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Dipolar localization of quantized spin-wave modes in thin rectangular magnetic elements
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Dipole-exchange spectrum of quantized spin wave modes of a tangentially magnetized rectangular thin-film
magnetic element is calculated using the method of tensorial Green’s functions. The strong inhomogeneity of
the internal bias magnetic field along the magnetization direction leads to the localization of spin wave modes
either at the edges~exchange localization! or at the center~dipolar localization! of the element. The mode
intensity distributions along the other in-plane direction are determined by the dipolar boundary conditions and
have the usual cosinusoidal form. The approximate theory developed in the paper gives a quantitative descrip-
tion of the resonance fields and qualitative description of the spatial distributions of quantized spin wave modes
in a thin square permalloy element~in plane sizes 50350mm2, thickness 0.1mm! recently observed by
space-resolved Kerr spectroscopy. The theory shows also that the mode localization in this case~in the element
center! is of the dipolar nature.
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INTRODUCTION

The experiments performed on patterned magnetic fi
with the patterns in the form of micrometer-sized rectangu
magnetic stripes or dots have demonstrated that the
wave~SW! spectrum of these patterned films is quantized1–5

The observed geometrical quantization is a direct con
quence of the boundary conditions at the lateral edges o
magnetic elements forming a pattern. Similar results, i.e.,
geometrical quantization of the SW spectrum, were obtai
on the arrays of submicrometer-sized tangentially mag
tized elliptical6 and cylindrical dots4 ~see also Ref. 7, and
references therein!.

The calculation of the eigenfrequencies of quantized S
modes in small magnetic elements~or resonators! is non-
trivial and important for several reasons. First of all, the s
wave mode quantization in small magnetic elements is f
damentally interesting due to the nonellipsoidal shape
most of these elements. The internal bias magnetic field
nonellipsoidal magnetic resonators is inhomogeneous, w
leads to the coordinate-dependent variation of the wave n
bers of resonant spin wave modes and to the appearan
‘‘turning points’’ and effective ‘‘potential wells’’ for spin
waves inside the magnetic elements.8–11

On the other hand, there is a practical necessity to ca
late the eigenfrequencies of spin wave modes of small~sub-
micron size! magnetic elements. In order to avoid unwant
‘‘ringing’’ in the re-magnetization process of a pattern e
ment, the duration of the ‘‘writing’’ pulse should be equal
the half period of the lowest spin-wave eigenmode of
element.12,13 Also, one of the most important limitations i
operation of magnetic sensors and recording heads~that, es-
sentially, are small magnetic elements! working in the micro-
wave frequency range is the magnetic noise14,15 that has
spectral maxima near the frequencies of SW eigenmode
these elements.

The experiments,2–4 where the quantization effect in pa
terned metal films was clearly demonstrated and underst
were performed on the pattern of long permalloy stripes w
0163-1829/2003/68~2!/024422~7!/$20.00 68 0244
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rectangular cross-section magnetizedlongitudinally ~along
the stripe axis!.1,2,4 In the case of a long stripe only on
component~along the stripe width! of the SW wave vector is
quantized, so the quantization process is one dimensi
and relatively simple. Also, in that case the internal b
magnetic field in the stripe is homogeneous and equal to
external bias field, while the weak inhomogeneity of thedy-
namic demagnetizing field leads to the effective ‘‘pinning
of the dynamic magnetization at the lateral edges of
stripe that can de described by effective dipolar bound
conditions.16 Thus, the lowest quantized spin wave modes
this case are essentially a result of quantization of
Damon-Eshbach surface magnetostatic mode17 under the
boundary conditions.16

Further experiments10,11 performed ontransversely~per-
pendicular to the stripe axis! magnetized permalloy stripe
~width 1 mm, thickness 0.03mm! have demonstrated tha
quantization of dynamic magnetization in this case is d
matically different from the case of longitudinal magnetiz
tion. First of all, in the transverse case the waves from wh
the quantized spin wave mode is formed aredipole-exchange
backward volumespin waves having wave vectors parallel
the bias magnetic field. At the small wave vector magnitud
~or/and in the nonexchange limit! the frequency of these
waves decreases with the increase of their wave vect16

