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Segregated tunneling-percolation model for transport nonuniversality
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We propose a theory of the origin of transport nonuniversality in disordered insulating-conducting com-
pounds based on the interplay between microstructure and tunneling processes between metallic grains dis-
persed in the insulating host. We show that if the metallic phase is arranged in quasi-one-dimensional chains of
conducting grains, then the distribution function of the chain conductivitiesg has a power-law divergence for
g→0, leading to nonuniversal values of the transport critical exponentt. We evaluate the critical exponentt by
Monte Carlo calculations on a cubic lattice, and show that our model can describe universal as well nonuni-
versal behaviors of transport depending on the value of few microstructural parameters. Such a segregated
tunneling-percolation model can describe the microstructure of a quite vast class of materials known as
thick-film resistors, which display universal or nonuniversal values oft depending on the composition.
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I. INTRODUCTION

When the conductivitys of an insulating-conducting
compound is measured as a function of the volume conc
tration p of the conducting phase, one finds that by reduc
p the system eventually undergoes a conductor-to-insul
transition at a particular critical valuepc of the volume con-
centration. In the critical region 0,p2pc!1 the conductiv-
ity follows a power law behavior of the form

s5s0~p2pc!
t, ~1!

wheres0 is a prefactor which depends on the particular s
tem considered, andt is a positive number typically large
than the unity.

Percolation theory explains the power-law form of Eq.~1!
as being due to the lack of any cutoff length scale apart
linear size of the sample, and predicts that the exponentt is
universal and depends only upon the dimensionality of
system.1 This prediction is confirmed by various granul
metals compounds and model systems which have b
found to follow Eq.~1! with t.2.0,2–5 that is the value ob-
tained by numerical calculations on three-dimensional r
dom resistor network~RRN! models.6 In addition to systems
showing universality, a large number of disordered co
pounds displaying values oft larger thant.2.0 have been
repeatedly reported,7–13 so that in the present situation it ap
pears thatt can assume any value betweent.2.0 up to about
t;6.0–7.0.

Within percolation theory on a RRN, Kogut and Stral
showed that a universality breakdown of the transport m
arise from anomalous distributions of elemen
conductivities.14 By assigning to each neighboring couple
sites on a regular lattice a bond with finite conductivityg
with probability p and zero conductivity with probability 1
2p, the resulting bond conductivity distribution function b
comes

r~g!5ph~g!1~12p!d~g!, ~2!
0163-1829/2003/68~2!/024207~7!/$20.00 68 0242
n-
g
or

-

e

e

en

-

-

y
l

whered(g) is the Dirac delta function andh(g) is the dis-
tribution function of the finite bond conductivities. For we
behavedh(g), transport is universal and follows Eq.~1! with
t5t0.2.0 for three dimensional lattices. Instead, ifh(g) has
a power law divergence for smallg of the form

lim
g→0

h~g!}g2a, ~3!

and a is larger than a critical valueac , Kogut and Straley
showed that transport is no longer universal and the cond
tivity exponent becomes dependent ona.14 A renormaliza-
tion group analysis predicts, in fact, that

t5H t0 if ~D22!n1
1

12a
,t0

~D22!n1
1

12a
if ~D22!n1

1

12a
.t0

, ~4!

where D is the dimensionality of the lattice andn is the
correlation-length exponent (n54/3 for D52 andn.0.88
for D53).15–17 For D53 and by usingt0.2.0 and n
.0.88 the critical value of the exponent isac.0.107.

Microscopic models which may justify Eq.~3! are the
random void~RV! model proposed by Halperin, Seng, an
Fen,18 and the tunneling-percolating model of Balberg.11 The
RV model describes a system of insulating spheres~or disks
in two dimensions! embedded randomly in a continuous co
ducting material. In this situation, transport is dominated
the conductivity of the narrow necks bounded by three int
penetrating insulating spheres. Such necks have a wide
tribution in widths resulting in a wide distribution of conduc
tivities. The original formulation of the RV model predicte
t5t010.5 for the conductivity exponent of the whol
sample. A recent generalization of the RV model by Balb
has shown thatt can assume even higher values, and that
principle, it is not bounded above.19

In the tunneling-percolating model of Ref. 11, transport
assumed to be dominated by quantum tunneling betw
neighboring conducting particles dispersed in an insulat
©2003 The American Physical Society07-1
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medium. If the distribution functionP(r ) of the distancer
between two neighboring particles decays withr much
slower than the tunneling decay exp(22r/j), wherej is the
localization length, then the tunneling conductivity distrib
tion function h(g) can be shown to behave as Eq.~3! with
a.12j/2a, so that the transport exponentt becomes de-
pendent of the mean tunneling distancea.11 Interactions be-
tween the conducting and insulating phases as well as p
erties of the microstructure are argued to concur as to thr
dependence ofP(r ). Due to the complexity of the problem
explicit calculations of the interparticle distance distributi
function are missing, and one must relay on phenomenol
cal forms ofP(r ).

