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Spin-3 random quantum antiferromagnetic chains
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We use a modified perturbative renormalization group approach to study the random quantum antiferromag-
netic spin% chain. We find that in the case of rectangular distributions there is a quantum Griffiths phase, and
we obtain the dynamical critical exponestas a function of disorder. Only in the case of extreme disorder,
characterized by a power-law distribution of exchange couplings, we find evidence that a random singlet phase
could be reached. We discuss the differences between our results and those obtained by other approaches.
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The study of random antiferromagnetic chains is an im- Our generalization of the MDH method consists of either
portant and actual area in magnetism. Since, by now, mangf the following procedures shown in Fig. 1. If the largest
of the physical properties of pure chains are understood, it iseighboring interaction t6), J;<(2/5)(2, then we eliminate
natural to include disorder in these systems and look for théhe strongest-coupled pair, obtaining an effective interaction
modifications it introduces. In the case of sgincandom between the neighbors to this pair which is given by Eq. 1
exchange Heisenberg antiferromagnetic chaREHAC) a  [see Fig. 1a)]. This new effective interaction is always
perturbative approach introduced by Ma, Dasgupta, and Hemaller than those eliminatéd® Now supposel;>J, and
(MDH) was very successflin investigating these systems. J;>(2/5)). In this case, we consider theo of spinsS
This approach turned out to be asymptotically exact and this= 2 coupled by the two strongest interactions of the tfip,
allowed Fishet to fully characterize the properties of the and(), and solve it exactlysee Fig. {b)]. The ground state
new disordered phase, for which, the namaadom singlet  of this trio of spinsS=3 is a degenerate quadruplet. It will
phasewas coined. Unfortunately when generalized to higheme substituted by an effective sp# interacting with its
spins this method, in its simplest version at least, revealed taeighbors throughew renormalizednteractions obtained by
be ineffective. The reason is that in the elimination procedure degenerate perturbation theory acting on the ground state
of the strongest bond), the new interaction between the of the trio. This procedure which implies diagonalizing the
spins, coupled by exchangel and J, to the strongest 64x 64 matrix of the trio is carried outnalytically. This is
coupled pair, is given by’ =(2/3)S(S+1)J;J,/Q.3 For S important for obtaining results on large chains and to deal
=1, the factor (2/3p(S+1)>1 and the problem becomes with the large numbers of initial configurations that we use.
essentially nonperturbative for arbitrary distributions of ex-These procedures guarantee that we always comply with the
change interactions. Several approaches have been introriterion of validity of the perturbation theory as shown in
duced to circumvent this difficulty;*® which however do  Fig. 2. We have considered initial rectangular distributions,
not always lead to the same unambiguous results. In thi®,(J)=[1/(Q—G)]O®(Q—-J)O(J—G) of interactions and
Rapid Communication, we apply a previous method used teven for the weak disorder case, with a gams large as
treat the random spin-1 chaitfor the spin3 REHAC. This  G=0.5 in the distribution @ =1), the method works very
particular chain has been the subject of recent sttdt¢§  well and never an interaction larger than those eliminated is
and it would be better to confirm the results obtained in thesgeneratedsee Fig. 2
works using another approach. The phase diagram for rectangular original distributions

As mentioned previously, the method of Ma, Dasguptacan now be obtained. For a strong disorder, which corre-
and Hu consists of finding the strongest interactfdrbe-  sponds toG=0, we find a Griffiths phase with a dynamic
tween pairs of spins in the chajsee Fig. 1a)] and treating

the coupling of this pair with their neighbord,(andJ,) as S 8 8 8 5 So $4 S4
a perturbation. For a chain of spiSs= 3/2, after elimination 2) o—e—o—es—o — ——o o
of the strongest coupled pair, the new coupling between thei Jo i@ Iz Jo J

