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Density matrix renormalization group study of critical behavior of the spin- 1
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We investigate the critical behavior of theS51/2 alternating Heisenberg chain using the density matrix

renormalization group. The ground-state energy per spin,ẽ0, and singlet-triplet energy gapD̃ are determined

for a range of alternationsd. Our results for the approach ofẽ0 to the uniform chain limit are well described
by cdp, with p'1.45. The singlet-triplet gap is also well described by a power law, withp'0.73, half of the

ẽ0 power. The renormalization group predictions of power laws with logarithmic corrections can also accu-
rately describe our data provided that a surprisingly large-scale parameterd0 is present in the logarithms.
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I. INTRODUCTION

The approach of quantum spin systems to criticality is
interesting and rather underexplored problem in compu
tional physics. In this paper we consider the critical behav
of one of the simplest quasi-one-dimensional~quasi-1D!
quantum spin systems, the alternating Heisenberg chain
spin 1/2, as it approaches the uniform chain limit. This mo
is of special interest for the study of critical behavior, sin
much is known analytically about the gapless uniform-ch
limit through the Bethe ansatz. This system is also import
for studies of the magnetic spin-Peierls effect and give
reasonably accurate description of magnetic interaction
many dimerized quasi-1D antiferromagnets.

The alternating Heisenberg antiferromagnet is a sim
generalization of the uniform Heisenberg chain, with t
nearest-neighbor exchange constantJ replaced by two alter-
nating values. The spin-1/2 system is defined by the Ham
tonian

H5 J̃(
i 51

L/2

@~11d!SW 2i 21•SW 2i1~12d!SW 2i•SW 2i 11# ~1!

and has a spin-singlet ground state with energyE0 and a
nonzero singlet-triplet gapE12E0 for any alternation1 0
,d,1.

For our study we introduce a finite-lattice, scaled groun
state energy per spin,

ẽ0~L,d!5E0~L,d!/LJ̃, ~2!

and a corresponding singlet-triplet gap

D̃~L,d!5@E1~L,d!2E0~L,d!#/ J̃. ~3!

The tilde indicates that these energies are scaled byJ̃ rather
thanJ[(11d) J̃, which would divide our results by a facto
of (11d) ~albeit giving the same leading critical behavior!.
In addition, energies quoted with a single real argument
a tilde @e.g., ẽ0(d)] are bulk limits of the scaled alternatin
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chain, those with no tilde and a single integer argument@e.g.,
e0(L)] are finite-L uniform chain results, and those with n
arguments~e.g.,e0) are bulk limits of the uniform chain.

The uniform spin-1/2 Heisenberg antiferromagnetic cha
which we recover atd50, is the best understood 1D critica
quantum spin system. It has a ground-state energy per sp
e051/42 ln 2 and a band of gapless spin-triplet excitatio
with dispersion relationv(k)/J5p/2usin(k)u. The approach
of noncritical models to this limiting case is not well esta
lished and has been the subject of surprisingly few theor
cal and numerical studies.

Early analytical studies of the effect of a small alternati
d on the uniform chain were reported by Cross and Fish2

and Black and Emery.3 Cross and Fisher used a Jorda
Wigner transformation to map the original spin problem on
a pseudofermion Hamiltonian and approximated the latter
an exactly solvable Luttinger-Tomanaga model. This a
proach, which unfortunately involves uncontrolled appro
mations, yields critical exponents@defined byf (d)}dp] of
p54/3 for the ground-state energy andp52/3 for the
singlet-triplet gap.

Black and Emery3 related the critical behavior of the a
ternating Heisenberg chain to the four-state Potts model
found logarithmic corrections to these power laws,

e02ẽ0~d!}d4/3/u ln du, ~4!

for the ground-state energy per spin, and

D̃~d!}d2/3/u ln du1/2, ~5!

for the gap. Note that at this order the gap scales as
square root of the ground-state energy defect. More rec
theoretical work by Afflecket al.4 has shown that Eqs.~4!
and ~5! are leading-order predictions of the renormalizati
group ~RG!. The overall constants in these results and i
plicit in the logarithms are nonuniversal and have not
been determined analytically for this model.