In this paper we provide a microscopic derivation ofP(r )
which has been inspired by the peculiar microstructure
served in a particular class of insulating-conducting co
pounds: the so-called thick-film resistors~TFRs!. These com-
pounds are based on RuO2 ~or Bi2Ru2O7, Pb2Ru2O6, and
IrO2) grains mixed and fired with glass powders.20 Typically,
TFRs are often in a segregated structure regime in wh
large regions of glass constraint the much smaller conduc
grains to be segregated in between the interstices of ne
boring glass grains. Micrographs reveal that the conduc
grains are arranged in a network of filaments spanning
entire sample.7,21,22 By taking into account the quasi-one
dimensional structure of such filaments and by neglec
interactions with the insulating phase, we show that the
sulting P(r ) can decay much slower than the tunneling d
cay, leading to a nonuniversal behavior of transport.

This paper is organized as follows. In Sec. II we constr
a RRN model which captures the essential structure of
filamentary network of TFRs and calculate the resultingP(r )
and the distribution function of the conductivity of filament
In Sec. III we perform Monte Carlo calculations and calc
late the conductivity exponentt for a variety of situations.
Section IV is devoted to discussions and conclusions.

II. MODEL

Before describing our model in details, we find it useful
first discuss in general the interplay between the spatial
tribution of the conducting phase within the insulating mat
and transport properties. Let us consider a generic insulat
conducting compound where the conducting grains are
bedded in an insulating host. In this situation, electron tra
fer is governed by electron tunneling from grain to gra
The grain charging energy and the Coulomb interaction
tween charged grains affects the overall transport prope
especially regarding their behavior in temperature. Here
focus on systems where the temperature is high enoug
possibly neglect charging and Coulomb effects, so that
main electron transfer is dominated solely by tunneling le
ing to intergrain conductivity of the form

s~r !5s0e22(r 2F)/j, ~5!

wheres0 is a constant which can be set equal to the un
without loss of generality,j}1/AV is the tunneling factor~or
localization length! andV is the intergrain barrier potentia
02420
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In Eq. ~5! we have approximated the conducting grains
spheres of diameterF and r is the distance between th
centers of two spheres which we treat as impenetrabler
>F).

Due to the exponential decay of Eq.~5!, contributions to
s(r ) from far away spheres can be neglected,11,23 so that
from now on r denotes the distance of two neare
neighboring spheres. Hence, the ensemble dependenc
s(r ) upon r is completely defined by the distribution func
tion P(r ) of the distance between nearest-neighbor
spheres. In fact, onceP(r ) is known, the conductivity distri-
bution functionh(g) can be obtained as follows:

h~g!5E drP~r !d@g2s~r !#. ~6!

In this preliminary discussion, we are interested in study
how the form ofP(r ) affectsh(g) via Eq.~6! and which are
the requisites ofP(r ) which eventually could generate
power-law distribution function as that of Eq.~3!. As already
pointed out,P(r ) depends on the microstructure of the com
posite and on eventual interactions between the insula
and conducting phases. In principle, therefore, the form
P(r ) depends on the particular composite considered. H
ever, if we imagine that interactions can be neglected, the
is natural to assume that the conducting spheres are Po
distributed within the insulating phase. Then ifD is the di-
mensionality of the system, by following Refs. 24 and 25 t
nearest-neighbor distance distribution function is appro
mately of the form

P~r !;
e2(r /aD)D

aD
, ~7!

whereaD is a constant depending on the mean distance
tween neighboring spheres. Equation~7! is an asymptotic
approximation of the trueP(r ), and is valid only in the
r /aD@1 limit. This is, however, the limiting region of inter
est to us since it governs, via Eq.~5!, theg!1 regime. It is
also worth pointing out that Eq.~7! holds true for penetrable
as well as impenetrable~hard-core! spheres, the only differ-
ence being in the explicit expression foraD which is how-
ever of not importance at the moment.25

By inserting Eqs.~5! and ~7! into Eq. ~6!, the resulting
conductivity distribution function becomes

h~g!;E dr

aD
e2(r /aD)D

d@g2s~r !#

5
j

2aD

1

g
expS 2

j

2aD
ln g21D D

, ~8!

which, after some manipulations, reduces to

h~g!;
j

2aD
g(j/2aD)D(ln g21)D2121. ~9!

