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Clausius-Mossotti-type approximation for elastic moduli of a cubic array of spheres
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The method of elastostatic resonances is applied to the three-dimensional problem of nonoverlapping spheri-
cal inclusions arranged in a cubic array in order to calculate the effective elastic moduli. Explicit expressions,
exact at least to order® (wherep is the volume fraction of the inclusiopsare obtained for the bulk modulus
and for the two shear moduli. The approximation used, which is the leading order in a systematic perturbation
expansion of the appropriate modulus, is related to the Clausius-Mossotti approximation of electrostatics.
Comparison with numerical calculations of the moduli and with previous work reveals that this approximation
provides accurate results at low volume fractions of the inclusions and is a good estimate to the effective
moduli at moderate volume fractions even when the contrast is high. Some of the expressions turn out to be
identical to the Hashin-ShtrikmaitdS) bounds.

DOI: 10.1103/PhysRevB.68.024104 PACS nunider62.20.Dc, 46.25-y

[. INTRODUCTION range of relevant parameters. In contrast, the expressions
for the two macroscopic shear moduli were not known pre-

Kantor and Bergmdrintroduced an approach to the prob- viously.
lem of calculating the effective elastic stiffness ten68? of To determine exactly the effective elastic stiffness tensor
two-component composite materials with a specified microof 3D anisotropic composite materials is a very difficult task
structure. This approach, which was based on a calculatiopecause of the difficulties and complications involved in
of elastostatic resonances of the system, was applied to cOrplving the appropriate elastostatic equations in 3D systems.
posites in the form of regular two-dimensioriaD) arrays of  \jost of the published numerical work deals with 2D prob-
circular-cylindrical inclusions of an isotropic_elasti(; mate.rial lems because of these difficulties and complications, and also
with elastic stiffness tensog™ egnbedded In an IsoropiC  pecause of the fact that the practical problem of materials
host with elastic stiffness tens@®. For the cases of hex- hat are reinforced with parallel fibers is actually a 2D prob-
agonal gnd square arrays, t.hey were ablg to obtain an eXpl'%m. The spatial cubic symmetry simplifies matters and en-
expansion of the 2D effe(cl:ENe modul® in powers of the  ables one to solve numerically for the effective moduli es-
volume fractionp of the C** companent up to a rather high sentially exactly in some special cases. Such is the work of

_order(_e.g., theflzD bulk modulus, was evaluated up to gnd Nunan and Kellef, who investigated the extreme contrast
including O(p~) terms for an hexagonal array=or 3D mi- : - . .
microstructure of a periodic cubic array of rigid spheres and

crostructures, this approach was applied to a periodic arra%ho formulated an accurate numerical procedure to compute

of differently oriented circular-cylindrical inclusions with cu- the elasti duli for thi Anoth ical d
bic symmetry in order to get expressions for the effective € elastic moduli for this case. Another numerical procedure
fo compute the effective elastic moduli is due to Nemat-

moduli which are exact at least up to terms of the order o 56 - ) >
2 Nasseret al,>” who investigated the opposite extreme con-

.In this paper, we apply the same approach to a 3D modéfa_St micrpstructure of a periodic c_ubic array _of spherical
of cubic arrays of spherical inclusions of isotropic materialV0ids. An important recent advance in determining the effec-
C®)(ky,u1) (component Lembedded in an isotropic host tive stiffness tensor of composite materials was made by
C@(x,,u,) (component 2(x is the bulk modulusg is the Torquato!® who developed new perturbation expansions for
shear modulus This simple model is already a very difficult the effective stiffness tensor which are absolutely conver-
problem to solve, mainly because the eigenstéites elas- gent. These expansions involagoint correlation functions
tostatic resonancgsf an isolated spherical inclusion are not which characterize the microstructure. Third-order explicit
known. In fact, we have computed only a few of them—theexpressions were derived for the effective moduli of isotro-
dipole eigenstates. This turns out to be a useful exercise bgic dispersions and for the bulk modulus of a composite with
cause these states are often responsible for the dominant partcubically symmetric microstructufewe have compared

of the interaction between distortions of different inclusions,our results with all of this previous work and also with nu-
in analogy with electrostatic problems. merical calculations that we have performed. The simple al-
The results obtained for the macroscopic elastic modulgebraic expressions we have derived seem to provide accu-
are in the form of simple algebraic expressions, similar botlrate results for the effective moduli at low volume fractions
in form and in spirit to the Clausius-MossofttM) expres-  of the inclusions even when the contrast is infinite; they con-
sion for macroscopic dielectric constants of such compositesginue to provide a good estimate at moderate volume frac-
The expression for the macroscopic bulk modukgscoin-  tions, and, as expected, they fail to do so when the volume
cides with one of the Hashin-ShtrikméiHS) bounds’ which  fraction is high, especially when the volume fraction ap-
has often been used as an approximation to the exact valygoaches its close-packing valGghen the spheres begin to
and is known to provide a good approximation for a widetouch each other
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Il. SUMMARY OF THE UNDERLYING THEORY eigenstate with eigenvalig , then(s™ sC|= (5| is a left

The approachiwe will use a simplified form of the gen- €igenstate with eigenvalug) , and they form a complete
eral theory, described in detail in Refs. 9 and begins by ~ biorthogonal setsee, e.g., Ref. 1linside phase 1,
introducing a somewhat generalized form of the original _
problem and replacing thé*) material by a different mate- (eMeMy=0 for n#m. 2.7

. ! 1
rial C (s), where The weightsF,, of Eq. (2.5 are given by

11 s—1
W(g)=CP— Z5C= —cy >~ @ 1 - -
CHlg=Clmgoc=gCit—5 ¢ @ Fo=g [(e@le™) (e ™[e™), (2.9

and sC=C®—C®). This replacement also mak&® a
function of the parametex Whens lies in certain ranges the

tensorC'(l)(s) becomesunphysicali.e., it ceases to be posi-
tive definite. The original problem is retrieved by settisig

whereV is the total volume occupied by the composite ma-
terial. We define the “norm” of a statge|| to be

=1. el =(ele)*2 2.9
The position-dependent local elastic ten€dfr) of the  The question of whether the eigenstates are all normalizable,
system can now be written in the form i.e., whether
C(r)=c<2>—19 (r)6C (2.2
s/t ' : |\g<“>||2=f dVé,(r)e* 8C(r)e(r)+0 forall n
where 6,(r) is the characteristic or indicator function: (2.10
1 1 inside component 1 is a nontrivial one because the fourth-rank ten§6= C(?)
o,()=1 " P 2.3 —CW® is not necessarily positive or negative definite. How-
0 otherwise. ever, it was shown in Refs. 1 and 10 that all eigenstates with

nonzero eigenvalues,# 0 are normalizable and that their
eigenstates are real. Nevertheless, note [fh&||? can be
either positive or negative, therefdte("™|| can be either real

The strain tensok(r) in such a composite material, the
boundaries of which undergo the displacemegntex; , is
the solution of the operator equation

or imaginary.
1. To solve the problem of many inclusions inside a host
e=e@+ gl“g, (2.4  material, one uses an approach similar to the tight-binding

method from solid-state crystal electronics in order to ex-
pand the eigenstatdgsesonances|e™) of the many inclu-
sions problem in terms of the compldtaorthogonal set of
gigenstatege”) of the individual inclusions, denoted by

wheresi(jo) is any constant symmetric tensor aids a linear

integral operator defined in Eq8A5)—(A7) of Appendix A.

