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Intrinsic long-range bond-order potential for carbon:
Performance in Monte Carlo simulations of graphitization

J. H. Los and A. Fasolino
Theoretical Physics, NSRIM, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

~Received 11 February 2003; published 31 July 2003!

We propose a bond order potential for carbon with built-in long-range interactions. The potential is defined
as the sum of an angular and coordination dependent short-range part accounting for the strong covalent
interactions and a radial long-range part describing the weak interactions responsible, e.g., for the interplanar
binding in graphite. The short-range part is a Brenner type of potential, with several modifications introduced
to get an improved description of elastic properties and conjugation. Contrary to previous long-range exten-
sions of existing bond order potentials, we prevent the loss of accuracy by compensating for the additional
long-range interactions by an appropriate parametrization of the short-range part. We also provide a short-range
bond order potential. In Monte Carlo simulations our potential gives a good description of the diamond to
graphite transformation. For thin~111! slabs graphitization proceeds perpendicular to the surface as found inab
initio simulations, whereas for thick layers we find that graphitization occurs layer by layer.

DOI: 10.1103/PhysRevB.68.024107 PACS number~s!: 81.05.Uw
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I. INTRODUCTION

In the past decade much progress has been made in
evolution of empirical potentials for covalent materials,
particular silicon and~hydro!carbon~s!, for use in large scale
simulations. Disregarding force field models, which are
signed to give a good description close to equilibrium, in
literature we can distinguish various types of models:~i!
Stillinger-Weber ~SW! type potentials,1–4 ~ii ! Tersoff type
bond order potentials~BOPs!,5–8 ~iii ! embedded atom mod
els ~EAMs!9–11 and ~iv! higher order bond order potentia
derived from tight binding models~TBBOPs!.12,13 Such
models are meant to give a good description of the ene
landscape for any possible realistic configuration charac
ized by the set of atomic positions$r i%.

Many empirical potentials have been designed and par
etrized for silicon1,3,5,10,11as a prototype of covalent mater
als. These models cannot straightforwardly be repar
etrized for carbon. Since carbon is smaller than silicon, th
is a stronger coupling between the free orbitals of under
ordinated neighboring atoms which results in a stron
p-bond formation and can lead to complicated hybridizat
situations. This requires an approach going beyond nea
neighbors, because the degree of conjugation of the b
between atomi and j crucially depends on the coordinatio
of the neighbors of atomsi and j. A reasonably good firs
order approximation of conjugation effects is included in t
BOPs for hydrocarbons by Brenner and co-workers.7,8 For a
more accurate description one should consider the hydro
bon TBBOP of Pettifor and Oleinik.12,13 This model is more
complex and computationally expensive, but it is still mu
more efficient thanab initio calculations within the loca
density approximation~LDA ! or tight-binding calculations.
The TBBOP models also provided a more solid theoret
foundation for the EAM and the BOPs,12 which are essen
tially based on the second moment approximation of the t
energy within a tight-binding formulation, and thus involv
0163-1829/2003/68~2!/024107~14!/$20.00 68 0241
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only nearest neighbors. Recently it was shown that suc
close relationship also exists between the EAM model a
the SW model.14

The starting point for our long-range BOP are the BO
for carbon by Brenner. The most recent Brenner poten
the so-called reactive bond order~REBO! potential,8 which
was not yet published when we started this work, combi
the good properties of the two parametrizations of the ear
Brenner potentials I and II.7 Brenner I underestimates th
isotropic elastic constants, whereas Brenner II gives too la
interatomic distances. In addition, the REBO potential
supposed to give a better description of conjugation by
increased number of parameters, which are fitted to a la
data set. The Brenner potentials give a first order approxi
tion to conjugation in an empirical way, including contribu
tions beyond nearest neighbors. However, as all other mo
mentioned above, including the TBBOPs, with a typical c
off radius between first and second nearest neighbors,
Brenner potentials describe only the strong covalent inte
tions and neglect long-range interactions. In particular
does neither describe the relatively weak interplanar bind
energy in graphite (;25 meV/atom15,16 at an interplanar
equilibrium distance of;3.35 Å), nor the much stronge
interplanar interaction at shorter interplanar distances@see
Fig. 2~b!# due top-bond repulsion. For molecular dynamic
~MD! or Monte Carlo~MC! simulations of diamond graphi
tization or of the formation of nested fullerenelike structure
long-range interactions play an important role and have to
taken into account. However, the problem is how to a
these interactions to the Brenner potential without disturb
its nicely fitted properties, in particular the binding ener
and lattice constants of the diamond and graphite structu
as well as the conjugation effects taken into account by Br
ner’s conjugation functionFcon j. In the long-range exten
sions proposed in the literature so far, this problem has b
addressed by switching off long-range interactions for ‘‘t
close’’ atoms using a smooth cutoff. The switching functio
©2003 The American Physical Society07-1
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are either based on distance,17,18 or else on neighbor
connectivity.19 A combination of these two criteria has le
to the so-called adaptive intermolecular REBO~AIREBO!
potential.20 The philosophy of all these approaches is to a
a long-range potential and use switching functions so that
short-range potential does not need to be reparametri
However, this approach has its prices to be paid. In spite
the switching functions, the long range extension introdu
a loss of accuracy.20 Moreover, the approaches based on
first criterion fail to describe the strong interplanar repuls
in graphite at short interplanar distances, i.e., distances o
order of the cutoff radius of the short-range part of the p
tential, where the long-range interactions are suppresse
avoid interference. The second, connectivity criterion, ba
on exclusion of long-range interactions between atoms wh
are connected as first, second or third neighbors, has no
physical justification. It gives rise to peculiar indirect inte
actions between particles. In fact, in Monte Carlo simu
tions of graphitization based on a long-range extended
tential based on this criterion, we find unrealistic structu
defects, as we will show in Sec. IV.

The long-range carbon bond order potential~LCBOP! we
propose here is based on an alternative approach: we exc
long-range interactions only for nearest neighbors and
rametrize the short-range part of the potential in such a w
that the combined potential yields the correct properties,
lattice constants, binding energies, elastic properties,
conjugation effects. Instead of the Lennard-Jones poten
used in Refs. 19 and 20, our long-range potential is a Mo
like potential which is based on a best fit of the interlay
interaction energy in graphite, calculated by the LDA,21 for a
range of interplanar distances. The functional form of
short-range part of our potential contains a number of mo
fications as compared to the Brenner potential, enabl
among other things, a better fit of the shear elastic cons
for diamond. We also propose a different interpolati
scheme for the conjugation correction, relevant for mix
coordinated environments. This interpolation scheme is
tified in terms of a simple model. Together with that of t
LCBOP we also give a parametrization of our short-ran
potential without long-range interactions, which we den
as CBOP. This short-range version, which is computation
more efficient than the LCBOP, can be used in situatio
where long-range interactions are not so relevant.

