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We propose a theory of the origin of transport nonuniversality in disordered insulating-conducting com-
pounds based on the interplay between microstructure and tunneling processes between metallic grains dis-
persed in the insulating host. We show that if the metallic phase is arranged in quasi-one-dimensional chains of
conducting grains, then the distribution function of the chain conductivitieas a power-law divergence for
g—0, leading to nonuniversal values of the transport critical exponé&¥é evaluate the critical exponeriby
Monte Carlo calculations on a cubic lattice, and show that our model can describe universal as well nonuni-
versal behaviors of transport depending on the value of few microstructural parameters. Such a segregated
tunneling-percolation model can describe the microstructure of a quite vast class of materials known as
thick-film resistors, which display universal or nonuniversal valuesagpending on the composition.
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[. INTRODUCTION where §(g) is the Dirac delta function ant(g) is the dis-
tribution function of the finite bond conductivities. For well

When the conductivityo of an insulating-conducting behaved(g), transport is universal and follows E@.) with
compound is measured as a function of the volume conceri=ty=2.0 for three dimensional lattices. Insteadh{f) has
tration p of the conducting phase, one finds that by reducinga power law divergence for smailof the form
p the system eventually undergoes a conductor-to-insulator
transition at a particular critical value, of the volume con- limh(g)ecg™?, ()
centration. In the critical region©p—p.<1 the conductiv- 90

ity follows a power law behavior of the form and a is larger than a critical value,, Kogut and Straley

showed that transport is no longer universal and the conduc-
o=0o(p—po)t (1) tivity exponent becomes dependent art* A renormaliza-
tion group analysis predicts, in fact, that
whereo is a prefactor which depends on the particular sys-

tem considered, antlis a positive number typically larger . B 1
than the unity. fo T (B=2)rt 1= <t
Percolation theory explains the power-law form of Ep. t= 1 1 N
as being due to the lack of any cutoff length scale apart the (D—2)v+ T if (D—2)v+ 1—>t0
- -

linear size of the sample, and predicts that the expohent
universal and depends only upon the dimensionality of th
systemt This prediction is confirmed by various granular correlation-length exponentv&4/3 for D=2 and v=0.88
metals compounds and model systems which have be "o 15-17 ~ ;

. s . r D=3). For D=3 and by usingt;=2.0 and »
found to follow Eq.(1) with t=2.0,27>that is the value ob- - )

. : . : : =0.88 the critical value of the exponentdas=0.107.
tained by numerical calculations on three-dimensional ran- 7. . . S
Microscopic models which may justify Eq3) are the

dom resistor networkRRN) models® In addition to systems . !
showing universality, a large number of disordered Com_random void(RV) model proposed by Halperin, Seng, and

. . Fen!® and the tunneling-percolating model of Balbétg.he
pounds displaying values dflarger thant=2.0 have been ' . ; . 4
repeatedly reportet;*®so that in the present situation it ap- RV model describes a system of insulating sphéoeslisks

ears that can assume anv value betwaen2 0 up to about in two dimensionsembedded randomly in a continuous con-
F~6 0-70 y O up ducting material. In this situation, transport is dominated by

Within percolation theory on a RRN, Kogut and Straley the conductivity of the narrow necks bounded by three inter-

showed that a universality breakdown of the transport ma penetrating insulating spheres. Such necks have a wide dis-
. y breakdowr b Yribution in widths resulting in a wide distribution of conduc-
arise from anomalous distributions of elemental

conductivitiesi By assigning to each neighboring couple of tivities. The original formulation of the RV model predicted

sites on a regular lattice a bond with finite conductivity t=t+0.5 for the conductivity exponent of the whole
with probability p and zero conductivity with probability 1 sample. A recent generalization of the RV model by Balberg

: R AR . has shown thatt can assume even higher values, and that, in
c—opr)r,]etZe resulting bond conductivity distribution function be- principle, it is not bounded abové.

