
ST),

pan

PHYSICAL REVIEW B 68, 014513 ~2003!
Symmetry of superconductivity in NH3K3C60 superconductors: nonadiabatic effects
in multiband systems

Yoshihiro Asai
Research Institute for Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AI

Umezono 1-1-1, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan
and Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Ja

~Received 3 September 2002; revised manuscript received 13 May 2003; published 30 July 2003!

We have studied effects of nonadiabatic electron-intramolecular-vibration couplings on superconductivity in
a multiband system of fullerides. The self-energy of the anomalous Green function was studied. Corrections to
the Migdal approximation were taken into account for both the intraband and the interband couplings. While
the nonadiabatic corrections to the intraband couplings favor anisotropic superconductivity, the corrections to
the interband couplings favor isotropic superconductivity. This raises the theoretical possibility of the change
of superconducting pairing symmetry close to the boundary between the superconducting and the antiferro-
magnetic phases of NH3K3C60 family of fullerides where lifting of the degeneracy of thet1u bands is expected.
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I. INTRODUCTION

The discovery and the development of mass produc
processes of the C60 molecule have opened up various o
portunities for material science and nanotechnology. The
lecular aggregates composed of C60, sometimes called ful-
lerides, exhibit distinct properties such like high-Tc

superconductivity and high-Tc ferromagnetism.1 High photo-
conductivity may be useful for the industrial use. Some p
posals have been made to use the molecule as a mole
device such as a molecular actuator, which may prom
applications of the molecule in nanotechnology as well as
cousin carbon nanotube.

The superconductivity observed in doped C60 has at-
tracted much attention from the first discovery because o
highest critical temperature among organic superconduc
Characteristics of this material are the narrow bandwidth o
ing to the large intermolecular separation and the over
ping bands crossing the Fermi levelEF , which comes from
the degeneracy of thet1u lowest unoccupied molecular orbi
als ~LUMO’s! of the molecule.1–3

The electron-intramolecular-vibration (e-MV ! couplings
have turned out to play the most important role in the mec
nism of superconductivity in this family of materials. Th
conclusion was enforced by agreements between theore
calculations, inelastic neutron scattering experiments,
Raman spectroscopic experiments on the mode specifici
the carrier-induced broadenings and shifts of phon
bands.1,4–7 The interbande-MV coupling constant originat-
ing from the kinetic energy exchange between molecular
brations and electrons beyond the Born-Oppenheimer~BO!
approximation and the standard intraband Holsteine-MV
coupling constant have been estimated and were found t
relatively large.4,5,8 Moreover, the ratio between the phono
frequency and the bandwidthv/W is not negligible. Vertex
corrections beyond the Migdal approximation are not ne
gible in this system.9 We have to take into account all o
these features.

Recently much progress has been made on the experim
0163-1829/2003/68~1!/014513~8!/$20.00 68 0145
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tal research of antiferromagnetism and superconductivity
served in NH3K3C60.10–12 The phase transition betwee
them may be accompanied by symmetry reduction of
crystal and subsequent lifting of thet1u band degeneracy.13

The lifting of the degeneracy decreases the interbande-MV
coupling constant.4,5 The ammonia-intercalated doped C60 is
a suitable system to study details of the interbande-MV
couplings.

II. THE e-MV MODEL

We start our model theory with the following molecula
Hamiltonian:

H5
p2

M
1V~q!1E a†~r 1!h~r 1 ;q!a~r 1!dr1

1
1

2E E a†~r 1!a†~r 2!
e2

r 12
a~r 2!a~r 1!dr1dr2 , ~1!

whereq, p, andM are normal coordinates of molecular v
bration, nuclear momentum, and nuclear mass, respectiv
The variablesr 1 and r 2 denote the coordinate of electron
including the spin variables.h(r 1 ;q) denotes the one-bod
term of electrons ande2/r 12 denotes the Coulomb repulsio
between them. The annihilation operatora(r 1) is defined by
a(r 1)5( jc j (r 1 ;q)cj , wherecj is annihilation operator of
electrons defined on the orthonormalized molecular orb
c j . In the BO approximation,c depends on q parametr
cally. As nuclei and electrons are independent particles,
following commutation relation should be satisfied:

@p,a#50. ~2!