As a test, we have used the LCBOP in Monte Carlo sim
lations of diamond graphitization, i.e., the transformation
diamond to graphite, observed experimentally at tempe
tures varying between 1300 K~Ref. 22! and 1800 K.23 Usu-
ally graphitization starts at the~111! surface, the dominan
face in the morphology of diamond. Graphitization has a
been studied theoretically byab initio molecular dynamics
~AIMD ! simulations24–26 for relatively small samples, typi
cally with not more than 200 atoms. The AIMD simulation
show the formation of perfect graphitic planes from a
31) Pandey reconstructed~111! slab containing six bilayers
at temperatures varying between 2500 K~Ref. 24! and 3500
K,26 depending on the details of the thermostats used and
run settings. For a nonreconstructed slab of the same siz
transition temperature was found to be much lower.26 In all
02410
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the AIMD simulations for thin unsaturated slabs, after t
nucleation of graphitic islands at the surface, the graphiti
tion first proceeds into the slab, perpendicular to the surf
plane, before any full graphitic plane is formed. In our sim
lations, we find the same behavior for thin slabs. Howev
for thicker slabs we find a layer by layer mechanism.

The details of our long-range bond order potential
carbon are described in Sec. II. In Sec. III the parameters
various performance data for the LCBOP and CBOP
given. Apart from binding energies and interatomic d
tances, the performance data also include elastic proper
surface reconstructions and the energy barrier for the tra
formation from bulk diamond to bulk rhombohedral grap
ite. In Sec. IV we illustrate the performance of the LCBOP
Monte Carlo simulations of graphitization for various geom
etries. Conclusions and perspectives are given in Sec. V

II. LONG RANGE BOND ORDER POTENTIAL
FOR CARBON, LCBOP

The total binding energyEb , according to the LCBOP, is
written as a sum of pair terms:

Eb5
1

2 (
i , j

N

Vi j
tot5

1

2 (
i , j

N

~ f c,i j Vi j
SR1Si j Vi j

LR!, ~1!

where the total pair interactionVi j
tot is the sum of a short-

range part,f c,i j Vi j
SR, describing the covalent interaction, an

a long-range partSi j Vi j
LR . The function f c,i j [ f c(r i j ) is a

smooth cutoff function, specified below, andSi j is a switch-
ing function, to exclude first neighbors, given by

Si j 512 f c,i j . ~2!

The short-range part is written as

Vi j
SR5VR~r i j !2Bi j VA~r i j !, ~3!

where VR and VA are repulsive and attractive radial pa
potentials andBi j is the bond order, containing many bod
effects. We found that a good simultaneous fit of bindi
energies, lattice constants, and isotropic elastic properties
the various polytypes of carbon could be obtained with
following forms for VR andVA :

VR~r !5A exp~2ar ! ~4!

and

VA~r !5B1exp~2b1r !1B2exp~2b2r !. ~5!

As cutoff function we have adopted the one used by Justo
EDIP,3 a SW type of potential for silicon:

f c~x!5Q~2x!1Q~x!Q~12x!expS gx3

x321
D , ~6!
7-2
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INTRINSIC LONG-RANGE BOND-ORDER POTENTIAL . . . PHYSICAL REVIEW B 68, 024107 ~2003!
with x5(r 2r 1)/(r 22r 1), and whereQ(x) is the Heavyside
step function. The functionf c is continuous up to the secon
derivative atr 5r 1 and in all its derivatives at the cut-of
radiusr 2. It yields a smoother cut-off than the cosine fun
tion used by Brenner and Tersoff, which has nonzero sec
derivatives atr 1 and r 2. The extra parameterg has been
used to optimize the shape of the energy barrier for the
mond to graphite transformation, as described in Sec.
Following Brenner, the bond orderBi j is taken as

Bi j 5
1

2
@bi j 1bji 1Fcon j~Ni j ,Nji ,Ni j

con j!#, ~7!

wherebi j is the angular dependent part of the bond order
Fcon j takes conjugation effects into account. The angular
pendent part is written as

bi j 5S 11 (
kÞ i , j

f c~r ik!G~cosu i jk !H~dr i jk ! D 2d

, ~8!

where the summation runs over all neighborsk(Þ j ) of i, u i jk
is the bond angle between the bondsij andik, anddr i jk is the
difference in bond distance between these two bon
namely,dr i jk5r i j 2r ik . Following the result of Abell,27 we
take d51/2. For the angular functionG(cosuijk), shown in
Fig. 1~a!, a spline is used, as for the REBO potential, bas
on its values at the discrete points corresponding to reg
lattices. More details are given in Sec. III. The functio
a
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a
l
a
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t
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H(dr i jk), not present in Brenner’s potentials for carbon,
introduced to optimize elastic properties, surface proper
and the energy barrier for the diamond to graphite trans
mation. We propose the following form:

FIG. 1. The bond order functionsG(cosu) ~1a! andH(dr ) ~1b!
for the LCBOP~solid line! and the CBOP~dotted line!. The dashed
lines in the inset of the upper graph, which contains a zoom oG
around the bond angles for graphite~gr! and diamond~d!, represent
the quadratic curvatures required to fit the elastic constants give
Table II. The vertical axis of the inset is labeled on the right-ha
side.
H~x!55
H1~x!5LS 11k~x1d!S 1

11@k~x1d!#10D 1/10D , x,2d

H2~x!511C1x1
1

2
C1

2x21C4x41C6x6, 2d<x<d

H3~x!5R01R1~x2d!, x.d,

~9!
t

where d is a fit parameter. This forms was established
follows. Good elastic properties could be obtained assum
a simple exponentialH(x)5exp(C1x) for small x. This im-
plies first and second derivatives equal toC1 and C1

2 at x
50. An improved description of Pandey
(231)-reconstructed~111! surface for diamond required
certain amount of non-parabolicity within the interva
@2d,d#, which is introduced by a fourth order term with
coefficientC4. Outside this interval a basically linear beha
ior was assumed, with a smooth tail tending to zero fr
above for negativex. This behavior foruxu.d allows a rea-
sonable description of the reaction path of the diamond
graphite transformation~see Sec. III!. The function H is
s
g

o

completely fixed by only three parameters, namelyd, C1 and
C4. The remaining parameters, i.e.L, k, C6 , R0, and R1,
follow from the continuity ofH up to its second derivative a
x56d. In particular, C6 follows directly from
d2H2 /dx2ux5d5d2H2 /dx2ux52d50. Note that by construc-
tion d2H1 /dx2ux52d5d2H3 /dx2ux5d50. The function
H(x) is shown in Fig. 1~b! for the LCBOP and CBOP.

The coordination of atomi, Ni , is defined as

Ni5(
k

f c,ik . ~10!