In Refs. 1,9 and 10, it was shown that any effective elasti

stiffness coefficient of a composite material which satisfied"9€X &

Eq. (2.2) can be written as a sum of simple poles in the " (aa)

following form: breM =3 Baw 0al &)
e

: (2.11

F
(0)c(2)g(0)_ g (0)c() 5 (0)= n L . .
g C e —eC e ; s—s,’ 29 where 6,(r) equals 1 only inside inclusioa and vanishes
_ S elsewhere. The detailed form of an eigenstat@®) of the
where summation over tensorial indices is implied on thesglated inclusiora, as well as its eigenvalus,,,, depends

left-hand side, and the polesy and weights=, are all real.  on the shape of the inclusion, but not on its total size. In the

Each pole is obtained as an eigenvalue of the operatol, .o manner as fo&(M), we can express the operafbrof

[:T[e™)=s,[s™), where the eigenstate”) represents the many inclusions problem as a sum of the individual grain
an elastostatic resonance of the sample, i.e., a state where t&gerators P=s lg.=s.T Where i |s(a“))

sample is internally deformed and strained even though the” |s(a"3> We then use these two expansions i the cigen-
boundaries are undeformed. Obviously, such resonances can 2¢ )

occur only at unphysical values af (1)(s). value equation fofe™): Te™)=s,[s™), and after multi-
A scalar product of two second-rank symmetric tensomlying both sides of this equation with the stai®”)|4,,

fields e, is defined by (* denotes complex conjugation ~ We arrive at a matrix eigenvalue problem for the expansion
coefficientsB{"

aa ?

eloy=| dVay(r)el(r)oi(r). (2.6 ~ - N
(elo) f SR (51— 5,) [P BO= S (2P, | '] 6,2 B
. A . : n=>p)lle v @)
Under this definitionl” is not Hermitian, and thus has differ- arb
ent right and left eigenstates. However,|#") is a right (2.12
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This equation is general and holds for any composite matean isotropic hos€?)(«,, u,). The two-body interaction be-

rial with nonoverlapping inclusions.

tween different spherical inclusions, which appears in the

A great simplification occurs if the inclusions are identical form of overlap integrals in Eq(2.16), decreases with in-
and form a periodic array in space. In that case, Bloch'sreasing distance between inclusions. In connection with
theorem immediately specifies the dependence of the eigethis, the elementQ,, always behave like some positive

vectors on the inclusion index,

ng :i Bgn)eikwa,

N (2.13

power of the volume fraction of the inclusioqs=Vg/V,
when p is small. From the 2D elastostatic probHerof
circular-cylindrical inclusions, and from the 3D electrostatic
problent®!2 of spherical inclusions, we expect that, in order
to include the effects of these interactions to leading order in

whereN is the number of unit cells in the periodic sample p, we only need to consider the dipole resonances. These

andr, represents the location of the inclusianBy using
Egs.(2.11) and(2.13 in Eq. (2.8), together with the fact that
(€9 6,6@) and (¢(@9|0,£(@) are independent of, we
obtain for the weights

e N s BIY(K) (5] 6,64)
A A i @)

2
/ > B k)2,
(2.19

states correspond to a strain fieldvhich is uniform inside
the inclusion(a sphergand decreases slowest with distance
outside the inclusion. Wehosethese dipole resonances to be
certain uniform strains inside the sphere and then followed
the procedure described in Appendix B in order to find their
shape outside the sphere and also the eigenvalues.

In order to form a complete biorthogonal set, there are six
dipole (strain eigenstates, as this is the number of constant
linearly independent second-rank symmetric tensors in three

where there is no longer any summation over inclusion indidimensions. The first resonance corresponds to a pure, uni-
ces. Since only th&k=0 Bloch states can have nonzero form compression inside the sphere of radiiswe call this
weights, only those states need to be considered. The eigestate a “compression dipole.” Its right eigenstate is

value problem(2.12) for the k=0 eigenstates becomes

(si—5p)BY =2 Qu.BLY, (2.15

where the elemenQ,, can be expressed as sums of overlap

integrals between the isolated inclusion eigenstatgsairs
of different inclusions

Lo (8PP6,|T] 0,60

Qpa=
S PP

safc%swm*écawﬂdv

’ Qﬁ :Q*ﬂ
= T ] ] -

(2.19
Note that the elementQ;,, as well as the elements
(e®P) 9T 6,6@), constitute a Hermitian matrix, even

though the integral operatdr is non-Hermitian. The appear-
ance of the characteristic functidiy(r) restricts the integra-
tion volume to the inside of inclusiob. Having found the

eigenvector8{" | the weights are given by the expression

2
/S e
(2.17

whereV, is the volume of a unit cell in the periodic com-
posite structure.

1] BPE|6,60)
= Va -

@]

Ill. CUBIC ARRAY OF SPHERES

1
— 9, r<R
3R

e= . x| 1 3.9

Xin
an VR 5u—r—2)r—y =R,

whereVg=47R%3 is the volume of the sphere, and its ei-
genvalue is

Ok

:)\+2,u (32

(N=k—5m).