Second, the internal bias field along the stripe width
strongly inhomogeneous, and the quantized spin wave m
of a fixed frequency is composed of many plane waves h
ing different magnitudes of the wave vector. Thus, in tra
versely magnetized narrow permalloy stripes the low
quantized spin wave modes turn out to be of mostly
change nature and are localized in ‘‘potential wells’’ form
by the strongly inhomogeneous bias magnetic field near
lateral edges of the stripe.10,11

Recently, the quantization of SW modes has been
served in tangentially magnetized and relatively large squ
permalloy film elements~in plane sizes 50350mm2, thick-
ness 0.1 mm! by means of space-resolved Ke
spectroscopy18 and by inductive FMR spectroscopy.19 In
contrast with previous studies of rectangular magne
elements,1,3,19 where the quantized spin wave spectra we
©2003 The American Physical Society22-1
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observed, the experiment18 gave not only the resonanc
fields ~or frequencies!, but also the spatial distributions o
variable magnetization in the observed quantized spin w
modes. Thus, it is very interesting to compare the experim
tal results18 with the theory.

The quantization of spin wave modes in a thin rectangu
magnetic element~or dot! having two finite in-plane dimen-
sions is much more complicated than the one-dimensio
spin wave quantization in the long stripes.2,3,5,10,11In a tan-
gentially magnetized rectangular dot the quantization is tw
dimensional, and the cases of longitudinal and transve
magnetization occur simultaneously for two perpendicu
components of the resonant in-plane wave vector.

The goal of this paper is to analyze theoretically the tw
dimensional problem of spin wave quantization in a non
lipsoidal rectangular magnetic element and to derive an
proximate analytical expression for the dipole-exchan
spectrum of the discrete spin wave modes of this elem
that takes into account the boundary conditions at the
ment lateral edges, the inhomogeneity of the bias magn
field inside the element, and describes, in particular, the
sults of the experiment.18

CALCULATION METHOD

Our theoretical approach is based on the tensorial Gre
functions formalism for infinite in-plane magnetic films,20

which takes into account both dipole-dipole and excha
contributions to the SW spectra. Later this formalism w
modified in Ref. 21 to describe finite in-plane sizes of a th
magnetic element. In the limit of a very thin magnetic e
ment similar formalism as used in Ref. 1 was derived on
basis of the Sparks variational approach.22

In the framework of this formalism, Maxwell equations
the magnetostatic limit are solved to find a tensorial Gree
function that defines a nonlocal integral relation between
dynamic demagnetizing field and the variable magnetiza
for the particular geometry of the magnetic element. Th
this integral relation is used in the Landau-Lifshits equat
of motion for the variable magnetization where the differe
tial operator of the exchange interaction is included. T
equation of motion is eventually reduced to a linear integr
ifferential equation for the variable magnetization that
solved by expanding the variable magnetization in a serie
complete orthogonal eigenfunctions~approximatespin wave
modes!, that satisfy the boundary conditions for the variab
magnetization existing at the edges of the magnetic elem
~see Refs. 20, 21 for details!. If we neglect the interaction
between these approximate spin wave modes, it is possib
derive a simple approximate diagonal analytical express
for the dipole-exchange spin wave spectrum of a finite-s
magnetic element.

Below we consider thin rectangular magnetic eleme
with typical in-plane sizes;1 – 10mm and thickness 20–
100 nm. We denote the element lengthl , width w, thickness
L, and let the static magnetization lie in thexy plane, so that
the 0z axis is directed along the element height and the
gin of the Cartesian coordinate system is at the center of
element bottom surface~see Fig. 1!. The homogeneous ex
02442
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ternal magnetic fieldH is directed along theOy axis in the
element plane. We assume that the static magnetiza
M s(r ) ~wherer5xex1yey1zez , andex , ey , andez are the
unit vectors along the axesx, y, andz correspondingly! of
the element is uniform or nearly uniform, except at the e
ment edges. We consider the case of a flat rectangular
ticle (L/ l !1, L/w!1), and assume uniform distribution o
microwave magnetization along theOz axis.