The argumentNi j of the conjugation functionFcon j is de-
fined as
7-3
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J. H. LOS AND A. FASOLINO PHYSICAL REVIEW B68, 024107 ~2003!
Ni j 5minS 3,(
kÞ j

f c,ikD 5min~3,Ni2 f c,i j !, ~11!

where min(x,y) stands for the minimum ofx andy. As will be
clarified below, we define the third argument ofFcon j,
Ni j

con j , as a number within the interval@0,1# by

Ni j
con j5

~Ni j 11!~Nji 11!~Ni j
el1Ni j

el!24~Ni j 1Nji 12!

Ni j ~32Ni j !~Nji 11!1Nji ~32Nji !~Ni j 11!1e
,

~12!

wheree is a very small, positive number, added to preve
the singularities occurring forNi j 5Nji 50 or Ni j 5Nji 53,
where the numerator in Eq.~12! also vanishes, as can b
verified using the definitions below.Ni j

el gives the contribu-
tion of electrons from atomi to the bondij . We define it as

Ni j
el5

42Mi j

Ni j 112Mi j
, ~13!

whereMi j is given by

Mi j 5min~3,M̃ i j !, ~14!

with M̃ i j the number of neighborskÞ j of atomi which have
a coordination>4. M̃ i j is defined as

M̃ i j 5 (
kÞ i , j

f c,ikF~xik!, ~15!

wherexik5Nk2 f c,ik andF(xik) is given by

F~xik!5Q~xik23!1
1

2
Q~xik22!Q~32xik!

3„12cos@p~xik22!#…. ~16!

We note that ourF(xik) is one minus Brenner’sF(xik).
Our definition ofNi j

con j by Eq.~12! is completely different
from that of Brenner and requires some explanation, wh
we give in terms of a simple model. For convenience we w
restrict ourselves to situations with integer coordinations

Consider the caseNi<4; i . If a neighborkÞ j of i has a
coordination 4, bondik is single since all fours,p orbitals of
atom k are involved ins bonds, so that there are no fre
orbitals available to formp bonds with atomi. So Mi j rep-
resents the number of electrons of atomi involved in single
ik(Þ i j ) bonds, containing one electron from atomi and one
from atomk, andNi j

el as defined by Eq.~13! gives the~frac-
tional! number of electrons that are left for the remaini
bonds of atomi. Consider the situation of Fig. 2, wher
atoms i and j have both coordination 3. According to E
~13!, a coordination situation (Nk1

,Nk2
,Nl 1

,Nl 1
)5(4,3,3,3)

yieldsNi j
el53/2 andNji

el54/3. The average electronic contr

bution to bond ij in this case is thusN̄i j
el5(Ni j

el1Nji
el)/2

54/311/12, i.e., still rather close to the ‘‘graphitic value
4/3. In contrast, for coordinations (Nk1

,Nk2
,Nl 1

,Nl 1
)

5(4,4,4,4), bondij is a double bond and, indeed, we fin
N̄i j

el52. For general coordination numbers (Ni j ,Nji ), N̄i j
el is
02410
t
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bounded by a minimum and a maximum value, min(N̄ij
el) and

max(N̄ji
el) respectively. For instance, for (Ni j ,Nji )5(3,3),

min(N̄ij
el)54/3 and max(N̄ji

el)52. It is reasonable to assume

linear dependence ofFcon j on N̄i j
el , which can be accom-

plished by definingNi j
con j as a number within the interva

@0,1# by Ni j
con j5@N̄i j

el2min(N̄ij
el)#/@max(N̄ji

el)2min(N̄ij
el)#,

which, after some algebra, leads to Eq.~12!.
For Ni>4, implying Ni j 53, the bond ij is a single

bond, independent of the coordinations of the neighb
k(Þ j ). Therefore we assume thatFcon j(Nji >3,Nji ,0)
5Fcon j(3,Nji ,0)5Fcon j(3,Nji ,1), as for the Brenner poten
tials. Furthermore, due to symmetry,Fcon j(n,m,Ni j

con j)
5Fcon j(m,n,Ni j

con j).
As already mentioned we assume thatFcon j depends lin-

early onNi j
con j , implying

Fcon j~Ni j ,Nji ,Ni j
con j!5~12Ni j

con j!F0
con j~Ni j ,Nji !

1Ni j
con jF1

con j~Ni j ,Nji !, ~17!

whereFN
i j
con j

con j
(Ni j ,Nji )[Fcon j(Ni j ,Nji ,Ni j

con j). To deal with

noninteger coordinations, we propose a computationally
ficient interpolation for the bivariable functionsF0

con j and
F1

con j , yielding continuity up to the first derivatives with
respect to the argumentsNi j and Nji . This interpolation,
described in detail in the Appendix, makes the computat
of Fcon j relatively easy and considerably more efficient
compared to the tricubic spline proposed by Brenner, with
losing quality.

The long-range pair potentialVi j
LR is constructed by mak-

ing a best fit of anab initio LDA calculation of the interpla-
nar interaction energy in hexagonal graphite,El(dl), as a
function of the interplanar distancesdl beyond 2 Å.21 Theab
initio result is represented by the crosses in Fig. 3~b!. In our
description, the interplanar interaction energy is suppose
be equal to the sum over all pair interactions between p
ticles in different layers:

El~dl !5
1

2 (
i

8
(

j

8
f c,i j

LR Vi j
LR~r i j !, ~18!

where the sum overi runs over the atoms within one unit ce
and the sum overj runs over all atoms belonging to graphit
planes different from that to which atomi belongs. The cut-
off function f c,i j

LR , added to switch off the tail of the long
range interactions in a range where these interactions

FIG. 2. Sketch of three fold coordinated neighborsi and j.
7-4
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INTRINSIC LONG-RANGE BOND-ORDER POTENTIAL . . . PHYSICAL REVIEW B 68, 024107 ~2003!
already very weak, falls off from 1 to 0 betweenr 1
LR

55.5 Å andr 2
LR56 Å by f c

LR(r )5„11cos@2p(r25.5)#…/2.
A good fit of the LDA data could be obtained by assumi
the following double Morse potential forVLR(r ):

VLR~r !5u~r 02r !V1
M~r !1u~r 2r 0!V2

M~r !, ~19!

whereVi
M( i 51,2) are ordinary Morse functions plus a sh

Vi
M~r !5e i~e22l i (r 2r 0)22e2l i (r 2r 0)!1v i . ~20!

This form allows the steepness of the potential on both s
of the minimum atr 5r 0 to be adjusted independently. Th
two Morse functions are connected continuously up to
second derivative inr 5r 0, implying e15e2l2

2/l1
2 and v1

5e12e2 with v250. In Fig. 3~a!, VLR(r ) is shown on two
different energy scales and compared to the Lennard-J
potential used in Ref. 19. Since the cutoff for the short-ran
part of the LCBOP is equal to 2.2 Å, there is a short-ran
contribution to the interlayer energy fordl,2.2 Å. The full
and dashed lines in Fig. 3, which are very close, result fr
a best fit of the LDA interlayer energy with and without th
short-range contribution, respectively. The latter pair pot
tial is used in our simulations with an extended REBO p
tential, which has a short-range cut-off radius of 2 Å. We w
come back to this in Sec. IV.