S1

Here and subsequently, we omit the subscript 2 from the
elastic moduli of component 2. The other five resonances
correspond to a pure shear strain inside the sphere and are all
degenerate, with the same eigenvayeThe forms of these
strain states inside the sphere were chosen to be

si(JZ): ij12s Si(js):hjls' 8i(j4)=|ij23, (3.3a
Si(iS):%(lijll_lijzz): (3.3b
gi(j6):('i111+'ijzz—2|ij33), (3.30

where I =3(8k 8 + 8 8)). The common shear eigen-
value is

2(k+2u)6u

Sz—m. (34)

The forms of the shear resonances outside the sphere are
hard to find but, having found one of them, we can obtain the

Our system consists of a 3D cubic array of spherical in-others by appropriate rotations of the coordinate ases

clusions of an isotropic materi&@)(«,, ;) embedded in

Appendix B. For examplez{? corresponds to a displace-
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ment field outside the spherexR) of the form[e, , e,, €,
are unit vectors in the spherical coordinate systend, ()]

3\+5 B C
o~ (2) +3p(20)_4> e
r

(6)— _
! “ 2 2

+

C B
pg1>r—4— P(;)—) €, (3.5

r2

whereB=—5uR% (3N +8u), C=3(\+u)R%/(3N+8u),

and P(™ () is the associated Legendre function. The formThe fact that choices3.9) are proportional a6

of &{ for r>Riis

3(x2+7%) 15¢°7? L U(r)+ x? 5x?z%2\3C
8 = —_— —_— —_— [
H r? ré 2r3 r2 ré ) rd
7> 5x%z2\3D(r)
+ i el e e (3.6a
£,,=Same ase;with x replaced byy, (3.6b
127> 157* U(r) (32> 5z*\3C
fET T2 -t 2r3 i IETy
6z> 57z* 3D(r)
+ r_z_r_4_ r3 , (36@
1022\ 3yz 572\ 6yz
823:(4——2)? r +(2——2>r—7
1022\ 3yz
5——2 5 (r), (360)
r r
£13=Same ase,3 with y replaced byx, (3.6
37%\3xy 3xyZ|1
£12= ( __2)_2_—4 U
r<)2r r r
5z2\3xy _ 15xyZ
+ 1_r_2 r_7 - 7 D(r), (3.6
where  U(r)=[(3\+5u)/u]B+(3/?)C and D(r)
=(C/r?)—B.

PHYSICAL REVIEW B68, 024104 (2003

In order to isolate only one of the above three effective elas-
tic moduli ko, ue, OF Mg in Eq. (2.5) we choose:(? to be
one of the following:

1
8i(jOK):§5ij’ efM=1j12, (3.9a

(0M) 1
£jj =\/T2(|i111+|i122_2|ij33)- (3.9b
(2) 4(6)

respectively, together with the biorthogonality relati@l?),
implies that by choosing, e.ge(¥=¢(©% | the only contri-
bution to the numerator in Eq2.17 comes from thes™®
state.

In the dilute suspension limit, whgn<1, we can neglect
the right-hand side of Eq2.15), so that the eigenstates are
approximately equal to the isolated inclusion eigenstates.
Thus we obtain from Eq(2.5),

1M EeW[eM) 1 Vgék
T
N+2u
_ pdk
_1 o (3.10
AN+2u

In the same manner, by choosiaff’=&(°*) we obtain for
the shear moduli

1 |<g(0u)|8(2)>|2/<;(2)|8(2)>

IU’Z_IU’ezv_a 1_52

_ pSu
2k 2w) o (3.1

- BN t2u)p

In this dilute limit, we getM .= u.. Expressiong3.10 and
(3.11) can also be derived by considering the problem of a
single spherical inclusion embedded in an infinite homoge-
neous isotropic elastic medium under the application of a
uniform external strain field®

In order to take the dipole-dipole interactions into ac-
count, we must calculate some elements of the m&jy,
namely, @,8=1, ... ,6. Theoverlap integrals of Eq(2.16

The effective elastic tensor of a composite material withwhich involve expressions such &3.1) and (3.6) are diffi-

cubic symmetry has the form

1
C{) = keBij S+ 2l liji — 5ijk|)+2Me< Sijki ~ 3 0ij 5k|) :
(3.7

wherex is the bulk modulus ang,M are two shear moduli
which coincide in the isotropic case, and
1, i=j=k=I
%=1 o

otherwise. 3.8

cult to calculate. But since the calculation @f;, involves
summation of these integrals over all lattice sites, we can
exploit the cubic symmetry to make replacements such as
x?—y? (we choose the Cartesian axes to be the cubic sym-
metry axes of the lattigen the integrands of Eq2.16) (see
Appendix Q. In this way, we find thaQ, is a diagonal
matrix. This is clearly a result of the cubic lattice symmetry.
A special problem arises in the summation of overlap in-
tegrals between two dipole states: there appear lattice sums
of the terms of the fornP(?)(6)/r® [see Eq.(D12) of Ap-
pendix D], which are only semiconvergent. In these sums,
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the distant contributions are as important as the nearby onek) order to calculate the contribution of the distant spheres
and the series converges only thanks to the alternating sigrieach one of them is uniformly polarizedve smear their
of the angular functions. However, the isolated inclusionpolarization over space far>L, replacing the actual inho-
states, such as Eg8.1) and(3.6), were calculated assuming mogeneous polarization densiB;(r) for r>L by its (ho-
that the isolated sphere was far away from the sample bounarogeneousvolume average. We denote the contribution of
aries. Therefore, we can use the overlap integrals of thesis macroscopic polarization byf2“°. This field can be
states only for the nearby lattice sites. The problem is solvedalculated by noticing that if we smear the polarization of all
by means of the concept of the local Lorentz field of thespheregincluding the nearby ongsthereby creating a ho-
analogous problem in electrostatigs fact, the components mogeneous polarization over all space, then the solution of
of ¢ are proportional to the electric field created by aEg. (3.12 would simply bes=0 (due to zero boundary con-
dipole at a distance). ditions that an eigenstate must fulfiind that this zero field
The treatment of dipole-dipole interactions in the “lan- is the result of two contributions: one due to the distant mac-
guage” of resonances was originally introduced byroscopic polarizatior2*and the other due to the smeared

far

Bergmari®*?for the analogous problem of electrostatics, in nearhy(homogeneouspolarizations ™. The vanishing of

order to qbtgin the CM approximation. It shouId.be notedihe overall strain means thefl2°°= — ¢Ma%0 The near con-
that (1) this is not the standard approach to obtain the CMtribution £ Macro

L 1 near 1S €asy to calculate, since it is actually the
apprpxmatlor(for the star_1dar_d approach, See, e.9., Ref, 14 strain field created by a homogeneously polarized sptere
(2) since the CM approximation involves summation of di-

. . . . very large one—its radius i&) with polarization density
pole interactions, it depends on the symmetry of the med'uml(‘l/saa)pECs(a“). This field is similar to the dipole eigen-

i.e., whether the medium is isotropic, or has cubic or Othestates(a“), which could also be viewed as resulting from a

kind of symmetry. ) L ; (aa) o .
The CM-type approximation is obtained by breaking upunn‘orm polarization density (&4,) 6Ce |nS|d§man iso

the sum into near term@valuated exactly for a cubic array lated sph((zzt)e. Consequently, we conglude #ilh," is the
of spheres that are far away from the boundaresd far Same as -, except for the factop (p is the volume frac-
terms(evaluated by replacing the discrete dipole array by dlon of the spheres
uniform continuous strain polarization, and taking into ac- macro_ __ _macro_ _ _(aa) (3.15
count the correct boundary conditiorisWe start by writing Efar Enear Pt '
the elastostatic equilibrium equatianCi;y (r)ey(r)=0 for  When this result is substituted for the sum of contributions to
the dipole eigenstate!®® in terms of the local elastic tensor ¢ from all the dipoles whose distance from the origin is
of Eq. (2.2). Doing so, we can fina(@*)(r) everywhere by greater tharl, we obtain
solving the equation