The theory of the dipole-exchange spin wave spectrum
a magnetic film having finite thicknessL and infinite in-
plane sizes has been developed in Ref. 20, where an app
mate explicit expression for the dipole-exchange SW disp
sion equationv5 f (kx ,ky ,kz) ~note change ofF to f ! was
obtained@see Eq.~45! in Ref. 20#. To take into account the
finite sizes of the rectangular magnetic element it is poss
~in a first approximation for a thin element! to introduce
quantized values for the SW wave vectorK components
(kx ,ky ,kz)

K25kz
21ki

25~pp/L !21kmx
2 1kny

2 , ~1a!

wherep, m, n50,1,2,... .
We assume, that at the plane surfaces of the magn

element the spins are unpinned, so that the lowest thickn
SW mode is uniform (p50). Thus, below we shall take into
account only the quantization of the in-plane (kx ,ky) com-
ponents of the wave vectorK of the spin wave mode

K2→kmn
2 5kmx

2 1kny
2 . ~1b!

The demagnetizing fieldHd(r ) obtained from the solution
of the Maxwell equations in the magnetostatic limit is no
uniform for the nonellipsoidal elements~even for uniform
M s), and has three components. If the variable magnetiza
does not depend onz, then we can average the componen
of the fieldHd(r ) over z. Since the componentHd

z(z) is an
odd function with respect to the dot centerz5L/2 it vanishes
after averaging. We also neglect the term (gHd

x/v)2

;(L/w)2!1 ~wherev is the SW mode frequency andg is
the gyromagnetic ratio! in the equation of motion for the
variable dot magnetizationm. Thus, only one componen
~along the magnetization directiony) Hd

y(x,y)5^Hd
y(r )&z ,

of the demagnetizing field remains and it depends only
the in-plane coordinatesx, y for all SW modes. The nonuni
form demagnetizing fieldHd

y(r)524pNyy(r)Ms , ~where

FIG. 1. Geometry of the problem~thin rectangular element! and
the system of coordinates. Bias fieldH and static magnetization ar
in the element plane.
2-2
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DIPOLAR LOCALIZATION OF QUANTIZED SPIN-WAVE . . . PHYSICAL REVIEW B 68, 024422 ~2003!
r5xex1yey) can be evaluated using the effectiv
coordinate-dependent demagnetizing factorNyy(r) derived
in Refs. 23, 24@see Eq.~16! in Ref. 23#. Therefore, the
nonuniform internal bias magnetic field inside the rectan
lar magnetic element can be expressed in terms of the
form external bias fieldH and saturation magnetizationMs
as

Hi~r!5H24pMsNyy~r!. ~2!

Since the internal bias field~2! is coordinate dependent, th
influence of the bias field inhomogeneity will be different f
different mode profiles and we, basically, need to introduc
different averaged internal bias field for different SW mod

The dependence of the internal bias fieldHi(x) on the
coordinatex calculated at the center (y50) of the square
permalloy element used in the experiments18 for the value of
the homogeneousexternalbias magnetic fieldH(P1), corre-
sponding to the observation of the lowest quantized s
wave mode in Ref. 18~mode P1 in the notation of Ref. 18! is
shown in Fig. 2~a!. This curve was calculated using Eq.~2!
and the equations from Ref. 23. It is clear from Fig. 2~a! that

FIG. 2. 2D internal fieldHi(x,y) distribution calculated accord
ing to Ref. 23 for the first SW mode:~a! dependence onx; ~b!
dependence ony ~along bias field!.
02442
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the curveHi(x) is smooth and the field nonuniformity i
weak. This situation is similar to the case of a longitudina
magnetized magnetic stripe.16 At the same time, in the othe
in-plane directionOy ~along the static magnetizationM s)
there is a strong coordinate dependence of the internal
magnetic fieldHi(y) even at the center of the magnetic el
ment (x50) @see Fig. 2~b!#. This situation is similar to the
case of a transversely magnetized long magnetic stripe.10 The
valuesHi0 , Hi1 , Hi2 , Hi3 of the internal bias field marked
in Fig. 2~b! correspond to four different locations in the el
ment along the axisy (y0 , y1 , y2 , y3) and will be used
later.