FIG. 3. ~a! Various long-range pair potentialsVLR ~in meV! as a
function of the interatomic distancer ~in Å! and~b! the correspond-
ing interlayer interaction energiesEl ~in meV! in graphite as a
function of the interlayer distancedl ~in Å!. The crosses in the
bottom graph represent the results from anab initio LDA calcula-
tion. The solid and dashed lines represent the data assumin
double Morse potential@Eq. ~19!# resulting from a best fit with and
without counting the short-range contribution beyond 2 Å respec-
tively. For comparison, the dotted lines are the data for the Lenn
Jones potential used in Ref. 19. The insets represent the same
on a larger energy scale.
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The resulting interplanar interaction energies for each
these potentials are shown in Fig. 3~b!. Our long-range po-
tential yields a very good fit of the LDA data. The resultin
compressibility in the direction perpendicular to the layers
5.4831023 Å3/meV which compares reasonably well wit
the experimental value 4.3331023 Å3/meV.28,29Figure 3~b!
clearly demonstrates that the Lennard-Jones potential yi
a much too strong interplanar repulsion, withEl.5.4 eV at
dl52 Å, as a direct consequence of the strong pair repuls
at short distances. This means that the Lennard-Jones p
tial would imply too high barriers for bond breaking an
formation, when used as extensions of the short-range po
tial. Although our long-range potential yields a much weak
core repulsion, the repulsive interactions between second
third neighbors at distances;2.52 and;2.96 Å in diamond
are still;100 and;17 meV, respectively. Note that, for th
contribution to the total binding energy, these numbers h
to be multiplied by the number of second and third neighb
respectively. The philosophy of the LCBOP is to compens
for this additional repulsion between second and third nei
bors by a stronger attraction between first neighbo
achieved by an appropriate parametrization of the sh
range part of the potential.

III. FITTING PROCEDURE, PARAMETERS
AND PROPERTIES

The fitting procedure is performed in steps and iterative
We assume an initial constant functionH51, and fit the
radial part and the angular functionG. Next, the parameters
of the function H are determined by optimizing the elas
constants for uniaxial compression and shear for diamon30

and graphite,31 the distance between first and second bi-la
in the (231)-Pandey-reconstructed~111!-surface of
diamond32 and the energy barrier for the graphite to diamo
transformation.33 These steps are repeated until converge
is achieved. Finally, the conjugation correction matric
(Fcon j at integer values of the arguments! are fitted.

First of all, we have to give a definition of bond energi
within our potential form, which is applicable both to regul
lattice bonding and to nonlattice bonding, and suitable
being fitted to the reference values, i.e., bond energies
rived either from experimental data or from ab initio calc
lations. In presence of a long-range potential this requ
some care. For a regular lattice with integer coordinationZ
the approach is straightforward. Assumingf c,i j 51 for near-

FIG. 4. Sketch of the configuration yielding a triple bond b
tween atomsi and j.
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J. H. LOS AND A. FASOLINO PHYSICAL REVIEW B68, 024107 ~2003!
est neighbors, the total bond energyVi j
tot @Eq. ~1!#, can be

defined as

Vi j
tot5Vi j

SR12Êi
LR , ~21!

where Êi
LR is the long-range energy per atom ‘‘per sho

range bond’’ defined as

Êi
LR5

Ei
LR

Z
5

1

2Z (
j

Si j Vi j
LR , ~22!

where the sum runs over all atoms. The term 2Êi
LR in Eq.

~21! can be written as the sum of two terms, namely, 2Êi
LR

5Êi j
LR1Êj i

LR whereÊi j
LR contains all the long-range interac

tions of atomi with the ‘‘branch’’ of atom j, i.e. the neigh-
bors l (Þ i ) of atom j and the subsequent neighbors of ato
l (Þ j ) and so on, andÊj i

LR contains all the interactions ofj
with the ‘‘branch’’ of atomi. This concept is transferable t
nonlattice bonding types where anij bond forms the only
connection between two separate branches, such as the

TABLE I. Bond distances in Å~Ia!, bond energies in eV~Ib!
and stretching force constants in eV/Å2 ~Ic! for regular lattices, the
dimer bond~di! and the triple bond~tb!, yielding coordinationZ,
according to the LCBOP and CBOP, compared with the refere
values, used as fitting data, and the values according to the Bre
I and the REBO potential. The reference values are taken f
Refs. 7,8 and 42. The binding energy for graphite according to
LCBOP is for a sheet and does not include interlayer bonding
ergy. Adding the interlayer energy (;0.025 eV) leads to approxi
mately equal total binding energies of 7.374 eV for graphite acco
ing to the LCBOP and CBOP.

Z Ref. LCBOP CBOP Brenner I REBO

~a!

1 ~di! 1.315 1.315 1.315 1.315 1.326
2 ~ch! 1.330 1.325 1.325 1.325 1.332
2 ~tb! 1.200 1.200 1.200 1.196 1.206
3 ~gr! 1.420 1.420 1.420 1.419 1.420
4 ~d! 1.544 1.544 1.544 1.541 1.544
6 ~sc! 1.765 1.803 1.843 1.833 1.875
12~fcc! 2.170 2.021 2.139 2.415 2.253

~b!

1 ~di! 3.163 3.105 3.135 3.163 3.105
2 ~ch! 6.175 6.106 6.124 6.177 6.117
2 ~tb! 8.424 8.524 8.324 8.424 8.514
3 ~gr! 7.374 7.349 7.374 7.377 7.395
4 ~d! 7.349 7.349 7.349 7.346 7.370
6 ~sc! 4.689 4.687 4.686 5.453 4.781
12~fcc! 2.759 2.757 2.758 2.683 2.782

~c!

2 ~ch! 59.67 61.33 61.83 27.80 59.54
2 ~tb! 99.86 99.04 98.69 37.91 98.99
3 ~gr! 43.57 43.71 44.07 22.13 43.56
4 ~d! 29.52 29.27 29.27 16.53 29.52
02410
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bond situation sketched in Fig. 4. It is easy to verify for t
cluster in Fig. 4 that with this ‘branch’ subdivision of th
long-range contribution, the sum over allVi j

tot for each near-
est neighbor pairij , contains precisely all the interaction
within the cluster, i.e., it is equal to the total binding ener
of the cluster, as it should be. The cluster of Fig. 4 was u
to fit the triple bond properties. For this purpose a rigid a
ideal tetrahedral nearest neighbor surrounding for the at
k and l was assumed with all neighbor distances equal to
single bond distance in diamond, 1.544 Å. We checked t
the effect of relaxations within the branches is small enou
to be neglected.

e
ner
m
e

n-

-

FIG. 5. The total bond energyVi j
tot ~in eV! as defined by Eq.