(80P 6y|T| 6582)

&Jci(izk)l(r)sﬁ?a)(r):_ajpij(r)a (3.12 QIBO‘_ 2 ||8(bﬁ)|| ”8(aa)”
a#b
where ~ N
GO0, 02
! = R e PO
Py (1) = c—0a(r) 8Cijaef(r) (3.13 O<lrp=ral <L
aa
(bB)* (aa)
is the elastic polarization density of the sphere, in analogy _ S“f Ope oCedV
with the electrostatic case. The important properties of the ; [CA [ ~PSaOap-
dipole eigenstates®® of an isolated inclusion are that they 0<|rp—rgl<L
are constant inside the sphere, and that their eigenvalues are (3.16

independent of the size of the sphere.

The sumQy, of dipole-dipole interactions between all the In this equationL. must be large enough so that the use of
other spheres and the one at the origin can be written as a@verage polarization density for>L is a good approxima-
overlap integral over the volume of that sphere, in which thetion. In practice, one sums the series over a set of spheres
integrand is the product of the strain fiedéP® of the central  with larger and larger radius until convergence is achieved.
sphere,6C, ande which is the strain field due to all other SinceQg, (a,f=1, ..., is diagonal(see Appendix ¢
sphere dipoles, denoted kyf°. This strain field, created at the effective moduli will have a similar form to those of a
the central sphere by all the other spheres, is calculated Wyjilute systemsee Eqs(3.10 and (3.11)], but with shifted
considering separately the contribution of the nearbypoles. If both states are compressional dipel€g, then all
spheres, i.e., those that lie within a sphere of ratliasound the overlap integrals in Eq3.16 vanish, and the shifted
the origin(this radius should be much larger than the sphergole of the whole system becomes
radii and the intergrain separationand that of the distant
spheres, sW=5,+Qu=(1-p)s;. (3.17

oo _loc . loc Thus, taking into account only the strongédipole-dipole
&= Eneart Efar - (3.14 interactions, we obtain a CM-type approximation fey:
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pox the |¢(M)) state. Therefore, in order to calculate we need
Ke=Ke™ — 5 1—p) only consider those states which have nonvanishing matrix
«(1-p) ; . .
1-——= elements with the unperturbed compression dipole state
A2u |le®). Let|e(™) denote a nondipole eigenstdtd the single

p inclusion with eigenvalues,, that has a nor;i\ggishing matrix
- . element with the compression dipole st Y (we will

WUz =11) =3(1=p)/ (3rzt4pz) assumes; #s,). We shall denote by, the unit length of the
(3.18 simple cubic lattice, i.e., this is the shortest distance between
inclusion centers. Sincgs(”) decreases with distance at
least as ¥/ outside the inclusion, then the overlap integrals
between such a state®”) located at a distanc=a, from
the origin and a compression state located at the origin will
decrease at least asat/ thereforeQq,,, which is the sum
overa of all such overlap integrals and is dimensionless, will
be at least of the order @[ (R/ag)*]=0(p*). In order to

- _ - _ find the new eigenstates of E@.15, we have to diagonal-
Q22=%2(Gu=P) Que=S(Gu=p). (319 ize the matrix subspac®,, with «,8=1,7; this way we
therefore, the shifted poles of the whole system are obtain two new eigenstates Withby(rl)ew eigenvalues. One of
these states will be approximatg with shifted eigen-
siW=5,4+Qp=(1-p+G,)s;, 320 e, Using standard secor(1d)—order>perturba;tion theory, the

M) _ correction to its eigenvalus'® will be |Qq,|%/(s1—S,),
sM=5,+Qes= (1~ p+Gw)s,. (321 therefore, the correction tok, will be of the order
The CM-type approximations for the two effective shearof p|Q;,|?=p'?® [the additional factorp comes from
moduli are the expression for the weight F,oc(1/

V)| (€| M)|2/ (M| &My, The other new eigenstate will
(322  be approximately the unperturbed staé”) but with an

important correction to ifQy,/(7—s;)]|e™): Only this

correction has a nonvanishing scalar product wik’*)|,

Pou (3.23 therefore only this part will contribute to the weight, of
1-p+Gy)sy” ' F(s). This contribution will be proportional t@|Q,,/(s,
—s,)|? [see Eq(2.17)], i.e., also of the order gf*'>. Simi-
lar considerations apply when we calculate the higher-order
corrections tqu, andM,. Our general conclusion is that the
next correction to the CM-type approximations derived here
will begin at least at ordep*''.

We can find a combination of the two shear moduli, which
is independent of the numerical factdgs, ,Gy, . Using re-
lation (3.24), along with the fact thaG , G\, are at least of

3G,=—2Gy,. (3.24 the order ofO(p), we find [by Taylor expansion of Egs.
# (3.22 and (3.23 in powers ofp] that the following combi-
The exact expressions fd@, or Gy involve lattice sums nation is exact at least up to ord@(p®):
which must be calculated numerically. The final result is

:KZ

This expression fok, is identical to one of the HS bounds.
Unlike the situation fork,, the overlap integrals between

two £(?) states(for u,) or between twa:(® states(for M)

do not vanish and must be summed numerically in Eq

(3.16. If we denote these sums IsyG,, ,s,G respectively,

then

_ péu
Hem 2™ 1 - (1-p+G,)s,’

MeE:U“Z_ 1_(

The overlap integrals dD,,,Qgg, Which involve integrands
of the form of Eqs(3.6), are difficult to calculate. But since
the calculation of) 4, involves summation of these integrals
over all lattice sites, we can exploit the cubic symmetry of
the composite in order to make replacements suchZas
—y? in the integrandgsee, e.g., Appendix )z and in this
way notice that

3 N 2 M pdu
3k+ gheT gMe=HMo™ T -7 Vs,
u=——E(—0929+1142%). (329 >0 1=(1-p)s

K+2u 0
A detailed calculation of5), and an explanation of the nu- “H2T T 6(kpt2m,)(1—p)
merical factors can be found in Appendix D. 2w

