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We investigate the critical behavior of ti&=1/2 alternating Heisenberg chain using the density matrix
renormalization group. The ground-state energy per sginand singlet-triplet energy gap are determined
for a range of alternations. Our results for the approach ef to the uniform chain limit are well described
by ¢, with p~1.45. The singlet-triplet gap is also well described by a power law, pAt0.73, half of the
‘eo power. The renormalization group predictions of power laws with logarithmic corrections can also accu-
rately describe our data provided that a surprisingly large-scale parafetepresent in the logarithms.
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I. INTRODUCTION chain, those with no tilde and a single integer argunerg.,
eo(L)] are finiteL uniform chain results, and those with no

The approach of quantum spin systems to criticality is arergumentge.g.gy) are bulk limits of the uniform chain.
interesting and rather underexplored problem in computa- The uniform spin-1/2 Heisenberg antiferromagnetic chain,
tional physics. In this paper we consider the critical behaviowhich we recover ab=0, is the best understood 1D critical
of one of the simplest quasi-one-dimensiorigliasi-l1D  quantum spin system. It has a ground-state energy per spin of
guantum spin systems, the alternating Heisenberg chain witty=1/4—In2 and a band of gapless spin-triplet excitations
spin 1/2, as it approaches the uniform chain limit. This modelwith dispersion relationo(k)/J= 7/2|sin()|. The approach
is of special interest for the study of critical behavior, sinceof noncritical models to this limiting case is not well estab-
much is known analytically about the gapless uniform-chainished and has been the subject of surprisingly few theoreti-
limit through the Bethe ansatz. This system is also importantal and numerical studies.
for studies of the magnetic spin-Peierls effect and gives a Early analytical studies of the effect of a small alternation
reasonably accurate description of magnetic interactions i@ on the uniform chain were reported by Cross and Ffsher
many dimerized quasi-1D antiferromagnets. and Black and Emery.Cross and Fisher used a Jordan-

The alternating Heisenberg antiferromagnet is a simpléVigner transformation to map the original spin problem onto
generalization of the uniform Heisenberg chain, with thea pseudofermion Hamiltonian and approximated the latter by
nearest-neighbor exchange constingéplaced by two alter- an exactly solvable Luttinger-Tomanaga model. This ap-
nating values. The spin-1/2 system is defined by the Hamilproach, which unfortunately involves uncontrolled approxi-

tonian mations, yields critical exponentslefined byf ()« s°] of
Lo gz ;lle?; tl;%rle';hgea pground-state energy arm=2/3 for the
~ = = = =z i -tri .
H _‘]2'1 [(1+0)Szi-1: S+ (1= 9)Sai- Sziva] - (D) Black and Emery related the critical behavior of the al-

ternating Heisenberg chain to the four-state Potts model and

and has a spin-singlet ground state with enefgyand a  found logarithmic corrections to these power laws,
nonzero singlet-triplet gafE,—E, for any alternatioh 0

<o<l. _ N _ eo—€o(8)x 8*|In 8], (4)
For our study we introduce a finite-lattice, scaled ground-
state energy per spin, for the ground-state energy per spin, and
eo(L,8)=Eq(L,8)/L], () A(8)=8%|In 8|12, (5)
and a corresponding singlet-triplet gap for the gap. Note that at this order the gap scales as the
- - square root of the ground-state energy defect. More recent
A(L,6)=[Ey(L,0)—Eq(L,6)]/J. (3)  theoretical work by Afflecket al* has shown that Eqg4)

o . ~ and (5) are leading-order predictions of the renormalization
The tilde indicates that these energies are scaled tagher group (RG). The overall constants in these results and im-

thanJ=(1+ 6)J, which would divide our results by a factor pjicit in the logarithms are nonuniversal and have not yet
of (1+ ) (albeit giving the same leading critical behavior  peen determined analytically for this model.

