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Clausius-Mossotti-type approximation for elastic moduli of a cubic array of spheres
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The method of elastostatic resonances is applied to the three-dimensional problem of nonoverlapping spheri-
cal inclusions arranged in a cubic array in order to calculate the effective elastic moduli. Explicit expressions,
exact at least to orderp3 ~wherep is the volume fraction of the inclusions!, are obtained for the bulk modulus
and for the two shear moduli. The approximation used, which is the leading order in a systematic perturbation
expansion of the appropriate modulus, is related to the Clausius-Mossotti approximation of electrostatics.
Comparison with numerical calculations of the moduli and with previous work reveals that this approximation
provides accurate results at low volume fractions of the inclusions and is a good estimate to the effective
moduli at moderate volume fractions even when the contrast is high. Some of the expressions turn out to be
identical to the Hashin-Shtrikman~HS! bounds.
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I. INTRODUCTION

Kantor and Bergman1 introduced an approach to the pro
lem of calculating the effective elastic stiffness tensorC(e) of
two-component composite materials with a specified mic
structure. This approach, which was based on a calcula
of elastostatic resonances of the system, was applied to c
posites in the form of regular two-dimensional~2D! arrays of
circular-cylindrical inclusions of an isotropic elastic mater
with elastic stiffness tensorC(1) embedded in an isotropi
host with elastic stiffness tensorC(2). For the cases of hex
agonal and square arrays, they were able to obtain an exp
expansion of the 2D effective moduliC(e) in powers of the
volume fractionp of the C(1) component up to a rather hig
order~e.g., the 2D bulk moduluske was evaluated up to an
including O(p11) terms for an hexagonal array!. For 3D mi-
crostructures, this approach was applied to a periodic a
of differently oriented circular-cylindrical inclusions with cu
bic symmetry2 in order to get expressions for the effectiv
moduli which are exact at least up to terms of the order
p2.

In this paper, we apply the same approach to a 3D mo
of cubic arrays of spherical inclusions of isotropic mater
C(1)(k1 ,m1) ~component 1! embedded in an isotropic hos
C(2)(k2 ,m2) ~component 2! ~k is the bulk modulus,m is the
shear modulus!. This simple model is already a very difficu
problem to solve, mainly because the eigenstates~i.e., elas-
tostatic resonances! of an isolated spherical inclusion are n
known. In fact, we have computed only a few of them—t
dipole eigenstates. This turns out to be a useful exercise
cause these states are often responsible for the dominan
of the interaction between distortions of different inclusion
in analogy with electrostatic problems.

The results obtained for the macroscopic elastic mod
are in the form of simple algebraic expressions, similar b
in form and in spirit to the Clausius-Mossotti~CM! expres-
sion for macroscopic dielectric constants of such compos
The expression for the macroscopic bulk moduluske coin-
cides with one of the Hashin-Shtrikman~HS! bounds,3 which
has often been used as an approximation to the exact v
and is known to provide a good approximation for a wi
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range of relevant parameters. In contrast, the express
for the two macroscopic shear moduli were not known p
viously.

To determine exactly the effective elastic stiffness ten
of 3D anisotropic composite materials is a very difficult ta
because of the difficulties and complications involved
solving the appropriate elastostatic equations in 3D syste
Most of the published numerical work deals with 2D pro
lems because of these difficulties and complications, and
because of the fact that the practical problem of mater
that are reinforced with parallel fibers is actually a 2D pro
lem. The spatial cubic symmetry simplifies matters and
ables one to solve numerically for the effective moduli e
sentially exactly in some special cases. Such is the work
Nunan and Keller,4 who investigated the extreme contra
microstructure of a periodic cubic array of rigid spheres a
who formulated an accurate numerical procedure to comp
the elastic moduli for this case. Another numerical proced
to compute the effective elastic moduli is due to Nem
Nasseret al.,5,6 who investigated the opposite extreme co
trast microstructure of a periodic cubic array of spheri
voids. An important recent advance in determining the eff
tive stiffness tensor of composite materials was made
Torquato,7,8 who developed new perturbation expansions
the effective stiffness tensor which are absolutely conv
gent. These expansions involven-point correlation functions
which characterize the microstructure. Third-order expli
expressions were derived for the effective moduli of isot
pic dispersions and for the bulk modulus of a composite w
a cubically symmetric microstructure.8 We have compared
our results with all of this previous work and also with n
merical calculations that we have performed. The simple
gebraic expressions we have derived seem to provide a
rate results for the effective moduli at low volume fractio
of the inclusions even when the contrast is infinite; they c
tinue to provide a good estimate at moderate volume fr
tions, and, as expected, they fail to do so when the volu
fraction is high, especially when the volume fraction a
proaches its close-packing value~when the spheres begin t
touch each other!.
©2003 The American Physical Society04-1
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II. SUMMARY OF THE UNDERLYING THEORY

The approach~we will use a simplified form of the gen
eral theory, described in detail in Refs. 9 and 10! begins by
introducing a somewhat generalized form of the origin
problem and replacing theC(1) material by a different mate
rial C8(1)(s), where

C8(1)~s!5C(2)2
1

s
dC5

1

s
C(1)1

s21

s
C(2) ~2.1!

and dC[C(2)2C(1). This replacement also makesC(e) a
function of the parameters. Whens lies in certain ranges the
tensorC8(1)(s) becomesunphysical, i.e., it ceases to be pos
tive definite. The original problem is retrieved by settings
51.

The position-dependent local elastic tensorC(r ) of the
system can now be written in the form

C~r !5C(2)2
1

s
u1~r !dC, ~2.2!

whereu1(r ) is the characteristic or indicator function:

u1~r !5H 1, r inside component 1

0 otherwise.
~2.3!

The strain tensor«(r ) in such a composite material, th
boundaries of which undergo the displacementui5« i j

(0)xj , is
the solution of the operator equation

«5« (0)1
1

s
Ĝ«, ~2.4!

where« i j
(0) is any constant symmetric tensor andĜ is a linear

integral operator defined in Eqs.~A5!–~A7! of Appendix A.
In Refs. 1,9 and 10, it was shown that any effective ela
stiffness coefficient of a composite material which satisfi
Eq. ~2.2! can be written as a sum of simple poles in t
following form:

« (0)C(2)« (0)2« (0)C(e)« (0)5(
n

Fn

s2sn
, ~2.5!

where summation over tensorial indices is implied on
left-hand side, and the polessn and weightsFn are all real.
Each pole is obtained as an eigenvalue of the oper

Ĝ:Ĝu« (n)&5snu« (n)&, where the eigenstateu« (n)& represents
an elastostatic resonance of the sample, i.e., a state wher
sample is internally deformed and strained even though
boundaries are undeformed. Obviously, such resonances
occur only at unphysical values ofC8(1)(s).

A scalar product of two second-rank symmetric ten
fields «,s is defined by (* denotes complex conjugation!

^«us&[E dVu1~r !« i j* ~r !s i j ~r !. ~2.6!