For D52 and 3, theg→0 limit of the above expression goe
to zero irrespective of the value ofj/2aD . In this case, there-
fore, no power-law divergence ofh(g) is encountered and
7-2
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SEGREGATED TUNNELING-PERCOLATION MODEL FOR . . . PHYSICAL REVIEW B68, 024207 ~2003!
as discussed in Sec. I, transport is governed by the unive
critical exponentt5t0.2.0. Instead, whenD51, Eq. ~9!
becomes

h~g!;
j

2a1
g(j/2a1)21, ~10!

which is exactly of the form of Eq.~3! if we identify a with
12j/2a1. We have arrived, therefore, at the result that if t
spheres are Poisson distributed along a one-dimensional
the resulting conductivity distribution function has a powe
law behavior for smallg and, consequently, transport is no
universal for sufficiently large values of 12j/2a1.

The difference between theD52 and 3 andD51 cases
stems from the decay of Eq.~7! which for D52 and 3 is
much too fast with respect to the simple exponential deca
Eq. ~5!. In fact from Eq.~6! it is simple to show that as long
as limr→`P(r )/s(r )50 then limg→0h(g)50 irrespective of
the detailed structure ofP(r ). Hence to construct a RRN
model havingh(g) of the form of Eq.~3!, we must consider
forms of P(r ) whose decay forr→` is sufficiently slow.
The result of Eq.~10! suggests that for this scope one dime
sionality is an important ingredient, at least as long as in
actions between conducting and insulating phases can b
glected.

Among the various insulating-conducting compoun
thick film resistors are systems whose microstructure can
appropriately described in terms of quasi-one-dimensio
units. Let us consider the highly non-homogeneous mic
structure typical of TFRs. These systems are constituted
mixture of large glassy particles~with size L of order
1 –3mm) and small conducting grains of sizeF typically
varying between;10 and;200 nm. Due to the high value
of L/F, the small metallic grains tend to occupy the narro
regions between the much larger insulating zones, leadin
a filamentary distribution of the conducting phase.7,21,22 A
classical model to describe such a segregation effect
proposed already in the 1970s by Pike.7 This model replaces
the glassy particles by insulating cubes of sizeL@F whose
edges can be occupied by chains formed by adjacent me
spheres of diameterF. Let us assume that an edge has pro
ability p of being occupied by a chain ofn11 spheres and
probability 12p of being empty. As depicted in Fig. 1, th
set of occupied and empty edges form a cubic lattice sp
ning the entire sample.

To define the RRN relevant for this model we proceed
follows. The conductivityg of a single occupied channel i
governed by the conductivities of the metallic spheres
those between pairs of two-neighboring spheres. The c
ductivity of the metallic spheres adds only a negligible co
tribution to g which is then given byn conductivitiess i of
pairs of nearest-neighboring spheres in series:

g215(
i 51

n
1

s i
. ~11!

We assume that the inter-sphere conductivitiess i are due to
the tunneling processes between two adjacent sphere
that their sphere-to-sphere distancer dependence is that o
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Eq. ~5!. For TFRs, the tunneling hypothesis is well sustain
by their high values of piezoresistance~i.e., the strain sensi-
tivity of transport!,20 and the low temperature dependence
transport indicating some kind of assisted hopping. As do
in the introductory part of this section, we neglect intera
tions between the insulating and conducting phases, and
sume that the sphere centers are Poisson distributed alon
cube edge. In doing so, we implicitly assume that finite s
effects of the channels can be neglected and that peri
boundary conditions are applied. In this way the last sph
on one end of the channel is identified with the first one
the opposite end, so that we haven individual spheres andn
intersphere tunneling junctions. In this situation, the d
tancesr change according to the distribution functionPn(r )
of the nearest-neighbor distancesr of n impenetrable sphere
arranged randomly in a quasi-one-dimensional channel.
following Ref. 25,Pn(r ) can be calculated exactly, and it
given by

Pn~r !5
1

an2F
e2(r 2F)/(an2F)Q~r 2F!, ~12!

