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Spin-3
2 random quantum antiferromagnetic chains
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We use a modified perturbative renormalization group approach to study the random quantum antiferromag-
netic spin-32 chain. We find that in the case of rectangular distributions there is a quantum Griffiths phase, and
we obtain the dynamical critical exponentZ as a function of disorder. Only in the case of extreme disorder,
characterized by a power-law distribution of exchange couplings, we find evidence that a random singlet phase
could be reached. We discuss the differences between our results and those obtained by other approaches.
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The study of random antiferromagnetic chains is an
portant and actual area in magnetism. Since, by now, m
of the physical properties of pure chains are understood,
natural to include disorder in these systems and look for
modifications it introduces. In the case of spin-1

2 random
exchange Heisenberg antiferromagnetic chains~REHAC! a
perturbative approach introduced by Ma, Dasgupta, and
~MDH! was very successful1 in investigating these system
This approach turned out to be asymptotically exact and
allowed Fisher2 to fully characterize the properties of th
new disordered phase, for which, the namerandom singlet
phasewas coined. Unfortunately when generalized to high
spins this method, in its simplest version at least, reveale
be ineffective. The reason is that in the elimination proced
of the strongest bondV, the new interaction between th
spins, coupled by exchangesJ1 and J2 to the strongest
coupled pair, is given byJ85(2/3)S(S11)J1J2 /V.3 For S
>1, the factor (2/3)S(S11).1 and the problem become
essentially nonperturbative for arbitrary distributions of e
change interactions. Several approaches have been i
duced to circumvent this difficulty,4–13 which however do
not always lead to the same unambiguous results. In
Rapid Communication, we apply a previous method used
treat the random spin-1 chain13 for the spin-32 REHAC. This
particular chain has been the subject of recent studies9,11,14

and it would be better to confirm the results obtained in th
works using another approach.

As mentioned previously, the method of Ma, Dasgup
and Hu consists of finding the strongest interactionV be-
tween pairs of spins in the chain@see Fig. 1~a!# and treating
the coupling of this pair with their neighbors (J1 andJ2) as
a perturbation. For a chain of spinsS53/2, after elimination
of the strongest coupled pair, the new coupling between t
neighbors is given by

J85
5

2

J1J2

V
. ~1!

Consider the caseJ1>J2. If J1.(2/5)V, then the new
effective interactionJ8 is necessarily larger than one of tho
eliminated, in this case,J2.
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Our generalization of the MDH method consists of eith
of the following procedures shown in Fig. 1. If the large
neighboring interaction toV, J1,(2/5)V, then we eliminate
the strongest-coupled pair, obtaining an effective interact
between the neighbors to this pair which is given by Eq
@see Fig. 1~a!#. This new effective interaction is alway
smaller than those eliminated.15,16 Now supposeJ1.J2 and
J1.(2/5)V. In this case, we consider thetrio of spins S
5 3

2 coupled by the two strongest interactions of the trio,J1
andV, and solve it exactly@see Fig. 1~b!#. The ground state
of this trio of spinsS5 3

2 is a degenerate quadruplet. It wi
be substituted by an effective spin32 interacting with its
neighbors throughnew renormalizedinteractions obtained by
a degenerate perturbation theory acting on the ground s
of the trio. This procedure which implies diagonalizing th
64364 matrix of the trio is carried outanalytically. This is
important for obtaining results on large chains and to d
with the large numbers of initial configurations that we us
These procedures guarantee that we always comply with
criterion of validity of the perturbation theory as shown
Fig. 2. We have considered initial rectangular distributio
P0(J)5@1/(V2G)#Q(V2J)Q(J2G) of interactions and
even for the weak disorder case, with a gapG as large as
G50.5 in the distribution (V51), the method works very
well and never an interaction larger than those eliminate
generated~see Fig. 2!.

The phase diagram for rectangular original distributio
can now be obtained. For a strong disorder, which co
sponds toG50, we find a Griffiths phase with a dynami

FIG. 1. The two elimination procedures as described in the
(J1.J2).
©2003 The American Physical Society03-1
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exponentZ;12.7 as shown in Fig. 3. This phase is chara
terized byfirst-gap distributions13 that saturate at low ener
gies in the formP(2 log10D);D1/Z for D→0. This is ob-
tained starting from a given configuration of rando
interactions for a chain of sizeL and eliminating the spins, a
described above, until a single pair remains. The interac

FIG. 2. The evolution of the cutoff, for an initial rectangula
distribution withG50.5, along the renormalization process of t
spin-32 REHAC. We show the results for the original MDH and th
present~modified! renormalization-group procedures.
02040
-

n

between these remaining spins yields the first gapD for ex-
citation. The dynamic exponentZ relates the scales of lengt
and energy throughD}L2Z.