Under this definitionĜ is not Hermitian, and thus has diffe
ent right and left eigenstates. However, ifu« (n)& is a right
02410
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eigenstate with eigenvaluesn , then^« (n)dCu[^«̃ (n)u is a left
eigenstate with eigenvaluesn* , and they form a complete
biorthogonal set~see, e.g., Ref. 11! inside phase 1,

^«̃ (n)u« (m)&50 for nÞm. ~2.7!

The weightsFn of Eq. ~2.5! are given by

Fn5
1

V
u^«̃ (0)u« (n)&u2/^«̃ (n)u« (n)&, ~2.8!

whereV is the total volume occupied by the composite m
terial. We define the ‘‘norm’’ of a statei«i to be

i«i[^«̃u«&1/2. ~2.9!

The question of whether the eigenstates are all normaliza
i.e., whether

i« (n)i25E dVu1~r !«* dC~r !«~r !Þ0 for all n

~2.10!

is a nontrivial one because the fourth-rank tensordC[C(2)

2C(1) is not necessarily positive or negative definite. Ho
ever, it was shown in Refs. 1 and 10 that all eigenstates w
nonzero eigenvaluessnÞ0 are normalizable and that the
eigenstates are real. Nevertheless, note thati« (n)i2 can be
either positive or negative, thereforei« (n)i can be either rea
or imaginary.

To solve the problem of many inclusions inside a ho
material, one uses an approach similar to the tight-bind
method from solid-state crystal electronics in order to e
pand the eigenstates~resonances! u« (n)& of the many inclu-
sions problem in terms of the complete~biorthogonal! set of
eigenstatesu« (aa)& of the individual inclusions, denoted b
index a,

u1u« (n)&5(
aa

Baa
(n)uau« (aa)&

i« (aa)i
, ~2.11!

whereua(r ) equals 1 only inside inclusiona and vanishes
elsewhere. The detailed form of an eigenstateu« (aa)& of the
isolated inclusiona, as well as its eigenvaluesaa , depends
on the shape of the inclusion, but not on its total size. In

same manner as foru« (n)&, we can express the operatorĜ of
the many inclusions problem as a sum of the individual gr

operators, Ĝ5(aĜua[(aĜa , where Ĝau« (aa)&
5saau« (aa)&. We then use these two expansions in the eig

value equation foru« (n)&: Ĝu« (n)&5snu« (n)&, and after multi-
plying both sides of this equation with the state^«̃ (bb)uub ,
we arrive at a matrix eigenvalue problem for the expans
coefficientsBaa

(n) ,

~sn2sb!i« (bb)iBbb
(n)5 (

aa
aÞb

^«̃ (bb)ubuĜuua« (aa)&Baa
(n)

i« (aa)i
.

~2.12!
4-2
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This equation is general and holds for any composite m
rial with nonoverlapping inclusions.

A great simplification occurs if the inclusions are identic
and form a periodic array in space. In that case, Bloc
theorem immediately specifies the dependence of the ei
vectors on the inclusion indexa,

Baa
(n)5

1

AN
Ba

(n)eik•ra, ~2.13!

whereN is the number of unit cells in the periodic samp
and ra represents the location of the inclusiona. By using
Eqs.~2.11! and~2.13! in Eq. ~2.8!, together with the fact tha

^«̃0uua« (aa)& and ^«̃ (aa)uua« (aa)& are independent ofa, we
obtain for the weights

Fn5
N

V
dk,0U(

a

Ba
(n)~k!^«̃ (0)uua« (aa)&

i« (aa)i
U2Y (

a
uBa

(n)~k!u2,

~2.14!

where there is no longer any summation over inclusion in
ces. Since only thekÄ0 Bloch states can have nonze
weights, only those states need to be considered. The e
value problem~2.12! for the k50 eigenstates becomes

~sn2sb!Bb
(n)5(

a
QbaBa

(n) , ~2.15!

where the elementsQba can be expressed as sums of over
integrals between the isolated inclusion eigenstatesof pairs
of different inclusions,

Qba5 (
a

aÞb

^«̃ (bb)ubuĜuua« (aa)&

i« (bb)i i« (aa)i

5 (
a

aÞb

saE ub« (bb)* dC« (aa)dV

i« (bb)i i« (aa)i
, Qba5Qab* .

~2.16!

Note that the elementsQba , as well as the element

^«̃ (bb)ubuĜuua« (aa)&, constitute a Hermitian matrix, eve

though the integral operatorĜ is non-Hermitian. The appear
ance of the characteristic functionub(r ) restricts the integra-
tion volume to the inside of inclusionb. Having found the
eigenvectorsBb

(n) , the weights are given by the expressio

Fn5
1

Va
U(

a

Ba
(n)^«̃ (0)uua« (aa)&

i« (aa)i
U2Y (

a
uBa

(n)u2,

~2.17!

whereVa is the volume of a unit cell in the periodic com
posite structure.

III. CUBIC ARRAY OF SPHERES

Our system consists of a 3D cubic array of spherical
clusions of an isotropic materialC(1)(k1 ,m1) embedded in
02410
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an isotropic hostC(2)(k2 ,m2). The two-body interaction be
tween different spherical inclusions, which appears in
form of overlap integrals in Eq.~2.16!, decreases with in-
creasing distance between inclusions. In connection w
this, the elementsQba always behave like some positiv
power of the volume fraction of the inclusionsp[VR /Va
when p is small. From the 2D elastostatic problem1 of
circular-cylindrical inclusions, and from the 3D electrosta
problem10,12 of spherical inclusions, we expect that, in ord
to include the effects of these interactions to leading orde
p, we only need to consider the dipole resonances. Th
states correspond to a strain field« which is uniform inside
the inclusion~a sphere! and decreases slowest with distan
outside the inclusion. Wechosethese dipole resonances to b
certain uniform strains inside the sphere and then follow
the procedure described in Appendix B in order to find th
shape outside the sphere and also the eigenvalues.

In order to form a complete biorthogonal set, there are
dipole ~strain! eigenstates, as this is the number of const
linearly independent second-rank symmetric tensors in th
dimensions. The first resonance corresponds to a pure,
form compression inside the sphere of radiusR—we call this
state a ‘‘compression dipole.’’ Its right eigenstate is

« i j
(1)55

1

3AVR

d i j , r ,R

1

4p
AVRS d i j 2

3xixj

r 2 D 1

r 3
, r .R,

~3.1!

whereVR54pR3/3 is the volume of the sphere, and its e
genvalue is

s15
dk

l12m
~l5k2 2

3 m!. ~3.2!

Here and subsequently, we omit the subscript 2 from
elastic moduli of component 2. The other five resonan
correspond to a pure shear strain inside the sphere and a
degenerate, with the same eigenvalues2. The forms of these
strain states inside the sphere were chosen to be

« i j
(2)5I i j 12, « i j

(3)5I i j 13, « i j
(4)5I i j 23, ~3.3a!

