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Intrinsic long-range bond-order potential for carbon:
Performance in Monte Carlo simulations of graphitization
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We propose a bond order potential for carbon with built-in long-range interactions. The potential is defined
as the sum of an angular and coordination dependent short-range part accounting for the strong covalent
interactions and a radial long-range part describing the weak interactions responsible, e.g., for the interplanar
binding in graphite. The short-range part is a Brenner type of potential, with several modifications introduced
to get an improved description of elastic properties and conjugation. Contrary to previous long-range exten-
sions of existing bond order potentials, we prevent the loss of accuracy by compensating for the additional
long-range interactions by an appropriate parametrization of the short-range part. We also provide a short-range
bond order potential. In Monte Carlo simulations our potential gives a good description of the diamond to
graphite transformation. For thii11) slabs graphitization proceeds perpendicular to the surface as foahd in
initio simulations, whereas for thick layers we find that graphitization occurs layer by layer.
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[. INTRODUCTION only nearest neighbors. Recently it was shown that such a
close relationship also exists between the EAM model and
In the past decade much progress has been made in ttlee SW modet?
evolution of empirical potentials for covalent materials, in  The starting point for our long-range BOP are the BOPs
particular silicon andhydrocarborgs), for use in large scale for carbon by Brenner. The most recent Brenner potential,
simulations. Disregarding force field models, which are dethe so-called reactive bond ordéREBO) potential® which
signed to give a good description close to equilibrium, in thewas not yet published when we started this work, combines
literature we can distinguish various types of mod€l$: the good properties of the two parametrizations of the earlier
Stillinger-Weber (SW) type potential;# (i) Tersoff type  Brenner potentials | and [ll.Brenner | underestimates the
bond order potentialéBOP9,>~8 (iii) embedded atom mod- isotropic elastic constants, whereas Brenner Il gives too large
els (EAMs)®~* and (iv) higher order bond order potentials interatomic distances. In addition, the REBO potential is
derived from tight binding model§TBBOPS.22'3 Such  supposed to give a better description of conjugation by an
models are meant to give a good description of the energincreased number of parameters, which are fitted to a larger
landscape for any possible realistic configuration characterdata set. The Brenner potentials give a first order approxima-
ized by the set of atomic positiods;}. tion to conjugation in an empirical way, including contribu-
Many empirical potentials have been designed and parantions beyond nearest neighbors. However, as all other models
etrized for silicon®%1%!as a prototype of covalent materi- mentioned above, including the TBBOPs, with a typical cut-
als. These models cannot straightforwardly be reparameff radius between first and second nearest neighbors, the
etrized for carbon. Since carbon is smaller than silicon, ther@renner potentials describe only the strong covalent interac-
is a stronger coupling between the free orbitals of undercations and neglect long-range interactions. In particular, it
ordinated neighboring atoms which results in a strongedoes neither describe the relatively weak interplanar binding
m-bond formation and can lead to complicated hybridizationenergy in graphite {25 meV/ator®!® at an interplanar
situations. This requires an approach going beyond nearestuilibrium distance of~3.35 A), nor the much stronger
neighbors, because the degree of conjugation of the bondterplanar interaction at shorter interplanar distance=e
between atom andj crucially depends on the coordination Fig. 2(b)] due tow-bond repulsion. For molecular dynamics
of the neighbors of atomsandj. A reasonably good first (MD) or Monte Carlo(MC) simulations of diamond graphi-
order approximation of conjugation effects is included in thetization or of the formation of nested fullerenelike structures,
BOPs for hydrocarbons by Brenner and co-worKeétgor a  long-range interactions play an important role and have to be
more accurate description one should consider the hydrocataken into account. However, the problem is how to add
bon TBBOP of Pettifor and Oleinik®*3 This model is more these interactions to the Brenner potential without disturbing
complex and computationally expensive, but it is still muchits nicely fitted properties, in particular the binding energy
more efficient thanab initio calculations within the local and lattice constants of the diamond and graphite structures,
density approximatiofLDA) or tight-binding calculations. as well as the conjugation effects taken into account by Bren-
The TBBOP models also provided a more solid theoreticaher’s conjugation functio=°". In the long-range exten-
foundation for the EAM and the BOP$ which are essen- sions proposed in the literature so far, this problem has been
tially based on the second moment approximation of the totahddressed by switching off long-range interactions for “too
energy within a tight-binding formulation, and thus involve close” atoms using a smooth cutoff. The switching functions
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are either based on distant@® or else on neighbor the AIMD simulations for thin unsaturated slabs, after the
connectivity!® A combination of these two criteria has led nucleation of graphitic islands at the surface, the graphitiza-
to the so-called adaptive intermolecular REB®IREBO) tion first proceeds into the slab, perpendicular to the surface
potential?® The philosophy of all these approaches is to addplane, before any full graphitic plane is formed. In our simu-
a long-range potential and use switching functions so that thiations, we find the same behavior for thin slabs. However,
short-range potential does not need to be reparametrizefPr thicker slabs we find a layer by layer mechanism.
However, this approach has its prices to be paid. In spite of The details of our long-range bond order potential for
the switching functions, the long range extension introduce§arp°n are described in Sec. Il. In Sec. Il the parameters and
a loss of accuracd? Moreover, the approaches based on theVarious performance data for the LCBOP and CBOP are
first criterion fail to describe the strong interplanar repulsiondiven. Apart from binding energies and interatomic dis-
in graphite at short interplanar distances, i.e., distances of tH@nces, the performance data also include elastic properties,
order of the cutoff radius of the short-range part of the po_surfac<_a reconstructloqs and the energy barrier for the trans-
tential, where the long-range interactions are suppressed fgrmation from bulk diamond to bulk rhombohedral graph-
avoid interference. The second, connectivity criterion, based®: N Sec. IV we illustrate the performance of the LCBOP in
on exclusion of long-range interactions between atoms whicf!onte Carlo simulations of graphitization for various geom-
are connected as first, second or third neighbors, has no go&dfies. Conclusions and perspectives are given in Sec. V.
physical justification. It gives rise to peculiar indirect inter-
actions between particles. In fact, in Monte Carlo simula- Il. LONG RANGE BOND ORDER POTENTIAL
tions of graphitization based on a long-range extended po- FOR CARBON, LCBOP
tential based on this criterion, we find unrealistic structural
defects, as we will show in Sec. IV.