In the tunneling-percolating model of Ref. 11, transport is
assumed to be dominated by quantum tunneling between
p(g)=ph(g)+(1-p)ds(g), (2 neighboring conducting particles dispersed in an insulating

Svhere D is the dimensionality of the lattice and is the
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medium. If the distribution functioP(r) of the distanca  In EQ. (5) we have approximated the conducting grains by
between two neighboring particles decays withmuch spheres of diamete® and r is the distance_ between the
slower than the tunneling decay exiflr/&), where¢ is the ~ Centers of two spheres which we treat as impenetrable (
localization length, then the tunneling conductivity distribu- =d). ] o
tion functionh(g) can be shown to behave as Eg) with Due to the exponential decay of E¢), contributions to
a=1-¢/2a, so that the transport exponenbecomes de- o(r) from far away spheres can be neglecteff, so that
pendent of the mean tunneling distarect Interactions be- from now on r denotes the distance of two nearest-
tween the conducting and insulating phases as well as profeighboring spheres. Hence, the ensemble dependence of
erties of the microstructure are argued to concur as ta the (r) uponr is completely defined by the distribution func-
dependence dP(r). Due to the complexity of the problem, tion P(r) of the distance between nearest-neighboring
explicit calculations of the interparticle distance distributionSPheres. In fact, onde(r) is known, the conductivity distri-
function are missing, and one must relay on phenomenologiution functionh(g) can be obtained as follows:
cal forms of P(r).

In this paper we provide a microscopic derivatiorRgf) h(g)= f drP(r)s[g—o(r)]. (6)
which has been inspired by the peculiar microstructure ob-
served in a particular class of insulating-conducting comyy, this preliminary discussion, we are interested in studying

pounds: the so-called thick-film r.esistoif'é:Rs). These com- 5w the form ofP(r) affectsh(g) via Eq.(6) and which are
pounds are based on Ry@r Bi,R1,0;7, PBRWLOs, and  he requisites ofP(r) which eventually could generate a

IrO) grains mixed and fired with glass powdé?ypically,  hower-law distribution function as that of E). As already
TFRs are often in a segregated structure regime in whichyined outp(r) depends on the microstructure of the com-
large regions of glass constraint the much smaller conductinggje and on ‘eventual interactions between the insulating
grains to be segregated in between the interstices of neiglyny conducting phases. In principle, therefore, the form of

boring glass grains. Micrographs reveal that the conducting ) gepends on the particular composite considered. How-
grains are a&faz?g?d n ak.netvyork of fllamenr:s spanning thger if we imagine that interactions can be neglected, then it
entire sample:”>* By taking into account the quasi-one- s nayra| to assume that the conducting spheres are Poisson
dimensional structure of such filaments and by neglectinggyinyted within the insulating phase. ThenOfis the di-

inte.ractions with the insulating phase, we show that. the r€ensionality of the system, by following Refs. 24 and 25 the
suling P(r) can decay much slower than the tunneling de-peqrest-neighbor distance distribution function is approxi-
cay, leading to a nonuniversal behavior of transport. mately of the form

This paper is organized as follows. In Sec. Il we construct
a RRN model which captures the essential structure of the ef(r/aD)D
filamentary network of TFRs and calculate the resulf{g) P(ry~————, (7
and the distribution function of the conductivity of filaments. ap

In Sec. Il we pe_rf_orm Monte Carlo calqulations_and_ Calcu'whereaD is a constant depending on the mean distance be-
late the conductivity exponentfor a variety of situations. yeen neighboring spheres. Equati6f is an asymptotic

Section 1V is devoted to discussions and conclusions. approximation of the true®(r), and is valid only in the
r/ap>1 limit. This is, however, the limiting region of inter-
Il. MODEL est to us since it governs, via E), theg<1 regime. It is

fore d ibi del in detail find i l also worth pointing out that Eq7) holds true for penetrable
f B(ej_ore escribing o?rhmo_ € ml etgl S, We mh I use_ul é(_) as well as impenetrablgnard-coré spheres, the only differ-
Irst discuss in general the Interplay between the spatial disy.e being in the explicit expression fap which is how-
tribution of the conducting phase within the insulating matrix