On the other hand,p and cj do not commute in the BO
approximation:

@p,cj #52 i(
i

K ]

]q
c jUc i L ci . ~3!
©2003 The American Physical Society13-1
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This noncommutation relation makes calculations difficu
This difficulty was removed by introducing the followin
function:14

X~r 1 ,r 2![(
k

]

]q
ck~r 1!ck* ~r 2!, ~4!

and the recoil momentum operator

p[2 i E E a†~r 1!X~r 1 ,r 2!a~r 2!dr1dr2 . ~5!

With the help of relations

E X~r 1 ,r 2!ck~r 2!dr25
]

]q
ck~r 1!, ~6a!

E ck* ~r 1!X~r 1 ,r 2!dr152
]

]q
ck* ~r 2!, ~6b!

we found the following relation is satisfied:

@p,cj #5@p,cj #. ~7!

If we define new nuclear momentumP by

P[p2p, ~8!

then we observe that

@P,cj #50. ~9!

The commutation relation betweenP and q is satisfied too.
Now we have a set of canonical variables that has desir
communication relations. If we use the new nuclear mom
tum P, the molecular Hamiltonian given by Eq.~1! is refor-
mulated as follows:5,14

H5
P2

M
1V~q!1(

i j
^c i uhuc j&ci

†cj

1
1

2 (
i jkl

~@ i l u jk#2$ i l u jk%!ci
†cj

†ckcl

1
1

2 (
i j

i K c iU ]

]Q
c j L ci

†cj• iAv/2~b2b†!

2
1

2 (
i j

S K ]

]Q
c iU ]

]Q
c j L 1K c iU ]2

]Q2
c j L D ci

†cj ,

~10a!

@ i j ukl#5E E c i* ~r 1!c j~r 1!
e2

r 12
ck* ~r 2!c l~r 2!dr1dr2 ,

~10b!

$ i j ukl%5 K c iU ]

]Q
c l L K ]

]Q
ckUc j L , ~10c!

whereQ is the mass-weighted normal coordinate defined
Q5AMq and v is the molecular vibrational frequency
Equation ~10! is the most convenient Hamiltonian to sta
01451
.
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with the e-MV problem in multiband systems. On the bas
of the previous arguments, doped C60 may be best describe
by the following model Hamiltonian proposed before:4,5

H5H01H1 , ~11a!

H15H111H12, ~11b!

H05(
i 51

n

e l
inl

i1(
i

n

(
lÞm,s

t lm
i cil s

† cims1(
l

v l S bl
†bl1

1

2D
1U111U12, ~11c!

H115(
i

n

(
l

gl
inl

i~bl1bl
†!, ~11d!

H125(̂
i j &

(
ls

$ ik l
i j cil s

† cjl si ~bl2bl
†!1H.c.%, ~11e!

U115(
i

n

(
l

ul
i i nl↑

i nl↓
i , ~11f!

U125(
iÞ j

n

(
l

ul
i j nl

inl
j , ~11g!

wherecil s
† andbl

† are creation operators of electrons withs
spin on thel th site of thei th band and of molecular vibra
tional bosons on thel th site, respectively.e l

i , t lm
i , gl

i , and
k l

i j are the site energy of thei th band, the transfer integral o
the i th band, the intrabande-MV coupling constant of thei th
band and the interbande-MV coupling constant between th
i th and thej th bands, respectively.H11 andH12 are the in-
traband and the interbande-MV couplings.5 U11 andU12 are
the intraband and the interband Coulomb repulsions, res
tively. H1 is the perturbation in oure-MV model.

III. CORRECTIONS TO THE MIGDAL APPROXIMATION
FOR THE INTRABAND AND INTERBAND

eÀMV COUPLINGS

We start our perturbation calculations with the Dys
equation for the normal and the anomalous Gre
functions:15

G~p!5G(0)~p!1G(0)~p!S̃N~p!G~p!

2G(0)~p!S̃S~p!F†~p!, ~12!

F~p!5G(0)~p!S̃S~p!G~2p!1G(0)~p!S̃N~p!F~p!.
~13!

G and G(0) are full and the noninteracting single-partic

normal Green functions andS̃N is its self-energy.F is the

anomalous Green function andS̃S is its self-energy.p is the
four-dimensional momentump5( ivp ,pW ), whereivp is the
3-2
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Matsubara frequency for fermions. We neglectuS̃S(p)u2
closely below the superconducting critical temperatureTc
such that16

F~p!.G~2p!S̃S~p!G~p!. ~14!