« i j
(5)5 1

2 ~ I i j 112I i j 22!, ~3.3b!

« i j
(6)5~ I i j 111I i j 2222I i j 33!, ~3.3c!

where I i jkl 5
1
2 (d ikd j l 1d i l d jk). The common shear eigen

value is

s25
2~k12m!dm

5~l12m!m
. ~3.4!

The forms of the shear resonances outside the sphere
hard to find but, having found one of them, we can obtain
others by appropriate rotations of the coordinate axes~see
Appendix B!. For example,« i j

(6) corresponds to a displace
4-3
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ment field outside the sphere (r .R) of the form@er , eu , ef

are unit vectors in the spherical coordinate system (r ,u,f)]

u(6)5S 3l15m

m
P2

(0)B

r 2
13P2

(0) C

r 4D er

1S P2
(1) C

r 4
2P2

(1) B

r 2D eu , ~3.5!

whereB525mR3/(3l18m), C53(l1m)R5/(3l18m),
and Pl

(m)(u) is the associated Legendre function. The fo
of « i j

(6) for r .R is

«115S 3~x21z2!

r 2
2

15x2z2

r 4
21D U~r !

2r 3
1S x2

r 2
2

5x2z2

r 4 D 3C

r 5

1S z2

r 2
2

5x2z2

r 4 D 3D~r !

r 3
, ~3.6a!

«225same as«11with x replaced byy, ~3.6b!

«335S 12z2

r 2
2

15z4

r 4
21D U~r !

2r 3
1S 3z2

r 2
2

5z4

r 4 D 3C

r 5

1S 6z2

r 2
2

5z4

r 4
21D 3D~r !

r 3
, ~3.6c!

«235S 42
10z2

r 2 D 3yz

4r 5
U~r !1S 22

5z2

r 2 D 6yz

r 7
C

1S 52
10z2

r 2 D 3yz

r 5
D~r !, ~3.6d!

«135same as«23 with y replaced byx, ~3.6e!

«125F S 12
3z2

r 2 D 3xy

2r 2
2

3xyz2

r 4 G 1

r 3
U~r !

1S 12
5z2

r 2 D 3xy

r 7
C2

15xyz2

r 7
D~r !, ~3.6f!

where U(r )5@(3l15m)/m#B1(3/r 2)C and D(r )
5(C/r 2)2B.

The effective elastic tensor of a composite material w
cubic symmetry has the form

Ci jkl
(e) 5ked i j dkl12me~ I i jkl 2d i jkl !12MeS d i jkl 2

1

3
d i j dklD ,

~3.7!

wherek is the bulk modulus andm,M are two shear modul
which coincide in the isotropic case, and

d i jkl [H 1, i 5 j 5k5 l

0 otherwise.
~3.8!
02410
In order to isolate only one of the above three effective el
tic moduli ke ,me , or Me in Eq. ~2.5! we choose« (0) to be
one of the following:

« i j
(0k)5

1

3
d i j , « i j

(0m)5I i j 12, ~3.9a!

« i j
(0M )5

1

A12
~ I i j 111I i j 2222I i j 33!. ~3.9b!

The fact that choices~3.9! are proportional to« (1),« (2),« (6)

respectively, together with the biorthogonality relation~2.7!,
implies that by choosing, e.g.,« (0)5« (0k), the only contri-
bution to the numerator in Eq.~2.17! comes from the« (1)

state.
In the dilute suspension limit, whenp!1, we can neglect

the right-hand side of Eq.~2.15!, so that the eigenstates a
approximately equal to the isolated inclusion eigensta
Thus we obtain from Eq.~2.5!,

k22ke>
1

Va

u^«̃ (0k)u« (1)&u2/^«̃ (1)u« (1)&
12s1

5
1

Va

VRdk

12
dk

l12m

5
pdk

12
dk

l12m

. ~3.10!

In the same manner, by choosing« (0)5« (0m) we obtain for
the shear moduli

m22me>
1

Va

u^«̃ (0m)u« (2)&u2/^«̃ (2)u« (2)&
12s2

5
pdm

12
2~k12m!dm

5~l12m!m

. ~3.11!

In this dilute limit, we getMe5me . Expressions~3.10! and
~3.11! can also be derived by considering the problem o
single spherical inclusion embedded in an infinite homo
neous isotropic elastic medium under the application o
uniform external strain field.13

In order to take the dipole-dipole interactions into a
count, we must calculate some elements of the matrixQab ,
namely,a,b51, . . . ,6. Theoverlap integrals of Eq.~2.16!
which involve expressions such as~3.1! and ~3.6! are diffi-
cult to calculate. But since the calculation ofQba involves
summation of these integrals over all lattice sites, we c
exploit the cubic symmetry to make replacements such
x2→y2 ~we choose the Cartesian axes to be the cubic s
metry axes of the lattice! in the integrands of Eq.~2.16! ~see
Appendix C!. In this way, we find thatQba is a diagonal
matrix. This is clearly a result of the cubic lattice symmet

A special problem arises in the summation of overlap
tegrals between two dipole states: there appear lattice s
of the terms of the formPl

(0)(u)/r 3 @see Eq.~D12! of Ap-
pendix D#, which are only semiconvergent. In these sum
4-4
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the distant contributions are as important as the nearby o
and the series converges only thanks to the alternating s
of the angular functions. However, the isolated inclus
states, such as Eqs.~3.1! and~3.6!, were calculated assumin
that the isolated sphere was far away from the sample bo
aries. Therefore, we can use the overlap integrals of th
states only for the nearby lattice sites. The problem is sol
by means of the concept of the local Lorentz field of t
analogous problem in electrostatics~in fact, the components
of « (1) are proportional to the electric field created by
dipole at a distancer ).

The treatment of dipole-dipole interactions in the ‘‘la
guage’’ of resonances was originally introduced
Bergman10,12 for the analogous problem of electrostatics,
order to obtain the CM approximation. It should be not
that ~1! this is not the standard approach to obtain the C
approximation~for the standard approach, see, e.g., Ref. 1!;
~2! since the CM approximation involves summation of d
pole interactions, it depends on the symmetry of the medi
i.e., whether the medium is isotropic, or has cubic or ot
kind of symmetry.

The CM-type approximation is obtained by breaking
the sum into near terms~evaluated exactly for a cubic arra
of spheres that are far away from the boundaries! and far
terms~evaluated by replacing the discrete dipole array b
uniform continuous strain polarization, and taking into a
count the correct boundary conditions!.1 We start by writing
the elastostatic equilibrium equation] jCi jkl (r )«kl(r )50 for
the dipole eigenstate« (aa) in terms of the local elastic tenso
of Eq. ~2.2!. Doing so, we can find« (aa)(r ) everywhere by
solving the equation

] jCi jkl
(2) ~r !«kl

(aa)~r !52] j Pi j ~r !, ~3.12!

where

Pi j ~r !5
1

saa
ua~r !dCi jkl «kl

(aa)~r ! ~3.13!

is the elastic polarization density of the sphere, in analo
with the electrostatic case. The important properties of
dipole eigenstates« (aa) of an isolated inclusion are that the
are constant inside the sphere, and that their eigenvalue
independent of the size of the sphere.