The long-range carbon bond order potentlaCBOP) we
propose here is based on an alternative approach: we exclude
long-range interactions only for nearest neighbors and pa- 1 N o 1 N <R =
rametrize the short-range part of the potential in such a way Ev=5 IRV =5 > (foi ViR S VER), (1)
that the combined potential yields the correct properties, i.e., b b
lattice constants, binding energies, elastic properties, a
conjugation effects. Instead of the Lennard-Jones potentia

The total binding energ§,, according to the LCBOP, is
written as a sum of pair terms:

here the total pair interactiow; " is the sum of a short-

used in Refs. 19 and 20, our long-range potential is a Morse"9¢ partfejVij", describing the covalent interaction, and

like potential which is based on a best fit of the interlayer® lOng-range par&jvhR_ The functionf;;=fc(r;) is a
interaction energy in graphite, calculated by the LBY&ora ~ Smooth cutoff function, specified below, afy is a switch-
range of interplanar distances. The functional form of thed"d function, to exclude first neighbors, given by
short-range part of our potential contains a number of modi-

fications as compared to the Brenner potential, enabling, Sj=1-fcjj. 2)
among other things, a better fit of the shear elastic constant
for diamond. We also propose a different interpolationT
scheme for the conjugation correction, relevant for mixed
coordinated environments. This interpolation scheme is jus-
tified in terms of a simple model. Together with that of the VER=VR(ri)) = Bj Valri), (©)
LCBOP we also give a parametrization of our short-range

potential without long-range interactions, which we denoteyhere v; and V, are repulsive and attractive radial pair
as CBOP. This short-range version, which is computationallyyotentials andB;; is the bond order, containing many body
more efficient than the LCBOP, can be used in situationgffects. We found that a good simultaneous fit of binding
where long-range interactions are not so relevant. energies, lattice constants, and isotropic elastic properties for

As a test, we have used the LCBOP in Monte Carlo simutne various polytypes of carbon could be obtained with the
lations of diamond graphitization, i.e., the transformation ofsq|owing forms for Vg andV,:

diamond to graphite, observed experimentally at tempera-

tures varying between 1300 (Ref. 22 and 1800 K Usu- Vi(r)=Aexp(— ar) (4)

ally graphitization starts at th€l11) surface, the dominant

face in the morphology of diamond. Graphitization has alscand

been studied theoretically bgb initio molecular dynamics

(AIMD) simulationg*=2®for relatively small samples, typi- Va(r)=B.exp( — B1r) + Boexp( — Bar ). (5
cally with not more than 200 atoms. The AIMD simulations

show the formation of perfect graphitic planes from a (2 aq cytoff function we have adopted the one used by Justo for
X 1) Pandey reconstructéd11) slab containing six bilayers EDIP? a SW type of potential for silicon:

at temperatures varying between 250QRef. 249 and 3500

K,2® depending on the details of the thermostats used and the 3
run settings. For a nonreconstructed slab of the same size the fo(X)=O(—x)+ ®(x)®(1—x)exp( X ) )
transition temperature was found to be much lofdn all x3

he short-range part is written as
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with x=(r—r4)/(r,—r), and whered (x) is the Heavyside a)
step function. The functiofi, is continuous up to the second - p
derivative atr=r,; and in all its derivatives at the cut-off 20 4/ 02 -
radiusr,. It yields a smoother cut-off than the cosine func- | gr
tion used by Brenner and Tersoff, which has nonzero second G e | , -
derivatives .atrl andr,. The extra paramete’y.has been _ 10 = 04 0.2 m
used to optimize the shape of the energy barrier for the dia- - e .
mond to graphite transformation, as described in Sec. lll.
Following Brenner, the bond ord&;; is taken as

1 . , ) ’

Bij =5 [bij +bji + FM(Nij, Nji , NP ], (7 | |
wherebj; is the angular dependent part of the bond order and 25r B
Fc°" takes conjugation effects into account. The angular de- - .
pendent part is written as 0.0 . ] . l .

. 05 00 05
bij=|1+ > fe(ri)G(costy)H(orip) | . (8) or
k1] FIG. 1. The bond order functior@(cosé) (1a) andH(4r) (1b)
for the LCBOP(solid line) and the CBORdotted ling. The dashed
lines in the inset of the upper graph, which contains a zoor@ of
where the summation runs over all neighblfs: j) of i, Biji around the bond angles for graphitg) and diamondd), represent
is the bond angle between the borijdandik, andr;, is the the quadratic curvatures required to fit the elastic constants given in
difference in bond distance between ’these ”tho bondsTable Il. The vertical axis of the inset is labeled on the right-hand
namely, dti;=r;; — i . Following the result of Abelf’ we side.
take 6=1/2. For the angular functio®(cosfj), shown in  H(sr;;,), not present in Brenner’s potentials for carbon, is
Fig. 1(a), a spline is used, as for the REBO potential, basedntroduced to optimize elastic properties, surface properties
on its values at the discrete points corresponding to regulaind the energy barrier for the diamond to graphite transfor-

lattices. More details are given in Sec. Ill. The function mation. We propose the following form:
|
1 1/10
Hi(xX)=L| 1+ k(x+d)| ———— , x<-—d
e b 1+[K<x+d>]1°) )
H(x)= (©)

1 2,2 4 6
Ho(x)=1+Cyx+ EClX +CX"+Cex°, —d=x=d

Hs3(x)=Ry+Ri(x—d), x>d,

whered is a fit parameter. This forms was established asompletely fixed by only three parameters, nan®I¢, and
follows. Good elastic properties could be obtained assuming,. The remaining parameters, ik, «, Cg, Ry, andRy,

a simple exponentiaH (x) = exp(C,x) for smallx. This im-  follow from the continuity ofH up to its second derivative at
plies first and second derivatives equalG@g and C3 atx ~ X==*d. In particular, Cg follows directly from
—0. An improved descripion of Pandeys d’Ha/dX*—4=d?H,/dx?,-_4=0. Note that by construc-
(2% 1)-reconstructed111) surface for diamond required a tOn _dzHl/dXZ[x?_d:d2H3/dx2|x=d:O. The function
certain amount of non-parabolicity within the interval H(X) is shown in Fig. 1) for the LCBOP and CBOP.
[—d,d], which is introduced by a fourth order term with a  1he coordination of atomy N;, is defined as
coefficientC,. Outside this interval a basically linear behav-

ior was assumed, with a smooth tail tending to zero from Ni:2 feik- (10
above for negative. This behavior forix|>d allows a rea- .

sonable description of the reaction path of the diamond tahe argument;; of the conjugation functiorF®°" is de-
graphite transformatiorisee Sec. I). The functionH is  fined as
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Nij:min(&kE. fc,ik) =min(3N;—fcj), (1D
#

where ming,y) stands for the minimum of andy. As will be
clarified below, we define the third argument &f°",
Ni°™, as a number within the interv§d,1] by