The self-energy for the anomalous Green function is th
given by

S̃S~p!5(
k

VS~p,k!G1~k!G1~2k!S̃S~k!, ~15!

where the potential for the Cooper pairVS may be given as
follows:

VS~p,k!5VS,a~p,k!1VS,n~p,k!. ~16!

VS,a and VS,n are the intraband and the interband contrib
tions to the potential. We also assume for simplicity that
number of overlapping bands close to the Fermi level is tw
To simplify our argument further, only the potential for th
Cooper pair in the band 1 will be discussed hereafter.G1
denotes the normal Green function for band 1. The intrab
contribution to the potential may be given as a sum of
polarization and the cross diagrams:16

VS,a~p,k!5Va~p2k!$112Pa~p,k!%1Ca~p,k!. ~17!

Pa(p,k) is the intraband contribution from the polarizatio
diagram,

Pa~p,k!5(
q

Va~p2q!G1~q2p1k!G1~q!, ~18!

andCa(p,k) is that from the cross diagram,

Ca~p,k!5(
q

Va~p2q!Va~q2k!G1~q!G1~q2p2k!.

~19!
01451
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The interband contribution to the potential may be given a
sum of the polarization and the two cross diagrams:

VS,n~p,k!52Vb~p2k!Pn~p,k!1C1n~p,k!1C2n~p,k!.
~20!

Pn(p,k) is the interband contribution from the polarizatio
diagram,

Pn~p,k!5(
q

Vn~p2q!G2~q2p1k!G2~q!, ~21!

and C1n(p,k) and C2n(p,k) are the two distinct interband
contributions from the cross diagrams,

C1n~p,k!5(
q

Vn~p2q!Vn~q2k!G2~q!G2~2q!,

~22!

C2n~p,k!5(
q

Vn~p2q!Vn~q2k!G2~q!G2~q2p2k!.

~23!

To derive working formulas, we substitute the noninteract
electron Green function;Gi

(0)(k)51/@ ivk2e i(kW )#, where

e i(kW ) denotes the band dispersion of thei th band in place of
the full Green functionGi . The bare potentials are given b
Va(k2k8) 5 g1(kW2k8W )2D̃(k2k8), Vb(k2k8) 5 g1(kW2k8W )
3g2(kW2k8W )D̃(k2k8), Vn(k2k8) 5k(kW2k8W)2(21)D̃(k2k8),
where D̃(q) is the phonon Green function;D̃(q)5

2v0
2/(v0

21vq
2) andgi(qW ) andk(qW ) are the intrabande-MV

coupling constant of thei th band and the interbande-MV
coupling constant, respectively. The summation over
four-dimensional momentum should be read as(k5
2(1/b)(vk

(kW . The intraband contributionsPa(p,k) and

Ca(p,k) are now given as follows:
Pa~p,k!5
v0

2

1

N (
qW

g1~pW 2qW !2

e1~qW !2e1~qW 2pW 1kW !2 i ~vp2vk!
H nF~e1~qW !!1nB~2v0!

e1~qW !2 ivp1v0

2
nF~e1~qW !!1nB~v0!

e1~qW !2 ivp2v0

2
nF~e1~qW 2pW 1kW !!1nB~2v0!

e1~qW 2pW 1kW !2 ivk1v0

1
nF~e1~qW 2pW 1kW !!1nB~v0!

e1~qW 2pW 1kW !2 ivk2v0
J , ~24!

and

Ca~p,k!5
v0

3

2

2v01 ivp1 ivk

~vp2vk!
214v0

2

1

N (
qW

g1~pW 2qW !2g1~qW 2kW !2

e1~qW !2e1~qW 2pW 2kW !2 i ~vp1vk!
H l1nF~e1~qW !!1a1nB~v0!

@e1~qW !2 ivp2v0#@e1~qW !2 ivk2v0#

2
l1nF~e1~qW !!1b1nB~2v0!

@e1~qW !2 ivp1v0#@e1~qW !2 ivk1v0#
2

l2nF„e1~qW 2pW 2kW !…1a2nB~v0!

@e1~qW 2pW 2kW !1 ivp2v0#@e1~qW 2pW 2kW !1 ivk2v0#

1
l2nF„e1~qW 2pW 2kW !…1b2nB~2v0!