The sumQba of dipole-dipole interactions between all th
other spheres and the one at the origin can be written a
overlap integral over the volume of that sphere, in which
integrand is the product of the strain field« (ba) of the central
sphere,dC, and« which is the strain field due to all othe
sphere dipoles, denoted by« loc. This strain field, created a
the central sphere by all the other spheres, is calculate
considering separately the contribution of the nea
spheres, i.e., those that lie within a sphere of radiusL around
the origin~this radius should be much larger than the sph
radii and the intergrain separations!, and that of the distan
spheres,

« loc5«near
loc 1« far

loc . ~3.14!
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In order to calculate the contribution of the distant sphe
~each one of them is uniformly polarized!, we smear their
polarization over space forr .L, replacing the actual inho
mogeneous polarization densityPi j (r ) for r .L by its ~ho-
mogeneous! volume average. We denote the contribution
this macroscopic polarization by« far

macro. This field can be
calculated by noticing that if we smear the polarization of
spheres~including the nearby ones!, thereby creating a ho
mogeneous polarization over all space, then the solution
Eq. ~3.12! would simply be«50 ~due to zero boundary con
ditions that an eigenstate must fulfill! and that this zero field
is the result of two contributions: one due to the distant m
roscopic polarization« far

macroand the other due to the smeare
nearby~homogeneous! polarization«near

macro. The vanishing of
the overall strain means that« far

macro52«near
macro. The near con-

tribution «near
macro is easy to calculate, since it is actually th

strain field created by a homogeneously polarized spher~a
very large one—its radius isL) with polarization density
(1/saa)pdC« (aa). This field is similar to the dipole eigen
state« (aa), which could also be viewed as resulting from
uniform polarization density (1/saa)dC« (aa) inside an iso-
lated sphere. Consequently, we conclude that«near

macro is the
same as« (aa), except for the factorp (p is the volume frac-
tion of the spheres!,

« far
macro52«near

macro52p« (aa). ~3.15!

When this result is substituted for the sum of contributions
« from all the dipoles whose distance from the origin
greater thanL, we obtain

Qba5 (
a

aÞb

^«̃ (bb)ubuĜuua« (aa)&

i« (bb)i i« (aa)i

5 (
a

0,urb2rau,L

^«̃ (bb)ubuĜuua« (aa)&

i« (bb)i i« (aa)i
2psadab

5 (
a

0,urb2rau,L

saE ub« (bb)* dC« (aa)dV

i« (bb)i i« (aa)i
2psadab .

~3.16!

In this equation,L must be large enough so that the use
average polarization density forr .L is a good approxima-
tion. In practice, one sums the series over a set of sph
with larger and larger radiusL until convergence is achieved

SinceQba ~a,b51, . . . ,6! is diagonal~see Appendix C!,
the effective moduli will have a similar form to those of
dilute system@see Eqs.~3.10! and ~3.11!#, but with shifted
poles. If both states are compressional dipoles« (1), then all
the overlap integrals in Eq.~3.16! vanish, and the shifted
pole of the whole system becomes

s(k)5s11Q115~12p!s1 . ~3.17!

Thus, taking into account only the strongest~dipole-dipole!
interactions, we obtain a CM-type approximation forke :
4-5
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ke>k22
pdk

12
dk~12p!

l12m

5k22
p

1/~k22k1!23~12p!/~3k214m2!
.

~3.18!

This expression forke is identical to one of the HS bounds3

Unlike the situation forke , the overlap integrals betwee
two « (2) states~for me) or between two« (6) states~for Me)
do not vanish and must be summed numerically in E
~3.16!. If we denote these sums bys2Gm ,s2GM respectively,
then

Q225s2~Gm2p!, Q665s2~GM2p!, ~3.19!

therefore, the shifted poles of the whole system are

s(m)5s21Q225~12p1Gm!s2 , ~3.20!

s(M )5s21Q665~12p1GM !s2 . ~3.21!

The CM-type approximations for the two effective she
moduli are

me>m22
pdm

12~12p1Gm!s2
, ~3.22!

Me>m22
pdm

12~12p1GM !s2
. ~3.23!

The overlap integrals ofQ22,Q66, which involve integrands
of the form of Eqs.~3.6!, are difficult to calculate. But since
the calculation ofQba involves summation of these integra
over all lattice sites, we can exploit the cubic symmetry
the composite in order to make replacements such asx2

→y2 in the integrands~see, e.g., Appendix C!, and in this
way notice that

3Gm522GM . ~3.24!

The exact expressions forGm or GM involve lattice sums
which must be calculated numerically. The final result is

GM5
3k1m

k12m
~20.929p11.142p5/3!. ~3.25!

A detailed calculation ofGM and an explanation of the nu
merical factors can be found in Appendix D.

In order to find higher-order corrections to these Clausi
Mossotti-type approximations, Eqs.~3.18!, ~3.22!, and
~3.23!, one has to continue the perturbative treatment
calculate matrix elementsQba between the correspondin
dipole eigenstates and nondipole eigenstates. Since no
pole eigenstates decrease with distance faster than 1/r 3, these
corrections will be of higher order inp. As was already
stated, the fact that choices~3.9! of « (0) are proportional to
« (1),« (2),« (6) respectively, together with the biorthogonali
relation~2.7!, implies that by choosing, e.g.,« (0)5« (0k), the
only contribution to the numerator in Eq.~2.17! comes from
02410
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the u« (1)& state. Therefore, in order to calculateke we need
only consider those states which have nonvanishing ma
elements with the unperturbed compression dipole s
u« (1)&. Let u« (h)& denote a nondipole eigenstate~of the single
inclusion! with eigenvaluesh that has a nonvanishing matri
element with the compression dipole stateu« (1)& ~we will
assumes1Þsh). We shall denote bya0 the unit length of the
simple cubic lattice, i.e., this is the shortest distance betw
inclusion centers. Sinceu« (h)& decreases with distance a
least as 1/r 4 outside the inclusion, then the overlap integra
between such a stateu« (ah)& located at a distancea>a0 from
the origin and a compression state located at the origin
decrease at least as 1/a4, thereforeQ1h , which is the sum
overa of all such overlap integrals and is dimensionless, w
be at least of the order ofO@(R/a0)4#5O(p4/3). In order to
find the new eigenstates of Eq.~2.15!, we have to diagonal-
ize the matrix subspaceQab with a,b51,h; this way we
obtain two new eigenstates with new eigenvalues. One
these states will be approximatelyu« (1)& with shifted eigen-
value. Using standard second-order perturbation theory,
correction to its eigenvalues(k) will be uQ1hu2/(s12sh),
therefore, the correction toke will be of the order
of puQ1hu25p11/3 @the additional factorp comes from
the expression for the weight Fn}(1/
Va)u^«̃ (0k)u« (1)&u2/^«̃ (1)u« (1)&. The other new eigenstate wi
be approximately the unperturbed stateu« (h)& but with an
important correction to it@Q1h /(h2s1)#u« (1)&: Only this
correction has a nonvanishing scalar product with^« (0k)u,
therefore only this part will contribute to the weightFn of
F(s). This contribution will be proportional topuQ1h /(sh
2s1)u2 @see Eq.~2.17!#, i.e., also of the order ofp11/3. Simi-
lar considerations apply when we calculate the higher-or
corrections tome andMe . Our general conclusion is that th
next correction to the CM-type approximations derived h
will begin at least at orderp11/3.

