sparks variational appro&éh. x Ky kz)
In the framew_ork_ of this formalism, Maxwell eqqations in K2= k§+ kf= (pm/L)2+ k?ner kﬁy, (13
the magnetostatic limit are solved to find a tensorial Green’s
function that defines a nonlocal integral relation between thavherep, m, n=0,1,2,....
dynamic demagnetizing field and the variable magnetization We assume, that at the plane surfaces of the magnetic
for the particular geometry of the magnetic element. Therelement the spins are unpinned, so that the lowest thickness
this integral relation is used in the Landau-Lifshits equationSW mode is uniformy=0). Thus, below we shall take into
of motion for the variable magnetization where the differen-account only the quantization of the in-plarig (k,) com-
tial operator of the exchange interaction is included. Thisponents of the wave vectét of the spin wave mode
equation of motion is eventually reduced to a linear integrod- . ) 5
ifferential equation for the variable magnetization that is K= k= Kkt Khy - (1b)
solved by expanding the variable magnetization in a series of L ) )
complete orthogonal eigenfunctiofepproximatespin wave The demagnetizing fielti4(r) obtained from the solution
mode$, that satisfy the boundary conditions for the variable®' the Maxwell equations in the magnetostatic limit is non-
magnetization existing at the edges of the magnetic elemefliform for the nonellipsoidal elementeven for uniform
(see Refs. 20, 21 for detallsif we neglect the interaction M), and has three components. If the variable magnetization
between these approximate spin wave modes, it is possible #€S not depend ar then we can average the components
derive a simple approximate diagonal analytical expressioRf the fieldHy(r) overz. Since the componeri(z) is an
for the dipole-exchange spin wave spectrum of a finite-siz&dd function with respect to the dot center L/2 it vanishes
magnetic element. after averaging. We also neglect the termyH(j/w)?
Below we consider thin rectangular magnetic elements-(L/w)?<1 (wherew is the SW mode frequency angdis
with typical in-plane sizes~1-10um and thickness 20— the gyromagnetic ratjoin the equation of motion for the
100 nm. We denote the element lengttwidth w, thickness ~ variable dot magnetizatiom. Thus, only one component
L, and let the static magnetization lie in thg plane, so that (along the magnetization directioy) HY(x,y) =(H¥(r)).,
the 0z axis is directed along the element height and the ori-of the demagnetizing field remains and it depends only on
gin of the Cartesian coordinate system is at the center of ththe in-plane coordinates y for all SW modes. The nonuni-
element bottom surfacesee Fig. 1L The homogeneous ex- form demagnetizing field-|3,’(p)=—477Nyy(p)MS, (where

inite sizes of the rectangular magnetic element it is possible
(in a first approximation for a thin elemento introduce
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0.48 the curveH;(x) is smooth and the field nonuniformity is
a) weak. This situation is similar to the case of a longitudinally
5 magnetized magnetic strif®At the same time, in the other
Q 047} y=0, the element middle cross section in-plane directionOy (along the static magnetizatidv ;)
= there is a strong coordinate dependence of the internal bias
% magnetic fieldH;(y) even at the center of the magnetic ele-
i. 046 e —] ment (x=0) [see Fig. 20)]. This situation is similar to the
° case of a transversely magnetized long magnetic stfipke
El valuesH;q, Hi1, Hj», His of the internal bias field marked
o in Fig. 2(b) correspond to four different locations in the ele-
£ 045f : .
= ment along the axiy (Yo, Y1, Y2, ¥3) and will be used
later.
In the analysis below we shall make the following simpli-
0 o1 oz 03 04 os fying assumption. We shall assume that in a rectangular mag-
Distance from element center, xiw _netic element the quantization of tlxecomponenlkX o_f th_e
in-plane wave vector takes place as in the longitudinally
magnetized long strip¥, the quantization of thg compo-
06 nentk, of the wave vector takes place as in the transversely
051 H H H b) magneti;ed long ;trip’é’, and_ the two-dimensional approxi- .
P Lk 2 " mate spin wave eigenfunctions of the rectangular magnetic
8 04k ; elements are products of one-dimensional spin wave eigen-
- ; ; functions obtained in the cases of longitudinally and trans-
=S 03l ; ; versely magnetized magnetic stripes, correspondingly.
T A ; ‘ Then, the quantization condition for the x-component of
T o2, SWicakaton; ! the wave vector will have the forth
= 1 '
T o1t (m+1) 7 2 012 .
2 ol z z | mw awl T
A V! y, ! yoi where the value of the parameter of the effective dipolar
-0.1 . 1 172 . 1 il 1 N 1 o . ” .
0.0 01 0.2 03 04 05 pinning” at the lateral edges of the rectangular magnetic