~21!, the long-range contributionÊi j
LR ~in eV! to Vi j

tot as defined by
Eq. ~22! and the stretching force constantsFc,i j ~in eV/Å2) for
various regular lattices, the dimer~di! and the triple bond~tb! for
the LCBOP and the CBOP, both represented by solid dots, a
function of the corresponding equilibrium nearest neighbor dista
r i j ,eq ~in Å!. The open squares represent the reference value
Table I. The lines are guides to the eye. The solid and dashed l
mostly very close, are for the LCBOP and CBOP respectively. N
the scale difference between the positive and negative energy
in the upper graph.

TABLE II. Elastic constants~in eV/Å3) for graphite~gr! and
diamond ~d! according to various potentials, compared with t
reference data used in the fitting procedure. The reference va
labeled by* and ** are taken from Refs. 30 and 31, respective

Ref. LCBOP CBOP Brenner I REBO

c11 ~gr! 6.616* 6.547 6.570 3.466 6.600
c66 ~gr! 2.746* 2.780 2.773 1.567 2.835
c11 ~d! 6.718** 6.718 6.718 2.157 6.714
c44 ~d! 3.604** 3.604 3.604 1.719 4.499
7-6



lar
ft

INTRINSIC LONG-RANGE BOND-ORDER POTENTIAL . . . PHYSICAL REVIEW B 68, 024107 ~2003!
TABLE III. The parameters of the LCBOP and CBOP.A, B1 andB2 are in eV;v1 , e1 ande2 are in meV;r 1 , r 2 , d, r 0 , r 1
LR andr 2

LR are
in Å; a, b1 , b2 , C1 , k, R1 , l1, andl2 are in Å21; C4 is in Å24; C6 is Å26; g, L, andR0 are dimensionless. The spline of the angu
function G is based on the data in Table II~b!. ~c! contains the (434)-FN

i j
con j

con j matrices forNi j
con j50,1. The (0,0) elements are given in le

upper corners.

LCBOP CBOP

~a!

r 1 , r 2 , g 1.7 2.2 1.5~A! 1.7 2.10 4.5
1.7 2.3 1.8~B!

A 35652.94452 40337.41656
B1 18614.83652 26650.86301
B2 32.01993977 28.22190291
a 6.26781252 5.87021582
b1 5.83045680 5.56977168
b2 1.16864228 1.10338556

d, C1 0.14 3.3 0.14 3.15
C4 , C6 220.025434.715 240.0 25758.928

L, k 0.688316 1.619070 0.705077 1.396988
R0 ,R1 1.612316 5.485568 1.587077 5.315016

long-range part
r 0 ,r 1

LR ,r 2
LR 3.716163 5.5 6.0

v1 , v2 3.475378 0.0
e1 , e2 6.093133 2.617755
l1 , l2 1.359381 2.073944

~b!

LCBOP CBOP

cosu G G8 G9 G G8 G9

21 0.00548948 0.00 - 0.01241392 0.00 -
21/2 0.08188859 0.30 1.13 0.07770220 0.30 0.73
21/3 0.15709129 0.68633951 3.55887225 0.14955188 0.61301628 3.30541669
0 0.772 5.91323569 - 0.698 4.34880661 -
1/2 6.780 23.6184500 - 4.900 13.8602357 -
1 24.40 0.00 - 14.56 0.00 -

~c!

LCBOP CBOP

F0
con j : F0

con j :
0.000000 0.034993 20.009085 20.229403 0.000000 0.014904 20.009196 20.167069
0.034993 0.000000 20.058546 20.147667 0.014904 0.000000 20.046075 20.123686

20.009085 20.058546 0.000000 20.083991 20.009196 20.046075 0.000000 20.061689
20.229403 20.147667 20.083991 0.000000 20.167069 20.123686 20.061689 0.000000
F1

con j : F1
con j :

0.000000 0.100921 0.071525 20.229403 0.000000 0.061137 0.04375620.167069
0.100921 0.239564 0.010324 20.147667 0.061137 0.136598 0.00549920.123686
0.071525 0.010324 0.161180 20.083991 0.043756 0.005499 0.10209620.061689

20.229403 20.147667 20.083991 0.000000 20.167069 20.123686 20.061689 0.000000
th
a
.,

rce
e-

BO
nd
For regular lattices, the stretching force constantsFc,i j are
calculated by assuming an isotropic deformation. For
triple bond, the stretching force constant is calculated by
infinitesimal variation of only the triple bond distance, i.e
assuming rigidi and j ‘‘branches.’’
02410
e
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The bond distances, binding energies and stretching fo
constants, resulting from the radial part of the fitting proc
dure, are listed in Tables I~a!, I~b!, and I~c! respectively,
together with those according to the Brenner I and the RE
potential. Globally the performances of the LCBOP a
7-7
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J. H. LOS AND A. FASOLINO PHYSICAL REVIEW B68, 024107 ~2003!
CBOP for these properties are at least as good as those o
REBO potential. In Fig. 5,Vi j

tot , Êi j
LR , andFc,i j are shown as

functions of the interatomic distance, based on the disc
values for various coordination environments at the co
sponding equilibrium nearest neighbor distances. This fig
illustrates that the smooth dependence of these quantitie
coordination, at the basis of the success of bond order po
tials, is preserved when long-range interactions are adde

The bond order for the regular lattices, resulting from t
fit of the radial part of the potential, fixes the angular fun
tion G(cosu) at the discrete points where cosu takes the
values 21, 21/2, 21/3, 0, and 1/2, corresponding to th
chain ~ch!, the graphite sheet~gr!, diamond~d!, the simple
cubic~sc! and the fcc lattice. A continuous functionG is then
constructed by a spline, based on these points and on
curvatures, i.e., the first and second derivatives ofG with
respect to cosu, at cosu521/2 and21/3 yielding the best
possible fit of the elastic properties of the graphitic sheet
of diamond. The results are given in Table II, again co
pared with those of the Brenner I and the REBO potent
For diamond, the elastic constant for uniaxial compress
c11, depends only on the second derivative ofG at cosu
521/3, since the contributions from the first derivative ca
cel out in the summation over the bond angles in Eq.~8! for
small uniaxial deformation. Fitting the elastic constant
shear,c44, calculated including internal relaxations, fixes t
first derivative at cosu521/3. For the graphitic sheet, n
exact agreement for bothc11 andc66 ~in-plane shear! could
be obtained for the given form of the angular dependenc
Eq. ~8!, but a quite good best fit resulted. Both forc11 and
c66, internal relaxations were taken into account. It can
shown that the value of the first derivative ofG at cosu5

FIG. 6. Side view of~a! the (231)-Pandey-reconstructed~111!
surface and~b! the (231)-reconstructed~001! surface of diamond,
with indications of the distances occurring in Table IV. Threefo
and fourfold coordinated atoms are drawn white and gray, res
tively.
02410
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21/3, required to fitc44 for diamond, depends on the firs
and second derivatives of the functionH(dr i jk) around
dr i jk50. These derivatives depend on one parameter,C1,
which was chosen such that the required curvature for G
cosu521/3 permits a smooth spline ofG(cosu) within the
interval cosuP@21/2,21/3#, as illustrated in the inset o
Fig. 1~a!. Assuming a nonconstant functionH is the reason
for the significantly improved shear elastic constant for d
mond according to the LCBOP and CBOP in comparison
the REBO potential. The derivatives ofG at cosu521 and 1
are set equal to zero and the remaining derivatives are
tained by finite difference expressions. The value ofG(1) is
chosen is such a way that a smooth continuation ofG is
obtained for cosu.1/2. The resulting splines for the LCBO
and CBOP are shown in Fig. 1~a!.