We can find a combination of the two shear moduli, whi
is independent of the numerical factorsGm ,GM . Using re-
lation ~3.24!, along with the fact thatGm ,GM are at least of
the order ofO(p), we find @by Taylor expansion of Eqs
~3.22! and ~3.23! in powers ofp] that the following combi-
nation is exact at least up to orderO(p3):

3

5
me1

2

5
Me>m22

pdm

12~12p!s2

5m22
p

1

m22m1
2

6~k212m2!~12p!

5~3k214m2!m2

.

~3.26!

This expression is identical to one of the HS bounds forme
in the case of a composite with an isotropic microstructur3

and provides a similar bound for the combination (3me
12Me)/5 in the case of a cubic microstructure.9

IV. SUMMARY AND DISCUSSION

Expressions~3.18!, ~3.22!, ~3.23!, and ~3.26! provide
good estimates of the effective moduli under a wide range
4-6
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conditions. Expression~3.18! for the bulk modulus is well
known in elastostatics. However, it is known as a HS bou
and not as a CM-type approximation for the effective bu
modulus. Nemat-Nasseret al.,6 who investigated the specia
case of a periodic cubic array of spherical voids, have
ticed that their approximation for the effective bulk modulu
the so-called ‘‘simplest approximation,’’ overshoots the u
per HS bound by about 1%, possibly due to truncation err
in the numerical calculation. They have further claimed t
if a particular relation@Eq. ~7.7! in Ref. 6# for an infinite
series is to hold~we can prove this relation to be exact!, then
their approximation is identical to the upper HS bound.
view of our results, it seems that the simplest approximat
which involves replacing a nonuniform strain field«(r ) in-
side the inclusion by its average value, is the analog of
CM-type approximation. By comparing it with a comple
numerical solution, Nemat-Nasseret al.5 concluded that this
approximation yields adequate results up to inclusion volu
fractions of about 30%. Nunan and Keller,4 who investigated
the opposite extreme case of a periodic cubic array of r
spheres, formulated a procedure to compute the ela
moduli for this case numerically. By comparing their acc
rate numerical results for the elastic moduli with the simpl
approximation of Nemat-Nasseret al., they found that for
low and moderate concentrations, the simplest approxi
tion agrees well with their exact results. In Fig. 1, we co
pare expression~3.18! for the effective bulk modulus with
the results obtained by Nunan and Keller for a simple cu
array of rigid spheres@see Table V in Ref. 4: In terms of th
notations used by Nunan and Kellerke /k2511(g
12a/3)m2 /k2], and with the third-order approximation o
Torquato@Eq. ~4.15! in Ref. 8, where we used the tabulatio
of the three-point parameterz2 obtained by McPhedran an
Milton15#. This comparison shows that~a! the results are in-
distinguishable up top50.2; ~b! at p50.3, the deviation is

FIG. 1. Normalized effective bulk moduluske /k2 vs inclusion
volume fraction. Rigid spheres~component 1! embedded in a com
pressible matrix~component 2!: - -, CM approximation; —, third-
order approximation of Torquato~Ref. 8!; 1, numerical data of
Nunan and Keller~Ref. 4!.
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about 1%;~c! at p50.4, it is about 6%;~d! at higher volume
fractions the deviation becomes considerable, espec
when the volume fraction approaches its close-packing va
pc5p/6.0.52, at which the spheres begin to overlap. T
third-order approximation of Torquato, which incorporat
third-order correlation functions of the microstructure, ac
ally goes beyond the CM-type approximation~which can be
considered as a second-order approximation! and is in good
agreement with the numerical results of Nunan and Ke
even at high volume fractions. The comparison with tw
different extreme cases, namely spherical voids and r
spheres, supports our belief that Eq.~3.18! is exact up to
higher orders inp than those stated above and can provid
good approximation for the bulk modulus over a wide ran
of parameters. Equation~3.26!, though less known, was als
derived in the past as a bound for this particular combinat
of the two shear moduli of a cubic array of spheres.9

Equations~3.22! and ~3.23! for the two shear modulim
andM were not obtained previously, as far as we know, a
also provide good estimates of the effective properties un
a wide range of conditions. In Figs. 2 and 3, we comp
these CM-type approximations form and M with exact nu-
merical calculations we have performed16 for two cases:~a!
the inclusions are stiffer than the host medium~the matrix!
by at least one order of magnitude;~b! the inclusions are
softer than the matrix by similar factors. We also compa
the CM approximation with the low-order dilute approxim
tion, Eq. ~3.11! ~note that within this approximationme
5Me). As can be seen, the CM approximation is in excelle
agreement with the numerical results up to volume fracti
p'0.2. Even at higher and moderate volume fractions
still provides good approximations: In case~a!, where the
contrast~i.e., the ratio between the elastic moduli of the m
trix and that of the inclusions! is greater than 1, this approxi

FIG. 2. Normalized effective shear moduli vs inclusion volum
fraction for glass spheres~component 1! embedded in an epoxy
matrix ~component 2!: ¯, CM approximation forme /m2; - -, CM
approximation for Me /m2 ; 3, numerical results~Ref. 16! for
me /m2 ; 1, numerical results~Ref. 16! for Me /m2; —, dilute ap-
proximation.
4-7
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ISRAEL COHEN AND DAVID J. BERGMAN PHYSICAL REVIEW B68, 024104 ~2003!
mation is only about 2% off the exact result atp50.3, but
the deviation becomes considerable at high volu
fractions—it is about 10% off the exact result atp50.4,
beyond which Eqs.~3.22! and ~3.23! cease to be good ap
proximations. In case~b!, where the contrast is less than
the CM-type approximation is only about 3% off the exa
result atp50.4. This is very good, especially if we remem
ber that the spheres begin to overlap atpc.0.52. In Fig. 4,
we compare expressions~3.22! and ~3.23! with those of
Table V of Ref. 4 for the extreme case of rigid spheres.~In
terms of the notations used by Nunan and Keller,me /m2
511b, Me /m2511a.! The results are indistinguishab
up to volume fractionp50.2. At p50.3 the deviation is
about 3% and atp50.4 it becomes considerable~about
10%!. As the volume fractionp of the spherical inclusions
increases and the distance between the spheres decreas
interaction between the distortion fields of different incl
sions becomes stronger and it no longer suffices to cons
only the dipole-dipole interaction, as is done in the CM-ty
approximation. In order to describe this strong interact
more accurately, one has to consider also the nondip
eigenstates, i.e., the higher multipole distortion fields.