In order to find higher-order corrections to these Clausius- H2— (ko +dpuz) e

Mossotti-type approximations, Eqs(3.18, (3.22, and (3.26

(3.23, one ha_s to continue the perturbative treatment_ anc1‘his expression is identical to one of the HS boundsfer
calculate matrix elemeniQg, between the corresponding in the case of a composite with an isotropic microstructure,

dipole.eigenstates and nongipo[e eigenstates. Since non I provides a similar bound for the combinationu(3
pole eigenstates decrease with distance faster thidnthése +2M)/5 in the case of a cubic microstructire
corrections will be of higher order ip. As was already € '
stated, the fact that choicé8.9) of ¢(©) are proportional to
M (3 £ respectively, together with the biorthogonality
relation(2.7), implies that by choosing, e.g:(9=&(9) the Expressions(3.18, (3.22, (3.23, and (3.26) provide
only contribution to the numerator in E(R.17) comes from  good estimates of the effective moduli under a wide range of

IV. SUMMARY AND DISCUSSION
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cubic array of rigid spheres, K1/ K,=o0, 1, /u2=o<>, M, /K2=0.46 cubic array of spheres, K1/ K2=9.9, u, /u2=22.5, u, /K2=0.33
4 . . ‘ . . 55 . . . .
5_ . 4
a5l Rigid spheres embedded in | Glass spheres.embedded in +
' a compressible matrix a5l an epoxy matrix
3r :i\l 4+ 3
< -
& = 350 .
< 25F . . e
< = 3 I *
"o +/,’
2r = a5t L
/+///
2t e i x
1.5¢ - .
/+’ x
1.5F e x
_ —
s 0.1 02 03 04 05 ke 041 02 _ 03 04 05
p, - inclusion volume fraction P, - inclusion volume fraction
FIG. 1. Normalized effective bulk modulug,/«, vs inclusion FIG. 2. Normalized effective shear moduli vs inclusion volume
volume fraction. Rigid spherggomponent 1embedded in a com- fraction for glass sphere&omponent 1 embedded in an epoxy
pressible matrixcomponent 2 - -, CM approximation; —, third- ~ mairix (component 2 ---, CM approximation foru/u,; - -, CM
order approximation of TorquattRef. 8; +, numerical data of approximation forMg/u,; X, numerical results(Ref. 1§ for
Nunan and KellefRef. 4. Mel wo; +, numerical result§Ref. 16 for Mo/ u,; —, dilute ap-
proximation.

conditions. Expressiofi3.18 for the bulk modulus is well

known in elastostatics. However, it is known as a HS boundabout 1%;(c) atp= 0.4, it is about 6%(d) at higher volume
and not as a CM-type approximation for the effective bulkfractions the deviation becomes considerable, especially
modulus. Nemat-Nasset al.® who investigated the special when the volume fraction approaches its close-packing value
case of a periodic cubic array of spherical voids, have nop.= w/6=0.52, at which the spheres begin to overlap. The
ticed that their approximation for the effective bulk modulus, third-order approximation of Torquato, which incorporates
the so-called “simplest approximation,” overshoots the up-third-order correlation functions of the microstructure, actu-
per HS bound by about 1%, possibly due to truncation errorally goes beyond the CM-type approximatiemhich can be

in the numerical calculation. They have further claimed thatonsidered as a second-order approximatamd is in good

if a particular relation[Eq. (7.7) in Ref. €] for an infinite  agreement with the numerical results of Nunan and Keller
series is to holdwe can prove this relation to be exachen  even at high volume fractions. The comparison with two
their approximation is identical to the upper HS bound. Indifferent extreme cases, namely spherical voids and rigid
view of our results, it seems that the simplest approximationspheres, supports our belief that .18 is exact up to
which involves replacing a nonuniform strain fiedr) in- higher orders irp than those stated above and can provide a
side the inclusion by its average value, is the analog of thgood approximation for the bulk modulus over a wide range
CM-type approximation. By comparing it with a complete of parameters. Equatiai3.26), though less known, was also
numerical solution, Nemat-Nasser al> concluded that this derived in the past as a bound for this particular combination
approximation yields adequate results up to inclusion volumef the two shear moduli of a cubic array of sphetes.
fractions of about 30%. Nunan and Kelfewho investigated Equations(3.22 and (3.23 for the two shear moduli

the opposite extreme case of a periodic cubic array of rigicandM were not obtained previously, as far as we know, and
spheres, formulated a procedure to compute the elastiglso provide good estimates of the effective properties under
moduli for this case numerically. By comparing their accu-a wide range of conditions. In Figs. 2 and 3, we compare
rate numerical results for the elastic moduli with the simplesthese CM-type approximations far and M with exact nu-
approximation of Nemat-Nasset al, they found that for merical calculations we have perforntédor two cases(a)

low and moderate concentrations, the simplest approximathe inclusions are stiffer than the host medidiime matriy

tion agrees well with their exact results. In Fig. 1, we com-by at least one order of magnitudég) the inclusions are
pare expressioii3.18 for the effective bulk modulus with softer than the matrix by similar factors. We also compare
the results obtained by Nunan and Keller for a simple cubiche CM approximation with the low-order dilute approxima-
array of rigid spherefsee Table V in Ref. 4: In terms of the tion, Eq. (3.11) (note that within this approximation,
notations used by Nunan and Kellek./k,=1+(y =M,). As can be seen, the CM approximation is in excellent
+2al3)u,l k5], and with the third-order approximation of agreement with the numerical results up to volume fraction,
Torquatd Eq. (4.15 in Ref. 8, where we used the tabulations p~0.2. Even at higher and moderate volume fractions, it
of the three-point parametép obtained by McPhedran and still provides good approximations: In ca¢a, where the
Milton®]. This comparison shows théd) the results are in- contrast(i.e., the ratio between the elastic moduli of the ma-
distinguishable up t@=0.2; (b) at p=0.3, the deviation is trix and that of the inclusionds greater than 1, this approxi-
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cubic array of spheres, K1/ K2=0.2, u, /u2=0.1, n, /K2=2 cubic array of rigid spheres, K’1/ K=o, W, /u2=oo, u, /K2=0.46
1 . . . T 7 T T T T
+
0.91 S Soft spheres embedded - .
- Soft sphe Rigid spheres embedded in
S in a matrix s : ;
0.8F E ., . a compressible matrix.
NS
X F
0.7t el Ty
N B ~
£ N
» 0.8 - = ,
1 X RN ~ . 10') e 4
. 05f e TS 4t e
N . e~ - .
= x S~ N + 7
~p 045 x + Ny e
= : () . x
x = L e
0.3} 3 e
0.2 Jx x
ol e
0.1F T x
- —H’ X
0 ‘ . . . . PR S
0 0.1 0.2 0.3 0.4 05 1= ‘ ' ' ' '
i ; ; 0 0.1 .02 . 0.3 . 04 0.5
P, — inclusion volume fraction p, —inclusion volume fraction

FIG. 3. Normalized effective shear moduli vs inclusion volume
fraction. Inclusiongcomponent 1 are softer than the matriécom-
ponent 2: ---, CM approximation foru./u,; - -, CM approxima-
tion for Mg/u,; X, numerical resultgRef. 16 for wo/us; +,
numerical result§Ref. 16 for Mg/ u,; —, dilute approximation.