In the analysis below we shall make the following simp
fying assumption. We shall assume that in a rectangular m
netic element the quantization of thex componentkx of the
in-plane wave vector takes place as in the longitudina
magnetized long stripe,16 the quantization of they compo-
nentky of the wave vector takes place as in the transvers
magnetized long stripe,10 and the two-dimensional approx
mate spin wave eigenfunctions of the rectangular magn
elements are products of one-dimensional spin wave eig
functions obtained in the cases of longitudinally and tra
versely magnetized magnetic stripes, correspondingly.

Then, the quantization condition for the x-component
the wave vector will have the form16

kmx5
~m11!p

w F12
2

d~p!G , m50,1,2,..., ~3!

where the value of the parameter of the effective dipo
‘‘pinning’’ at the lateral edges of the rectangular magne
element depends only on the ratiop5L/w!1 of the element
thicknessL to its width w, and is given by the expressio
d(p)52p/@p(122 ln p)#.16 The quantization condition~3!
can be rewritten askmx5(m11)p/weff , where the effective
width of the stripeweff5w@d/(d22)# is always slightly larger
than the real widthw. The distribution of variable magneti
zation in symmetric spin wave modes obtained from
quantization condition~3! has a simple cosinusoidal form16

mmx~x!5Amx cos~kmxx!. ~4!

The scheme of SW mode quantization along the direct
of the bias magnetic fieldOy is more complicated due to th
inhomogeneity of the internal bias field along this directi
@see Fig. 2~b!#. This scheme is schematically illustrated b
Fig. 3~a! where the dipole-exchange dispersion curv
vsw(ky) for spin waves propagating along the direction
the bias magnetic field in an infinite magnetic film are sho
for two different values of the bias magnetic field corr
sponding to the valuesHi0 and Hi3 marked in Fig. 2~b!.
These curves were calculated using Eq.~4! from Ref. 25@or
Eq. ~45! from Ref. 20#. The horizontal broken line in Fig
3~a! shows the frequency of the signalv0/2p57.04 GHz
used in the experiment,18 that is the resonance frequency
the lowest SW mode in the square magnetic element w
the external bias field is equal to the lowest spin wave m
resonance fieldHe(P1) ~see Fig. 2 in Ref. 18!. The vertical
broken line in Fig. 3~a! shows the maximum value of the SW
2-3
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wave vector componentky
max'2p/Wt'23104 cm21 that can

be effectively excited by the coplanar microwave transdu
~width Wt53 mm) used in the experiments.18

It is clear from Fig. 3~a! that quantized spin wave mode
~standing along the axisOy and resonant at the frequenc
v0), are composed of dipole-exchange backward volu
waves having different values ofky . In Fig. 3~a! dipole-
exchange SW dispersion curves cross the linev0/2p
57.04 GHz in two wave-number regions: in the ‘‘dipolar
region where the wave frequency decreases with the incr
of ky and the ‘‘exchange’’ region, where the wave frequen
increases with the increase ofky . Figure 3~b! shows the
‘‘dipolar’’ region in a larger scale in different points alon
Oy axis.

In principle, quantized SW modes could be formed in a
of these two wave-number regions. Whether the quanti
SW mode is really formed depends on the fulfillment of t

FIG. 3. Dependence of the SW frequency on the wave-ve
component along bias fieldky ~in cm21) for the lowest transverse
modem50 ~the transverse wave vector component iskmx5p/w).
The values ofyi as in Fig. 2~b!. ~a! The SW dispersion curve in th
dipole-exchange region,~b! the dipolar part of the SW dispersio
relation ~small ky;103 cm21), y50—solid line andy5ym ~the
last point of the frequency crossing!—dashed line. The interval o
the dipolar wave vectors marked asDkdip .
02442
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integral quantization condition, similar to the quantizati
condition in the quasiclassical case in quantum mecha
~see Refs. 8–11, and references therein!:

R k~y!dy52~n11!p,

where the integral is taken over the closed path inside
classically allowed region between the ‘‘turning’’ points, i.e
inside the region where the wave number hasreal values.
This leads to the following integral quantization conditio
for the ky component of the SW wave vector parallel to t
in-plane bias magnetic field:

E
y8

y9
ky~y,v0 ,He!dy5~n11!p5 k̃nyl , n50,1,2,...,

~5!

wherey8 andy9 are the ‘‘turning points’’ between which the
equationvsw (ky)5v0 has a real solution forky , and k̃ny
5(n11)p/ l is the averaged value of the quantized wa
vector component along the axisOy.