The interpolation forFcon j ~see the Appendix! is based on
its values on the matrix of integer argumen
(Ni j ,Nji ,Ni j

con j). The diagonal elements~i.e., Ni j 5Nji ) cor-
responding to the regular lattices vanish. The values
Fcon j(2,3,0)5Fcon j(2,3,1) andFcon j(1,2,0) are determined
by fitting the vacancy energies of diamond and graph
equal to 7.2~Ref. 34! and 7.6 eV,35 respectively. The other
values ofFcon j are fitted to availableab initio data or to the
bond energies resulting from the REBO potential for app
priate cluster configurations. For example, the cluster in F
4 was used to determine the valueFcon j(1,1,1) for the triple
bond. In all cases, only theij bond is relaxed, whereas th
bond angles and distances in thei and j ‘‘branches’’ are kept
fixed at their ideal values corresponding to the coordinati
Z of the atoms within these branches, i.e.,u5180°, 120°,
and 109°, andr cc51.325, 1.420, and 1.544 Å forZ52,3,
and 4 respectively. All parameters of LCBOP and CBOP
listed in Tables III~a!, III ~b!, and III~c!.

c-

TABLE IV. Surface energy~in eV! and interatomic distances~in
Å! of a relaxed (231)-Pandey-reconstructed~111! surface~IVa!
and a (231)-reconstructed~001! surface~IVb! for the various po-
tentials. The reference values are the results fromab initio calcula-
tions ~Ref. 43! and low-energy electron diffraction~LEED! experi-
ments~values in brackets! ~Ref. 32!. The distances are indicated i
Fig. 6.

Ref. LCBOP CBOP Brenner I REBO

~a!

Esur f 1.87 1.28 1.44 1.05 1.01
d12 1.43 1.445 1.441 1.435 1.437
d13 1.54 1.539 1.539 1.547 1.559
d24 1.54 1.547 1.549 1.546 1.565
d35 1.61 ~1.62! 1.622 1.633 1.605 1.621
d46 1.65 ~1.64! 1.657 1.655 1.601 1.653

~b!

Esur f 2.12 2.31 2.50 1.71 2.14
d12 1.37 1.477 1.476 1.380 1.443
d13 1.50 1.542 1.548 1.513 1.556
d34 1.57 1.614 1.626 1.594 1.602
d35 1.55 1.543 1.538 1.506 1.555
7-8
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INTRINSIC LONG-RANGE BOND-ORDER POTENTIAL . . . PHYSICAL REVIEW B 68, 024107 ~2003!
The performances for the reconstructed~111! and ~001!
surfaces, shown in Figs. 6~a! and 6~b!, are listed in Table IV.
The description of the Pandey~111!-~231! surface is better
than that of the~001!-~231! surface. The deviations with
respect to the ab-initio results are similar to those of
REBO potential.

We have also calculated the formation energy of a typ
defect in graphite, the so-called 5-77-5 defect, a topolog
defect which is formed by rotating one bond byp/2 within a
graphitic sheet, implying a transformation of four hexago
into two pentagons and two heptagons. A tight-binding c
culation for this defect, which often occurs in nanotub
resulted in a formation energy of 4.43 eV.36 We find forma-
tion energies equal to 4.41, 4.98, 2.58, and 4.64 eV for
LCBOP, CBOP, Brenner I, and REBO potentials resp
tively.

Particularly relevant for graphitization are the energet
and structural properties of the continuous transformation
diamond to rhombohedral graphite. Following Ref. 33, t
total energyE along this transformation can be expressed
a function of the interlayer bond lengthr cc,' , the intralayer
bond lengthr cc,i , and the buckling angleub within the bi-
layers, i.e.,E5E(r cc,' ,r cc,i ,ub). A reaction path can be de
fined as the path yielding the minimal energyEmin as a func-
tion of r cc,' varying from its value for diamond~1.544 Å! to

FIG. 7. The reaction path of the bulk diamond to graphite tra
formation as a function of the carbon-carbon distance perpendic
to the bilayers~transforming to graphitic layers!, r cc,' ~in Å!, for
setting A~solid lines! and B ~dashed lines!, compared with theab
initio results from Ref. 33~dotted lines!. The path is characterize
by ~a! the energy barrier~in eV!, ~b! the intraplanar carbon-carbo
distance, r cc,' ~in Å!, and ~c! the buckling angle u ~in
degrees!.
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the equilibrium interlayer distance in graphite (;3.35 Å). In
Fig. 7, this reaction path according to the LCBOP is sho
for two settings of the cutoff parameters of the short-ran
part of our potential, hereafter denoted as settings A an
and specified in Table III~a!. There is a reasonable overa
agreement with theab initio results from Ref. 33, repre
sented by the dotted lines in Fig. 7. For setting B the hei
of the energy barrier is closer to theab initio result but the
position of the maximum is shifted slightly to the right, a
compared to the results for the preferred setting A. In o
simulations we have used both settings for comparison.

Finally, to end the description of the potential, we want
mention that so far we have not included torsional inter
tions related to rotation about single and double bonds. T
sional interactions are particularly relevant for many hyd
carbon molecules. We expect their role in graphitization
pure diamond to be limited. However, if desired, torsion
interactions in the style of those in Refs. 8 and 20, w
possible modifications to meet recentab initio calculations
of torsional energy barriers,37 can be added to the~L!CBOP
without requiring a reparametrization. Furthermore, we ha
not included a correction for configurations with low coord
nation and small angles. Also this correction can be includ
relatively easily following the strategy used for the REB
potential.8

IV. GRAPHITIZATION OF DIAMOND

We have performed simulations of diamond graphitizat
using the Monte Carlo technique for an (N,P,T) ensemble.
Trial moves are either accepted or rejected according to
Metropolis scheme, assuming Boltzmann statistics.38

We have performed annealing simulations for no
reconstructed and (231)-Pandey-reconstructed~111! slabs
of diamond. Several of the simulations using the LCBO
were done for both settings A and B, in order to investig
the impact of the difference in the height of the barrier f
the bulk graphite to bulk diamond transformation on surfa
graphitization. We have also focused our attention on
dependence of the graphitization process on the thicknes
the slab. Note that in the AIMD studies of graphitizatio
presented in the literature so far,24–26 the sample size is al
ways relatively small due to computational limitation
Clearly, an empirical potential makes a study of size effe
much easier.