FIG. 4. Normalized effective shear moduli vs inclusion volume
fraction. Rigid sphereécomponent 1embedded in a compressible
matrix (component 2 ---, CM approximation forue/u,; - -, CM
approximation fotM/u,; X, numerical data of Nunan and Keller
(Ref. 4 for we/u,; +, numerical data of Nunan and KellgRef. 4

mation is only about 2% off the exact result@t 0.3, but for Me/ -

the deviation becomes considerable at high volume
fractions—it is about 10% off the exact result pt=0.4, e.g., the vanishing of overlap integrals between any two
beyond which Eqs(3.22 and (3.23 cease to be good ap- compression dipoles in our 3D caséb) many sums of in-
proximations. In caséb), where the contrast is less than 1, teractions vanish because of the lattice symmetry. Therefore,
the CM-type approximation is only about 3% off the exactwe expect our CM-type approximations to be exact up to
result atp=0.4. This is very good, especially if we remem- higher orders inp than those stated above, and to provide
ber that the spheres begin to overlapgt=0.52. In Fig. 4, good estimations of the elastic moduli even for cases where
we compare expression8.22 and (3.23 with those of either the inclusion volume fraction is high, provided that the
Table V of Ref. 4 for the extreme case of rigid sphei@s. contrast is not too different from ¢e.g., 0.2, 5, or the con-
terms of the notations used by Nunan and Kelleg/u,  trastis much greater than(g.g., rigid sphergsor much less
=1+, M /u,=1+a.) The results are indistinguishable than 1(e.g., spherical voidsbut the volume fraction is low
up to volume fractionp=0.2. At p=0.3 the deviation is or moderate. These expectations are supported by previous
about 3% and ap=0.4 it becomes considerabi@bout work and by our numerical calculatiofis®®**When this is
10%). As the volume fractiorp of the spherical inclusions not the case, one must invoke the more accurate methods
increases and the distance between the spheres decreasesgitesl above. For very extreme cases, such as rigid spheres
interaction between the distortion fields of different inclu- which almost touch each other, yet other approaches must be
sions becomes stronger and it no longer suffices to considersed, such as asymptotic analysis.
only the dipole-dipole interaction, as is done in the CM-type  For nonperiodice.g., randomsystems of nonoverlapping
approximation. In order to describe this strong interactionspheres, the original secular equati¢hl? must be used
more accurately, one has to consider also the nondipoléstead of its simplified forng2.15. Even for such cases we
eigenstates, i.e., the higher multipole distortion fields. can claim, without performing any further calculations, that
Corrections to the above CM-type expressions begin athe CM approximation3.18 for «. is exact at least up to
order that is not less thap™’3 in analogy with the 2D  O(p?). This results from the vanishing of the overlap inte-
problem of a square lattice of cylindrical inclusiohgshere  grals between any two compression dipolese Appendix
it was found that the corrections to the CM approximationB), which is a consequence only of the inclusion shape.
begin with orderp® for the bulk modulus, and with ordgr* ~ Therefore, the subspace of the secular equafdi®), which
for the shear moduli. We note that in the analogous 3D elecincludes only the compression dipole interactions, will be
trostatic problertf"*?of a cubic array of spheres, the correc- diagonal. The interactio®,, between any compression di-
tion to the CM expression actually begins at orgeéf® ~ pole and a shear dipole is of the order G{(R%/ad)
since the correction of the order pf*® vanishes due to the =O(p), and we can use perturbation treatment, which will
cubic lattice symmetry. From the 2D problem, we know thatgive corrections of the ordex Q,,|?= p®. The solution will,
many of the matrix elemen®,,; of higher orders irp van-  therefore, differ from Eq(3.18 only in that order. This con-
ish becauseg@ overlap integrals between some types ofclusion is also supported by the perturbation expansion for
states vanistidue to the spherical symmetry of the grains, the effective elastic moduli developed by Torquatdzor the
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special case of isotropic dispersions, third-order relations for ¢ (N=¢ (,-O)

the effective elastic moduli were obtained by %Jsmg three-

point correlation functions of the microgeometryt was , , ' ~(2) ,

shown there that the series expansion can be regarded as +§ AV’ 61(r") Gijia (1,13 C) 6Ckamne mn( 1),

expressing the effects of a perturbation around the optimal

structures which realize the HS bounds. Thus, the second- (AS)

order approximation is actually E¢3.18). Expression3.18  \yhere

was also derived in the past for the case of isotropic distri-

butions of spheres as a mean—field approximation whiqh may Gijui = (3i9] Qi+ 313k Qj1 + 3,9 G+ 90k Gir)-  (AB)

be corrected on the basis of cluster expansiérsyt it is

difficult to calculate the next correction by this approach.Equation(A5) can be written in symbolic form

Therefore, an estimation of the next correction in powers of

p, which involves the solution of a two-sphere problem, was _ (0 1.

not obtained there. e=gl+ gFS- (A7)

thus defining the linear integral operatfir Clearly,f de-

pends on the microstructufghroughé,(r)] and onC?, but
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R The strain eigenstates of the single grain problem are so-
APPENDIX A: THE OPERATOR T’ lutions of the equilibrium equations of elastostati{as the
absence of body forcgsdjo;;=0, whereo is the stress ten-
sor, related to the strain tensor by the linear local relation
aij(r)=Cij(r)ek(r). In terms of the displacement and
for uniform isotropic components, these equations become

The local displacement field,(r) in a composite material
whose elastic stiffness tensor is described by (&) must,
in principle, be found by solving the differential equations of
equilibrium elasticity

wV2u+(N+w)V(V-u)=0, (B1)