. ) ) *ever of not importance at the momént.
and transport properties. Let us consider a generic insulating-" g, “inserting Eqs.(5) and (7) into Eq. (6), the resulting

conducting compound where the conducting grains are €Mkonductivity distribution function becomes
bedded in an insulating host. In this situation, electron trans-

fer is governed by electron tunneling from grain to grain. dr 5
The grain charging energy and the Coulomb interaction be- h(g)~f —e ()" 5 g—0o(r)]
tween charged grains affects the overall transport properties ap
especially regarding their behavior in temperature. Here we &1 ¢ D
focus on systems where the temperature is high enough to = E—exr( - Eln gl> \ (8
possibly neglect charging and Coulomb effects, so that the o9 D
main electron transfer is dominated solely by tunneling leadwhich, after some manipulations, reduces to
ing to intergrain conductivity of the form
o(r)=ogge 20~ ®V¢ (5) h(g)~ %g(glzaD)D(m 9 H7 9

where o is a constant which can be set equal to the unityFor D=2 and 3, theg—0 limit of the above expression goes
without loss of generalityoc 1/\/V is the tunneling factofor  to zero irrespective of the value éf2a,, . In this case, there-
localization length andV is the intergrain barrier potential. fore, no power-law divergence @f(g) is encountered and,
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as discussed in Sec. |, transport is governed by the universe
critical exponentt=t,=2.0. Instead, whem =1, Eq. (9)
becomes

h(g)~ Zialg(ﬁ’zaﬂl, (10

which is exactly of the form of Eq.3) if we identify « with
1-¢/2a,. We have arrived, therefore, at the result that if the
spheres are Poisson distributed along a one-dimensional line
the resulting conductivity distribution function has a power-
law behavior for smaly and, consequently, transport is non-
universal for sufficiently large values of-1£/2a;.

The difference between tHe=2 and 3 andD=1 cases
stems from the decay of Eq7) which for D=2 and 3 is
much too fast with respect to the simple exponential decay ol
Eq. (5). In fact from Eq.(6) it is simple to show that as long
as lim_,.P(r)/o(r)=0 then limy_,,h(g) =0 irrespective of
the detailed structure oP(r). Hence to construct a RRN
model havingh(g) of the form of Eq.(3), we must consider
forms of P(r) whose decay for —« is sufficiently slow.
The result of Eq(10) suggests that for this scope one dimen-
sionality is an important ingredient, at least as long as inter- (D)
actions between conducting and insulating phases can be ne-
glected. FIG. 1. (a) Pictorial representation of the segregated tunneling-

Among the various insulating-conducting compounds,percolation model. The cubes represent insulating grains while the
thick film resistors are systems whose microstructure can bepheres are conducting particles. The spheres are arranged to oc-
appropriately described in terms of quasi-one-dimensionagupy the edges of the insulating cubes with probabpitfhe total
units. Let us consider the highly non-homogeneous microensemble of occupied and unoccupied edges forms a cubic lattice
structure typical of TFRs. These systems are constituted by $anning the entire sampléa) Equivalence between an edge occu-
mixture of large glassy particle$with size L of order pied byn+1 spheres and_a_ f:on_ducting element. The set of ir_]ter-
1-3um) and small conducting grains of size typically sph_er_es tunneling co_nductlvmes_ |§_equ_|valen_t to aconductormlth
varying between-10 and~ 200 nm. Due to the high values _reS|§t|ve elements with cond_uctlvm_ef, in series. The fluctuation _
of L/®, the small metallic grains tend to occupy the narrow™” distance between two neighboring spheres leads to fluctuating

regions between the much larger insulating zones, leading ttgnnehng conductivities. With this equivalence, the model depicted