The curves showing the dependences ofky
dip and ky

ex on
the coordinate in the ‘‘dipole’’ and ‘‘exchange’’ regions o
the spectrum Fig. 3~a! for the coordinate dependence of th
internal bias fieldHy(y) given in Fig. 2~b! @and correspond-
ing to the observation of the lowest (n50) quantized SW
mode in the experiment18# are shown in Fig. 4. It is clea
from these curves that in the dipolar regionky

dip(y) decreases
wheny increases towards the edge of the magnetic elem
At y5y150.359l , where ky(ym)50 the turning point is
reached, and the dipolar SW mode could only exist betw
the pointsy85y1 andy952y1 . We note, that the value o
y1 is smaller than the critical point valuey0 / l 50.492, where
the internal bias field in the element vanishes@Hi(y0)50#,
so the lowest SW mode is localized along the axisOy near

r

FIG. 4. The SW wave vector componentky ~in cm21) along the
bias field (Oy) in the rectangular element as a function ofy. The
two branchesky

exch and ky
dip correspond to crossing of spin-wav

dispersion relation given in Fig. 3~a! with the experimental fre-
quencyv0/2p57.04 GHz~Ref. 18! for different values of the co-
ordinatey.
2-4
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the center of the magnetic element. This smooth localiza
is clearly seen for the lowest mode in the Kerr spectrosc
image presented in Ref. 18~see the image P1 in Fig. 3 i
Ref. 18!.

It is also clear from these curves, that if the quantized S
mode would have been formed in the ‘‘exchange’’ region
the spectrum it would occupy all the available range oy
values, where the internal bias field is positiveuyu,y0 . Un-
der the conditions of the experiment18 the quantized mode in
the ‘‘exchange’’ region cannot be excited~or observed! as the
maximum value of the SW wave in-plane vector compon
that could be effectively excited by the coplanar microwa
transducer used in Ref. 18ky

max'2p/Wt'23104 cm21 is
much smaller than the typical values ofky

ex shown in the
upper part of Fig. 4. The calculation of the quantization
tegral ~5! in the dipolar region of the spectrum Figs. 3,
shows that for the external magnetic fieldH(P1), corre-
sponding to the excitation of the lowest quantized SW mo
in the experiment18 the magnitude of the integral~5! is close
to p, so the quantized mode with the quantization num
n51 along the axisOy is excited.

We would like to note that the dipole-exchange SW qu
tization in the inhomogeneous bias field of a nonellipsoi
magnetic element is very sensitive to the actual geometr
sizes of the element and, as is usual in the cases when
change interaction is important, no universal picture of t
effect can be given. In particular, the considerations sim
to the ones given above performed for the case of a tra
versely magnetizednarrow ~width w51 mm) magnetic
stripe10 led us to the conclusion, that the lowest quantiz
SW mode in the stripe is formed in the ‘‘exchange’’ region
the spectrum and is localized in narrow regions near the
eral edges of the stripe.10 The formation of a quantized SW
mode in the ‘‘dipolar’’ region in the spectrum is not possib
in such a narrow stripe, as the quantization condition~5!
cannot be satisfied in the ‘‘dipolar’’ region, where the valu
of ky

dip are relatively low. Later, this conclusion was su
ported by the space-resolved Kerr experiment11 that directly
demonstrated the localization of the lowest quantized
mode near the lateral edges of the stripe.

In contrast with the case of quantization along the a
Ox, where the distributions of the variable magnetization
the quantized mode are easily calculated using Eq.~4!, the
profile of the quantized mode along the axisOy is difficult to
calculate analytically. Attempts to get these profiles num
cally in the particular case of a very thin magnetic elem
were undertaken in Ref. 1. Using our prior assumption ab
the factorization of the eigenmodes of the rectangular m
netic element we shall write the expression for these appr
mate eigenmodes of the transverse~perpendicular to the satu
ration magnetizationM s) variable magnetization in the
magnetic element in the form

mmn~r!5Ms cos~kmxx!mn~y!, ~6!

wheremn(y) is the unknown distribution of quantized eige
mode along the coordinatey.