@e1~qW 2pW 2kW !1 ivp1v0#@e1~qW 2pW 2kW !1 ivk1v0#
J , ~25!

where
3-3
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l152
4v0

21~vp2vk!
2

4e1~qW !21~vp1vk!
2

2e1~qW !1 ivp1 ivk

2v01 ivp1 ivk
,

l252
4v0

21~vp2vk!
2

4e1~qW 2pW 2kW !21~vp1vk!
2

2e1~qW 2pW 2kW !2 ivp2 ivk

2v01 ivp1 ivk
,

a15
22e1~qW !1 ivp1 ivk

2v01 ivp1 ivk
, a25

22e1~qW 2pW 2kW !2 ivp2 ivk

2v01 ivp1 ivk
,

b15
2e1~qW !14v02 ivp2 ivk

2v01 ivp1 ivk
, b25

2e1~qW 2pW 2kW !14v01 ivp1 ivk

2v01 ivp1 ivk
. ~26!

nF and nB denote fermionic and bosonic distribution functions, respectively. The interband contributionsPn(p,k) and
C2n(p,k) are given simply by replacingg1 and e1 by k and e2 in Eqs. ~24!, ~25!, and ~26!, respectively. The interband
contribution to the cross diagramC1n(p,k) is given as follows:

C1n~p,k!5
v0

3

4

2v01 ivp1 ivk

~vp2vk!
214v0

2

1

N (
qW

k~pW 2qW !2k~qW 2kW !2

e2~qW !
H h1nF~e2~qW !!1z1nB~v0!

@e2~qW !2 ivp2v0#@e2~qW !2 ivk2v0#

2
h2nF@2e2~qW !#1z2nB~v0!

@e2~qW !1 ivp1v0#@e2~qW !1 ivk1v0#
1

h2nF~2e2~qW !!1n1nB~2v0!

@e2~qW !1 ivp2v0#@e2~qW !1 ivk2v0#

2
h1nF~e2~qW !!1n2nB~2v0!

@e2~qW !2 ivp1v0#@e2~qW !2 ivk1v0#
J , ~27!

where

h15
4v0

21~vp2vk!
2

4e2~qW !21~vp1vk!
2

2e2~qW !1 ivp1 ivk

2v01 ivp1 ivk
, h25

4v0
21~vp2vk!

2

4e2~qW !21~vp1vk!
2

22e1~qW !1 ivp1 ivk

2v01 ivp1 ivk
, z15

2e2~qW !2 ivp2 ivk

2v01 ivp1 ivk
,

z25
22e1~qW !2 ivp2 ivk

2v01 ivp1 ivk
, n15

2e2~qW !24v01 ivp1 ivk

2v01 ivp1 ivk
, n25

22e1~qW !24v01 ivp1 ivk

2v01 ivp1 ivk
. ~28!
n

gu

ped
te

ef.
x-
The self-energy of the normal Green function for the ba
1 is given by

S̃N~p!5(
k

VN~p,k!G1~k!. ~29!

Within the same approximation used in the previous ar
ments, only the intrabande-MV coupling has contributions
to the potentialVN(p,k):

VN~p,k!5Va~p2k!$11Pa~p,k!%. ~30!

The momentum integration in Eq.~29! may be simplified as
follows:

S̃N~ ivp!52T(
k
E d3k

~2p!3

VN~p,k!

ivk2ek2S̃N~ ivk!

.2TN0(
k
E

2W/2

W/2

de
^VN~p,k!&

ivkZ~ ivk!2e
, ~31!
01451
d

-

where we have assumed that the real part ofS̃N is negligible,

S̃N~ ivn!5x~ ivn!1 ivn@12Z~ ivn!#. ivn@12Z~ ivn!#,
~32!

and that the band structure is approximated by a box-sha
density of states.W is the bandwidth and the density of sta
takes a constant nonzero valueN0 only within the energy
interval 2W/2<e<W/2. ^VN(p,k)& is the potential aver-
aged over the Fermi surface:

^VN~p,k!&5

E d3p

~2p!3

d3k

~2p!3
d~ep!d~ek!VN~p,k!

E d3p

~2p!3

d3k

~2p!3
d~ep!d~ek!

.

~33!

Justifications to these simplifications were discussed in R
16. Using these simplifications, we have the following e
pression of the renormalization factor;
3-4
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Z~ ivp!.12
2N0T

vp
(
vk

^VN~ ivp ,ivk!&
vk

uvku

3arctanH W

2uvkZ~ ivk!u
J . ~34!