neighbors is given by

Consider the casé,=J,. If J;>(2/5)Q, then the new
effective interactiond’ is necessarily larger than one of those  FIG. 1. The two elimination procedures as described in the text
eliminated, in this casel,. (3,>3,).
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‘ ' between these remaining spins yields the first dafor ex-
+ Original MDH citation. The dynamic exponeidtrelates the scales of length
— Modified MDH and energy through oL =2
In Fig. 3, we show the first-gap distributions for different
degrees of disorder as characterized by different gaps
the initial distribution of interactions. For all cases, including
that of strong disorderG=0), we find that the first-gap
distributions saturate at low energies with thenamic expo-
nent Zindependent of for L sufficiently large. We have to
consider large chains in order to observe this effect. We find
Z,~0.43 andZ,~1.12 for G=0.2 andG=0.12, respec-
, , ‘ , tively. From these values of the dynamic exponent we can
0 0.2 0.4 0.6 0.8 1 deduce the existence of a Griffiths phase extending up to
(N,-N,)/N G.~0.11 where the dynamic exponent reaches the value
=1. Since, for example, the susceptibilige< T4, a sin-
FIG. 2. The evolution of the cutoff, for an initial rectangular gular low-temperature behavior impligs>1. At G, there is
dlstrlbutlon withG=0.5, along the renormalization process of the jn fact a significant change in the nature of the thermody-
spin3 REHAC. We show the results for the original MDH and the namic behavior of the Syste}ﬁThe phase foG>G, is one
present(modified renormalization-group procedures. with quasilong range order, i.e., with spin correlatlons decay-
ing algebraically with distance, similar to the zero-
exponentZ~12.7 as shown in Fig. 3. This phase is charac-temperature phase of the pure ch#in.
terized byfirst-gap distribution$® that saturate at low ener- In order to check the existence of a random singlet phase
gies in the formP(—logyA)~AY? for A—0. This is ob- in the spin3 chain we consider another class of distributions
tained starting from a given configuration of random of exchange couplings associated wéktremedisordert’~2
interactions for a chain of sizeand eliminating the spins, as These distributions are of the form(J)«<J 1" For §
described above, until a single pair remains. The interactior=1 this reduces to the gapless case of rectangular distribu-
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FIG. 3. Probability distributions of first gap for initial rectangular distributions of couplings with @aped different systems sizés
For clarity, not all values ot are shown. The solid lines represent best fits to the formyl&g—log;A)]=A_—(1/Z,)log,A. (a) G
:0, 23000: 1051, Z7OOO: 1268, and28000= 12.70. (b) G:012, 23000: 087, 27000: 111, and28000: 1.12. (C) G:OZ, 23000:0.35,
Z7000: 043, and28000: 043
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FIG. 4. (a) The exponentr describing the asymptotic low-energy behavior of the renormalized exchange distribution as a function of the
scale dependent cutoffb) Fraction of active spins as a function of the cutoff. For comparison, we show the results for the spin-1 and spin-
% REHAC's. In both cases, the starting distribution is extremely disordered &w#tB0 (see text

tions considered previously, and fér>1 we have the ex-

chains, even for weak disord&t* This is associated with

treme disordered cases. We now report our results for thepin4 degrees of freedom. These results are quite distinct

random spiny chain obtained with the modified
renormalization-group proceddfefor the case of an ex-
tremely disordered distribution with=20. In a random sin-

from those obtained above where a random singlet phase is
hardly evident even for extremely disordered original distri-
butions.

glet phase, the fixed-point distribution of interactions, which  The decomposition of a chain of spiSsn smaller spins

is attained when the cutofl) is sufficiently reduced, takes
the form

o Q 1-a
P(J)=5(j> : 2

The exponent is a function of the cutoff) and varies as

a=—1/InQ. Also for a random singlet phase, the fraction of

relies on projecting out the highest-energy level of a pair of
spins S. However, the remaining excited states are kept in
this procedure to maintain the correct number of states. For
example, in the case of a pair of spins-1 with a total of nine
states, the singlet ground state and the first excited triplet are
kept to yield the four states of the relevant antiferromagneti-
cally coupled spirg pair®

The MDH elimination procedure can be generalized for

remaining active sping as a function of the energy scale set finite temperatures and arbitrary spi@islt is given by

by the cutoffQ? is given by

1

—_, 3
lIn QY ®

_1_
p=T=

The exponent) establishes the connection between the charws(y)

acteristic lengtiL and the energy scal@. This is an exten-
sion of the usual definition of a dynamic exporfér(t) ~*
«rcL?) for the case of logarithmic scaling. In Fig(ad we
show the exponents obtained from the asymptotic form of
the exchange distributions after the cuttffhas been suffi-

ciently reduced. For comparison we show the results for a

spin-1 REHAC with the same original extremely disordered

distribution for which a random singlet phase is clearly es-

o2 313,
3= 5S(S+1)—~ Ws(BQ), @
where
i=2S 1
(28+1)%= X (2i+1)e VA 14 Jii+1)
i=0
= =25
43(S+1) D, (2i+1)e M2+ 1y
=0
&)

tablished. We have considered here chains of size as large higte that for sufficiently high temperatures, the factor