In addition, energies quoted with a single real argument and - Strong-coupling series have been derived to high order for
a tilde[e.g.,e,(8)] are bulk limits of the scaled alternating the alternating chain and used to study critical behafgee
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Singh and Weihortjand references cited thergiSingh and  weight) This selective sampling of Hilbert space yields ac-
Weihong used Padapproximates to determine “effective” curate energy eigenvalues on systems which are well beyond
critical exponents for the ground-state energy defect, singletthe limits of exact diagonalization. For details of the DMRG
triplet gap, and other observables. method we refer the reader to the original papers of White
Several previous numerical studies have investigated thand to a series of lectures recently compiled by Peschel
critical behavior of spin-1/2 alternating Heisenberg chainset al?
using bulk-limit extrapolations of exact diagonalization re- Our numerical implementation proceeds as follows. We
sults on systems up to abolt=30 in extent(see Barnes divide the spin chain into block&-a-B-b, whereA and B
et al® and Yu and Hadsand references cited therginWe  denote the “system” and “environment” blocks aredandb
shall see that important systematic errors can arise from exare elementary blocks to be addedA@nd B, respectively.
trapolations using these relatively small systems—for exBlocks b andA are linked by periodic boundary conditions.
ample, in estimates of critical exponents. We take spin dimer&wo lattice sites of spis=1/2 each as
Studies of much larger spin-1/2 alternating Heisenbergur elementary blocks and use the infinite algorithm to grow
chains have also been published using the density matrix R@e spin chain, while targeting the lowest-lying spin-0 or
(DMRG) algorithm, although there has been little systematicspin-1 state. In the case of the spin-0 ground state of the
study of the critical behavior of the simple alternating chainalternating Heisenberg chain, we found that subsequent
model of Eq.(1) using the DMRG method. The single pub- sweeps with the finite algorithm do not lead to much im-
lished reference on this topic is the work of Uhegal,'®  provement in the results of the infinite algorithm. In contrast,
who estimate a gap critical exponent of 0.65. Their numerifor the spin-1 state we found that sweeps with the finite
cal energies, however, deviate systematically from thisalgorithm were important for convergence. Our DMRG
power law at small alternatiors (see Fig. 3 of Uhrig implementation uses large, sparse matrices, so the sparse ma-
etall®. In related work, Chitraet al® used the DMRG trix packageArPAack (Ref. 16 was employed. The time-
method to study the effects of dimerization and frustration orconsuming matrix-vector multiplications and the Arnoldi-
a generalized alternating chain model with next-nearesttanczos algorithmrRPACK were parallelized.

neighbor couplings, and Loet alM studied the gap induced  The ground-state energy per s@g(L,8) of a spin chain
by a stgggered magnetic field. _ of length L and alternations is of special interest for our
In tlhlt? \;1V0f|_< Wefprhesen.t a s?/stlematm; DMRG i}gdz of thestudy of critical behaviofsee Eq.(2)]. The DMRG method
critical behavior of the original alternating spin- €ISen- ia1ds approximate valuas (m:L. ) that typically converge
berg chain of Eq(1) and compare the theoretical IoredlCt'ons’proner?tFi)ally fast from ;‘E{)éve' aé c)Jne inc%gase;/the nurgber

Egs. (4) and (5), to numerical results for the ground-state ¢'ciai0q retainedl2 We also observed this behavior in the

ener er spin and singlet-triplet gap of this model, usin ~ . .
systegr¥1spup tcT=192 inl egxtentlp gap ! Hs! gpresent study. We computesgh(m;L,5) numerically using
' the DMRG method on chains of length=28, 48, 96, 144,

and 192 and alternatiof=2"2,2"42"5 ...,2719 At each
Il. NUMERICAL METHOD L and § we increasedn in steps of 10 starting ah= 30 until

For our numerical study we employed the density matrix2 fit Of the formey(m;L., 5) =eo(L, ) +c.exp(-c,m) gave

renormalization group algorithfwhich is a very effective sufficiently stable coefficients for our desired accuracy; this
method for studying critical behavior in quasi-1D quantum™ €xtrapolation yielded our DMRG energy estimate