Strong-coupling series have been derived to high order
the alternating chain and used to study critical behavior~see
©2003 The American Physical Society16-1
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Singh and Weihong5 and references cited therein!. Singh and
Weihong used Pade´ approximates to determine ‘‘effective
critical exponents for the ground-state energy defect, sing
triplet gap, and other observables.

Several previous numerical studies have investigated
critical behavior of spin-1/2 alternating Heisenberg cha
using bulk-limit extrapolations of exact diagonalization r
sults on systems up to aboutL530 in extent~see Barnes
et al.6 and Yu and Haas7 and references cited therein!. We
shall see that important systematic errors can arise from
trapolations using these relatively small systems—for
ample, in estimates of critical exponents.

Studies of much larger spin-1/2 alternating Heisenb
chains have also been published using the density matrix
~DMRG! algorithm, although there has been little systema
study of the critical behavior of the simple alternating cha
model of Eq.~1! using the DMRG method. The single pub
lished reference on this topic is the work of Uhriget al.,10

who estimate a gap critical exponent of 0.65. Their num
cal energies, however, deviate systematically from t
power law at small alternationd ~see Fig. 3 of Uhrig
et al.10!. In related work, Chitraet al.9 used the DMRG
method to study the effects of dimerization and frustration
a generalized alternating chain model with next-near
neighbor couplings, and Louet al.11 studied the gap induce
by a staggered magnetic field.

In this work we present a systematic DMRG study of t
critical behavior of the original alternating spin-1/2 Heise
berg chain of Eq.~1! and compare the theoretical prediction
Eqs. ~4! and ~5!, to numerical results for the ground-sta
energy per spin and singlet-triplet gap of this model, us
systems up toL5192 in extent.

II. NUMERICAL METHOD

For our numerical study we employed the density ma
renormalization group algorithm,8 which is a very effective
method for studying critical behavior in quasi-1D quantu
spin systems. Numerical determination of the critical beh
ior of the alternating chain, or any similar quantum spin s
tem, is a daunting computational task. One must accura
determine energy eigenvalues on quite large systems, s
characteristic lengths typically diverge at critical points. A
extrapolation through a series of fixed-L results is then re-
quired on sufficiently large lattices to ensure that one is in
asymptotic regime in which finite-size effects can be ac
rately parametrized and eliminated. The computer mem
requirements for diagonalizing these large systems are
that the detailed critical behavior of relatively few quantu
spin systems has been explored numerically.

The DMRG algorithm has previously been applied
various interacting fermion systems, including on
dimensional spin chains,8 lattice models,12 quasilinear
molecules,13 and nuclei.14,15 The essential concept in th
DMRG method is to ‘‘grow’’ a small, finite system into
larger one by the iterative incorporation of new lattice sit
At each such iteration one retains only them most relevant
basis states for spanning the targeted energy eigens
~These basis states are chosen according to a density-m
02441
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weight.! This selective sampling of Hilbert space yields a
curate energy eigenvalues on systems which are well bey
the limits of exact diagonalization. For details of the DMR
method we refer the reader to the original papers of Wh8

and to a series of lectures recently compiled by Pesc
et al.12

Our numerical implementation proceeds as follows. W
divide the spin chain into blocksA-a-B-b, whereA and B
denote the ‘‘system’’ and ‘‘environment’’ blocks anda andb
are elementary blocks to be added toA andB, respectively.
Blocks b andA are linked by periodic boundary condition
We take spin dimers~two lattice sites of spins51/2 each! as
our elementary blocks and use the infinite algorithm to gr
the spin chain, while targeting the lowest-lying spin-0
spin-1 state. In the case of the spin-0 ground state of
alternating Heisenberg chain, we found that subsequ
sweeps with the finite algorithm do not lead to much im
provement in the results of the infinite algorithm. In contra
for the spin-1 state we found that sweeps with the fin
algorithm were important for convergence. Our DMR
implementation uses large, sparse matrices, so the sparse
trix packageARPACK ~Ref. 16! was employed. The time
consuming matrix-vector multiplications and the Arnold
Lanczos algorithmARPACK were parallelized.