(Nij+ 1) (N} + 1) (NF'+NF) = 4(Nj; +Nj; +2)

Nij (3= Nij)(Nji +1)+N;i(3—N;)(Njj+1)+ €’
(12 FIG. 2. Sketch of three fold coordinated neighbbendj.

where e is a very small, positive number, added to prevent _

the singularities occurring fol;; =N;; =0 or N;;=N; =3, bounded by a minimum and a maximum value, mlfﬁ)(and

where the numerator in Eq12) also vamshes as can be max(N ) respectively. For instance, foN(; ,N;;)=(3,3),

verified using the definitions beIO\Me' gives the contribu- m|n(N ) 4/3 and maxiﬂ ) 2 1t |s reasonable to assume a
tion of electrons from atomto the bondj We define it as con
linear dependence d#c°™ on N , which can be accom-

Nconj

| 4—M;; plished by deflnlngNConj as a number within the interval
el__
NiTN,T1-M, A3 01 by NGNS min(E)Imaxe)—min(REY],
o which, after some algebra leads to EfR).
whereM; is given by For N;=4, implying N;;=3, the bondij is a single
L bond, independent of the coordinations of the neighbors
M;j=min(3,M;;), (14 Kk(#]). Therefore we assume thaE°"(N;=3N;;,0)
L~ _ . . =Fcon(3, N;i,0)= Feoni(a, N;i,1), as for the Brenner poten-
with Mij. the numbei of .ne|gh.borls¢1 of atomi which have tials. Furthermore, due to symmetr®®Mi(n,m Nconj)
a coordination=4. Mj; is defined as =F°°i(m,n Ncon])
As already mentloned we assume tR&P" depends lin-
Mij= 2 feiF (xi), (15  early onN®", implying
] _
FCOH](NIJ , J| ,NiCjonj):(l_N_C_On])FCOFIJ(NII , )

wherex;=Ng—f. i« andF(x;y) is given by
+NGPIRSMNG NG), (17)

1
F(Xik) =0 (Xix=3)+ 5 0 (Xik=2) O (3= Xix) wherng‘éQJm(Nl, N;)=FCOU(N;; N; NE°™). To deal with
noninteger coordinations, we propose a computationally ef-
X (11— w—2)]. 1 . . . L . i
(1=cog m(xi—=2)]) (16) ficient interpolation for the bivariable functior8g°™ and
We note that ouF (x;y) is one minus Brenner's (). F{°", yielding continuity up to the first derivatives with

Our definition ofN;*" by Eq.(12) is completely different  respect to the arguments;; and N;;. This interpolation,
from that of Brenner and requires some explanation, whicldescribed in detail in the Appendix, makes the computation
we give in terms of a simple model. For convenience we willof F¢°™ relatively easy and considerably more efficient as
restrict ourselves to situations with integer coordinations. compared to the tricubic spline proposed by Brenner, without

Consider the cash;<4Vi. If a neighbork+j of i has a losing quality.
coordination 4, bondk is single since all fous, p orbitals of The long-range pair potenti%sidhR is constructed by mak-
atomk are involved ino bonds, so that there are no free ing a best fit of arab initio LDA calculation of the interpla-
orbitals available to formr bonds with atomi. SoM;; rep-  nar interaction energy in hexagonal graphiig(d,), as a
resents the number of electrons of atomvolved in single  function of the interplanar distancdsbeyond 2 A% Theab
ik(#1i]) bonds, containing one electron from até@ind one initio result is represented by the crosses in Fi@).3n our
from atomk, and Nﬁ' as defined by Eq(13) gives the(frac-  description, the interplanar interaction energy is supposed to
tional) number of electrons that are left for the remainingbe equal to the sum over all pair interactions between par-
bonds of atomi. Consider the situation of Fig. 2, where ticles in different layers:
atomsi andj have both coordination 3. According to Eq.

(13, a coordination situationNy ,Ni,N; ,N; ) =(4,3,3,3) LR LR
yields Nf'=3/2 andN$'=4/3. The average electronlc contri- Bi(d)=3 E 2 FeiiVii (1), (18

i ~el_ el el
bution to bondij in this case is thudNiy=(Njj+Nji)/2 \hare the sum ovdrruns over the atoms within one unit cell

=4/3+1/12, i.e., still rather clolse Fo the “graphmc value" and the sum overruns over all atoms belonging to graphitic
4/3. In contrast, for coordinations N ,N,,Ni;,Ni,)  planes different from that to which atoibelongs. The cut-

=(4,4,4,4), bondj is a double bond and, indeed, we find off function f;} , added to switch off the tail of the long-
Nﬁ-'—z. For general coordination numbem;(,N;;), Nij range interactions in a range where these interactions are
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The resulting interplanar interaction energies for each of
these potentials are shown in Figb8 Our long-range po-
tential yields a very good fit of the LDA data. The resulting
compressibility in the direction perpendicular to the layers is
5.48x 102 A3/meV which compares reasonably well with
the experimental value 4.3310 ° A%/meV.282°Figure 3b)
clearly demonstrates that the Lennard-Jones potential yields
a much too strong interplanar repulsion, wigh=5.4 eV at
d,=2 A, as a direct consequence of the strong pair repulsion
at short distances. This means that the Lennard-Jones poten-
tial would imply too high barriers for bond breaking and
formation, when used as extensions of the short-range poten-
tial. Although our long-range potential yields a much weaker
core repulsion, the repulsive interactions between second and
third neighbors at distances2.52 and~2.96 A in diamond
are still~100 and~17 meV, respectively. Note that, for the
contribution to the total binding energy, these numbers have
to be multiplied by the number of second and third neighbors
respectively. The philosophy of the LCBOP is to compensate
for this additional repulsion between second and third neigh-
bors by a stronger attraction between first neighbors,
achieved by an appropriate parametrization of the short-