. S . in (a) can be considered as a bond-percolation model where a frac-
a f|Iamentary dlstrlbutlon_ of the conducting p.hgg?év??A tion p of bonds has variable condugtivities and a fractionplis
classical model to describe such a segregation effect WaRsylating
proposed already in the 1970s by Pikehis model replaces '
the glassy particles by insulating cubes of dized® whose
edges can be occupied by chains formed by adjacent metallieg. (5). For TFRs, the tunneling hypothesis is well sustained
spheres of diametab. Let us assume that an edge has prob-by their high values of piezoresistanGee., the strain sensi-
ability p of being occupied by a chain af+1 spheres and tivity of tra_nspor)_,20 and the low temperature dependence of
probability 1— p of being empty. As depicted in Fig. 1, the transport indicating some kind of assisted hopping. As done

set of occupied and empty edges form a cubic lattice sparll the introductory part of this section, we neglect interac-
ning the entire sample. tions between the insulating and conducting phases, and as-

To define the RRN relevant for this model we proceed aSume that the sphere centers are Poisson distributed along the

follows. The conductivityg_ o_f_a single occupie_d channel is C#Z(zt:dgfet.hlg gﬁg]ngnzg \(/:Vaenirgg”ﬁiéglea(?tseudmaentdhatlft};iriIIJeerSi(i)ZdeiC
governed by the c_onductlvmes_of the_ metallic spheres an(goundary conditions are applied. In this way the last sphere
those between pairs of two-neighboring spheres. The cons

ductivity of th talli h dd | liaibl n one end of the channel is identified with the first one on
uctivity of the metallic spheres adds only a negligible con-y,q opposite end, so that we havéindividual spheres and
tribution to g which is then given byn conductivitieso; of

. . . . S intersphere tunneling junctions. In this situation, the dis-
pairs of nearest-neighboring spheres in series: tancesr change according to the distribution functigp(r)
N of the nearest-neighbor distanaesf n impenetrable spheres
g t=2
i=1

arranged randomly in a quasi-one-dimensional channel. By
following Ref. 25,P,(r) can be calculated exactly, and it is
given by

We assume that the inter-sphere conductivitiegre due to

the tunneling processes betyveen two adjacent. spheres, so P.(r)= 1 e a9y — @), (12)

that their sphere-to-sphere distancdependence is that of a,— o

| P

(11)

g
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where® is the step function and

o
an=E

L
nd)’

is the mean interspher&enter-to-centgrdistance. In the
above expression®/L cannot be larger than the unity since

1 (13

no more thanL/® spheres can be accommodated inside a

channel. Note that the asymptotic expression &g.for D
=1 coincides with Eq(12) if a, is identified witha,— ®.
Hence the distribution functiof(o) of the intersphere con-
ductivities should be of the same form of EqO). In fact,

f(o)= f:drPn(r)é[o—o-(r)]z(l—an)o-’“n, (14

where

&
a,—®’

(19

an=

Having obtained an explicit expression for the distribution
function f(o) of the intersphere conductivities, we can now

calculate the total distribution functiom,(g) of the whole
channel. From Eq(11), h,(g) can be defined as

-1

o-( 3,2
bE

hn(g)zf doy...doyf(oy) ... f(0,)6

(16)
which, by using Eq(14), reduces to
n —ap
hn(g)=(1—an)”J dol...dan(i[[la'i)
n -1
1
X 6l g— —
o572 |
n n —ap
:(1—an)“g—anf doy .. .dO’n( E a']-)
i=1j#i
n 1 -1
X ) g—(E —_) . (17)
=1 0-|

It is clear thath,(g) behaves ag~“n for g<1 since the

PHYSICAL REVIEW B68, 024207 (2003
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FIG. 2. Distribution functionh,(g) of the conductivity of the
occupied channels fdr/® =10, &/ $=0.2, and different values of
n. Solid lines are the result of a numerical calculation of Bd),
while the dotted lines are the asymptotic results of @§).