The momentum integration in Eq.~15! may also be approxi-
mated as follows;

S̃S~ ivp!52Tc(
k
E d3k

~2p!3

VS~p,k!

ivk2ek2S̃N~ ivk!

3
S̃S~ ivk!

2 ivk2ek2S̃N~2 ivk!
,

.22N0Tc(
vk

^VS~ ivp ,ivk!&
D~ ivk!

uvku

3arctanH W

2uvkZ~ ivk!u
J , ~35!

whereD( ivn)5S̃( ivn)/Z( ivn) is the superconducting or
der parameter. Equations~34! and~35! form the coupled gap
equations, which correspond to the Eliashberg equation if
neglect our corrections to the Migdal approximation. In t
theory of superconductivity, most of the Coulomb repulsi
effects are supposed to be renormalized into the band s
ture and the residual Coulomb repulsion effect is taken i
account in the gap equation.17 We simplify our argument by
setting ul

i j 5Ud i j , whereU is the intraband residual Cou
lomb repulsion that should result from static screening p
cesses. The retardation effect is taken into account by in
ducing the following pseudo-Coulomb potential,
in-
-
n
-

a
n

01451
e

c-
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-
o-

U* ~ ivp ,ivk!5U*
v0

2

~vp2vk!
21v0

2
, ~36!

in the gap equation

D~ ivp!Z~ ivp!.22N0Tc(
vk

^VS~ ivp ,ivk!

1U* ~ ivp ,ivk!&
D~ ivk!

uvku

3arctanH W

2uvkZ~ ivk!u
J . ~37!

The pseudo-Coulomb potentialU* is derived by introducing
two different frequency cutoffs into an equation to obtain t
Coulomb self-energy. The cutoffs have the energy scale
valence electrons and phonons,W andv0, respectively.U*
is derived such that17

N0U* 5
N0U

11N0U ln$W/v0%
. ~38!

Appreciable renormalization of Coulomb potential is e
pected ifW@v0. Rigorous estimation of the Coulomb effe
is difficult, because the derivation used to obtain Eq.~38!
adopts lot of working hypotheses that neglect possibilities
Coulomb enhancement of the superconducting tempera
While m* 5N0U* of K3C60 is estimated to be fairly smal
(m* ;0.4) within the random phase approximation~RPA!,3

it may be enhanced close to the antiferromagnetic phas
NH3K3C60. Equations~34!, ~36!, and ~37! form the self-
consistent gap equations for the s-wave Cooper pairl
50). For the d-wave channel, we replace the avera
^VS( ivp ,ivk)1U* ( ivp ,ivk)& by
^VS~ ivp ,ivk!1U* ~ ivp ,ivk!& l5
1

2pE2p

p

e2 i l udu

E d3p

~2p!3

d3k

~2p!3
d~ep!d~ek!$VS~p,k!1U* ~ ivp ,ivk!%

E d3p

~2p!3

d3k

~2p!3
d~ep!d~ek!

, ~39!
f-

f

,
th
where u5arccos(pW •kW /pk), l 52, and ^U* ( ivp ,ivk)& l 52
50 because of the momentum independence ofU* .

IV. CORRECTIONS IN TWO AND THREE DIMENSIONS

The corrections to the Migdal approximations for the
traband and interbande-MV couplings derived in the preced
ing section were studied in the two and three dimensio
The summations overqW were made numerically on dis
cretized momentum space points of 1283128 or 1283128
3128 size. The two bands were supposed to have the s
dispersion, but one of them is lifted by a consta
s.