FIG. 3. (a) Various long-range pair potentialdR (in meV) asa  range part of the potential.
function of the interatomic distanee(in A) and(b) the correspond-
ing interlayer interaction energieS; (in meV) in graphite as a IIl. FITTING PROCEDURE, PARAMETERS
function of the interlayer distancd, (in A). The crosses in the AND PROPERYTIES
bottom graph represent the results fromadmninitio LDA calcula-
tion. The solid and dashed lines represent the data assuming the The fitting procedure is performed in steps and iteratively.
double Morse potentidEq. (19)] resulting from a best fit with and We assume an initial constant functidh=1, and fit the
without counting the short-range contribution begiah A respec-  radial part and the angular functi€ Next, the parameters
tively. For comparison, the dotted lines are the data for the Lennaref the function H are determined by optimizing the elastic
Jones potential used in Ref. 19. The insets represent the same daj@nstants for uniaxial compression and shear for diartfond
on a larger energy scale. and graphité? the distance between first and second bi-layer

in the (2%x1)-Pandey-reconstructed(111)-surface of
already very weak, falls off from 1 to O betwee'riR diamond? and the energy barrier for the graphite to diamond
=55 A andrs®=6 A by f.3(r)=(1+cog2n(r—5.5)])/2.  transformatior?> These steps are repeated until convergence
A good fit of the LDA data could be obtained by assumingis achieved. Finally, the conjugation correction matrices
the following double Morse potential for“R(r): (F°™ at integer values of the argumentse fitted.
First of all, we have to give a definition of bond energies
VIR =0(rg—r)VY(r)+ 6(r—ro)VA'(r), (19  within our potential form, which is applicable both to regular
M- , . _lattice bonding and to nonlattice bonding, and suitable for
whereV;"(i=1,2) are ordinary Morse functions plus a shift pejng fitted to the reference values, i.e., bond energies de-
Con N rived either from experimental data or from ab initio calcu-
Vi(r) =g (e 2N —2e NIy 4y (20) lations. In presence of a long-range potential this requires
This form allows the steepness of the potential on both sideS0Me care. For a regular lattice with integer coordinagon
of the minimum atr =r, to be adjusted independently. The the approach is straightforward. Assumifig;=1 for near-
two Morse functions are connected continuously up to the
second derivative im=r,, implying e;=e,A3/\? and v,
=¢€,— €, With v,=0. In Fig. 3a), V-R(r) is shown on two
different energy scales and compared to the Lennard-Jones
potential used in Ref. 19. Since the cutoff for the short-range
part of the LCBOP is equal to 2.2 A, there is a short-range
contribution to the interlayer energy faf<2.2 A. The full
and dashed lines in Fig. 3, which are very close, result from
a best fit of the LDA interlayer energy with and without the
short-range contribution, respectively. The latter pair poten-
tial is used in our simulations with an extended REBO po-
tential, which has a short-range cut-off radius of 2 A. We will  FIG. 4. Sketch of the configuration yielding a triple bond be-
come back to this in Sec. IV. tween atoms andj.

m n
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TABLE |. Bond distances in Ala), bond energies in eVib)
and stretching force constants in e\#/fc) for regular lattices, the
dimer bond(di) and the triple bondtb), yielding coordinationz,
according to the LCBOP and CBOP, compared with the reference
values, used as fitting data, and the values according to the Brenner
I and the REBO potential. The reference values are taken from
Refs. 7,8 and 42. The binding energy for graphite according to the
LCBORP is for a sheet and does not include interlayer bonding en-
ergy. Adding the interlayer energy<0.025 eV) leads to approxi-
mately equal total binding energies of 7.374 eV for graphite accord-
ing to the LCBOP and CBOP.

PHYSICAL REVIEW B68, 024107 (2003

z Ref. LCBOP CBOP  Brenner | REBO
@
1 (di) 1.315 1.315 1.315 1.315 1.326 . .
2(ch 1330 1325 1325 1325 1332 100 = @ ' -
2 (tb) 1.200 1.200 1.200 1.196 1.206 F . | i
3(grn 1.420 1.420 1.420 1.419 1.420 Gl 50 ch er _
4 (d) 1.544 1.544 1.544 1.541 1.544
6 (so 1.765 1.803 1.843 1.833 1.875 0 i [ . [ . d ]
12(fcc) 2.170 2.021 2.139 2.415 2.253 12 14 16
I..
(b) 1.eq
;ES% 2132 2182 2122 213? 21(1)5 FIG. 5. The total bonq er.le[g}ﬁj"f (in eV) a?mdefined_ by Eq.
2 (tb) 8.424 8.524 8.324 8.424 8.514 (21), the long-range cont_rlbuuoEij (in eV) to Vj as deflgled by
3 (1) 71374 7349 7374 7377 7395 Eq._ (22) and the s_tretchlng f(_)rce_constarfﬁsqij' (in eVIA?) for
various regular lattices, the dimédi) and the triple bondtb) for
4(d 7.349 7.349 7.349 7.346 7.370 the LCBOP and the CBOP, both represented by solid dots, as a
6 (so 4.689 4.687 4.686 5.453 4781 fynction of the corresponding equilibrium nearest neighbor distance
12(fcc) 2759 2757 2.758 2.683 2.782 .. (in A). The open squares represent the reference values in
Table I. The lines are guides to the eye. The solid and dashed lines,
(@] mostly very close, are for the LCBOP and CBOP respectively. Note
2 (ch) 59.67 61.33 61.83 27.80 59.54 the scale difference between the positive and negative energy axis
2 (tb) 99.86  99.04 98.69 37.91 98.99  in the upper graph.
3(an 43.57 43.71 44.07 22.13 43.56 bond situation sketched in Fig. 4. It is easy to verify for the
4 (d) 29.52 29.27 29.27 16.53 29.52

est neighbors, the total bond energif* [Eq. (1)], can be
defined as

where E}'R is the long-range energy per atom “per short-

range bond” defined as

ELR

LR
i

ViPt= ViR 2B,

1
~z "z > SV

LR
ij 1

(21)

(22

where the sum runs over all atoms. The terf-2 in Eq.
(21) can be written as the sum of two terms, namely- 2

=E;"+E;® whereE(® contains all the long-range interac-

tions of atomi with the “branch” of atomj, i.e. the neigh-

borsl(#i) of atomj and the subsequent neighbors of atome_, (gn)

I(#)) and so on, and® contains all the interactions gf

with the “branch” of atomi. This concept is transferable to c,, (d)

nonlattice bonding types where d@nbond forms the only
connection between two separate branches, such as the triple

cluster in Fig. 4 that with this ‘branch’ subdivision of the
long-range contribution, the sum over liilij"t for each near-
est neighbor paiiij, contains precisely all the interactions
within the cluster, i.e., it is equal to the total binding energy
of the cluster, as it should be. The cluster of Fig. 4 was used
to fit the triple bond properties. For this purpose a rigid and
ideal tetrahedral nearest neighbor surrounding for the atoms
k andl was assumed with all neighbor distances equal to the
single bond distance in diamond, 1.544 A. We checked that
the effect of relaxations within the branches is small enough
to be neglected.

TABLE Il. Elastic constantgin eV/A3) for graphite(gr) and
diamond (d) according to various potentials, compared with the
reference data used in the fitting procedure. The reference values
labeled by* and ** are taken from Refs. 30 and 31, respectively.