element depends only on the rafie- L/w<1 of the element
thicknessL to its width w, and is given by the expression
FIG. 2. 2D internal fielcH;(x,y) distribution calculated accord- d(p)=27/[p(1—2 Inp)].*® The quantization conditior3)
ing to Ref. 23 for the first SW modga) dependence ow; (b) can be rewritten ak,,=(m+ 1) 7/wg, Where the effective
dependence oy (along bias field width of the stripew =W d/(d—2)] is always slightly larger
than the real widtlw. The distribution of variable magneti-
p=xe+ye) can be evaluated using the effective zation in symmetric spin wave modes obtained from the
coordinate-dependent demagnetizing fadiy(p) derived quantization conditior§3) has a simple cosinusoidal fotfh
in Refs. 23, 24{see Eq.(16) in Ref. 23. Therefore, the
nonuniform internal bias magnetic field inside the rectangu- Minx(X) = Amx COL KpyX) . (4)
lar magnetic element can be expressed in terms of the uni-
form external bias fieldd and saturation magnetizatiovi The scheme of SW mode quantization along the direction
as of the bias magnetic fiel@y is more complicated due to the
inhomogeneity of the internal bias field along this direction
Hi(p)=H—47MN,(p). 2) [see Fig. &)]. This scheme is schematically illustrated by
Fig. 3@ where the dipole-exchange dispersion curves
Since the internal bias fiel) is coordinate dependent, the wg,(k,) for spin waves propagating along the direction of
influence of the bias field inhomogeneity will be different for the bias magnetic field in an infinite magnetic film are shown
different mode profiles and we, basically, need to introduce dor two different values of the bias magnetic field corre-
different averaged internal bias field for different SW modessponding to the valuesl;,, and H;3 marked in Fig. 2b).
The dependence of the internal bias fi¢lg(x) on the  These curves were calculated using E.from Ref. 25[or
coordinatex calculated at the centey€0) of the square Eg. (45 from Ref. 20. The horizontal broken line in Fig.
permalloy element used in the experiméffer the value of  3(a) shows the frequency of the signaly/2m=7.04 GHz
the homogeneousxternalbias magnetic fieltH(P1), corre-  used in the experiment that is the resonance frequency of
sponding to the observation of the lowest quantized spithe lowest SW mode in the square magnetic element when
wave mode in Ref. 18mode P1 in the notation of Ref. 1B the external bias field is equal to the lowest spin wave mode
shown in Fig. 2a). This curve was calculated using E&)  resonance fieltH (P1) (see Fig. 2 in Ref. 18 The vertical
and the equations from Ref. 23. It is clear from Figg2hat  broken line in Fig. 8) shows the maximum value of the SW

Distance from element center, y/I
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~7Ar y two branchesk?*" and kJ® correspond to crossing of spin-wave
5 : T3 )f21=7.04 GHz dispersion relation given in Fig.(8 with the experimental fre-
-~ - el R quencywy/2m=7.04 GHz(Ref. 18 for different values of the co-
§ I y, * L e ordinatey.
o) Tt RRD . o . o o
:’,’ 6.9 .o FeeeL integral quantization condition, similar to the quantization
= i TR PO T condition in the quasiclassical case in quantum mechanics
% P (see Refs. 8—11, and references therein
6.8 ! Te~l
Ak, : T
. $ kydy=2(n+ 1),
6.7 1 ) 1 . [l | L 1 " 1
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where the integral is taken over the closed path inside the

Wave vector component Ig(cﬂﬂ'1) classically allowed region between the “turning” points, i.e.,
inside the region where the wave number heal values.