spin systems. Numerical determination of the critical behav€o(L, ). We found that the maximum needed for conver-
ior of the alternating chain, or any similar quantum spin sys-gence to a given accuracy increases with increasing chain
tem, is a daunting computational task. One must accuratelfgngthL and decreasing alternatiah For our extreme case
determine energy eigenvalues on quite large systems, sinée=192 and 6=2"'°, adequate convergence was not
characteristic lengths typically diverge at critical points. Anachieved untilm=150, and we retained the maximum of
extrapolation through a series of fixédresults is then re- mM=170 states in this case. This resulted in a sparse matrix
quired on sufficiently large lattices to ensure that one is in aProblem of dimension~9x10* at each DMRG iteration.
asymptotic regime in which finite-size effects can be accuFinally, we also confirmed recovery of exdct 28 alternat-
rately parametrized and eliminated. The computer memorjng chain results on allowing our DMRG code to iterate to
requirements for diagonalizing these large systems are sudhe full Hilbert space. Figure 1 shows the-dependent
that the detailed critical behavior of relatively few quantumDMRG results for two computationally challenging sets of
spin systems has been explored numerically. parameters I(=144,1925=2"19 for the spin-0 ground-
The DMRG algorithm has previously been applied tostate energyleft pane) and the spin-1 ground-state energy
various interacting fermion systems, including one-(right panel. The exponential fits shown evidently describe
dimensional spin chairfs, lattice models? quasilinear the largem data points quite well.
molecules;® and nucleit*® The essential concept in the
DMRG method is to “grow” a small, finite system into a
larger one by the iterative incorporation of new lattice sites.
At each such iteration one retains only timemost relevant Table | gives our DMRG results for the ground-state en-
basis states for spanning the targeted energy eigenstatrgy per spin for different alternatiordsand chain lengthk.
(These basis states are chosen according to a density-matfor the rather large alternations=2"2 and 2% we con-

Ill. RESULTS
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04424 Ty 04SP TABLE I. Extrapolated DMRG results for the lowest energy per
Sl p % B 3 10 e, 1=192,8=2"° spin in the spirs sector.ey(L,8)=eq(L,8)/(1+ &), for various al-
’ 55 G L1092, =2 1 -0.44258F 3 ternationss and chain lengthk. The estimated error is a few units
0.4426f . {  inthe final digit.
-0.4427F S s L eo(L, d) e, (L, d)
044288 ok bed 0442608 L L 273 28 —0.4110961 —0.3976678
m m 273 48 —0.4110928 —0.4032882
04425k o T '0'44249§ L_'144' 8_;_105 273 96 —0.4110928 —0.407191
E\ e, L=144,8=2"" ] 044250 o OTE 2*2 144 —0.4110928 —0.4084913
20,4426 ouasil 2 192 0.41109284 0.4091416
Sk — ] 274 28 —0.4239186 —0.4149855
- 274 48 —0.4238627 —0.418895
oddogbt i1 3 gaaps3E L 1 1 3 274 96 —0.4238617 —0.4213883
o 1Q W " 24 144 —0.4238619 —0.422211
-4
FIG. 1. Left panelm-dependent DMRG resultslata points for 2 192 04238618 —0.422623
the spin-0 ground-state energy and alternations=2"1° for spin 2-5 28 —0.4325593 —0.4258695
chains of lengthL = 144 (bottom andL =192 (top) and exponential -5 48 —0.4323071 —0.429086
fits to the highm data pointgsolid lines. Right panel: same as left 25 % —0.4322899 —0.430754
panel, but for the spin-1 ground-state eneegy 55 144 —0.432290 0.431263
firmed convergence to accurately known energies with in2° 192 —0.4322906 —0.431518
creasing basis state number as well as convergence with 56 o8 —0.4378673 —0.4319820
increasing chain length. Finite-size effects were more pro- __, X X
nounced at smalled, as expected since the system is closerz_6 48 0437370 —0.435005
to criticality. We estimate that the energy errors in Table | arel 96 —0.437284 —0.436321
a few units in the last digit, based on the difference betweer 144 —0.437283 —0.436652
the maximumm DMRG result and the exponentiah—o 2 ° 192 —0.437285 —0.43681
extrapolation which we quote. 2-7 28 —0.4408870 — 0435219
Figure 2 shows the approach ef(L,d) to the limite, 57 48 —0.440254 —0.438202
=1/4—In2 as a function of alternatioa for spin chains of ,-7 96 —0.440074 —0.439410
increasing lengthl. =28, 48, 96, 144, and 192. Finite-size ,-7 144 —0.440058 —0.439664
effects are evident for sufficiently smaileven for the larg- o7 192 —0.440064 0.439768
est system size considered in this work. However, the ' '
asymptotic largd- envelope evident in this figure fo6 28 28 —0.4425056 —0.4368847
=28 clearly shows the bulk limit. The dashed line is a8 48 —0.441826 —0.439863
power-law fitcySP to this envelope, which givegy=0.39  >-8 96 —0.44158 —0.4410442
and exponenp=1.45. The renormalization group prediction -8 144 —0.441550 —0.441275
p=4/3 from Eq.(4) (without the logarithmic factoris also  ,-s 192 —0.441550 —0.441360
shown, displaced for clarity of presentation. Clearly this
gives an inferior description of the DMRG data over the2~° 28 —0.4433439 —0.4377293
range considered here. 279 48 —0.442650 —0.440709
Figure 3 shows the singlet-triplet gap(L, ) as a func-  27° 96 —0.442384 —0.441885
tion of alternations for spin chains of length =28, 48, 96, 2°° 144 —0.442340 —0.442109
144, and 192. The envelope of these curves is the bulk limig—*° 192 —0.442336 —0.442190
A(6), which is evident fors=2 . For smaller values of the 5-10 8 —0.4437703 04381546
alternationd, finite-size effects are evident in the figure even,_y 48 —0.443073 0.441136
for L=192. A power-law fit toA(5) as foreg(s) givesco 510 96 044281 0442311
=1.94 andp=0.73, shown as a dashed line in Fig. 3. The__,, 144 70.442756 70'442532
renormalization group predictign=2/3 from Eq.(5) is also 10 192 _0'442741 —0.442614
shown, displaced for presentation. Evidently the renormal- : '
ization group exponerwithout the logarithmic tertnagain 28 —0.444201 —0.4385820
gives a less accurate description of our DMRG data. Notg 48 —0.443504 —0.441566
that the two exponents obtained in our fits are related by § %6 . 0.44323 —0.442741
factor of 2, which implies that they(s) defect scales as g 144 —0.44318 —0.442965