FIG. 1. ~a! Pictorial representation of the segregated tunneli
percolation model. The cubes represent insulating grains while
spheres are conducting particles. The spheres are arranged t
cupy the edges of the insulating cubes with probabilityp. The total
ensemble of occupied and unoccupied edges forms a cubic la
spanning the entire sample.~b! Equivalence between an edge occ
pied by n11 spheres and a conducting element. The set of in
spheres tunneling conductivities is equivalent to a conductor win
resistive elements with conductivitiess i in series. The fluctuation
in distance between two neighboring spheres leads to fluctua
tunneling conductivities. With this equivalence, the model depic
in ~a! can be considered as a bond-percolation model where a
tion p of bonds has variable conductivities and a fraction 12p is
insulating.
7-3
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whereQ is the step function and

an5
F

2 S 11
L

nF D , ~13!

is the mean intersphere~center-to-center! distance. In the
above expressionnF/L cannot be larger than the unity sinc
no more thanL/F spheres can be accommodated insid
channel. Note that the asymptotic expression Eq.~7! for D
51 coincides with Eq.~12! if a1 is identified withan2F.
Hence the distribution functionf (s) of the intersphere con
ductivities should be of the same form of Eq.~10!. In fact,

f ~s!5E
0

`

drPn~r !d@s2s~r !#5~12an!s2an, ~14!

where

an512
j/2

an2F
. ~15!

Having obtained an explicit expression for the distributi
function f (s) of the intersphere conductivities, we can no
calculate the total distribution functionhn(g) of the whole
channel. From Eq.~11!, hn(g) can be defined as

hn~g!5E ds1 . . . dsnf ~s1! . . . f ~sn!dFg2S (
i 51

n
1

s i
D 21G ,

~16!

which, by using Eq.~14!, reduces to

hn~g!5~12an!nE ds1 . . . dsnS )
i 51

n

s i D 2an

3dFg2S (
i 51

n
1

s i
D 21G

5~12an!ng2anE ds1 . . . dsnS (
i 51

n

)
j Þ i

n

s j D 2an

3dFg2S (
i 51

n
1

s i
D 21G . ~17!

It is clear thathn(g) behaves asg2an for g!1 since the
integral appearing in the last equality of the above expres
is well behaved in theg→0 limit. In fact theg→0 limit of
the Diracd function appearing in Eq.~17! reduces to

lim
g→0

dFg2S (
i 51

n
1

s i
D 21G5(

l 51

n

d~s l !S (
i 51

n

)
j Þ i

s j

)
iÞ l

s i
D 2

,

~18!

so that, finally,
02420
a

n

hn~g!.~12an!ng2anE ds1 . . . dsn(
l 51

n

d~s l !S)
iÞ l

s i D 2an

5n~12an!g2an for g!1. ~19!

The above equation is the main result of this paper, i.e.,
distribution function of the occupied channel conductiviti
hn(g) is of the same form of Eq.~3!. In this situation, for
sufficiently large values ofan the RRN conductivity can
behave in a nonuniversal way with exponentt.2.0. The
condition for universality breakdown is given by Eq.~4!
which for a three-dimensional network impliesan.ac
.0.107. From Eqs.~13! and~15! this condition corresponds
to

n,nc5
12ac

12ac1j/F
L/F, ~20!

so that, for fixed values ofj/F and L/F, the value of the
transport exponentt is governed solely by the number o
spheres that can be arranged within the occupied o
dimensional channels. The overall behavior ofhn(g) is re-
ported in Fig. 2 where we report a numerical calculation
Eq. ~16! ~solid lines! together with the asymptotic behavio
obtained in Eq.~19! ~dotted lines!. In this example we have
setj52 nm, F510 nm, andL50.1 mm, corresponding to
L/F510, j/F50.2, andnc.8.17. Forn59.nc the distri-
bution function goes to zero as Eq.~19! with an.20.244
while for n56,nchn(g) diverges forg→0 with exponent
an50.7. Sinceac.0.107, we expect that forn59 transport
is universal while forn56 the exponentt becomes larger
than t0.2.0 as in Eq.~4!.

Before discussing our numerical results on the RRN c
ductivity, it is worth pointing out that our model can be ea
ily generalized to consider, also, situations in which the nu
ber of spheres accommodated in the one-dimensio
channels is not fixed. More specifically, ifPn8 is the distri-
bution function of the numbern8 of spheres, then the distri
bution function of the occupied channels is generalized t

FIG. 2. Distribution functionhn(g) of the conductivity of the
occupied channels forL/F510, j/F50.2, and different values o
n. Solid lines are the result of a numerical calculation of Eq.~16!,
while the dotted lines are the asymptotic results of Eq.~19!.
7-4
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h~g!5(
n8

Pn8hn8~g!. ~21!