FIG. 3. Dependence of the SW frequency on the wave-vectorrhjs |eads to the following integral quantization condition
component along bias fiekl, (in cm™?) for the lowest transverse oy the k, component of the SW wave vector parallel to the
modem=20 (the tra_nsvgrse wave vector co_rnpon(_ark,+§= w/yv). in-plane bias magnetic field:

The values ofy; as in Fig. Zb). (a) The SW dispersion curve in the
dipole-exchange regiorih) the dipolar part of the SW dispersion v ~
relation (small k,~10° cm™ %), y=0—solid line andy=y, (the fl ky(Y,wg,He)dy=(n+1)m=k,I|, n=0,1.2,..,
last point of the frequency crossiprgdashed line. The interval of y

: 5
the dipolar wave vectors marked A&, .

wherey’ andy” are the “turning points” between which the

wave vector componeid]*~2m/W~2x10* cm~* that can ~ €quationas,, (ky)=wo has a real solution foky, andkyy
be effectively excited by the coplanar microwave transducer (n+ 1)/l is the averaged value of the quantized wave
(width W,=3 um) used in the experiment8. vector component along the axiy. _

It is clear from Fig. 3a) that quantized spin wave modes ~ The curves showing the dependencek@ and k$* on
(standing along the axi®y and resonant at the frequency the coordinate in the “dipole” and “exchange” regions of
wg), are composed of dipole-exchange backward voluméhe spectrum Fig. @) for the coordinate dependence of the
waves having different values d&,. In Fig. a) dipole-  internal bias fieldH,(y) given in Fig. 2b) [and correspond-
exchange SW dispersion curves cross the ling/27  ing to the observation of the lowesh£0) quantized SW
—7.04 GHz in two wave-number regions: in the “dipolar” mode in the experimet are shown in Fig. 4. It is clear
region where the wave frequency decreases with the increa$@m these curves that in the dipolar regifff(y) decreases
of k, and the “exchange” region, where the wave frequencywheny increases towards the edge of the magnetic element.
increases with the increase &j. Figure 3b) shows the At y=y1=0.359I, wherek,(y,)=0 the turning point is
“dipolar” region in a larger scale in different points along reached, and the dipolar SW mode could only exist between
Oy axis. the pointsy’ =y; andy”=—y,;. We note, that the value of

In principle, quantized SW modes could be formed in anyy; is smaller than the critical point valyg/l =0.492, where
of these two wave-number regions. Whether the quantizethe internal bias field in the element vanislié§(y,) =0],

SW mode is really formed depends on the fulfillment of theso the lowest SW mode is localized along the a3ig near
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the center of the magnetic element. This smooth localizatioequation discussed in Ref. 16hould be solved. However,

is clearly seen for the lowest mode in the Kerr spectroscopyve shall show below that the spectrum of SW eigenmodes in

image presented in Ref. 1®ee the image P1 in Fig. 3 in a thin (L<w, |) square magnetic eleméfitcan be calcu-

Ref. 18. lated approximately without the exact knowledge of the
It is also clear from these curves, that if the quantized SWunction w,(y), simply assuming thaj,(y) is a smooth

mode would have been formed in the “exchange” region offunction having maximum in the element center.

the spectrum it would occupy all the available rangeyof Expanding the variable magnetization in a Fourier series

values, where the internal bias field is positly¢<y,. Un-  of two-dimensional approximate eigenfunctiof@ and us-

der the conditions of the experiméfthe quantized mode in ing the standard formalisA?;? we obtain an approximate

the “exchange” region cannot be excitéar observeglas the diagonal dipole-exchange dispersion equation for the quan-

maximum value of the SW wave in-plane vector componentized SW modes in a tangentially magnetized thin (

that could be effectively excited by the coplanar microwave<w, |) magnetic element in the form similar to the form of

transducer used in Ref. 1B;”ax~27TN\/tw2><104 cm ! is  the Herring-Kittel spin wave dispersion equation for the in-

much smaller than the typical values b;x shown in the finite ferromagnetic mediuffi and to the form of the ap-

upper part of Fig. 4. The calculation of the quantization in-proximate dipole-exchange dispersion equation for spin

tegral (5) in the dipolar region of the spectrum Figs. 3, 4 waves in a magnetic filfi [see Eq(45) in Ref. 20

shows that for the external magnetic fielt{P1), corre-

sponding to the excitation of the lowest quantized SW mode o= (0F "+ aoykn) [0F "+ aonkht ouFnd Koo,

in the experimertf the magnitude of the integré®) is close 7
to 7, so the quantized mode with the quantization numbewherew,=yH, oy=4myMg, «a is the exchange constant,
n=1 along the axiy is excited. and k., is defined by Eq(1b). The frequencyw}" propor-