Ref. LCBOP CBOP Brenner | REBO
6.616* 6.547 6.570 3.466 6.600
Cgs (QN) 2.746* 2.780 2.773 1.567 2.835
6.718* 6.718 6.718 2.157 6.714
Caa (d) 3.604** 3.604 3.604 1.719 4.499
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TABLE lll. The parameters of the LCBOP and CBOR.B, andB, are in eV;v,, €; ande, are in meViry, r,, d, ro, ri* andr5® are

inA; @, B, B2, C1, k, Ry, A\q, andr arein AL, C,isin A™% Cqis A% 4, L, andR, are dimensionless. The spline of the angular

conj

function G is based on the data in Tableld). (c) contains the (% 4)-F conj matrices forNﬁO”j=0,1. The (0,0) elements are given in left
ij

upper corners.

B1
B2
d, C;
Cy4, Cq
L,
Ro.R;

LCBOP CBOP
(@
1.7 2.2 15A) 1.7 2.10 45
1.7 2.3 1.8B)
35652.94452 40337.41656
18614.83652 26650.86301
32.01993977 28.22190291
6.26781252 5.87021582
5.83045680 5.56977168
1.16864228 1.10338556
0.14 3.3 0.14 3.15

220.0—5434.715
0.688316 1.619070
1.612316 5.485568

long-range part
3.716163 5.5 6.0

240.0 —5758.928
0.705077 1.396988
1.587077 5.315016

U1, Us 3.475378 0.0
€, € 6.093133 2.617755
N1, Ao 1.359381 2.073944
(b)
LCBOP CBOP
cosd G G’ G” G G’
-1 0.00548948 0.00 - 0.01241392 0.00 -
—1/2 0.08188859 0.30 1.13 0.07770220 0.30 0.73
—1/3 0.15709129 0.68633951 3.55887225 0.14955188 0.61301628 3.30541669
0 0.772 5.91323569 - 0.698 4.34880661 -
1/2 6.780 23.6184500 - 4,900 13.8602357 -
1 24.40 0.00 - 14.56 0.00
(0
LCBOP CBOP
Feo: Feon;
0.000000 0.034993 —0.009085 —0.229403 0.000000 0.014904 —0.009196 —0.167069
0.034993 0.000000 —0.058546 —0.147667 0.014904 0.000000 —0.046075 —0.123686
—0.009085 —0.058546 0.000000 —0.083991 —0.009196 —0.046075 0.000000 —0.061689
—0.229403 —0.147667 —0.083991 0.000000 —0.167069 —0.123686 —0.061689 0.000000
Fi"”j : F§°”j :
0.000000 0.100921 0.071525 —0.229403 0.000000 0.061137 0.043756-0.167069
0.100921 0.239564 0.010324 —0.147667 0.061137 0.136598 0.005499-0.123686
0.071525 0.010324 0.161180 —0.083991 0.043756 0.005499 0.102096-0.061689
—0.229403 —0.147667 —0.083991 0.000000 —0.167069 —0.123686 —0.061689 0.000000

For regular lattices, the stretching force constéitg are The bond distances, binding energies and stretching force
calculated by assuming an isotropic deformation. For theconstants, resulting from the radial part of the fitting proce-
triple bond, the stretching force constant is calculated by amlure, are listed in Tablesd), I(b), and [c) respectively,
infinitesimal variation of only the triple bond distance, i.e., together with those according to the Brenner | and the REBO
assuming rigid andj “branches.” potential. Globally the performances of the LCBOP and
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TABLE IV. Surface energyin eV) and interatomic distancém
A) of a relaxed (X 1)-Pandey-reconstructed.11) surface(IVa)
and a (2 1)-reconstructed001) surface(IVb) for the various po-
tentials. The reference values are the results fatnnitio calcula-
tions (Ref. 43 and low-energy electron diffractioi.EED) experi-
ments(values in brackejs(Ref. 32. The distances are indicated in

Fig. 6.
Ref. LCBOP CBOP Brennerl REBO
(@
Esurf 1.87 1.28 1.44 1.05 1.01
dy 1.43 1.445 1.441 1.435 1.437
dis 1.54 1.539 1.539 1.547 1.559
dos 1.54 1.547 1.549 1.546 1.565

dss 1.61(1.62 1.622 1.633 1.605 1.621
dye 1.65(1.69 1.657 1.655 1.601 1.653

(b)

Esurf 2.12 2.31 2.50 1.71 2.14
dy 1.37 1.477 1.476 1.380 1.443
. . dis 1.50 1.542 1.548 1.513 1.556
FIG. 6. Side view of(a) the (2X 1)-Pandey-reconstructed11) das 157 1614 1.626 1594 1.602

surface andb) the (2x 1)-reconstructed001) surface of diamond,
with indications of the distances occurring in Table IV. Threefold ~'35
and fourfold coordinated atoms are drawn white and gray, respec-
tively.

1.55 1.543 1.538 1.506 1.555

_ —1/3, required to fitc,, for diamond, depends on the first
CBORP for these properties are at least as good as those of th@d second derivatives of the functidn(sr) around