In Fig. 8 three snaphots of a thin, nonreconstructed~111!
slab are shown: the initial configuration and two configu
tions at a temperature of 1400 K, using the LCBOP w
setting A. From our annealing path we conclude that
transformation to perfect graphitic layers takes places a
temperature between 1300 and 1400 K. The same simula
for the LCBOP with setting B also leads to perfect graphi
layers in qualitatively the same way, but now the transform
tion occurs between 1100 and 1200 K. As expected, ther
indeed a relation between the height of the barrier for
transformation of the bulk phases and the activation bar
for surface graphitization. The graphitization process is i
tiated at the surface. Once a graphitic nucleus has b
formed within the surface bilayer, the graphitization starts

-
lar
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J. H. LOS AND A. FASOLINO PHYSICAL REVIEW B68, 024107 ~2003!
FIG. 8. Snapshots during a (N,P,T) Monte Carlo annealing
simulation of a thin diamond~111!-slab containing 384 atoms at~a!
0 K ~initial configuration!, ~b! and~c! 1400 K. White and gray balls
are atoms with coordination three and four respectively.
02410
proceed perpendicular to the surface layer below t
nucleus. This mechanism of perpendicular progression of
graphitization process was also observed in AIM
simulations24,26 for thin slabs. In these simulations a rath
low graphitization temperature was found for the no
reconstructed thin slabs, comparable to what we find.

If we take a thicker sample, the graphitization mechani
changes. Instead of the perpendicular progression me
nism we find a layer by layer mechanism. This is illustrat
in Fig. 9, which shows snapshots of two simulations for u
reconstructed~111! samples consisting of 12 bilayers, aga
using the LCBOP with setting A. The snapshot in Fig. 9~a!,
taken at 2250 K, is from a simulation assuming a slab geo
etry. For the simulation of the snapshot in Fig. 9~b!, taken at
2500 K, a fixed substrate, simulated by not allowing mov
in the lowest two bilayers, was assumed. In Fig. 9~a!, we see
traces of the (231)-Pandey reconstruction, represented
the typical pentagonal shape at the right side between
second and third bilayers. The first complete graphitic la
was formed at 2000 K for both simulations. This graphitiz
tion temperature is more than 600 K higher than that for
thin slab in Fig. 8, which is another indication that a slab
only six bilayers is too small to be representative for a b
with a surface. In part this is due to the strong conjugat
effects, typical of carbon, requiring the extension beyo
nearest neighbor represented byFcon j. Consequently, there is
a strong surface-surface interaction for thin slabs. In contr
the behavior for a slab with 12 bilayers seems to be rep
sentative for that of a single surface as indicated by the
that both simulations of Fig. 9 show a layer by layer mech
nism with the first graphitic layer appearing at the same te
perature.

For each of the simulations we did for both settings of t
LCBOP, including those for Pandey-reconstructed~111! sur-
faces, the graphitization temperature for setting A was
tween 100 and 200 K lower than that for setting B. Althou
a correspondence exists, this difference in graphitizat
temperature is much less than the difference in the height
the barriers for the bulk transformation, which is;70 meV
(;800 K).

The same difference of the graphitization mechanism
thin and thick samples was also observed
(231)-Pandey-reconstructed~111! slabs. Typically, once a
few bonds between the first two bilayers are broken,
whole lower zigzag chain rapidly detaches from the surfa
leading to curved graphitic strips at the surface as show
Fig. 10 ~compare with Fig. 6!. The graphitization tempera
tures are higher than for the non-reconstructed slabs, b
equal to;2500 K for a six-bilayers slab and;2750 K for a
12-bilayer slab using the LCBOP with setting A. These tra
sition temperatures are lower than the;3500 K found in the
AIMD simulations of Ref. 26 for a reconstructed thin sla
This difference could be explained by the difference betwe
the MC and MD techniques. Although there is no real ‘‘tim
scale’’ in MC simulations, a rough time correspondence c
be established via the phonon frequencies. Atomic mo
ments occur on pico- to nanosecond time scale. So our
simulation, with typically a 100 000 moves per atoms, wou
correspond to 1027–1024 sec, which is much larger than th
7-10
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FIG. 9. Snapshots during a (N,P,T) Monte Carlo annealing
simulation at 2250 and 2500 K for respectively~a! a ‘‘thick’’ dia-
mond ~111! slab containing 768 atoms and~b! a diamond~111!
surface with a fixed substrate, allowing no moves in the lowest
bilayers. Color code as is Fig. 8.
02410
typical time scale of picoseconds to nanoseconds in M
simulations. Clearly, this longer ‘‘time scale’’ in MC simula
tion yields a larger probability to see structural changes. F
thermore, the probability to overcome a barrier for the bre
ing ~or formation! of a bond is typically larger for MC
simulations than for MD simulations, especially when t
maximal displacement of the atoms, chosen to be temp
ture dependent as to yield acceptance percentages bet
30% and 50%,38 becomes comparable to the width of th
barrier.

To compare with an alternative approach for the lon
range extension in the spirit of previous work20,21 we have
done simulations for the thin nonreconstructed slab also
extended Brenner I and extended REBO potentials. In th
extensions, the total energy is written as in Eq.~1!, but with
the long-range potential represented by the dashed lin
Fig. 2~a! and a different switching functionSi j . To avoid
interference with the short-range potential, long-range in
actions up to third nearest neighbors are excluded, whic
accomplished by taking

Si j 5~12 f i j !)
k

~12 f ik f k j!)
k,l

~12 f ik f kl f l j !, ~23!

yielding continuous derivatives with respect to the atom
positions for any configuration. The results are shown
Figs. 11~a! and 11~b!. Whereas the extended REBO potent
gives rise to the formation of a more or less graphitic str
ture, but with defects, the structure resulting from the e
tended Brenner I potential issp2-hybridized amorphous. The
reason for this remarkable difference is not so clear. It m
either be due to the improved elastic properties of REBO
to the extension in the description of the conjugation corr
tion for REBO.8 Considering the coordination changes o
curring during the process, it is clear that a certain subse
the matrix elements ofFcon j, and also the interpolation o

o

FIG. 10. Snapshot during a (N,P,T) Monte Carlo annealing
simulation at 2500 K of the upper six bilayers o
(231)-Pandey-reconstructed~111! surface with 768 atoms, assum
ing a fixed substrate. Color code as is Fig. 8.
7-11
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Fcon j for the various possible coordination configurations
termediate betweensp3 and sp2, play important roles in
graphitization. This may actually also be the reason why
extended REBO potential gives defects@see Fig. 11~b!#
which do not disappear for simulations up to 3500 K. T
LCBOP, with our interpolation scheme forFcon j, leads in-
stead to perfect graphitic layers in agreement with AIM
simulations, at least for samples of this size.