We would like to note that the dipole-exchange SW quantional to the effective internal magnetic field for a SW mode

tization in the inhomogeneous bias field of a nonellipsoidalyith indices (n, n) is defined by the formulfobtained from
magnetic element is very sensitive to the actual geometricatq. (2)]

sizes of the element and, as is usual in the cases when ex-

change interaction is important, no universal picture of this ol"= wy— oyNmn, (8)
effect can be given. In particular, the considerations similar . o

to the ones given above performed for the case of a trané”lnd thg effe_ctlve demagnetlzatlpn factdf,, for the mode
versely magnetizednarrow (width w=1um) magnetic (m.n) is defined by the expression

stripe”” led us to the conclusion, that the lowest quantized
SW mode in the stripe is f d in the “exch " region of 4 25m2

mode in the stripe is formed in the “exchange” region o Nimn= e d*pmy,(p)Nyy(p). (9)
the spectrum and is localized in narrow regions near the lat- WiM

eral edges OI the strjﬂ@.'l_’he formation of a quantized SW' the quantityF,, (k) plays the role of a quantized matrix
mode in the “dipolar” region in the spectrum is not possible glement of the dipole-dipole interaction and has the form

in such a narrow stripe, as the quantization conditin  gjmijar to the form of the analogous quantity defined by Eq.
cannot be satisfied in the “dipolar” region, where the values(4) in Ref. 20

of kg'p are relatively low. Later, this conclusion was sup-

ported by the space-resolved Kerr experintetitat directly WM kﬁ]x

demonstrated the localization of the lowest quantized SWF(&kmn) =1+ P(kmp)[1—P(kmn)] ﬁ)(T)
. wy TaopKnn/ \ Kmn

mode near the lateral edges of the stripe.

In contrast with the case of quantization along the axis kﬁ

Ox, where the distributions of the variable magnetization in - P(Kmn)(_Ql)v (10

the quantized mode are easily calculated using (Eg.the Kmn

profile of the quantized mode along the a&iy is difficultto  where

calculate analytically. Attempts to get these profiles numeri-

cally in the particular case of a very thin magnetic element 1—exp(—kmnl)

were undertaken in Ref. 1. Using our prior assumption about P(kmn)=1- :

the factorization of the eigenmodes of the rectangular mag-

netic element we shall write the expression for these approxi- We note that Eq(8) is essentially the dispersion equation

mate eigenmodes of the transvefgerpendicular to the satu- for spin waves in a tangentially magnetized magnetic film

ration magnetizationM,) variable magnetization in the [see Eq(45) in Ref. 20, where the in-plane components of

11)

Kmnk

magnetic element in the form the SW wave vector are quantized in accordance with the
guantization condition&3) and(5), that take into account the
Mun(p) =M COL KmX) n(Y), (6) finite in-plane sizes of the magnetic element.

The second term in Eq10) describes the increase of the
whereu,(y) is the unknown distribution of quantized eigen- SW frequency with the increase of the magnitude of the
mode along the coordinate component of the quantized wave vector that is perpendicu-

In general, to find the dipolar eigenfunctign,(y) an ap- lar to the bias magnetic fiel(br well-known dispersion of
propriate integral equatiogsimilar to the dipolar integral the Damon-Eshbach magnetostatic surface Wavevhile
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TABLE I. Comparison of experiment&Ref. 18 and calculated
resonance fields of square FeNi elemehtw=50um, L
=104 nm, m=0, 2, 4, 6, 8 n=0. Ms=860G, vyl2=w
=3.04 GHz/kOe.

The SW mode number, (0,0 (2,0 (4,0 (6,0 (8,0
(m,n)

Experimental resonance 469 392 324 261 196
fields, Oe

Calculated (n, 0)—fields 466 396 330 266 204
by Eq. (5), Oe

the last term in Eq(10) describes the decrease of the SW
frequency with the increase of the magnitude of the compo-
nent of the quantized wave vector that is parallel to the bias
magnetic field(or well-known dispersion of backward vol-
ume magnetostatic wat. Thus, depending on the in-plane
sizes of the rectangular magnetic element and the boundar
conditions on its lateral edges, the quantized SW modes ir
the element could have frequencies that are either higher o
lower than the frequency of the homogeneous ferromagnetic
resonance in an infinite tangentially magnetized magnetic
film.

Equation(8) also takes into account the fact that the con-
sidered rectangular magnetic element is nonellipsoidal, anc
the internal bias magnetic field in it is inhomogeneous. This
inhomogeneity creates different effective internal magnetic
fields H""= w{]"/y for different SW modes depending on
their spatial distributions of variable magnetization, and,
also, creates the integral form of wave vector quantization
condition (5) along the direction of magnetizatiddy.