The ground-state energy per spinẽ0(L,d) of a spin chain
of length L and alternationd is of special interest for our
study of critical behavior@see Eq.~2!#. The DMRG method
yields approximate valuesẽ0(m;L,d) that typically converge
exponentially fast from above as one increases the numbm
of states retained.8,12 We also observed this behavior in th
present study. We computedẽ0(m;L,d) numerically using
the DMRG method on chains of lengthL528, 48, 96, 144,
and 192 and alternationd5223,224,225, . . . ,2210. At each
L andd we increasedm in steps of 10 starting atm530 until
a fit of the form ẽ0(m;L,d)5ẽ0(L,d)1c1exp(2c2m) gave
sufficiently stable coefficients for our desired accuracy; t
m extrapolation yielded our DMRG energy estima
ẽ0(L,d). We found that the maximumm needed for conver-
gence to a given accuracy increases with increasing c
lengthL and decreasing alternationd. For our extreme case
L5192 and d52210, adequate convergence was n
achieved untilm5150, and we retained the maximum o
m5170 states in this case. This resulted in a sparse ma
problem of dimension'93104 at each DMRG iteration.
Finally, we also confirmed recovery of exactL528 alternat-
ing chain results on allowing our DMRG code to iterate
the full Hilbert space. Figure 1 shows them-dependent
DMRG results for two computationally challenging sets
parameters (L5144,192,d52210) for the spin-0 ground-
state energy~left panel! and the spin-1 ground-state energ
~right panel!. The exponential fits shown evidently describ
the large-m data points quite well.

III. RESULTS

Table I gives our DMRG results for the ground-state e
ergy per spin for different alternationsd and chain lengthsL.
For the rather large alternationsd5223 and 224 we con-
6-2
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firmed convergence to accurately known energies with
creasing basis state numberm, as well as convergence wit
increasing chain lengthL. Finite-size effects were more pro
nounced at smallerd, as expected since the system is clo
to criticality. We estimate that the energy errors in Table I
a few units in the last digit, based on the difference betw
the maximum-m DMRG result and the exponentialm→`
extrapolation which we quote.

Figure 2 shows the approach ofẽ0(L,d) to the limit e0
51/42 ln 2 as a function of alternationd for spin chains of
increasing length,L528, 48, 96, 144, and 192. Finite-siz
effects are evident for sufficiently smalld even for the larg-
est system size considered in this work. However,
asymptotic large-L envelope evident in this figure ford
*228 clearly shows the bulk limit. The dashed line is
power-law fit c0dp to this envelope, which givesc050.39
and exponentp51.45. The renormalization group predictio
p54/3 from Eq.~4! ~without the logarithmic factor! is also
shown, displaced for clarity of presentation. Clearly th
gives an inferior description of the DMRG data over t
range considered here.

Figure 3 shows the singlet-triplet gapD̃(L,d) as a func-
tion of alternationd for spin chains of lengthL528, 48, 96,
144, and 192. The envelope of these curves is the bulk l
D̃(d), which is evident ford*227. For smaller values of the
alternationd, finite-size effects are evident in the figure ev
for L5192. A power-law fit toD̃(d) as for ẽ0(d) gives c0
51.94 andp50.73, shown as a dashed line in Fig. 3. T
renormalization group predictionp52/3 from Eq.~5! is also
shown, displaced for presentation. Evidently the renorm
ization group exponent~without the logarithmic term! again
gives a less accurate description of our DMRG data. N
that the two exponents obtained in our fits are related b
factor of 2, which implies that theẽ0(d) defect scales as
D̃(d)2. This relation also follows from the leading-orde

FIG. 1. Left panel:m-dependent DMRG results~data points! for
the spin-0 ground-state energye0 and alternationd52210 for spin
chains of lengthL5144~bottom! andL5192~top! and exponential
fits to the high-m data points~solid lines!. Right panel: same as lef
panel, but for the spin-1 ground-state energye1.
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TABLE I. Extrapolated DMRG results for the lowest energy p

spin in the spin-s sector,es(L,d)[ẽs(L,d)/(11d), for various al-
ternationsd and chain lengthsL. The estimated error is a few unit
in the final digit.