1
Ci(,-zk)|<9jr?ku|=§5Ci,—k|é’j[01(r)r9ku|], (Al)  where\, u are the Lamecoefficients, related to the bulk
modulus by the relatioriin three dimensionsk=\+2u/3.
We solve these equations inside each component of the com-

osite materiali.e., a spherical isotropic inclusio@ (1)(3)
mbedded in an isotropic hogf?)] separately, then we im-
pose continuity of both the displacement and the traction at
the surface of the sphere. Since the eigenstates represent a
situation where the sample is internally deformed and
CdiaQim(r.r';,C@)==8,8% —r"),  (A2) strained but the external boundaries are undeformed, the
strain must decrease to zero foj—« and should also be
@) nonsingular everywher_e else. This_requirement re_strict_s the
Gim(r,r’;C¥)=0, r ontheboundary, (A3)  nymber of allowed strain states which can appear in a linear
combination for|e@®). From the continuity conditions, we
we obtain foru, get a set of homogeneous equations for the coefficients of the
linear combination. Setting the determinant equal to zero
leads to special allowed values which the effective elastic

uy(r)=u{®— —f dV' gim(r,r';C3) 8Cimind{ [ 62(r")du)]  tensorC'(can take inside the sphere, and therefore deter-
mines the eigenvalues, by Eq. (2.1.
©) 1 ) L n2) L The special case of dipole eigenstates corresponds to a
=u +gf dV'61(r")d;gim(r,r";C*) 6CjmndiUn , strain field e;;(r) which is uniform inside the inclusiota
spher¢ and decreases the most slowly with distance outside
(A4)  the inclusion. Wechosethese dipole resonances to be certain
uniform strains inside the sphefsee Eqs(3.1) and (3.3)]
where we used integration by parts and the boundary condand then followed the procedure described above in order to
tions (A3). Taking derivatives of Eq(A4) and using the find their shape outside the sphere, along with their eigenval-
symmetries of the elastic stiffness tensor, together with theies. Since the microstructure is spherically symmetric, it is
symmetry of the Green tensg,(r,r’')=gm(r',r), which  best to express the equilibrium equations in spherical coor-
follows from reciprocity, we finally obtain an integral equa- dinates (, 6, ¢), wheree,, e,, e, will denote the appropri-
tion for the local strain tensas;;(r) = (9, uj+d;u;): ate unit vectors.

together with the boundary conditions=u{®=¢{x; .

can treat the right-hand side as a source term Usmg th
tensor Green function,,(r,r’;C®) for the problem d is
the dimensionality
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Only in rare instances can an interesting problem in 3D  APPENDIX C: EVALUATION OF DIPOLE-DIPOLE
elasticity be solved by elementary means. One such case is INTERACTIONS Q,p
the deformation of a spherical shell by uniform internal and
external pressuresee, e.g., Refs. 18 and )1%inding the

The main difficulty after finding the dipole eigenstates is
to calculate the matrix elemen@,; («,5=1, ... ,8 of the

, X , h8igenvalue probleni2.15. These elements are given by Eq.
displacement vector which corresponds to it has only ones3 1g (Qg :Q*B):

component in the direction which is spherically symmetric.

Imposing on this solution the additional requirements that an <E(bﬁ)0 |1:| 0,52

eigenstate must fulfill and the continuity conditions, as speciQBaz lim E - b a

fied above, we arrive at expressiof®&1) and (3.2) for the L= e BrogelL [e®P) ||le@9)

compression eigenstate and eigenvalue. @
The other five dipole eigenstates correspond to pure shear

distortions inside the sphere. Since these states lack spherical

- psaéaﬁ

Saf 0,ePP* 5Ce@IdV

symmetry, they are very hard to find. The simplest shear ~— lim ; B @) ~PSabap-
eigenstate to be found should b@, since it corresponds to L_m0<\rb—fa\<L ¢ ¢

a displacement field inside the sphere which has azimuthal (C1)
symmetry

In order to evaluate the overlap integrals, we locate the ori-
gin of our coordinate axes at the center of the spbhevehile
u®(r)=r[ —2P,(cosd)e + P 0)e,], (82)  the location of the center of the spherevill be denoted by

r,. With this choice, the overlap integrals in EqC1) are
given by

whereP,(cosé) is the Legendre polynomial arl™ () is

the assopiated Legendre function. In order to finq the solu- <;(bﬁ)0b|8(aa)>=f dvab(r)E(B)*(r)s(“)(r—ra).

tion outside the sphere, we used the set of solutions of the

elastostatic equilibrium equations found in Ref. 20. Outside (C2)

: 2 2 2 . . . . .. .
the sphere these solutions afd; Ny, .E ., where  Note that summation over tensorial indices is implied on the

M?Z..N2,, are two sets of transverse solutions &fg, is the  right-hand side, and that an expression iR is to be
set of longitudinal solutions(In the notation of Ref. 20, |5ed forg(ﬁ)*(r), while an expression for —r,|>R is to

u®=—Ng, inside the spherg.The solution outside the be used for(*(r—r,). The fact that the dipole states have
sphere should have the same azimuthal symmetry and if yniform value of(? for r <R along with the fact that for
order to satisfy continuity conditions everywhere on the SUrihese states®«&® for r<R simplify the integrand of Eq.
face of the sphere it must also have the same dependence &512) Thus, using the fact that=0 for |r—r,|>R [see

b ' 1 a

0. The only solutions which fulfill these requirements areEq. (3.1, we immediately obtain that the interaction be-

2 2 ; 6)
F‘OZ’EOZ’ thl;e_reftc_)re Olfjt;']de the lsp:_hecé (rl) Sgoﬁld _be "’;h tween any two compression dipole eigenstates of different
inear combination of these solutions only. Following the; /ooy oo

procedure described above to find the eigenvaireposing

continuity of both the displacement fieldi,(,u,) and the

tractions ¢, ,0,,)], we obtain Eqs(3.4—(3.6). Note that <E(b1)0b|s(al)>ocf dVeo,eV(r—r)=0,  (C3

the strain eigenstate is written in E@®.6) in Cartesian coor-

dinates, not in spherical coordinates, in order to exploit theyng thereforeQ,;= —ps,.

cubic symmetry of the composite in a more obvious fashion  The same procedure can be applied in order to calculate

when calculating lattice sums for the matrix elemeQts;  the interactions between the compression dipole and any of

(see Appendix € _ _ the shear dipoles'?, . .. £(®). In these cases, however, the
The form of the other four shear dipole eigenstates outyyerap integrals do not vanish, but due to the cubic symme-

side the sphere can be obtained frafjt’ by appropriate try of the lattice, it can be shown without explicit calculation

symmetry rotations. Since theAeIastostatic equilibrium equathatQ, =0 for a#1. For instance, the overlap integral with

tions and the integral operatdi are invariant under such the ¢®) state is

rotations, any state obtained froa§” by performing such

rotations will still be an eigenstate with the same eigenvalue, ,~ s al 1 1

and the same is true fogr any linear combinationg of such Caiat )>°<f AVBy(NLef(r —ra) = o5 (T —1a)].

states. Therefore, we just have to find appropriate rotations (C4

(and linear combinations of such rotatigpnshich transform By Eq. (3.1)

si(f) inside the sphere into one of the other shear eigenstateg q- (.

of Egs.(3.3) and apply the same transformations to #§@ .