REBO potential. In Fig. 5V, Ei®, andF ;; are shown as &r;=0. These derivatives depend on one parameler,
functions of the interatomic distance, based on the discretehich was chosen such that the required curvature for G at
values for various coordination environments at the correcosé=—1/3 permits a smooth spline @(cosé) within the
sponding equilibrium nearest neighbor distances. This figurénterval cosfe[—1/2,—1/3], as illustrated in the inset of
illustrates that the smooth dependence of these quantities drig. 1(a). Assuming a nonconstant functidt is the reason
coordination, at the basis of the success of bond order potefier the significantly improved shear elastic constant for dia-
tials, is preserved when long-range interactions are added.mond according to the LCBOP and CBOP in comparison to
The bond order for the regular lattices, resulting from thethe REBO potential. The derivatives Gfat cosf=—1 and 1
fit of the radial part of the potential, fixes the angular func-are set equal to zero and the remaining derivatives are ob-
tion G(cosd) at the discrete points where cégakes the tained by finite difference expressions. The valu&gl) is
values —1, —1/2, —1/3, 0, and 1/2, corresponding to the chosen is such a way that a smooth continuatiorGois
chain (ch), the graphite shedgr), diamond(d), the simple  obtained for co>1/2. The resulting splines for the LCBOP
cubic (s and the fcc lattice. A continuous functi@is then — and CBOP are shown in Fig(d).
constructed by a spline, based on these points and on the The interpolation foi-“°" (see the Appendijxis based on
curvatures, i.e., the first and second derivativesGoWith  its values on the matrix of integer arguments
respect to cos, at cost=—1/2 and—1/3 yielding the best (N;;,N;; ,N;:*")). The diagonal elementse., Nj;=N;;) cor-
possible fit of the elastic properties of the graphitic sheet andesponding to the regular lattices vanish. The values of
of diamond. The results are given in Table I, again com-F¢°"(2 3,0)=F°°"(2,3,1) andF°"(1,2,0) are determined
pared with those of the Brenner | and the REBO potentialby fitting the vacancy energies of diamond and graphite,
For diamond, the elastic constant for uniaxial compressionequal to 7.2(Ref. 34 and 7.6 e\*° respectively. The other
c11, depends only on the second derivative @fat cos?  values ofF°°™ are fitted to availabl@b initio data or to the
=—1/3, since the contributions from the first derivative can-bond energies resulting from the REBO potential for appro-
cel out in the summation over the bond angles in @yfor  priate cluster configurations. For example, the cluster in Fig.
small uniaxial deformation. Fitting the elastic constant for4 was used to determine the valé®"i(1,1,1) for the triple
shearc,4, calculated including internal relaxations, fixes thebond. In all cases, only thi¢ bond is relaxed, whereas the
first derivative at cog=—1/3. For the graphitic sheet, no bond angles and distances in thendj “branches” are kept
exact agreement for boity; andcgg (in-plane shearcould  fixed at their ideal values corresponding to the coordinations
be obtained for the given form of the angular dependence iZ of the atoms within these branches, i.eé5 180°, 120°,
Eq. (8), but a quite good best fit resulted. Both foy; and  and 109°, and..=1.325, 1.420, and 1.544 A fat=2,3,
Cgs, iNternal relaxations were taken into account. It can beand 4 respectively. All parameters of LCBOP and CBOP are
shown that the value of the first derivative Gf at cosf= listed in Tables Il(a), 11l (b), and Ili(c).
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the equilibrium interlayer distance in graphite 8.35 A). In
Fig. 7, this reaction path according to the LCBOP is shown
for two settings of the cutoff parameters of the short-range
part of our potential, hereafter denoted as settings A and B
and specified in Table I(&). There is a reasonable overall
agreement with theab initio results from Ref. 33, repre-
sented by the dotted lines in Fig. 7. For setting B the height
of the energy barrier is closer to tha initio result but the
position of the maximum is shifted slightly to the right, as
compared to the results for the preferred setting A. In our
simulations we have used both settings for comparison.
Finally, to end the description of the potential, we want to
mention that so far we have not included torsional interac-
tions related to rotation about single and double bonds. Tor-
sional interactions are particularly relevant for many hydro-
carbon molecules. We expect their role in graphitization of
pure diamond to be limited. However, if desired, torsional
interactions in the style of those in Refs. 8 and 20, with
possible modifications to meet receath initio calculations
of torsional energy barrier€,can be added to thé.)CBOP
without requiring a reparametrization. Furthermore, we have

H not included a correction for configurations with low coordi-
15 20 25 30 35 nation and small angles. Also this correction can be included
' ' ) ’ ) relatively easily following the strategy used for the REBO
r 18
ce, L potential:
FIG. 7. The reaction path of the bulk diamond to graphite trans-
formation as a function of the carbon-carbon distance perpendicular IV. GRAPHITIZATION OF DIAMOND
to the bilayers(transforming to graphitic layeysr.., (in A), for ) . . e
setting A(solid lines and B (dashed lings compared with theb We have performed simulations of diamond graphitization

initio results from Ref. 33dotted line$. The path is characterized USiNg the Monte Carlo technique for aN,P, T) ensemble.
by (a) the energy barriefin eV), (b) the intraplanar carbon-carbon Trial moves are either accepted or rejected according to the
distance, r;, (in A), and (c) the buckling angle 6 (in Metropolis scheme, assuming Boltzmann statisfics.
degrees We have performed annealing simulations for non-
reconstructed and (21)-Pandey-reconstructed1l) slabs
The performances for the reconstructddl) and (001 of diamond. Several of the simulations using the LCBOP
surfaces, shown in Figs(® and Gb), are listed in Table IV.  were done for both settings A and B, in order to investigate
The description of the Pandé$11)-(2x1) surface is better the impact of the difference in the height of the barrier for
than that of the(001)-(2X1) surface. The deviations with the bulk graphite to bulk diamond transformation on surface
respect to the ab-initio results are similar to those of thegraphitization. We have also focused our attention on the
REBO potential. dependence of the graphitization process on the thickness of
We have also calculated the formation energy of a typicathe slab. Note that in the AIMD studies of graphitization
defect in graphite, the so-called 5-77-5 defect, a topologicapresented in the literature so f4r,?° the sample size is al-
defect which is formed by rotating one bond By2 withina  ways relatively small due to computational limitations.
graphitic sheet, implying a transformation of four hexagonsClearly, an empirical potential makes a study of size effects
into two pentagons and two heptagons. A tight-binding cal-much easier.
culation for this defect, which often occurs in nanotubes, In Fig. 8 three snaphots of a thin, nonreconstrucfed)
resulted in a formation energy of 4.43 &W\Ve find forma-  slab are shown: the initial configuration and two configura-
tion energies equal to 4.41, 4.98, 2.58, and 4.64 eV for théions at a temperature of 1400 K, using the LCBOP with
LCBOP, CBOP, Brenner I, and REBO potentials respecsetting A. From our annealing path we conclude that the
tively. transformation to perfect graphitic layers takes places at a
Particularly relevant for graphitization are the energeticiemperature between 1300 and 1400 K. The same simulation
and structural properties of the continuous transformation ofor the LCBOP with setting B also leads to perfect graphitic
diamond to rhombohedral graphite. Following Ref. 33, thelayers in qualitatively the same way, but now the transforma-
total energyE along this transformation can be expressed asion occurs between 1100 and 1200 K. As expected, there is
a function of the interlayer bond length, , , the intralayer indeed a relation between the height of the barrier for the
bond lengthr .., and the buckling angl@, within the bi-  transformation of the bulk phases and the activation barrier
layers, i.e.E=E(rcc, ,fcc,0b). Areaction path can be de- for surface graphitization. The graphitization process is ini-
fined as the path yielding the minimal enelfgy;, as a func- tiated at the surface. Once a graphitic nucleus has been
tion of ., varying from its value for diamon@l.544 A to  formed within the surface bilayer, the graphitization starts to
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FIG. 8. Snapshots during aN(P,T) Monte Carlo annealing
simulation of a thin diamongL11)-slab containing 384 atoms &)
0 K (initial configuration, (b) and(c) 1400 K. White and gray balls
are atoms with coordination three and four respectively.