Coordinate perp. to bias field, x/w

o~
&

Coordinate parallel to bias field, y/I

COMPARISON WITH EXPERIMENT AND DISCUSSION

Coordinate perp. to bias field, x/w

In order to use Eq(7) in calculation of the spectrum of
discrete SW modes measured for the square permalloy ele
ments used in the spatially resolved ferromagnetic resonanc . .
experiment® we shall make an assumption about the lowest () Coordinate parallel to bias field, y/l
eigenmode distribution along the axis For the case of the
experimental parameters as in Ref. 18 we have demonstrated FIG. 5. Calculated dynamic magnetization distributions
above that the lowesin(=0) quantized SW mode is local- mgy(x,y) (contour plot$ using Eq.(6) [see to compare with ex-
ized in the center of the magnetic element, and the distribuperiment the papers by Tamaetial. (Ref. 18]: (a) for the first SW
tion of its amplitude along the axig uq(y) should have a mode (m=0,n=0), (b) for the SW mode wittm=6, n=0.
maximum aty=0. Thus, we shall choose a cosinusoidal
function co§(n+1)my/l] with n=0 as a trial function for this
mode distribution

The nominal element thickne&sof the magnetic element
in Ref. 18 was 104 nm, while the width and length were
equal to 50um. Refer back to exact form of the dependence
_ mo(y) not being importanfthe correction to the trial eigen-
fo(y)=cogmy/l). (120 function (12) of order L/w will lead to the correction of
order (L/w)? to the eigenfrequencied)]. A homogeneous
The function(12) reflects the most important features of bias magnetic field of the order of several hundred Oe was
the yet unknowrexactmagnetostatic eigenfunctiquy(y). It applied parallel to the side of the square. We assume that in
is worth noting, that for the calculation of the resonancesuch magnetic field the element is in the nearly uniform
external bias fields corresponding to different quantized SWflower” state. We would like to stress once more that the
modes observed in the experiménthe exact shape of the small aspect ratit/w(l =w) of the magnetic element allows
function uo(y) is not very important due to small ratio of the us to use the approximate functioh2) and the simple ap-
thickness of the magnetic element to its in-plane sizegroximate dispersion equatidi) for the calculations of the
(L/w=0.002). SW spectrum of the square permalloy elemént.
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Using Egs.(7)—(12) and assuming that eigenfrequenciesequation(7) that takes into account the quantiaztion of the
for all the quantized SW modes experimentally observed inn-plane components of the SW wave vector and the inho-
Ref. 18 are equal to the signal frequencyy/2m mogeneity of the internal bias magnetic field inside the ele-
=7.04 GHz we calculated the values of the external biasnent.
field corresponding to the quantized SW modf&Ehe results We have also shown that in the case of the magnetic ele-
of these calculations presented in the Table | demonstrataent having relatively large in-plane siz&she lowest SW
that the simple model equatioi®—(12) give a quantitative modes are localized near the center of the element along the
description of the experimenf. direction of static magnetizatiofaxis Oy) and that this lo-

The contour plots of two dimensional distribution of vari- calization is of a purely dipolar nature in contrast with the
able magnetization in quantized SW modes of the rectanguwsase of a relatively narrow transversely magnetized magnetic
lar magnetic elemetft calculated using the approximate SW stripe”® where localization is of the exchange nature and
eigenfunctiong4), (12), and(6) are presented in Fig. 5 for takes place near the stripe lateral edges. The simple two-
the modes fh=0,n=0) and (MM=6,n=0). Note that we dimensional distributions of variable magnetization in quan-
used the SW eigenmodes, which are symmetric with respetized SW modes of a thin rectangular element found in this
to the rectangular element center. This corresponds to theaper[see Eqs(4), (12), and(6)] give good qualitative de-
SW excitation scheme by symmetric antenna in Ref. 18. Thecription of the experimental magnetization distributions
comparison of these distributions with the experimentallymeasured in the experimetft.
measured Kerr images of SW intensity in quantized SW
modes observed in Ref. 18ee Fig. 3, images P1 and P4, P5
in Ref. 18 demonstrates that our simple model gives a rea- ACKNOWLEDGMENTS

sonably good qualitative description of the experiment. .
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