In general, to find the dipolar eigenfunctionmn(y) an ap-
propriate integral equation~similar to the dipolar integra
02442
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equation discussed in Ref. 16! should be solved. However
we shall show below that the spectrum of SW eigenmode
a thin (L!w, l ) square magnetic element18 can be calcu-
lated approximately without the exact knowledge of t
function mn(y), simply assuming thatmn(y) is a smooth
function having maximum in the element center.

Expanding the variable magnetization in a Fourier ser
of two-dimensional approximate eigenfunctions~6! and us-
ing the standard formalism,20,21 we obtain an approximate
diagonal dipole-exchange dispersion equation for the qu
tized SW modes in a tangentially magnetized thinL
!w, l ) magnetic element in the form similar to the form
the Herring-Kittel spin wave dispersion equation for the
finite ferromagnetic medium26 and to the form of the ap-
proximate dipole-exchange dispersion equation for s
waves in a magnetic film20 @see Eq.~45! in Ref. 20#

vmn
2 5~vH

mn1avMkmn
2 !@vH

mn1avMkmn
2 1vMFmn~kmn!#,

~7!

wherevH5gH, vM54pgMs , a is the exchange constan
andkmn is defined by Eq.~1b!. The frequencyvH

mn propor-
tional to the effective internal magnetic field for a SW mo
with indices (m, n) is defined by the formula@obtained from
Eq. ~2!#

vH
mn5vH2vMNmn , ~8!

and the effective demagnetization factorNmn for the mode
(m,n) is defined by the expression

Nmn5
4

wlMs
2 E d2rmmn

2 ~r!Nyy~r!. ~9!

The quantityFmn(kmn) plays the role of a quantized matri
element of the dipole-dipole interaction and has the fo
similar to the form of the analogous quantity defined by E
~4! in Ref. 20

F~kmn!511P~kmn!@12P~kmn!#S vM

vH
mn1avMkmn

2 D S kmx
2

kmn
2 D

2P~kmn!S kny
2

kmn
2 D , ~10!

where

P~kmn!512
12exp~2kmnL !

kmnL
. ~11!

We note that Eq.~8! is essentially the dispersion equatio
for spin waves in a tangentially magnetized magnetic fi
@see Eq.~45! in Ref. 20#, where the in-plane components o
the SW wave vector are quantized in accordance with
quantization conditions~3! and~5!, that take into account the
finite in-plane sizes of the magnetic element.

The second term in Eq.~10! describes the increase of th
SW frequency with the increase of the magnitude of
component of the quantized wave vector that is perpend
lar to the bias magnetic field~or well-known dispersion of
the Damon-Eshbach magnetostatic surface wave17!, while
2-5
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the last term in Eq.~10! describes the decrease of the S
frequency with the increase of the magnitude of the com
nent of the quantized wave vector that is parallel to the b
magnetic field~or well-known dispersion of backward vo
ume magnetostatic wave17!. Thus, depending on the in-plan
sizes of the rectangular magnetic element and the boun
conditions on its lateral edges, the quantized SW mode
the element could have frequencies that are either highe
lower than the frequency of the homogeneous ferromagn
resonance in an infinite tangentially magnetized magn
film.

Equation~8! also takes into account the fact that the co
sidered rectangular magnetic element is nonellipsoidal,
the internal bias magnetic field in it is inhomogeneous. T
inhomogeneity creates different effective internal magne
fields Hi

mn5vH
mn/g for different SW modes depending o

their spatial distributions of variable magnetization, an
also, creates the integral form of wave vector quantizat
condition ~5! along the direction of magnetizationOy.

COMPARISON WITH EXPERIMENT AND DISCUSSION

In order to use Eq.~7! in calculation of the spectrum o
discrete SW modes measured for the square permalloy
ments used in the spatially resolved ferromagnetic resona
experiments18 we shall make an assumption about the low
eigenmode distribution along the axisy. For the case of the
experimental parameters as in Ref. 18 we have demonstr
above that the lowest (n50) quantized SW mode is loca
ized in the center of the magnetic element, and the distr
tion of its amplitude along the axisy m0(y) should have a
maximum aty50. Thus, we shall choose a cosinusoid
function cos@(n11)py/l# with n50 as a trial function for this
mode distribution

m̃0~y!5cos~py/ l !. ~12!