A(8)?. This relation also follows from the leading-order
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FIG. 2. Approach oféy(L,8) to the uniform-chain limite, FIG. 4. Estimation of the constantsand &, in Eq. (6) from our
=1/4—1In(2) with decreasing alternatiod and increasing chain DMRG data.
lengthL. The dashed line shows a fit to a power laysP, which
givescy=0.39 and an exponent of 1.45. The solid line shows the ~ 53
renormalization group exponent 4/8lisplaced for presentation, €0~ €o( 5):am-

without logarithmic corrections

Here we have introduced an overall constantaind scale
parametets,, which we will estimate from our DMRG data.
On rearranging Eq(6) we obtain the easily visualized form

(6)

renormalization group, Eq94) and (5). Our value ofp
=0.73 is consistent with the “effective” critical exponent
quoted by Singh and Weihorighote, however, that we es- 543

timate a different value for the, power!” due to their scal- —————=a XIns—In&y). (7)

ing of the Hamiltonian by a factor of (45) 1. €0~ €o(9)

It is especially interesting to determine whether there isFigure 4 shows our DMRG results féf3/[e,—8y(5)] [the
numerical evidence for logarithmic corrections to pureleft-hand side of Eq(7)] versus InS. The data clearly dis-
power-law behavior, as predicted by the renormalizatioragree with the leading-order renormalization group predic-
group in Egs.(4) and (5). We first consider the bulk-limit tion, Eq.(6), over this range ob, since the points do not lie
ground-state energy per spin, predicted to asymptotically appn a straight line. Assuming that the two smalléspoints