hn<g>z<1—an>“g*anf doy .. .dangl 5<o.>(H oi) '

i#l

=n(l—-ayg “ for g<1. (19

The above equation is the main result of this paper, i.e., the
distribution function of the occupied channel conductivities
h,(g) is of the same form of Eq(3). In this situation, for
sufficiently large values ofy,, the RRN conductivity can
behave in a nonuniversal way with exponent2.0. The
condition for universality breakdown is given by E®)
which for a three-dimensional network implies,> «,
=0.107. From Egs(13) and(15) this condition corresponds

to

1-a,

1—a.+¢d L/,

n<n.,= (20

so that, for fixed values of/® andL/®, the value of the
transport exponent is governed solely by the number of
spheres that can be arranged within the occupied one-
dimensional channels. The overall behaviorhgfg) is re-
ported in Fig. 2 where we report a numerical calculation of
Eq. (16) (solid lineg together with the asymptotic behavior
obtained in Eq(19) (dotted line$. In this example we have
seté=2 nm, ®=10 nm, and.=0.1 um, corresponding to
L/®=10, ¢P=0.2, andn,=8.17. Forn=9>n_ the distri-

integral appearing in the last equality of the above expressiohution function goes to zero as Ed9) with a,=—0.244

is well behaved in thg— 0 limit. In fact theg—0 limit of
the Diracé function appearing in Eq17) reduces to

Iimé[g—(é}l

g—0 O

so that, finally,

while for n=6<n:h,(g) diverges forg—0 with exponent
a,=0.7. Sincen=0.107, we expect that far=9 transport
is universal while forn=6 the exponent becomes larger
thanty=2.0 as in Eq(4).

Before discussing our numerical results on the RRN con-
ductivity, it is worth pointing out that our model can be eas-
ily generalized to consider, also, situations in which the num-
ber of spheres accommodated in the one-dimensional
channels is not fixed. More specifically, #,, is the distri-
bution function of the numbemn’ of spheres, then the distri-
bution function of the occupied channels is generalized to
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FIG. 3. Channel conductivity distribution functiom(g) [Eq.

(21)] for the bimodal distribution of Eq(22) and for different val-
ues ofq. L/®=10, ¢&P=0.2,n1=9, andn2=6.

FIG. 4. Critical exponent as a function of the tunneling expo-
nenta, for ¢ ®=0.2 and different values df/® and of the num-
ber n of inter-sphere tunneling junctions accommodated within the
occupied channels of a cubic random-resistor network. From left to
rightt n=98,...,5 for L/®=10 (filed squares and n

_ =46,45,43,41,39,33, and 27 fbf® =50 (open squargsThe solid
h(9) % Pofin(9)- @D curve is the theoretical result=t,=2.0 for a,< a,=0.107 anct

) ) ) ) . =v+U(l-«a,) for ay>ac [see Eq(4)].
As an instructive case let us consider a bimodal distribution

of the form

The RRN is then defined to have a fractipiof channelgin

P =060+ (1-Q) 80 n2, (220 a cubic latticg with g as given by Eq(23) and a fraction
where 0=g=<1. Forq=0 orq=1 we recover the previous 1—p with g=0. The generalization to a bimodal distribution
case in which the occupied channels have the same numblrdS:(21) and(22)] is straightforward. _
of spheres and whether transport is universal or not depends 10 calculate the transport exponénumerically, we use
on the specific valueal (for q=1) or n2 (for g=1). An the transfer-matrix method of Derrida and Vannimenus ap-
interesting case is given by<0g<1 andn2<n.<nl, ac- plied to a simple cubic lattice dfi— 1 sites in thez direction,
cording to which there is a concentratiqrof channels con- N Sites along/and £ along thex direction?® Periodic bound-
ductivities with distribution function with exponent,, &/ conditions are used in the direction while a unitary
< a, and 1-q channels withy,,,> «, . This case is depicted voltage is applied to the top plane and the bottom plane is
in Fig. 3, wheren1=9 andn2=6 and, as in Fig. 2L/&  grounded o zerd'?8 For sufficiently largeC (£>N) this
-10 and§/<D=O.2. For all valuesq<1’ the g—0 limit is method permits one to calculate the conductivity per unit