As an instructive case let us consider a bimodal distribut
of the form

Pn85qdn8,n11~12q!dn8,n2 , ~22!

where 0<q<1. For q50 or q51 we recover the previou
case in which the occupied channels have the same num
of spheres and whether transport is universal or not depe
on the specific valuesn1 ~for q51) or n2 ~for q51). An
interesting case is given by 0,q,1 andn2,nc,n1, ac-
cording to which there is a concentrationq of channels con-
ductivities with distribution function with exponentan1
,ac and 12q channels withan2.ac . This case is depicted
in Fig. 3, wheren159 andn256 and, as in Fig. 2,L/F
510 andj/F50.2. For all valuesq,1 the g→0 limit is
governed by the diverging part of the total distribution fun
tion. In this case we expect that at the critical point the tra
port exponent in not universal for any valueq,1. Note,
however, that forq sufficiently close to unity, the asymptoti
regime is reached for relatively small values of the cond
tivity. As we shall see in Sec. III, this has the effect of shrin
ing the region where criticality sets in witht5n11/(1
2an2).

III. MONTE CARLO RESULTS ON THE CUBIC LATTICE

In this section we discuss our Monte Carlo calculatio
for the conductivitys of the RRN model defined in Sec. I
In constructing the RRN we must first implement nume
cally the conductivity of the channels occupied by a giv
numbern of spheres. Ifxi( i 51, . . . ,n) is a set of random
numbers equally distributed in the interval (0,1) then it
easily found that the channel conductivityg having Eq.~17!
as its corresponding distribution function is

g5F(
i 51

n

xi
1/(an21)G21

. ~23!

FIG. 3. Channel conductivity distribution functionh(g) @Eq.
~21!# for the bimodal distribution of Eq.~22! and for different val-
ues ofq. L/F510, j/F50.2, n159, andn256.
02420
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The RRN is then defined to have a fractionp of channels~in
a cubic lattice! with g as given by Eq.~23! and a fraction
12p with g50. The generalization to a bimodal distributio
@Eqs.~21! and ~22!# is straightforward.

To calculate the transport exponentt numerically, we use
the transfer-matrix method of Derrida and Vannimenus
plied to a simple cubic lattice ofN21 sites in thez direction,
N sites alongy andL along thex direction.26 Periodic bound-
ary conditions are used in they direction while a unitary
voltage is applied to the top plane and the bottom plane
grounded to zero.27,28 For sufficiently largeL (L@N) this
method permits one to calculate the conductivity per u
length of a cubic lattice. We calculate the conductivitysN for
different linear sizesN at the percolation thresoldpc
.0.2488126 for bond percolation on a cubic lattice,29 and
then by least-square fits we extract the critical exponet
from the finite size scaling relation28,31

sN5aN2t/n~11bN2v!, ~24!

wheren.0.88 is the correlation length exponent,a andb are
constants, andv is the first correction to the scaling expo
nent t/n. In performing the calculations we have consider
the following geometries:N56 (L553107), N58 (L52
3107), N510 (L513107), N512 (L583106), N
514 (L523106), andN516 (L523106).

In Fig. 4 we report the obtained values of the critic
exponentt for j/F50.2 and for two different values of the
ratio L/F between the length channel and sphere diame
Each square corresponds to a particular numbern of inter-
sphere tunneling junctions arranged in the channel~see the
caption! which, from Eqs.~13! and ~15!, also gives the cor-
responding value of the tunneling exponentan reported in
the abscissa. As a function ofan , the critical exponentt
nicely follows Eq.~4! ~solid curve! confirming that a univer-

FIG. 4. Critical exponentt as a function of the tunneling expo
nentan for j/F50.2 and different values ofL/F and of the num-
ber n of inter-sphere tunneling junctions accommodated within
occupied channels of a cubic random-resistor network. From le
right: n59,8, . . . ,5 for L/F510 ~filled squares! and n
546,45,43,41,39,33, and 27 forL/F550 ~open squares!. The solid
curve is the theoretical resultt5t0.2.0 for an,ac.0.107 andt
5n11/(12an) for an.ac @see Eq.~4!#.
7-5
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sal (t.2.0) or nonuniversal (t.2.0) behavior is obtained
just by changing the number of spheres accommodated in
channels. In our least square fittings to Eq.~24! we have
found that the minimumx2 is obtained by settingbÞ0 and
v;1.0 for an,ac andb50 for an.ac . It is worth notic-
ing that our Monte Carlo results on the cubic lattice agr
with Eq. ~4! much better than the corresponding proble
@Eqs.~2! and~3!# on the two-dimensional square lattice.32,33