d L e0(L,d) e1(L,d)

223 28 20.4110961 20.3976678
223 48 20.4110928 20.4032882
223 96 20.4110928 20.407191
223 144 20.4110928 20.4084913
223 192 20.41109284 20.4091416

224 28 20.4239186 20.4149855
224 48 20.4238627 20.418895
224 96 20.4238617 20.4213883
224 144 20.4238619 20.422211
224 192 20.4238618 20.422623

225 28 20.4325593 20.4258695
225 48 20.4323071 20.429086
225 96 20.4322899 20.430754
225 144 20.432290 20.431263
225 192 20.4322906 20.431518

226 28 20.4378673 20.4319820
226 48 20.437370 20.435005
226 96 20.437284 20.436321
226 144 20.437283 20.436652
226 192 20.437285 20.43681

227 28 20.4408870 20.435219
227 48 20.440254 20.438202
227 96 20.440074 20.439410
227 144 20.440058 20.439664
227 192 20.440064 20.439768

228 28 20.4425056 20.4368847
228 48 20.441826 20.439863
228 96 20.44158 20.4410442
228 144 20.441550 20.441275
228 192 20.441550 20.441360

229 28 20.4433439 20.4377293
229 48 20.442650 20.440709
229 96 20.442384 20.441885
229 144 20.442340 20.442109
229 192 20.442336 20.442190

2210 28 20.4437703 20.4381546
2210 48 20.443073 20.441136
2210 96 20.44281 20.442311
2210 144 20.442756 20.442532
2210 192 20.442741 20.442614

0 28 20.444201 20.4385820
0 48 20.443504 20.441566
0 96 20.44323 20.442741
6-3
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renormalization group, Eqs.~4! and ~5!. Our value of p
50.73 is consistent with the ‘‘effective’’ critical exponen
quoted by Singh and Weihong.5 Note, however, that we es

timate a different value for theẽ0 power,17 due to their scal-
ing of the Hamiltonian by a factor of (11d)21.

It is especially interesting to determine whether there
numerical evidence for logarithmic corrections to pu
power-law behavior, as predicted by the renormalizat
group in Eqs.~4! and ~5!. We first consider the bulk-limit
ground-state energy per spin, predicted to asymptotically
proach the uniform chain limit as

FIG. 2. Approach ofẽ0(L,d) to the uniform-chain limite0

51/42 ln(2) with decreasing alternationd and increasing chain
lengthL. The dashed line shows a fit to a power law,c0dp, which
gives c050.39 and an exponent of 1.45. The solid line shows
renormalization group exponent 4/3~displaced for presentation
without logarithmic corrections!.

FIG. 3. Critical behavior of the singlet-triplet gapD̃(L,d) as a
function of alternationd for spin chains of lengthL. The dashed
line shows a power-law fit,c0dp, which givesc051.94 and expo-
nent p50.73. The solid line shows the renormalization group e
ponentp52/3 ~displayed as in Fig. 2!.
02441
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e02ẽ0~d!5a
d4/3

ln~d/d0!
. ~6!

Here we have introduced an overall constanta and scale
parameterd0, which we will estimate from our DMRG data
On rearranging Eq.~6! we obtain the easily visualized form

d4/3

e02ẽ0~d!
5a21~ ln d2 ln d0!. ~7!

Figure 4 shows our DMRG results ford4/3/@e02ẽ0(d)# @the
left-hand side of Eq.~7!# versus lnd. The data clearly dis-
agree with the leading-order renormalization group pred
tion, Eq.~6!, over this range ofd, since the points do not lie
on a straight line. Assuming that the two smallest-d points
are close to asymptotic, we estimatea'22.2 and d0
'110. A similar fit to the singlet-triplet gap gives

S d2/3

D̃~d!
D 2

5agap
21 ~ ln d2 ln d0!, ~8!

with agap'219.4 andd0'115. With these constants th
theoretical renormalization group results, Eqs.~4! and ~5!,
are barely distinguishable from our power-law fits in Figs
and 3. There are no predictions of these constants in
literature to our knowledge.