Apart from these structural differences, another import
difference is the temperature at which the structural chan
take place, which is much higher for both extended Bren
potentials than for the LCBOP, apparently due to too h
barriers for bond breaking~and formation!.

To conclude, we show the results of an annealing simu
tion starting from a diamond wedge, containing 2808 ato

FIG. 11. Snapshots during a (N,P,T) Monte Carlo annealing
simulation for a thin~111! slab at 3500 and 3000 K using respe
tively ~a! an extended Brenner I potential and~b! an extended
REBO potential. Color code as is Fig. 8.
02410
-

e

t
es
r

h

-
s,

FIG. 12. Snapshots during a (N,P,T) Monte Carlo annealing
simulation of a diamond wedge containing 2808 atoms, bounded
nonreconstructed$111% planes, at~a! 0 K ~starting configuration!,
~b! 2500 K, and~c! 3000 K. Color code as is Fig. 8. The very fe
twofold coordinated atoms are indicated as white balls, as the th
fold coordinated atoms. For comparison,~d! shows a high resolu-
tion electron microscopy image of irradiated diamond~Ref. 39!.
The original $111% orientations of the diamond structure are st
visible as straight lines in the inner bulk region.
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bounded by nonreconstructed$111% planes, as shown in Fig
12~a!. The two lowest bilayers are held fixed, to simulate t
diamond bulk. Periodicity was assumed in they direction
perpendicular to the images. The two shapshots in F
11~b! and 11~c!, taken at 2500 and 3000 K, respective
show the formation of a shell-like graphitic structure, alb
with defects around thex50 plane, i.e., the vertical plan
perpendicular to the image. The graphitized layer segm
are pushed outwards, to minimize the interlayer energy.
the given geometry, with a fixed substrate, this leads to c
centric shells, which strongly reminds a transmission el
tron micrograph of a protrusion on the surface of irradia
diamond,39 as shown in Fig. 12~d!. In Ref. 39 the distance
between the graphitic layers close to the diamond bulk
that between the outer planes are reported to be 2.9 and
Å, respectively. From our simulation we find these distan
to be equal to 2.91 and 3.44 Å, providing a very nice illu
tration of the capabilities of our potential.

V. SUMMARY AND PERSPECTIVES

We have constructed an intrinsic long-range bond or
potential for carbon~LCBOP!, which smoothly bridges the
gap between the strong covalent and the weak intermolec
interactions, important for bond breaking and formation. T
LCBOP is an appropriately parametrized mix of a sho
range Brenner-like bond order potential and a long-ran
radial potential. Besides accurate values for bond distan
binding energies and stretching force constants for a large
of coordination environments, it gives~i! good elastic con-
stants for diamond and graphite,~ii ! a reasonable descriptio
of the reaction path for the bulk diamond to graphite tran
tion, as well as~iii ! a good description of the interlayer in
teraction energy in graphite over a range of interlayer d
tances, as compared to experimental and/orab initio data.

In this work, we have studied, by means of extensive M
simulations, the process of graphitization at surfaces in s
eral geometries. For thin~111! slabs, we find a structural pat
for the graphite to diamond transformation which compa
well with AIMD simulations. However a layer by laye
graphitization is found for thicker slabs. Simulations f
wedge geometries lead to multishell structures, giving a
alistic picture in comparison to experimental observatio
with in addition a good prediction of the distances betwe
the graphitic layers in this nonplanar geometry.

Besides the LCBOP we have also presented a short-ra
potential, CBOP. Both the LCBOP and CBOP have go
elastic properties, with in particular a much more accur
shear elastic constant for diamond as compared to tha
Brenner’s REBO potential,8 which makes them good cand
dates for simulations of large diamond systems subjec
strain, with possible applications, among others, for diamo
coatings.40,41However, the main contribution of this work t
the field of carbon-based materials is the careful inclusion
long-range interactions, making the LCBOP very suitable
study the structural properties of~multishell! fullerenes and
nanotubes.
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APPENDIX

We have constructed an analytic interpolation for the
variable functionFN

i j
con j

con j
(Ni j ,Nji ), which is based on the

function values and derivatives at the grid of integ
(Ni j ,Nji ). The derivatives at the grid points have to be d
termined according to the following prescriptions. Due
symmetry the derivatives with respect to the two variables
the grid points (n,m) and (m,n) are related by

]FN
i j
con j

con j

]Ni j

U
n,m

5

]FN
i j
con j

con j

]Nji

U
m,n

. ~A1!

Continuity at the boundaries implies

]FN
i j
con j

con j

]Ni j

U
0,m

5

]FN
i j
con j

con j

]Ni j

U
3,m

50. ~A2!

For n51 or 2, if the value ofFN
i j
con j

con j
(n,m) lies in between

that ofFN
i j
con j

con j
(n11,m) andFN

i j
con j

con j
(n21,m), the derivative is

given by the finite difference expression

]FN
i j
con j

con j

]Ni j

U
n,m

5

FN
i j
con j

con j
~n11,m!2FN

i j
con j

con j
~n21,m!

2
, ~A3!

else it is set to zero to avoid extrema in between two g
points. The prescription is completed by a few exceptio
related to avoiding oscillations. These are

]F1
con j

]Ni j
U

2,0

520.088188

for LCBOP, and

]F0
con j

]Ni j
U

2,0

520.072300,

]F1
con j

]Ni j
U

2,0

520.052143

for CBOP.
For convenience, in the further description we will om

the subscript argumentNi j
con j , which is either 0 or 1. For

arbitrary real values of (Ni j ,Nji ), the value ofFcon j is given
by the interpolation within the square to which the po
(Ni j ,Nji ) belongs. We denote the interpolation within th
7-13
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square asf con j(x,y) wherex and y are numbers between
and 1 defined byx[Ni j 2Int(Ni j ) and y[Nji 2Int(Nji ).
The interpolation is given by

f con j~x,y!5~12y!~12x!@ f 00
con j1x2 f̃ x,101y2 f̃ y,01#

1~12y!x@ f 10
con j1~12x!2 f̃ x,001y2 f̃ y,11#

1y~12x!@ f 01
con j1x2 f̃ x,111~12y!2 f̃ y,00#

1xy@ f 11
con j1~12x!2 f̃ x,011~12y!2 f̃ y,10#,

~A4!

where:
ip

N

B

e

CN
nc

,

02410
f̃ x,kl5~21!kS ] f con j

]x U
kl

2 f 1l
con j1 f 0l

con jD , ~A5!

f̃ y,kl5~21! l S ] f con j

]y U
kl

2 f k1
con j1 f k0

con jD , ~A6!

with k,l 50,1, f kl
con j[ f con j(k,l ), and] f con j/]aukl (a5x,y)

are the derivatives ofFcon j in the corners (k,l ). Finally, we
note thatFi j

con j is continuous everywhere up to the first d
rivatives with respect to the atomic positions, due to the f
that both ]Fcon j/]Ni j uNi j 5350 and ]Fcon j/]Ni j

con juNi j 53

50.
.L.
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