Corrections to the above CM-type expressions begin
order that is not less thanp11/3, in analogy with the 2D
problem of a square lattice of cylindrical inclusions,1 where
it was found that the corrections to the CM approximati
begin with orderp5 for the bulk modulus, and with orderp4

for the shear moduli. We note that in the analogous 3D e
trostatic problem10,12 of a cubic array of spheres, the corre
tion to the CM expression actually begins at orderp13/3,
since the correction of the order ofp11/3 vanishes due to the
cubic lattice symmetry. From the 2D problem, we know th
many of the matrix elementsQab of higher orders inp van-
ish because~a! overlap integrals between some types
states vanish~due to the spherical symmetry of the grain

FIG. 3. Normalized effective shear moduli vs inclusion volum
fraction. Inclusions~component 1! are softer than the matrix~com-
ponent 2!: ¯, CM approximation forme /m2; - -, CM approxima-
tion for Me /m2 ; 3, numerical results~Ref. 16! for me /m2 ; 1,
numerical results~Ref. 16! for Me /m2; —, dilute approximation.
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e.g., the vanishing of overlap integrals between any t
compression dipoles in our 3D case!; ~b! many sums of in-
teractions vanish because of the lattice symmetry. Theref
we expect our CM-type approximations to be exact up
higher orders inp than those stated above, and to provi
good estimations of the elastic moduli even for cases wh
either the inclusion volume fraction is high, provided that t
contrast is not too different from 1~e.g., 0.2, 5!, or the con-
trast is much greater than 1~e.g., rigid spheres! or much less
than 1~e.g., spherical voids! but the volume fraction is low
or moderate. These expectations are supported by prev
work and by our numerical calculations.4–6,8,16When this is
not the case, one must invoke the more accurate meth
cited above. For very extreme cases, such as rigid sph
which almost touch each other, yet other approaches mus
used, such as asymptotic analysis.4

For nonperiodic~e.g., random! systems of nonoverlapping
spheres, the original secular equation~2.12! must be used
instead of its simplified form~2.15!. Even for such cases w
can claim, without performing any further calculations, th
the CM approximation~3.18! for ke is exact at least up to
O(p2). This results from the vanishing of the overlap int
grals between any two compression dipoles~see Appendix
B!, which is a consequence only of the inclusion sha
Therefore, the subspace of the secular equation~2.12!, which
includes only the compression dipole interactions, will
diagonal. The interactionQ1a between any compression d
pole and a shear dipole is of the order ofO(R3/a3)
5O(p), and we can use perturbation treatment, which w
give corrections of the orderpuQ1au25p3. The solution will,
therefore, differ from Eq.~3.18! only in that order. This con-
clusion is also supported by the perturbation expansion
the effective elastic moduli developed by Torquato.7,8 For the

FIG. 4. Normalized effective shear moduli vs inclusion volum
fraction. Rigid spheres~component 1! embedded in a compressibl
matrix ~component 2!: ¯, CM approximation forme /m2; - -, CM
approximation forMe /m2 ; 3, numerical data of Nunan and Kelle
~Ref. 4! for me /m2 ; 1, numerical data of Nunan and Keller~Ref. 4!
for Me /m2.
4-8
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CLAUSIUS-MOSSOTTI-TYPE APPROXIMATION FOR . . . PHYSICAL REVIEW B68, 024104 ~2003!
special case of isotropic dispersions, third-order relations
the effective elastic moduli were obtained by using thr
point correlation functions of the microgeometry.8 It was
shown there that the series expansion can be regarde
expressing the effects of a perturbation around the opti
structures which realize the HS bounds. Thus, the seco
order approximation is actually Eq.~3.18!. Expression~3.18!
was also derived in the past for the case of isotropic dis
butions of spheres as a mean-field approximation which m
be corrected on the basis of cluster expansions,17 but it is
difficult to calculate the next correction by this approac
Therefore, an estimation of the next correction in powers
p, which involves the solution of a two-sphere problem, w
not obtained there.
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APPENDIX A: THE OPERATOR Ĝ

The local displacement fieldul(r ) in a composite materia
whose elastic stiffness tensor is described by Eq.~2.2! must,
in principle, be found by solving the differential equations
equilibrium elasticity

Ci jkl
(2) ] j]kul5

1

s
dCi jkl ] j@u1~r !]kul #, ~A1!

together with the boundary conditionsui5ui
(0)[« i j

(0)xj . We
can treat the right-hand side as a source term. Using
tensor Green functionglm(r ,r 8;C(2)) for the problem (d is
the dimensionality!

Ci jkl
(2) ] j]kglm~r ,r 8;C(2)!52d imdd~r2r 8!, ~A2!

glm~r ,r 8;C(2)!50, r on the boundary, ~A3!

we obtain forul

ul~r !5ul
(0)2

1

sE dV8glm~r ,r 8;C(2)!dCjmkn] j8@u1~r 8!]k8un8#

5ul
(0)1

1

sE dV8u1~r 8!] j8glm~r ,r 8;C(2)!dCjmkn]k8un8 ,

~A4!

where we used integration by parts and the boundary co
tions ~A3!. Taking derivatives of Eq.~A4! and using the
symmetries of the elastic stiffness tensor, together with
symmetry of the Green tensorglm(r ,r 8)5gml(r 8,r ), which
follows from reciprocity, we finally obtain an integral equ
tion for the local strain tensor« i j (r )5 1

2 (] iuj1] jui):
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« i j ~r !5« i j
(0)

1
1

sE dV8u1~r 8!Gi jkl ~r ,r 8;C(2)!dCklmn«mn~r 8!,

~A5!

where

Gi jkl 5
1
4 ~] i] l8gjk1] i]k8gjl 1] j] l8gik1] j]k8gil !. ~A6!

Equation~A5! can be written in symbolic form

«5« (0)1
1

s
Ĝ«, ~A7!

thus defining the linear integral operatorĜ. Clearly, Ĝ de-
pends on the microstructure@throughu1(r )] and onC(2), but
is independent ofC(1).

APPENDIX B: FINDING THE DIPOLE EIGENSTATES

The strain eigenstates of the single grain problem are
lutions of the equilibrium equations of elastostatics~in the
absence of body forces!: ] js i j 50, wheres is the stress ten-
sor, related to the strain tensor by the linear local relat
s i j (r )5Ci jkl (r )«kl(r ). In terms of the displacementu, and
for uniform isotropic components, these equations becom

m¹2u1~l1m!“~“•u!50, ~B1!

where l, m are the Lame´ coefficients, related to the bulk
modulus by the relation~in three dimensions! k5l12m/3.
We solve these equations inside each component of the c
posite material@i.e., a spherical isotropic inclusionC8(1)(s)
embedded in an isotropic hostC(2)] separately, then we im-
pose continuity of both the displacement and the traction
the surface of the sphere. Since the eigenstates repres
situation where the sample is internally deformed a
strained but the external boundaries are undeformed,
strain must decrease to zero forur u→` and should also be
nonsingular everywhere else. This requirement restricts
number of allowed strain states which can appear in a lin
combination foru« (aa)&. From the continuity conditions, we
get a set of homogeneous equations for the coefficients o
linear combination. Setting the determinant equal to z
leads to special allowed values which the effective ela
tensorC8(1)can take inside the sphere, and therefore de
mines the eigenvaluessa by Eq. ~2.1!.