We have also applied the transfer-matrix method to
bimodal distribution of Eq.~22! with L/F510, j/F50.2,
n159, andn256, and found that, as expected, atpc the
critical exponent is already nonuniversal forq50.9. How-
ever, what is interesting in the bimodal case is the beha
of the conductivitys away from the critical thresold. The
high-structured shape ofh(g) for 0,q,1 reported in Fig. 3
in fact suggests that thep dependence ofs could be affected
by the competition between the two exponentsan1,ac and
an2.ac . To study this problem, the application of th
transfer-matrix method for values of the occupied chan
concentrationp away from the critical thresoldpc is not
efficient since the computational time of the algorithm
creases asp is moved from pc .26,27 Hence we have ap
proached the problem by solving the RRN by the conjug
gradient method, which is more efficient away from the cr
cal point.30 The resultings is reported in Fig. 5 for a cubic
lattice of 40340340 sites and periodic boundary conditio
applied to the sides not connected with the external poten
drop. We have considered the bimodal case defined
L/F510, n159, andn256, and different values ofq. For
q51 ~filled squares in Fig. 5! all the occupied channels hav
n159 tunneling junctions and the conductivity is well a
proximated by Eq.~1! with the critical exponentt51.8
60.1. This value is slightly less than the universal resut

FIG. 5. Conductivitys of a 40340340 cubic lattice with the
bimodal distribution of Eq.~22! with n159, n256, L/F510, and
j/F50.2. Symbols are mean values of ten different runs with st
dard deviations given by the error bars. Dashed lines are fits to
~1! with t51.860.1 for q51 andt53.760.2 for q50.
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5t0.2.0, and this difference signals the limitation of extra
ing critical exponents from thep dependence ofs in finite
size samples. Howevers follows the power-law Eq.~1! in
the intervalp2pc,0.120.2. A nice power law is also found
for q50 ~filled diamonds! for which the occupied channel
haven256 number of junctions. In this case, however, t
exponent ist53.760.2, i.e., slightly less than the nonun
versal valuet.4.0 obtained by the transfer-matrix metho
~see Fig. 4!.

In Fig. 5 we report alsos calculated for intermediate
values ofq. For q50.9 and 0.8 thep2pc dependence of the
conductivity can be reasonably fitted by a simple power l
only for p2pc,;0.05 for which we have foundt53.2
60.3 and 4.160.4, respectively. We interpret this shrinkin
of the critical region as being due to the large contribution
the fraction of channels withn159 to the occupied channel
distribution functionh(g). However, forq50.6 the critical
region is already fully restored, ands follows a power law
with t53.860.5 for p2pc<0.1.

IV. DISCUSSION AND CONCLUSIONS

As shown in the previous sections, the interesting char
teristic of our segregated tunneling-percolation model is
possibility of having a universal or nonuniversal behavior
transport within the same theoretical framework. As we ha
discussed, if the microscopic physical and geometric par
eters~insulating cube sizeL, sphere diameterF, number of
spheres, and localization lengthj) are such that the tunnelin
factor an is larger than the critical valueac.0.107 then the
critical exponentt is nonuniversal and followst5n11/(1
2an); otherwise transport is universal and the critical exp
nent is t5t0.2.0. This universal/nonuniversal crossover
experimentally observed in thick-film resistors, which are
ported to vary betweent.2.0 and t.5.0 for mixtures of
chemically identical constituents. It can be argued that d
ferent fabrication procedures~for example, the firing tem-
perature! affect the microstructure leading to different effe
tive values ofan . Of course our model is oversimplified i
the sense that interactions between the conducting and i
lating phases are completely neglected. However, it is
markable that only two assumptions, the quasi-o
dimensionality of the conducting channels and the Pois
distribution of the position of the spheres inside the chann
are sufficient to give rise to such a rich phenomenology.

The model discussed in this paper captures the esse
physics, but eventually it can be further generalized to
clude more realistic features. For example, it is possible
account for different sizes of the conducting spheres in
straightforward manner, since for this case the o
dimensional nearest-neighbor distance distribution funct
is also provided by an analytical and exact expression.34 Also
the tunneling expression@Eq. ~5!# can be refined by includ-
ing, for example, charging energies or distribution functio
for the tunneling factorj.
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