The function~12! reflects the most important features
the yet unknownexactmagnetostatic eigenfunctionm0(y). It
is worth noting, that for the calculation of the resonan
external bias fields corresponding to different quantized
modes observed in the experiment18 the exact shape of th
functionm0(y) is not very important due to small ratio of th
thickness of the magnetic element to its in-plane si
(L/w50.002).

TABLE I. Comparison of experimental~Ref. 18! and calculated
resonance fields of square FeNi element.l 5w550mm, L
5104 nm, m50, 2, 4, 6, 8; n50. Ms5860 G, g/2p
53.04 GHz/kOe.

The SW mode number,
(m,n)

~0,0! ~2,0! ~4,0! ~6,0! ~8,0!

Experimental resonance
fields, Oe

469 392 324 261 196

Calculated (m, 0!–fields
by Eq. ~5!, Oe

466 396 330 266 204
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The nominal element thicknessL of the magnetic elemen
in Ref. 18 was 104 nm, while the width and length we
equal to 50mm. Refer back to exact form of the dependen
m0(y) not being important@the correction to the trial eigen
function ~12! of order L/w will lead to the correction of
order (L/w)2 to the eigenfrequencies~7!#. A homogeneous
bias magnetic field of the order of several hundred Oe w
applied parallel to the side of the square. We assume tha
such magnetic field the element is in the nearly unifo
‘‘flower’’ state. We would like to stress once more that th
small aspect ratioL/w( l 5w) of the magnetic element allow
us to use the approximate function~12! and the simple ap-
proximate dispersion equation~7! for the calculations of the
SW spectrum of the square permalloy element.18

FIG. 5. Calculated dynamic magnetization distributio
mmn(x,y) ~contour plots! using Eq.~6! @see to compare with ex
periment the papers by Tamaruet al. ~Ref. 18!#: ~a! for the first SW
mode (m50, n50), ~b! for the SW mode withm56, n50.
2-6
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DIPOLAR LOCALIZATION OF QUANTIZED SPIN-WAVE . . . PHYSICAL REVIEW B 68, 024422 ~2003!
Using Eqs.~7!–~12! and assuming that eigenfrequenci
for all the quantized SW modes experimentally observed
Ref. 18 are equal to the signal frequencyv0/2p
57.04 GHz we calculated the values of the external b
field corresponding to the quantized SW modes.18 The results
of these calculations presented in the Table I demonst
that the simple model equations~7!–~12! give a quantitative
description of the experiment.18

The contour plots of two dimensional distribution of va
able magnetization in quantized SW modes of the rectan
lar magnetic element18 calculated using the approximate S
eigenfunctions~4!, ~12!, and ~6! are presented in Fig. 5 fo
the modes (m50, n50) and (m56, n50). Note that we
used the SW eigenmodes, which are symmetric with res
to the rectangular element center. This corresponds to
SW excitation scheme by symmetric antenna in Ref. 18.
comparison of these distributions with the experimenta
measured Kerr images of SW intensity in quantized S
modes observed in Ref. 18~see Fig. 3, images P1 and P4, P
in Ref. 18! demonstrates that our simple model gives a r
sonably good qualitative description of the experiment.

CONCLUSIONS

We have shown that the quantized SW eigenmodes
thin-film rectangular tangentially magnetized magnetic e
ment can be calculated using a simple diagonal disper
ys

in,
F

B.
hy

ys

.

r-
.

P.
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equation~7! that takes into account the quantiaztion of t
in-plane components of the SW wave vector and the in
mogeneity of the internal bias magnetic field inside the e
ment.

We have also shown that in the case of the magnetic
ment having relatively large in-plane sizes18 the lowest SW
modes are localized near the center of the element along
direction of static magnetization~axis Oy) and that this lo-
calization is of a purely dipolar nature in contrast with t
case of a relatively narrow transversely magnetized magn
stripe10 where localization is of the exchange nature a
takes place near the stripe lateral edges. The simple t
dimensional distributions of variable magnetization in qua
tized SW modes of a thin rectangular element found in t
paper@see Eqs.~4!, ~12!, and ~6!# give good qualitative de-
scription of the experimental magnetization distributio
measured in the experiment.18
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