outside the sphere; in this way we obtain the forms of all the D) —eD(r)« = (x2—y?). (C5)

shear eigenstates outside the sphere. rd
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Since this expression is to be expanded around 1 ()
=(ax,ay,a,), therefore the roles of?,y? are not equivalent Cu=—5yC > f dVegz(r—ry). (D5)
in the integrand of Eq(C4). But since, eventually, we have R 0<|rbfral<L VR

to sum these integrals over all lattice sitethat lie inside a

sphere of radiud , then, as far a®Qg, is concerned, the

roles ofx2,y? are equivalentwe choose the Cartesian axes When substituting expressia8.69 for $3(r), we can ex-

to be the cubic symmetry axes of the latlicand they can ploit the cubic symmetry in order to make replacements such
replace each other in a lattice with cubic symmetry. Thereasx>—y?. At first sight, one may think that, since this ex-
fore, we can make replacements suchxs:y? in the inte-  pression is to be expanded aroung- (a, ,ay ,a,), therefore

grand of Eq.(C2), and especially we obtaiQ5=0. the roles ofx?,y? are not equivalent in the integrand of Eq.
This procedure can be applied in order to calculate anyD5). But since, eventually, we have to sum these integrals
elementQg, (a,8=1,...,6). Inthis way, we find thaQ,z,  over all lattice sitesa that lie inside a sphere of radius
is a diagonal matrix. This is clearly a result of the cubic then, as far ass, is concerned, the roles of,y?z* are
lattice symmetry. equivalent(we choose the Cartesian axes to be the cubic
symmetry axes of the lattigeand they can replace each
APPENDIX D: CALCULATION OF Gy, other in a lattice with cubic symmetry. Therefore, we can

make replacements such ®%—y? in the integrand of Eq.
By its definition, Eq.(3.21), Gy, is given by the following  (D5), and in particular, we can replazé/r? by 1/3.
expression: After making such replacements and collecting terms, we
arrive at the following expression f@s, :

J dV,eP®* 5Ce(36)

. (DY)
19| [£@0) GM:_L > f dVvi(r—r,) (D6)
2Ve o

a VR
0<|rp—rgl<L

Gy=Ilim >
L—o a
0<|rp,—rg/<L

In order to evaluate the overlap integrals, we locate the ori-

gin of our coordinate axes at the center of the spbherehile

the location of the center of the sphexavill be denoted by  \where
r,. With this choice, the overlap integrals in E@1) are

given by
A ,1-5cod6 1-5coé6
(b6)x (a6)_ (6)% (6) fn=-5 —-7R®
dVé,e OCe'®)= [ dVe'™*(r)6Ce'™(r—r,), 2 3\+8u r3 r5
VR
(D2) _ 1_8 N+ u 3 9P2(c0s0) +2P,(cosb)
where the integration is performed inside a sphere of radius 7 3\+8u r3
R and volumeVy located at the origin. Note that summation
over tensorial indices is implied in the integrand, and that 55p2(cosg)+2p4(cosg)
expression(3.39 (for |r|<R) is to be used foe®)(r), while —7R 5 : (D7)

expression(3.6) (for [r—r,|>R) is to be used fors®)(r
—r,). Thus we find

1 Note that\,u refer to the elastic moduli of component 2,

Gu==r > dV[e®(r—r)+eQr—r,) Pn(cosd) is a Legendre polynomial. Using the same argu-
6Vg a VR ment as before, because of the cubic lattice symmetry of our
0<Irp=ral<L composite material, the contribution of the tePg(cos6)
—2e(r—r,)]. (D3)  =(3Z/r*~1)/2 to Gy will be canceled, therefore we need

only consider the function
In order to simplify things, we will use the fact that due to
the cubic symmetr@),5=0 (see Appendix § therefore also
Qe1=Q76=0. Using the explicit form ot for |r|<R, Eq. . 36 Ntpu 5 Pa(coso) RS P,(cos6)
(3.2), this implies that (r= 7 3nt8p 3 5 :

(D8)
o= X J dV[efQ(r—ra)+eH(r—ry)
R
O<Irp=ral<t In order to continue further, we need to expdifd) around
+e@(r—ry]l. (D4)  thelattice point, which will be denoted by the lattice vector
r.=(a,0,,¢,). For this purpose, we use expansion for so-
Using this result in Eq(D3) we obtain a simplified expres- lutions of Laplace’s equation found in Refs. 10 and 12 in

sion forGy, : spherical harmonics centered around the origin,
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Y,

=> (—1)"+m’[4w(2l'+2n+1)(2|'+1)(2n+1)]1’2( I/,+n I,, n)
n,m m-m —m m

|r_ra||/+1
(m’'—m)
(2l"+2n—1)! Yiren ()
; rnYﬁm)(Qr)W. (D9)
(2n+Dlr21' =) a
where the explicit expression for the-3 symbol forM=m;+m,, J=j,+], is
J i i | | 1(T— M 1/2
Ii )2 (= 1)l (21)1(21)! (J+M)I(J-M)! (D10
-M m; my 23+ (Iy+m)Hy—mp)(lo+my) ! (1,—my)!
|
We can5 now use EqD9) in order to expand the term 3 \23p,(cosb,)
P,(cosé)/r°> of Eq. (D8) aroundr,. As for the other term +2| - 5 53 (D11)
P,(cosh)/r®, we write it as[P,(cosé)/r°Jr? and expand? ™ (a/ag)

around r,, |r—r,|?=r?—2arcosy+a?, where y is the
angle betweem andr,, then use the addition theorem for
spherical harmonics in order to express ged?,(cosy) in

wherep= (477/3)R3/a3 is the volume fraction of the spheri-
cal inclusions. The lattice sums must be performed numeri-
terms of spherical harmonics of the 3D anglas,q, :  cally. Note that the sum o 4(cos#,)/(alag)® is only semi-

_ 1 (m) (m)* a convergent: It depends crucially on the particular type of
Pa(cosy)=(4m/3) 2. Y17 (R Y177 (). After per- qymmation, in our case all the cubic lattice points inside a
forming the above expansions, we use the orthogonality o§phere of radiusL. In contrast with that, the sum of

spherical harmonics in order to perform the integration ofp,(cosé,)/(a/ay)® is absolutely convergent. The numerical
f(r—ry,) inside a sphere of radiu® located at the origin to  results for a simple cubic lattice are
obtain

P4(cosé
Gy = - zi S 3 Ap lim ; ﬁ=2.724, (D12)
Ve 0<rpral <L 3+ Bu o<l -ral<L °
5 [R\? R\®
X 7VR(5) P4(c056a)—2VR(5) P4(cosea)) im S P4(cosd,) 3108 (D13)
Low @ (a/ag)®
0<|rp—rq/<L
27 N+ 5 P,(coséb,)
- ; 2m\3n+8u/l 7 (alag)® P Inserting these numerical values into EQ11) and using the
0<|rp—ral<L relation k=\+2u/3, we obtain Eq(3.25.
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