The special case of dipole eigenstates corresponds
strain field « i j (r ) which is uniform inside the inclusion~a
sphere! and decreases the most slowly with distance outs
the inclusion. Wechosethese dipole resonances to be certa
uniform strains inside the sphere@see Eqs.~3.1! and ~3.3!#
and then followed the procedure described above in orde
find their shape outside the sphere, along with their eigen
ues. Since the microstructure is spherically symmetric, i
best to express the equilibrium equations in spherical co
dinates (r ,u,f), whereer , eu , ef will denote the appropri-
ate unit vectors.
4-9
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ISRAEL COHEN AND DAVID J. BERGMAN PHYSICAL REVIEW B68, 024104 ~2003!
Only in rare instances can an interesting problem in
elasticity be solved by elementary means. One such ca
the deformation of a spherical shell by uniform internal a
external pressures~see, e.g., Refs. 18 and 19!. Finding the
compression dipole eigenstate is a similar problem, since
displacement vector which corresponds to it has only
component in ther direction which is spherically symmetric
Imposing on this solution the additional requirements that
eigenstate must fulfill and the continuity conditions, as spe
fied above, we arrive at expressions~3.1! and ~3.2! for the
compression eigenstate and eigenvalue.

The other five dipole eigenstates correspond to pure s
distortions inside the sphere. Since these states lack sphe
symmetry, they are very hard to find. The simplest sh
eigenstate to be found should be« i j

(6) , since it corresponds to
a displacement field inside the sphere which has azimu
symmetry

u(6)~r !5r @22P2~cosu!er1P2
(1)~u!eu#, ~B2!

wherePn(cosu) is the Legendre polynomial andPn
(m)(u) is

the associated Legendre function. In order to find the so
tion outside the sphere, we used the set of solutions of
elastostatic equilibrium equations found in Ref. 20. Outs
the sphere these solutions areMnm

2 ,Nnm
2 ,Enm

2 , where
Mnm

2 ,Nnm
2 are two sets of transverse solutions andEnm

2 is the
set of longitudinal solutions.~In the notation of Ref. 20,
u(6)52N01

1 inside the sphere.! The solution outside the
sphere should have the same azimuthal symmetry an
order to satisfy continuity conditions everywhere on the s
face of the sphere it must also have the same dependen
u. The only solutions which fulfill these requirements a
N02

2 ,E02
2 , therefore outside the sphereu(6)(r ) should be a

linear combination of these solutions only. Following t
procedure described above to find the eigenvalues@imposing
continuity of both the displacement field (ur ,uu) and the
tractions (s rr ,s ru)], we obtain Eqs.~3.4!–~3.6!. Note that
the strain eigenstate is written in Eq.~3.6! in Cartesian coor-
dinates, not in spherical coordinates, in order to exploit
cubic symmetry of the composite in a more obvious fash
when calculating lattice sums for the matrix elementsQab
~see Appendix C!.

The form of the other four shear dipole eigenstates o
side the sphere can be obtained from« i j

(6) by appropriate
symmetry rotations. Since the elastostatic equilibrium eq

tions and the integral operatorĜ are invariant under such
rotations, any state obtained from« i j

(6) by performing such
rotations will still be an eigenstate with the same eigenva
and the same is true for any linear combination of su
states. Therefore, we just have to find appropriate rotat
~and linear combinations of such rotations! which transform
« i j

(6) inside the sphere into one of the other shear eigenst
of Eqs.~3.3! and apply the same transformations to the« i j

(6)

outside the sphere; in this way we obtain the forms of all
shear eigenstates outside the sphere.
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APPENDIX C: EVALUATION OF DIPOLE-DIPOLE
INTERACTIONS Qab

The main difficulty after finding the dipole eigenstates
to calculate the matrix elementsQab ~a,b51, . . . ,6! of the
eigenvalue problem~2.15!. These elements are given by E
~3.16! (Qba5Qab* ):

Qba5 lim
L→`

(
a

0,urb2rau,L

^«̃ (bb)ubuĜuua« (aa)&

i« (bb)i i« (aa)i
2psadab

5 lim
L→`

(
a

0,urb2rau,L

saE ub« (bb)* dC« (aa)dV

i« (bb)i i« (aa)i
2psadab .

~C1!

In order to evaluate the overlap integrals, we locate the
gin of our coordinate axes at the center of the sphereb, while
the location of the center of the spherea will be denoted by
ra . With this choice, the overlap integrals in Eq.~C1! are
given by

^«̃ (bb)ubu« (aa)&5E dVub~r !«̃ (b)* ~r !« (a)~r2ra!.

~C2!

Note that summation over tensorial indices is implied on
right-hand side, and that an expression forur u,R is to be
used for«̃ (b)* (r ), while an expression forur2rau.R is to
be used for« (a)(r2ra). The fact that the dipole states hav
a uniform value of«̃ (b) for r ,R along with the fact that for
these states«̃ (b)}« (b) for r ,R simplify the integrand of Eq.
~C2!. Thus, using the fact that« i i

(1)50 for ur2rau.R @see
Eq. ~3.1!#, we immediately obtain that the interaction b
tween any two compression dipole eigenstates of differ
inclusions vanishes:

^«̃ (b1)ubu« (a1)&}E dVub« i i
(1)~r2ra!50, ~C3!

and thereforeQ1152ps1.
The same procedure can be applied in order to calcu

the interactions between the compression dipole and an
the shear dipoles« (2), . . . ,« (6). In these cases, however, th
overlap integrals do not vanish, but due to the cubic symm
try of the lattice, it can be shown without explicit calculatio
thatQ1a50 for aÞ1. For instance, the overlap integral wit
the « (5) state is

^«̃ (b5)ubu« (a1)&}E dVub~r !@«11
(1)~r2ra!2«22

(1)~r2ra!#.

~C4!

By Eq. ~3.1!

«11
(1)~r !2«22

(1)~r !}
1

r 5
~x22y2!. ~C5!
4-10
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Since this expression is to be expanded aroundra
5(ax ,ay ,az), therefore the roles ofx2,y2 are not equivalent
in the integrand of Eq.~C4!. But since, eventually, we hav
to sum these integrals over all lattice sitesa that lie inside a
sphere of radiusL , then, as far asQba is concerned, the
roles ofx2,y2 are equivalent~we choose the Cartesian ax
to be the cubic symmetry axes of the lattice!, and they can
replace each other in a lattice with cubic symmetry. The
fore, we can make replacements such asx2→y2 in the inte-
grand of Eq.~C2!, and especially we obtainQ1550.