governed by the diverging part of the total distribution func-1€ngth of a cubic lattice. We calculate the conductiviy for

tion. In this case we expect that at the critical point the transdifferent linear sizesN at the percolation threﬁsaolqnc
port exponent in not universal for any valgg<1. Note, =0.2488126 for bond percolation on a cubic latticgnd

however, that fog sufficiently close to unity, the asymptotic (hen by least-square fits we e)%%%ﬁt the critical exporient
regime is reached for relatively small values of the conduc{fom the finite size scaling relati
tivity. As we shall see in Sec. lll, this has the effect of shrink-

ing the region where criticality sets in with= v+ 1/(1 on=aN"""(1+bN"*), (24)

—p2). wherev=0.88 is the correlation length exponeatandb are
constants, an@ is the first correction to the scaling expo-

Ill. MONTE CARLO RESULTS ON THE CUBIC LATTICE nentt/v. In performing the calculations we have considered

n thi . di M Carl lculati the following geometriesN=6 (£L=5x10"), N=8 (£L=2
n this section we discuss our Monte Carlo calculations, 107, N=10 (L=1x107), N=12 (£=8X10F), N

for the condpctivityo of the RRN quel Qefined in Sec. I —q4 (L=2x10F), andN=16 (£L=2x10%).
In constructing the RRN we must first implement numeri-
cally the conductivity of the channels occupied by a given
numbern of spheres. Ifx;(i=1,... n) is a set of random
numbers equally distributed in the interval (0,1) then it is
easily found that the channel conductivigyhaving Eq.(17)

as its corresponding distribution function is

In Fig. 4 we report the obtained values of the critical
exponent for £&/®=0.2 and for two different values of the
ratio L/® between the length channel and sphere diameter.
Each square corresponds to a particular nunmbef inter-
sphere tunneling junctions arranged in the chariseé the
caption which, from Eqs.(13) and(15), also gives the cor-

-1 responding value of the tunneling exponenj reported in
(23) the abscissa. As a function af,, the critical exponent
nicely follows Eq.(4) (solid curve confirming that a univer-

E Xil/(an—l)

i=1

g:
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10! 3 =ty=2.0, and this difference signals the limitation of extract-
F ] ing critical exponents from thp dependence of in finite
102 E ,,!"1 E size samples. However follows the power-law Eq(1) in
Sf .f M ] the intervalp—p,<0.1—-0.2. A nice power law is also found
0 mTe A for =0 (filled diamonds for which the occupied channels
wb =Tty ] haven2=6 number of junctions. In this case, however, the
E ¥ . 4 ot exponent ist=3.7=0.2, i.e., slightly less than the nonuni-
o 10° . * M ," 4 versal valuet=4.0 obtained by the transfer-matrix method
i T oy o E (see Fig. 4
100 | LI RS E In Fig. 5 we report alsor calculated for intermediate
, F f o _ ] values ofg. Forg=0.9 and 0.8 theg— p. dependence of the
107 F Y /,’ . q:1-° 3 conductivity can be reasonably fitted by a simple power law
10_81 1 ¥ : q:g.g ] only for p—p.<~0.05 for which we have found=3.2
E ‘ q: P +0.3 and 4.1 0.4, respectively. We interpret this shrinking
F 2 4 v g=06 ]
10°k / . q=0'0 ] of the critical region as being due to the large contribution of
f a=>- the fraction of channels with1=9 to the occupied channels
1010 Lew ] distribution functionh(g). However, forq=0.6 the critical

0.01 0.1 region is already fully restored, and follows a power law
with t=3.8+0.5 for p—p,=<0.1.