Equation ~6! can be reexpressed as an effective pow
pe f f(d)54/311/ln(d0 /d). With d05110, the range d
51023→1021 corresponds tope f f51.42→1.47, which may
explain our good numerical agreement with a pure powe
exponentp51.45.

We have also investigated finite-size effects in the u
form Heisenberg chain (d50). This serves as a consistenc
check for our numerical computations since comparison w
analytical result is possible. Woynarovich and Eckle18 and
Affleck et al.4 quote Bethe-ansatz predictions and resu
from conformal field theory, respectively, for the leadin
finite-size contributions to the ground-state energy per s
and singlet-triplet gap,

e

-

FIG. 4. Estimation of the constantsa andd0 in Eq. ~6! from our
DMRG data.
6-4
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DENSITY MATRIX RENORMALIZATION GROUP STUDY . . . PHYSICAL REVIEW B68, 024416 ~2003!
e02e0~L !5
p2

12L2@11O„~ ln L !23
…# ~9!

and

e1~L !2e05
5p2

12L2 S 12
3

5
~ ln L !211O„~ ln L !22

…D .

~10!

Figure 5 shows our DMRG data for these energy defects
uniform chains of lengthL528, 48, 96, and 144, togethe
with the analytical results.

The agreement between the leading-order analytical
dictions for finite-size corrections to the ground-state ene
per spin@Eq. ~9!# and our DMRG results is evidently ver
good on the shorter chains. The discrepancy evident aL
5144 may be due to convergence problems encountere
the DMRG algorithm when applied to this asymptotica
gapless system on large lattices. The DMRG results for
spin-1 energy defect depart significantly from the leadin
order term in Eq.~10!, but are consistent with this predictio
when we include theO„L22(ln L)21

… correction.
Finally we consider the dependence of the ground-s

energy per spinẽ0(L,d) on the chain lengthL for fixed,
nonzero alternationd. This is especially relevant to exac
diagonalization studies, which extrapolate to the bulk lim
from rather small systems of at most about 30 spins. To

FIG. 5. Finite-size energy defectsues(L)2e0u of the lowest
spin-s levels on the uniform chain vs chain lengthL. The data
points are DMRG (1: spin-0,3: spin-1! and the lines are analyti
cal results@leading order~LO!, solid line; next-to-leading orde
~NLO!, dashed line#, from Eqs.~9! and ~10!.
g
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the accuracy of finite size extrapolations we used DMRG
compute the ground-state energy per spin and singlet-tri
gap on chains of lengthL528, 32, 36, 40, 44, and 48, an
fitted the results tof (L)5a1b exp(2L/c)/L and g(L)5a
1b exp(2L/c), respectively.~These forms were used to ex
trapolate exact diagonalization results to the bulk limit
Barneset al.6 and Yu and Haas.7! Both functions yield rea-
sonably good fits to our six data points in the rangeL
528, . . .,48. However, on comparing this extrapolatio
with our DMRG results onL596, 144, and 192 lattices, w
noted clear discrepancies as the alternationd decreases. This
is likely due to a rapid increase in the characteristic len
@modeled byc in the exponents off (L) and g(L)], which
makes subleading terms in the asymptotic behavior more
portant. Our results thus suggest caution in attempting
establish critical behavior from studies of relatively sm
systems. For this reason, we prefer not to extrapolate
DMRG data to larger system sizes. It would be of gre
interest to study the asymptotic forms of the large-L finite-
size dependence both numerically and analytically, si
these are required for accurate estimates of bulk-limit pr
erties.

IV. SUMMARY

We have employed the DMRG algorithm to determine t
ground-state energy per spin and singlet-triplet gap of
alternating Heisenberg chain and studied the critical beha
of this model in the limit of small alternation. We find tha
the approaches of the bulk-limit ground-state energy per s
and singlet-triplet gap to the uniform chain limits are we
described by power laws in the alternation parameterd over
the range 0.008&d&0.1 and scale approximately asd1.45

and d0.73, respectively. The renormalization group pred
tions of power laws times logarithmic corrections also a
pear consistent with our results, provided that a surprisin
large scale factord0 is present in the logarithms.
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