PHYSICAL REVIEW B68, 024107 (2003

proceed perpendicular to the surface layer below this
nucleus. This mechanism of perpendicular progression of the
graphitization process was also observed in AIMD
simulationé*2° for thin slabs. In these simulations a rather
low graphitization temperature was found for the non-
reconstructed thin slabs, comparable to what we find.

If we take a thicker sample, the graphitization mechanism
changes. Instead of the perpendicular progression mecha-
nism we find a layer by layer mechanism. This is illustrated
in Fig. 9, which shows snapshots of two simulations for un-
reconstructed111) samples consisting of 12 bilayers, again
using the LCBOP with setting A. The snapshot in Fi¢g)9
taken at 2250 K, is from a simulation assuming a slab geom-
etry. For the simulation of the snapshot in Figb) taken at
2500 K, a fixed substrate, simulated by not allowing moves
in the lowest two bilayers, was assumed. In Fi@) 9we see
traces of the (X1)-Pandey reconstruction, represented by
the typical pentagonal shape at the right side between the
second and third bilayers. The first complete graphitic layer
was formed at 2000 K for both simulations. This graphitiza-
tion temperature is more than 600 K higher than that for the
thin slab in Fig. 8, which is another indication that a slab of
only six bilayers is too small to be representative for a bulk
with a surface. In part this is due to the strong conjugation
effects, typical of carbon, requiring the extension beyond
nearest neighbor representedffy’"!. Consequently, there is
a strong surface-surface interaction for thin slabs. In contrast,
the behavior for a slab with 12 bilayers seems to be repre-
sentative for that of a single surface as indicated by the fact
that both simulations of Fig. 9 show a layer by layer mecha-
nism with the first graphitic layer appearing at the same tem-
perature.

For each of the simulations we did for both settings of the
LCBOP, including those for Pandey-reconstructétil) sur-
faces, the graphitization temperature for setting A was be-
tween 100 and 200 K lower than that for setting B. Although
a correspondence exists, this difference in graphitization
temperature is much less than the difference in the heights of
the barriers for the bulk transformation, which-s70 meV
(~800 K).

The same difference of the graphitization mechanism for
thin and thick samples was also observed for
(2X1)-Pandey-reconstructed 1) slabs. Typically, once a
few bonds between the first two bilayers are broken, the
whole lower zigzag chain rapidly detaches from the surface,
leading to curved graphitic strips at the surface as shown in
Fig. 10 (compare with Fig. & The graphitization tempera-
tures are higher than for the non-reconstructed slabs, being
equal to~2500 K for a six-bilayers slab and 2750 K for a
12-bilayer slab using the LCBOP with setting A. These tran-
sition temperatures are lower than thé500 K found in the
AIMD simulations of Ref. 26 for a reconstructed thin slab.
This difference could be explained by the difference between
the MC and MD techniques. Although there is no real “time
scale” in MC simulations, a rough time correspondence can
be established via the phonon frequencies. Atomic move-
ments occur on pico- to nanosecond time scale. So our MC
simulation, with typically a 100 000 moves per atoms, would
correspond to 10'—10 4 sec, which is much larger than the

024107-10



INTRINSIC LONG-RANGE BOND-ORDER POTENTIA. ..

FIG. 9. Snapshots during aN(P,T) Monte Carlo annealing
simulation at 2250 and 2500 K for respectivéy a “thick” dia-
mond (111) slab containing 768 atoms an@) a diamond(111)

PHYSICAL REVIEW B 68, 024107 (2003

FIG. 10. Snapshot during a\N(P,T) Monte Carlo annealing
simulation at 2500 K of the wupper six bilayers of
(2x1)-Pandey-reconstructeéd11) surface with 768 atoms, assum-
ing a fixed substrate. Color code as is Fig. 8.

typical time scale of picoseconds to nanoseconds in MD
simulations. Clearly, this longer “time scale” in MC simula-
tion yields a larger probability to see structural changes. Fur-
thermore, the probability to overcome a barrier for the break-
ing (or formation of a bond is typically larger for MC
simulations than for MD simulations, especially when the
maximal displacement of the atoms, chosen to be tempera-
ture dependent as to yield acceptance percentages between
30% and 50%2 becomes comparable to the width of the
barrier.

To compare with an alternative approach for the long-
range extension in the spirit of previous wétk! we have
done simulations for the thin nonreconstructed slab also for
extended Brenner | and extended REBO potentials. In these
extensions, the total energy is written as in ELj, but with
the long-range potential represented by the dashed line in
Fig. 2(@) and a different switching functio; . To avoid
interference with the short-range potential, long-range inter-
actions up to third nearest neighbors are excluded, which is
accomplished by taking

Sij:(l_fij)l_k[ (1—fikfkj)1k_[| (1-fyfafy), (23

yielding continuous derivatives with respect to the atomic
positions for any configuration. The results are shown in
Figs. 11a) and 11b). Whereas the extended REBO potential
gives rise to the formation of a more or less graphitic struc-
ture, but with defects, the structure resulting from the ex-
tended Brenner | potential &p?-hybridized amorphous. The
reason for this remarkable difference is not so clear. It may
either be due to the improved elastic properties of REBO, or
to the extension in the description of the conjugation correc-
tion for REBO® Considering the coordination changes oc-

surface with a fixed substrate, allowing no moves in the lowest twacurring during the process, it is clear that a certain subset of

bilayers. Color code as is Fig. 8.

the matrix elements oF°°"), and also the interpolation of
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FIG. 11. Snapshots during a&N(P,T) Monte Carlo annealing
simulation for a thin(111) slab at 3500 and 3000 K using respec-
tively (a) an extended Brenner | potential arid) an extended
REBO potential. Color code as is Fig. 8.