proach the uniform chain limit as are close to asymptotic, we estimate~—2.2 and &,
~110. A similar fit to the singlet-triplet gap gives
! = 523\ 2 )
)a/ (Z(é)) agap(In 6—1In &p), (8)
/" with agap~—19.4 andsy~115. With these constants the
o/ theoretical renormalization group results, E¢$. and (5),
o /( are barely distinguishable from our power-law fits in Figs. 2
3 o1 / and 3. There are no predictions of these constants in the
= o-0L=28 literature to our knowledge.
Py Equation (6) can be reexpressed as an effective power
% oo L=144 Peii(6) =413+ 1/In(5/8). With §,=110, the range d
= g Vf:’?;f&zw =103-10"! corresponds tp. ;= 1.42—1.47, which may
= ! _ 5'2/3 explain our good numerical agreement with a pure power of
exponentp=1.45.
09 oo e ] il ] We have also investigated finite-size effects in the uni-
: : ’ ’ form Heisenberg chaind=0). This serves as a consistency

check for our numerical computations since comparison with

FIG. 3. Critical behavior of the singlet-triplet galiL,5) as a  analytical result is possible. Woynarovich and Eckland
function of alternations for spin chains of length.. The dashed Affleck et al® quote Bethe-ansatz predictions and results
line shows a power-law fit;,°, which givesc,=1.94 and expo- from conformal field theory, respectively, for the leading
nentp=0.73. The solid line shows the renormalization group ex-finite-size contributions to the ground-state energy per spin
ponentp=2/3 (displayed as in Fig.)2 and singlet-triplet gap,
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the accuracy of finite size extrapolations we used DMRG to
compute the ground-state energy per spin and singlet-triplet
gap on chains of length=28, 32, 36, 40, 44, and 48, and
fitted the results tof (L)=a+bexp(-L/c)/L andg(L)=a

+b exp(—L/c), respectively(These forms were used to ex-

0.01g

é 0.001 trapolate exact diagonalization results to the bulk limit by
3 Barneset al® and Yu and Haa$. Both functions yield rea-
5 sonably good fits to our six data points in the rarige
§ =28,...,48. However, on comparing this extrapolation
&3] with our DMRG results ol =96, 144, and 192 lattices, we

0.0001f
; noted clear discrepancies as the alternatialecreases. This

is likely due to a rapid increase in the characteristic length
[modeled byc in the exponents of (L) andg(L)], which

L6:08 T o makes subleading terms in the asymptotic behavior more im-

9255 0.0001 0.001 0.01 portant. Our results thus suggest caution in attempting to

1/L2 establish critical behavior from studies of relatively small

systems. For this reason, we prefer not to extrapolate our

FIG. 5. Finite-size energy defectey(L)—eo| of the lowest DMRG data to larger system sizes. It would be of great
spins levels on the uniform chain vs chain length The data  interest to study the asymptotic forms of the latgdinite-

points are DMRG - : spin-0, X spin-1) and the lines are analyti- - gj;e dependence both numerically and analytically, since

cal results[leading order(LO), solid line; next-to-leading order these are required for accurate estimates of bulk-limit prop-
(NLO), dashed ling from Eqgs.(9) and (10).

erties.
772
eo—eo(L)=T[1+O((ln L)™3] 9) IV. SUMMARY
and We have employed the DMRG algorithm to determine the
ground-state energy per spin and singlet-triplet gap of the
2 alternating Heisenberg chain and studied the critical behavior
el(L)—eo=W 1- g(ln L) 1+ 0((In L)Z)). of this model in the limit of small alternation. We find that

(10) the approaches of the bulk-limit ground-state energy per spin
and singlet-triplet gap to the uniform chain limits are well
Figure 5 shows our DMRG data for these energy defects ofescribed by power laws in the alternation paramétewver
uniform chains of length. =28, 48, 96, and 144, together the range 0.008 §<0.1 and scale approximately a&*®
with the analytical results. and 8°7% respectively. The renormalization group predic-
The agreement between the leading-order analytical prejons of power laws times logarithmic corrections also ap-
dictions for finite-size corrections to the ground—state energ)pear consistent with our results, provided that a Surprising|y

per spin[Eqg. (9)] and our DMRG results is evidently very |arge scale factop, is present in the logarithms.
good on the shorter chains. The discrepancy eviderit at

=144 may be due to convergence problems encountered by
the DMRG algorithm when applied to this asymptotically ACKNOWLEDGMENTS
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