L=4.5x10°. In Fig. 4b) we show the densitp=1/L of

active spins as a function of the cutd@¥. From this expres-
sion we extract the exponerft[see Eq(3)] which takes the
value ¢y=1/(2.4) close to the valug=1/2 expected for a
random singlet phaseAs shown in this figure, for compari-

£5(S+1)W¢(BQ)<1 and the MDH elimination procedure
works in this case. A random singlet phase is reached in the
sense that the asymptotic distribution of exchange attains the
form given by Eq.(2) at these temperatures. However]as
reduced the problem becomes essentially nonperturbative for

son, the spin-1 chain has clearly converged to this phasspinsS=1, as the equation above generates coupling larger
within the same scale of the cutoffs. Our results suggest thahan those eliminated. In particular at=0, the excited

in this case of extreme disorder, the SgIIREHAC eventu-

states which reduce the factdls from its valueWg(T=0)

ally reaches a random singlet phase, although the conver=1 are now frozen. In faatoneof the excited states play a

gence is very slow.
Recently, another approach to the spirchains has pre-

role in the problem at zero temperature. Note that in our
generalized renormalization scheme, degenerate perturbation

dicted the existence of a random singlet phase in thestheory is applied to theground stateof the spin trio. We
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0.3 the origin of the original distributio®(J).* This weak loga-
rithmic singularity is similar to that expected for quantum
02 T chains at the border of the Griffiths phage<{1) as if in this
~ o2 case,G.=0.
3 We have studied a spi-REHAC using an extension of
% 015 . the renormalization-group procedure introduced by Ma, Das-
144 Breakdown of . . .
- . . gupta, and Hd. This method which considers larger clusters
') 0.1 Perturbation Theory . L. . i . 3
v L of spins eliminates the difficulties associated with the pertur-
bative nature of the MDH procedure for the cases of spins
0.05 | - )
S=1. The new procedure works very well for the sgin-
olbe . chain and the bonds larger than those eliminated are never
01234567280910M generated for the distributions used here. For rectangular dis-

S tributions, we found that the spi-REHAC presents a Grif-
fiths phase up to a critical value of disorder. We have also
FIG. 5. Temperaturél* below which the MDH perturbation considered the case of extreme disorder, where the starting
theory breaks down for different values of the s@inThe energy  exchange distributions are singular for small values of the
kgT* is in units of the cut-off() of the original exchange distribu- coupling. For values of the disorder parameter as largé as
tion. =20, our results only suggest that a random singlet phase

) o . ) will be asymptotically reached as the cutoff of the distribu-
believe this is the main reason for the discrepancy betweefi,n 0,0, We have compared our results with those of

our results and those obtained by the authors of Refs .9 angf,siher approach which predicts a random singlet phase, as-
14. Consideration of excited states in the problem favors th%ociated with spirk degrees of freedom, even for weak dis-
appearance of an infinite disorder random singlet phase, asdfqer. we attribute the difference between these results and
occurs at f_|n|_te temperatures. ) those we have obtained to the fact that the former approach
_In the limit S~ and T—0, replacing the sum by an (465 into account excited states which mimic the effects of
integral and with a proper renormalization of the Hamil- tomperature and favor the appearance of a random singlet

tonian, Eqs(4) and (5) yield J'=J;J,/4kgT, in agreement hase Our results however are consistent with those of Igloi
with the result of Ref. 1 for classical spins. In Fig. 5 we showgt 5111 that find a random singlet phase in sgirehains for

the temperatur@™* below which the simple perturbative ap- ine case of extremely disordered distributions.
proach breaks down for a given value of the spin of the

random chain. We would like to thank Conselho Nacional de Desen-
Note that for rectangular distributions, the Griffiths phasevolvimento Cientiico e Tecnolgico-CNPg-Brasil (Grant

of the spin-1 REHAC extends up ®.=0.45 and for spin- No. PRONEX98/MCT-CNPg-0364.00/p0 Fundaca de

2 up toG,=0.11. For random classical spin chains, the susAmparo a Pesquisa do Estado do Rio de Janeiro-FAPERJ for

ceptibility y=P(0)|InT|, whereP(0) is the finite weight at partial financial support.
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