In Fig. 3, we show the first-gap distributions for differe
degrees of disorder as characterized by different gapsG in
the initial distribution of interactions. For all cases, includin
that of strong disorder (G50), we find that the first-gap
distributions saturate at low energies with thedynamic expo-
nent Zindependent ofL for L sufficiently large. We have to
consider large chains in order to observe this effect. We fi
Z`;0.43 andZ`;1.12 for G50.2 andG50.12, respec-
tively. From these values of the dynamic exponent we c
deduce the existence of a Griffiths phase extending up
Gc'0.11 where the dynamic exponent reaches the valuZ
51. Since, for example, the susceptibilityx}T12Z, a sin-
gular low-temperature behavior impliesZ.1. At Gc there is
in fact a significant change in the nature of the thermo
namic behavior of the system.11 The phase forG.Gc is one
with quasilong range order, i.e., with spin correlations dec
ing algebraically with distance, similar to the zer
temperature phase of the pure chain.11

In order to check the existence of a random singlet ph
in the spin-32 chain we consider another class of distributio
of exchange couplings associated withextremedisorder.17–21

These distributions are of the formP(J)}J2111/d. For d
51 this reduces to the gapless case of rectangular distr
FIG. 3. Probability distributions of first gap for initial rectangular distributions of couplings with gapsG and different systems sizesL.
For clarity, not all values ofL are shown. The solid lines represent best fits to the form log10@P(2 log10D)#5AL2(1/ZL)log10D. ~a! G
50, Z3000510.51, Z7000512.68, andZ8000512.70. ~b! G50.12, Z300050.87, Z700051.11, andZ800051.12. ~c! G50.2, Z300050.35,
Z700050.43, andZ800050.43.
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FIG. 4. ~a! The exponenta describing the asymptotic low-energy behavior of the renormalized exchange distribution as a function
scale dependent cutoff.~b! Fraction of active spins as a function of the cutoff. For comparison, we show the results for the spin-1 an
3
2 REHAC’s. In both cases, the starting distribution is extremely disordered withd520 ~see text!.
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tions considered previously, and ford.1 we have the ex-
treme disordered cases. We now report our results for
random spin-32 chain obtained with the modified
renormalization-group procedure13 for the case of an ex
tremely disordered distribution withd520. In a random sin-
glet phase, the fixed-point distribution of interactions, wh
is attained when the cutoffV is sufficiently reduced, take
the form

P~J!5
a

V S V

J D 12a

. ~2!

The exponenta is a function of the cutoffV and varies as
a521/lnV. Also for a random singlet phase, the fraction
remaining active spinsr as a function of the energy scale s
by the cutoffV2 is given by

r5
1

L
5

1

u ln Vu1/c
. ~3!

The exponentc establishes the connection between the ch
acteristic lengthL and the energy scaleV. This is an exten-
sion of the usual definition of a dynamic exponent22 (V21

}t}Lz) for the case of logarithmic scaling. In Fig. 4~a! we
show the exponentsa obtained from the asymptotic form o
the exchange distributions after the cutoffV has been suffi-
ciently reduced. For comparison we show the results fo
spin-1 REHAC with the same original extremely disorder
distribution for which a random singlet phase is clearly
tablished. We have considered here chains of size as larg
L54.53105. In Fig. 4~b! we show the densityr51/L of
active spins as a function of the cutoffV. From this expres-
sion we extract the exponentc @see Eq.~3!# which takes the
value c51/(2.4) close to the valuec51/2 expected for a
random singlet phase.2 As shown in this figure, for compari
son, the spin-1 chain has clearly converged to this ph
within the same scale of the cutoffs. Our results suggest
in this case of extreme disorder, the spin-3

2 REHAC eventu-
ally reaches a random singlet phase, although the con
gence is very slow.

Recently, another approach to the spin-3
2 chains has pre-

dicted the existence of a random singlet phase in th
02040
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chains, even for weak disorder.9,14 This is associated with
spin-12 degrees of freedom. These results are quite dist
from those obtained above where a random singlet phas
hardly evident even for extremely disordered original dis
butions.

The decomposition of a chain of spinsS in smaller spins
relies on projecting out the highest-energy level of a pair
spins S. However, the remaining excited states are kept
this procedure to maintain the correct number of states.
example, in the case of a pair of spins-1 with a total of n
states, the singlet ground state and the first excited triplet
kept to yield the four states of the relevant antiferromagn
cally coupled spin-12 pair.5

The MDH elimination procedure can be generalized
finite temperatures and arbitrary spinsS. It is given by

J85
2

3
S~S11!

J1J2

V
WS~bV!, ~4!

where

WS~y!

5

~2S11!22 (
i 50

i 52S

~2i 11!e2(1/2)i ( i 11)yF11
1

2
i ~ i 11!G

4S~S11! (
i 50

i 52S

~2i 11!e2(1/2)i ( i 11)y

.

~5!

Note that for sufficiently high temperatures, the fact
2
3 S(S11)WS(bV),1 and the MDH elimination procedur
works in this case. A random singlet phase is reached in
sense that the asymptotic distribution of exchange attains
form given by Eq.~2! at these temperatures. However, asT is
reduced the problem becomes essentially nonperturbative
spinsS>1, as the equation above generates coupling la
than those eliminated. In particular atT50, the excited
states which reduce the factorWS from its valueWS(T50)
51 are now frozen. In factnoneof the excited states play
role in the problem at zero temperature. Note that in o
generalized renormalization scheme, degenerate perturb
theory is applied to theground stateof the spin trio. We
3-3
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believe this is the main reason for the discrepancy betw
our results and those obtained by the authors of Refs .9
14. Consideration of excited states in the problem favors
appearance of an infinite disorder random singlet phase,
occurs at finite temperatures.

In the limit S→` and T→0, replacing the sum by an
integral and with a proper renormalization of the Ham
tonian, Eqs.~4! and ~5! yield J85J1J2/4kBT, in agreement
with the result of Ref. 1 for classical spins. In Fig. 5 we sho
the temperatureT* below which the simple perturbative ap
proach breaks down for a given value of the spin of
random chain.

Note that for rectangular distributions, the Griffiths pha
of the spin-1 REHAC extends up toGc50.45 and for spin-
2
2 up toGc50.11. For random classical spin chains, the s
ceptibility x}P(0)u ln Tu, whereP(0) is the finite weight at
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