FIG. 5. Conductivityo of a 40<40xX 40 cubic lattice with the
bimodal distribution of Eq(22) with n1=9, n2=6, L/®=10, and
&/®=0.2. Symbols are mean values of ten different runs with stan-  As shown in the previous sections, the interesting charac-
dard deviations given by the error bars. Dashed lines are fits to Eqeristic of our segregated tunneling-percolation model is the
(1) with t=1.8+0.1 forq=1 andt=3.7x0.2 forq=0. possibility of having a universal or nonuniversal behavior of

transport within the same theoretical framework. As we have

discussed, if the microscopic physical and geometric param-
sal (t=2.0) or nonuniversalt(>2.0) behavior is obtained eters(insulating cube sizé, sphere diameteb, number of
just by changing the number of spheres accommodated in ti@Pheres, and localization lenggh are such that the tunneling
channels. In our least square fittings to EB4) we have factor«, is larger than the critical value.=0.107 then the
found that the minimuny? is obtained by setting+0 and  critical exponentt is nonuniversal and follows=»+1/(1
w~1.0 for ap<a, andb=0 for a,>a,. It is worth notic- ~ — @n); Otherwise transport is universal and the critical expo-
ing that our Monte Carlo results on the cubic lattice agreedie€nt ist=ty=2.0. This universal/nonuniversal crossover is
with Eq. (4) much better than the corresponding pr0b|emexperimentally observed in thick-film resistors, which are re-
[Egs.(2) and(3)] on the two-dimensional square lattite® ported to vary between=2.0 andt=5.0 for mixtures of

We have also applied the transfer-matrix method to the&hemically identical constituents. It can be argued that dif-
bimodal distribution of Eq(22) with L/®=10, &®=0.2, ferent fabrication proceduregor example, the firing tem-
n1=9, andn2=6, and found that, as expected, mt the peraturg affect the microstructure leading to different effec-
critical exponent is already nonuniversal fge=0.9. How-  tive values ofa,]. Of course our model is oversimplified i.n
ever, what is interesting in the bimodal case is the behavioih€ sense that interactions between the conducting and insu-
of the conductivityc away from the critical thresold. The lating phases are completely neglected. However, it is re-
high-structured shape 6i{g) for 0<q<1 reported in Fig. 3 Markable that only two assumptions, the quasi-one-
in fact suggests that thedependence of could be affected dimensionality of the conducting channels and the Poisson
by the competition between the two exponeats<a. and  distribution of the position of the spheres inside the channels,
any>ae. To study this problem, the application of the &€ sufficient to give rise to sgch a rich phenomenology. .
transfer-matrix method for values of the occupied channel The model discussed in this paper captures the essential
concentrationp away from the critical thresolg, is not ~ Physics, but eventually it can be further generalized to in-
efficient since the computational time of the algorithm in- ¢lude more realistic features. For example, it is possible to
creases ap is moved fromp,.28%" Hence we have ap- account for different sizes of the conducting spheres in a

proached the problem by solving the RRN by the conjugatétraightforward manner, since for this case the one-
gradient method, which is more efficient away from the Criti_@mensmnai nearest-neighbpr distance distribution function
cal point® The resultingo is reported in Fig. 5 for a cubic IS @ls0 provided by an analytical and exact expressfatso
lattice of 40x 40 40 sites and periodic boundary conditions € tunneling expressiofiEq. (5] can be refined by includ-
applied to the sides not connected with the external potentidid: for example, charging energies or distribution functions
drop. We have considered the bimodal case defined b{Pr the tunneling factog.

L/®=10,n1=9, andn2=6, and different values ai. For

g=1 (filled squares in Fig. pall the occupied channels have ACKNOWLEDGMENTS

n1=9 tunneling junctions and the conductivity is well ap- We are grateful to Isaac Balberg for interesting discus-
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