me
t

energy; e1(kW )522t@cos(kx)1cos(ky)#2m and e2(kW )
520.2t@cos(kx)1cos(ky)#2m2De in two dimensions or
e1(kW )522t@cos(kx)1cos(ky)1cos(kz)#2m and e2(kW )
520.2t@cos(kx)1cos(ky)1cos(kz)#2m2De in three dimen-
sions. We taket as a unit of energy and hencet51 through-
out this article. We fixed the chemical potentialm50.4. The
band splitting energyDe is a variable that simulates the e
fect of lifting of the band degeneracy. The interbande-MV
coupling constantk(kW2k8W ) is proportional to the inverse o
the band splitting energyDe except the region whereDe
!v.4,5,18We assume thatk(kW2k8W )50.09/De. The coupling
constants of the intrabande-MV coupling for bands 1 and 2
g1(kW2k8W ), g2(kW2k8W ), were supposed to be constant wi
3-5
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the value 2.0. We took the frequency of the molecular vib
tion as v050.8. All these parameter values were us
throughout this article. We plot the potentialVS(p,k) as a
function of u5arccos(pW •kW /pk). The input and output mo
mentapW and kW were then taken as variables. The results
the two-dimensional square lattice and the three-dimensi
cubic lattice were plotted in Figs. 1 and 2, respectively. T
temperatureT was chosen to be 0.008. The Matsubara f
quenciesvp andvk of the input and the output four dimen
sional momentum used to obtain the data to draw Figs. 1
2 were supposed to be 0.025 12 and 0.8, respectively.16 The
dotted line in Figs. 1 and 2 denotes the bare poten
Va(pW ,kW )'22 without the correction. Therefore,VS approxi-
mately below22 denotes the attractive correction and th
approximately above22 denotes the repulsive correctio
The both are due to the corrections to the Migdal appro
mations for the intraband and interbande-MV couplings. In
general, the potentialVS(p,k) may be expanded as follows

VS~p,k!1U* ~ ivp ,ivk!

.V01U* ~ ivp ,ivk!1V1@cos~px!cos~kx!

1cos~py!cos~ky!1gcos~pz!cos~kz!#, ~40!

whereg50 in two dimensions andg51 in the three dimen-
sions. Here we assumeU* ( ivp ,ivk)52 to simplify our ar-
gument. This corresponds tom* 50.6 if the density of states
at the Fermi level is 5 states/eV spin. A large attraction

FIG. 1. The potential for the Cooper pairVS as a function of

u5arccos(pW •kW /pk) of the two-dimensional square lattice mode
The unit of energy is the transfer integralt51. The dotted line
denotes the bare potentialVa(p,k)'22. The input and output
Matsubara frequencies are fixed to bevp50.02512 andvk50.8,
respectively. We take the molecular vibrational frequencyv0

50.8. The temperature and the chemical potential areT50.008 and
m50.4. De5 inf denotesDe5`.
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VS1U* close tou50 andu5p and a repulsion close to
u5p/2 were observed whenDe5` in the both dimensions
This means that the potentialVS1U* is repulsive when the
input and the output momentapW andkW are orthogonal but is
attractive whenpW and kW are parallel or antiparallel. In the
single-band case,De5`, the symmetry of superconductiv
ity should be anisotropic.19 On the other hand, it is isotropic
when the two bands overlap each other closely;De520.1.
The potentialVS1U* in this case is attractive everywher
The results may indicate that the symmetry of the superc
ductivity changes as the degeneracy of the bands is lif
The change is solely due to the interbande-MV coupling,
because only the interbande-MV coupling constant is depen
dent on the degeneracy in our model. While the intraba
e-MV coupling brings about the anisotropic pairing potenti
the interbande-MV coupling brings about the momentum
independent attractive interaction that reduces the effec
Coulomb repulsion. Our theory provides a good reason w
the symmetry of the superconductivity in alkali-metal-dop
C60 such as K3C60 is s-wave in spite of the non-negligible
v/W ratio and large on-site Coulomb repulsion. This is b
cause the large interbande-MV coupling due to the strong
degeneracy of thet1u bands reduces the pseudo-Coulom
repulsionU* and also the anisotropy of the potentialVS,a .

To make it sure the previous arguments, we have sol
the gap equation numerically. We have mapped the gap e
tion onto the following linear equation:

G~T!D~ ivp!5(
vk

K~ ivp ,ivk!D~ ivk!, ~41!

FIG. 2. The potential for the Cooper pairVS as a function of

u5arccos(pW •kW /pk) of the three-dimensional cubic lattice mode
Notations and parameters are same as those in Fig. 1.
3-6
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where

K~ ivp ,ivk!52
2N0Tc

Z~ ivp!uvku
^VS~ ivp ,ivk!

1U* ~ ivp ,ivk!&arctanH W

2uvkZ~ ivk!u
J .

~42!

G(T) is a monotonically decreasing function ofT and
G(Tc)51, whereTc is the superconducting transition tem
perature. HenceG(T),1 whenT.Tc and G(T).1 when
T,Tc . G(T) is proportional to a magnitude of the superco
ducting correlation. The linear equation was solv
iteratively:16

G (n)~T!5

(
vp ,vk

D (n)~ ivp!* K~ ivp ,ivk!D
(n)~ ivk!