This procedure can be applied in order to calculate
elementQba (a,b51, . . .,6). In this way, we find thatQba
is a diagonal matrix. This is clearly a result of the cubi
lattice symmetry.

APPENDIX D: CALCULATION OF GM

By its definition, Eq.~3.21!, GM is given by the following
expression:

GM5 lim
L→`

(
a

0,urb2rau,L

E dVub« (b6)* dC« (a6)

i« (b6)i i« (a6)i
. ~D1!

In order to evaluate the overlap integrals, we locate the
gin of our coordinate axes at the center of the sphereb, while
the location of the center of the spherea will be denoted by
ra . With this choice, the overlap integrals in Eq.~D1! are
given by

E dVub« (b6)* dC« (a6)5E
VR

dV« (6)* ~r !dC« (6)~r2ra!,

~D2!

where the integration is performed inside a sphere of rad
R and volumeVR located at the origin. Note that summatio
over tensorial indices is implied in the integrand, and t
expression~3.3c! ~for ur u,R) is to be used for« (6)(r ), while
expression~3.6! ~for ur2rau.R) is to be used for« (6)(r
2ra). Thus we find

GM5
1

6VR
(

a
0,urb2rau,L

E
VR

dV@«11
(6)~r2ra!1«22

(6)~r2ra!

22«33
(6)~r2ra!#. ~D3!

In order to simplify things, we will use the fact that due
the cubic symmetryQ1650 ~see Appendix C!, therefore also
Q615Q16* 50. Using the explicit form of« (1) for ur u,R, Eq.
~3.1!, this implies that

05 (
a

0,urb2rau,L

E
VR

dV@«11
(6)~r2ra!1«22

(6)~r2ra!

1«33
(6)~r2ra!#. ~D4!

Using this result in Eq.~D3! we obtain a simplified expres
sion for GM :
02410
-

y
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t

GM52
1

2VR
(

a
0,urb2rau,L

E
VR

dV«33
(6)~r2ra!. ~D5!

When substituting expression~3.6c! for «33
(6)(r ), we can ex-

ploit the cubic symmetry in order to make replacements s
as x2→y2. At first sight, one may think that, since this ex
pression is to be expanded aroundra5(ax ,ay ,az), therefore
the roles ofx2,y2 are not equivalent in the integrand of E
~D5!. But since, eventually, we have to sum these integr
over all lattice sitesa that lie inside a sphere of radiusL,
then, as far asGM is concerned, the roles ofx2,y2,z2 are
equivalent~we choose the Cartesian axes to be the cu
symmetry axes of the lattice!, and they can replace eac
other in a lattice with cubic symmetry. Therefore, we c
make replacements such asx2→y2 in the integrand of Eq.
~D5!, and in particular, we can replacez2/r 2 by 1/3.

After making such replacements and collecting terms,
arrive at the following expression forGM :

GM52
1

2VR
(

a
0,urb2rau,L

E
VR

dV f~r2ra!, ~D6!

where

f ~r !52
9

2

l1m

3l18m S 5R3
125 cos4u

r 3
27R5

125 cos4u

r 5 D
5

18

7

l1m

3l18m S 5R3
5P2~cosu!12P4~cosu!

r 3

27R5
5P2~cosu!12P4~cosu!

r 5 D . ~D7!

Note thatl,m refer to the elastic moduli of component 2
Pn(cosu) is a Legendre polynomial. Using the same arg
ment as before, because of the cubic lattice symmetry of
composite material, the contribution of the termP2(cosu)
5(3z2/r221)/2 to GM will be canceled, therefore we nee
only consider the function

f ~r !5
36

7

l1m

3l18m S 5R3
P4~cosu!

r 3
27R5

P4~cosu!

r 5 D .

~D8!

In order to continue further, we need to expandf (r ) around
the lattice pointa, which will be denoted by the lattice vecto
ra5(a,ua ,fa). For this purpose, we use expansion for s
lutions of Laplace’s equation found in Refs. 10 and 12
spherical harmonics centered around the origin,
4-11
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Yl 8
(m8)

~V r2ra
!

ur2rau l 811
5(

n,m
~21! l 81m8@4p~2l 812n11!~2l 811!~2n11!#1/2S l 81n l8 n

m82m 2m8 mD
3

~2l 812n21!!!

~2n11!!! ~2l 821!!!
r nYn

(m)~V r !
Yl 81n

(m82m)
~V ra

!

al 81n11
, ~D9!

where the explicit expression for the 32 j symbol forM5m11m2 , J5 j 11 j 2 is

S J j1 j 2

2M m1 m2
D 5~21! j 12 j 21MF ~2l 1!! ~2l 2!!

~2J11!!

~J1M !! ~J2M !!

~ l 11m1!! ~ l 12m1!! ~ l 21m2!! ~ l 22m2!! G
1/2

. ~D10!
r

o

-
eri-

of
a

f
al
We can now use Eq.~D9! in order to expand the term
P4(cosu)/r5 of Eq. ~D8! aroundra . As for the other term
P4(cosu)/r3, we write it as@P4(cosu)/r5#r2 and expandr 2

around ra , ur2rau25r 222ar cosg1a2, where g is the
angle betweenr and ra , then use the addition theorem fo
spherical harmonics in order to express cosg5P1(cosg) in
terms of spherical harmonics of the 3D anglesV r ,V ra

:

P1(cosg)5(4p/3)(m521
1 Y1

(m)(V ra
)Y1

(m)* (V r). After per-
forming the above expansions, we use the orthogonality
spherical harmonics in order to perform the integration
f (r2ra) inside a sphere of radiusR located at the origin to
obtain

GM52
1

2VR
(

a
0,urb2rau,L

36S l1m

3l18m D
3S 5

7
VRS R

a D 3

P4~cosua!22VRS R

a D 5

P4~cosua! D
5 (

a
0,urb2rau,L

27

2p S l1m

3l18m D S 2
5

7

P4~cosua!

~a/a0!3
p

.

s

02410
of
f

12S 3

4p D 2/3P4~cosua!

~a/a0!5
p5/3D , ~D11!

wherep5(4p/3)R3/a0
3 is the volume fraction of the spheri

cal inclusions. The lattice sums must be performed num
cally. Note that the sum ofP4(cosua)/(a/a0)

3 is only semi-
convergent: It depends crucially on the particular type
summation, in our case all the cubic lattice points inside
sphere of radiusL. In contrast with that, the sum o
P4(cosua)/(a/a0)

5 is absolutely convergent. The numeric
results for a simple cubic lattice are

lim
L→`

(
a

0,urb2rau,L

P4~cosua!

~a/a0!3
52.724, ~D12!

lim
L→`

(
a

0,urb2rau,L

P4~cosua!

~a/a0!5
53.108. ~D13!

Inserting these numerical values into Eq.~D11! and using the
relationk5l12m/3, we obtain Eq.~3.25!.
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