Fconi for the various possible coordination configurations in-
termediate betweesp® and sp?, play important roles in
graphitization. This may actually also be the reason why the
extended REBO potential gives defedtsee Fig. 1(b)]
which do not disappear for simulations up to 3500 K. The T 2m
LCBOP, with our interpolation scheme fé°°", leads in-
stead to perfect graphitic layers in agreement with AIMD £ 12, spapshots during a(P,T) Monte Carlo annealing
simulations, at least for samples of this size. simulation of a diamond wedge containing 2808 atoms, bounded by
Apal‘t from these StI’UCtUI’a| d|ﬁerences, anO'[hel’ importanhonreconstructe@lll} p|anes’ at(a) 0K (Starting Configuratio)j
difference is the temperature at which the structural changeg) 2500 K, and(c) 3000 K. Color code as is Fig. 8. The very few
take place, which is much higher for both extended Brennefwofold coordinated atoms are indicated as white balls, as the three-
potentials than for the LCBOP, apparently due to too highfold coordinated atoms. For comparisdd) shows a high resolu-
barriers for bond breakingand formation. tion electron microscopy image of irradiated diamoiRef. 39.
To conclude, we show the results of an annealing simulaThe original{111} orientations of the diamond structure are still
tion starting from a diamond wedge, containing 2808 atomsyisible as straight lines in the inner bulk region.
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bounded by nonreconstruct¢tilL} planes, as shown in Fig. ACKNOWLEDGMENTS
12(a). The two lowest bilayers are held fixed, to simulate the
diamond bulk. Periodicity was assumed in thalirection This work was financed by NW@Nederlandse Organi-

perpendicular to the images. The two shapshots in Figssatie voor Wetenschappelijke OnderzpekProject No.
11(b) and 11c), taken at 2500 and 3000 K, respectively, 015.000.031. We are grateful to Dr. G. de Wijs for doing the
show the formation of a shell-like graphitic structure, albeitab initio LDA calculation of the interlayer energy in graph-
with defects around th&=0 plane, i.e., the vertical plane ite, to Frank van Bouwelen for allowing publication in this
perpendicular to the image. The graphitized layer segmentd@per of the experimental data shown in Figidi2and to A.
are pushed outwards, to minimize the interlayer energy. Fof &ukhov for his help in the initial stage of this work.

the given geometry, with a fixed substrate, this leads to con-

centric shells, which strongly reminds a transmission elec- APPENDIX

tron micrggraph of a protrusion on the surface of irradiated e have constructed an analytic interpolation for the bi-
diamond}® as shown in Fig. 1@). In Ref. 39 the distance . iapje functionF ~coni(N;i ,N;;), which is based on the
between the graphitic layers close to the diamond bulk and Nij P , )

that between the outer planes are reported to be 2.9 and unction values and derivatives at the grid of integer
A, respectively. From our simulation we find these distance$Nij :Nji). The derivatives at the grid points have to be de-

to be equal to 2.91 and 3.44 A, providing a very nice i”us_termined according Fo the_following prescriptions._ Due to
tration of the capabilities of our potential symmetry the derivatives with respect to the two variables on

the grid points fi,m) and (n,n) are related by

aFconj_ aFconj_
V. SUMMARY AND PERSPECTIVES NG NG
IN;; N (AL)
We have constructed an intrinsic long-range bond order U Tnm It tmn
potential for carbonLCBOP), which smoothly bridges the Continuity at the boundaries implies
gap between the strong covalent and the weak intermolecular ‘ ‘
interactions, important for bond breaking and formation. The JF o) JF o)
LCBOP is an appropriately parametrized mix of a short- aNl-j~ = aNI-J~ =0. (A2)
range Brenner-like bond order potential and a long-range, 1 Tom i Tam

radial potential. Besides accurate values for bond distanceg, .\ _ 1 2, if the value off %, (n,m) lies in between
binding energies and stretching force constants for a large set _ Nij

of coordination environments, it give® good elastic con- that of F j¢oni(n+1,m) andF eoni(n—1,m), the derivative is
stants for diamond and graphit@, a reasonable description given by the finite difference. expression

of the reaction path for the bulk diamond to graphite transi-

tion, as well as(iii_) a good_ description of the interlayer in-_ apagggj F;ﬁ;gg](ﬁ 1,m)— F;‘;Qri”(n_ 1,m)
teraction energy in graphite over a range of interlayer dis- 1 S i . (A3)
tances, as compared to experimental andfoinitio data. INj; nm 2

In this work, we have studied, by means of extensive MC . : . .
imulati th f hitizati t surf . else it is set to zero to avoid extrema in between two grid
S|m|u a |onst, the Ip;roctigs 101 glratr)) : |zaf|pr(11a stur ?cesi n f‘hevﬁoints. The prescription is completed by a few exceptions,
eral geometries. For. if111) slabs, we Ind a structural path v 5taq to avoiding oscillations. These are
for the graphite to diamond transformation which compares

well with AIMD simulations. However a layer by layer gFsen

graphitization is found for thicker slabs. Simulations for N =—0.088188
wedge geometries lead to multishell structures, giving a re- 120
alistic picture in comparison to experimental observationssg, LCBOP, and
with in addition a good prediction of the distances between
the graphitic layers in this nonplanar geometry. (ﬂzgonj

Besides the LCBOP we have also presented a short-range N =-—0.072300,
potential, CBOP. Both the LCBOP and CBOP have good 120
elastic properties, with in particular a much more accurate conj
shear elastic constant for diamond as compared to that of JF1 — 0.052143
Brenner’s REBO potentidlwhich makes them good candi- IN;j 20_ '

dates for simulations of large diamond systems subject to

strain, with possible applications, among others, for diamondor CBOP.
coatings'®** However, the main contribution of this work to ~ For convenience, in the further description we will omit
the field of carbon-based materials is the careful inclusion othe subscript argumermicj"“J, which is either 0 or 1. For
long-range interactions, making the LCBOP very suitable tcarbitrary real values of{;; ,N;;), the value ofF*°" is given
study the structural properties @hultishell) fullerenes and by the interpolation within the square to which the point
nanotubes. (Njj ,N;i) belongs. We denote the interpolation within this

024107-13



J. H. LOS AND A. FASOLINO PHYSICAL REVIEW B68, 024107 (2003

square af°°"(x,y) wherex andy are numbers between 0 gfeon conj, sconj
and 1 defined beEN”_Int(N”) and yEN”_Int(N”) Xkl ( l) f +f0| ! (AS)
The interpolation is given by .
conj
feomi(x,y) = (1—y) (1= x)[ F§3M+xF 10+ V2T 01] ~fy,k|=(—1)'(afay conJ+fconJ)’ (A6)
kI

+(L=y)XL 5N+ (1=x) 00t Y7 Fy ]
with k,1=0,1, fSM=fconi(k 1), anddf<°"/dal, (a=x,y)
con] [} 1=y Tk \"st)s kl )
FYA=0L " (1= fy.00l are the derivatives df“°" in the cornersK,l). Finally, we
+XYTFEOM4 (1=%) % g1t (1—y) y . note thatF°"™ is continuous everywhere up to the first de-

rivatives with respect to the atomic positions, due to the fact
(Ad)  that both aFCO“J/aN,,|N _3=0 and aFCO”J/aN‘x’”ﬂN”_:3

where: =0.
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