(
vk

uD (n)~ ivp!u2
,

~43!

D (n11)~ ivp!5
1

G (n)~T!
(
vk

K~ ivp ,ivk!D~ ivk!. ~44!

Usually, after several iterations,G (n)(T) converges to the
largest eigenvalue ofK, which should be equal toG(T). The
numerical code to obtain the solution of the gap equat
includes quadruple do loops for the momentum and the
quency variables. Using a large number of momentum sp
pointing down to low temperatureT/v0;0.001 is not so
easy. We have studied the two-dimensional square la
model. We used the equally spaced 10310 grid points for
the numerical integration in the momentum space. The th
dimensional momentum integrals in Eqs.~31!, ~33!, ~35!,
and ~39! should be considered as those in two dimensio
We had made sure that the potentialsVS obtained by using
this smaller system size is comparable to that obtained
using the larger (1283128) size. We found a small deviatio
close tou5p/2. TheDe dependence ofG(T) was calculated
and summarized in Fig. 3. We setT50.01, N0510, andE
50.5. We found that there is a critical value ofuDeu
5uDecu beyond which thed-wave superconducting correla
tion Gd-wave is larger than thes-wave correlationGs-wave. If
uDeu is smaller than the critical value, thes-wave pairing is
more dominant. This transition is observed only whenU* is
larger than a critical valueUc* .4. The physical parameter
we used satisfy the relationUc* .5v0. If we take the phonon
energyv05200 cm21 and adopt the standard value of th
density of statesN055 states/eV spin,m* 5N0U* 50.6.
This is somewhat larger than that expected in K3C60, but it
may not be impossible that the value is realized in the fam
of NH3K3C60 fullerides. WhenuDeu.uDecu, we get a finite
value ofTc for the s-wave pairing even thoughm* is large.
This is shown in Fig. 4. Here we setDe520.08 andm*
50.6. It was argued that strong electron correlation effe
suppress large momentum transfer scatterings of elect
phonon coupling origin.16,20 In the presence of strong elec
01451
-

n
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ce

ce

e-

s.

y

y

ts
n-

tron correlation effects, we may have to introduce a mom
tum cutoff qc for the e-MV coupling constantg1(kW2k8W )
5g1u(qc2ukW2k8W u). qc is parameter other thanDe that may
control the symmetry of the superconductivity. Smallqc may
incorporate such strong electron correlation effects phen
enologically and have not been discussed here explicitly.
theory predicts that the anisotropic superconductivity sho
be observed in the case where the degeneracy of the ban
lifted. The predicted change of the pairing symmetry may
observed close to the phase boundary between antiferrom
netism and superconductivity in the NH3K3C60 family of ful-
lerides, where the symmetry reduction of the crystal is
pected to lift the band degeneracy andU* is expected to

FIG. 3. TheDe dependence of thes-wave and thed-wave su-
perconducting correlationsG(T). Closed squares, open circle
open triangles, and crosses denote thed-wave correlation, the
s-wave correlation when we put the pseudo-Coulomb poten
m* 50.3, thes-wave correlation whenm* 50.6, and thes-wave
correlation whenm* 50.75, respectively. The temperature was s
asT50.01.

FIG. 4. The temperature dependence of thes-wave correlation
G(T) when the pseudo-Coulomb-potential is given bym* 50.6. We
set the energy difference asDe520.08.
3-7
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have a favorable value. To test our theory such experim
should be conducted to search the possible change o
superconducting symmetry.

To summarize, we have studied symmetry of the pair
potential of the superconductivity in the multiband electro
phonon model. Corrections to the Migdal approximations
both the intraband and interbande-MV couplings were stud-
ied. In the degenerate limit whereDe'0, the potential is
attractive everywhere such that isotropic pairing is expec
In the single-band limit ofDe5`, the potential is attractive
for parallel or antiparallel alignment of electron momentu
but it is repulsive when the momentum is orthogonal. In t
case, we expect anisotropic pairing. The change of pai
,

.W

tt

s.

01451
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he
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g

symmetry may be observed close to the boundary betw
the antiferromagnetic phase and the superconducting p
of the NH3K3C60 family of fullerides where lifting of band
degeneracy due to the symmetry reduction of the crystal m
be expected.
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