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Wave-vector power spectrum of the local tunneling density of states: Ripples in ad-wave sea
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A weak scattering potential imposed on a CuO2 layer of a cuprate superconductor modulates the local
density of statesN(x,v). In recently reported experimental studies, scanning-tunneling maps ofN(x,v) have
been Fourier transformed to obtain a wave-vector power spectrum. Here, for the case of a weak scattering
potential, we discuss the structure of this power spectrum and its relationship to the quasiparticle spectrum and
the structure factor of the scattering potential. Examples of quasiparticle interferences in normal metals ands-
andd-wave superconductors are discussed.
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I. INTRODUCTION

A weak scattering potential imposed on the CuO2 layer of
a cuprate superconductor creates ripples in the local tun
ing density of statesN(x,v) due to quasiparticle interferenc
scattering. It was suggested that scanning-tunneling meas
ments of the spatial and frequency structure ofN(x,v) could
provide information on thek andv dependence of the gap1

Recently, the introduction of high-resolution Fourie
transform scanning-tunneling microscopy2–4 ~FT-STM! has
provided a powerful new technique for studying this. In th
approach, a BISCO crystal is cleaved exposing a BiO2 layer.
Then an STM measurement of the local tunneling cond
tancedI(V,x)/dV is taken over a predeterminedL3L grid
of points that cover a region of order 600 Å3600 Å. Assum-
ing that the tunneling conductance is proportional to the
derlying density of states of the CuO2 layer,5 these measure
ments give an STM map of the local tunneling density
statesN(x,v) with v5eV. This map is then Fourier trans
formed,

N~q,v!5 (
xlP(L3L)

e2 iq•xlN~xl ,v!, ~1!

and the wave-vector power spectrum

P~q,v!5
uN~q,v!u2

L2
~2!

determined. Typically, the square root of the power spectr
which is proportional to the magnitude ofN(q,v), is plotted
and we will follow that practice as well. Here, we will dis
cuss the structure ofP(q,v) and its relationship to the qua
siparticle spectrum and the structure factor of the scatte
potential.

For an isotropics-wave superconductor with a circula
normal-state Fermi surface, the ripples inN(x,v) produced
by a weak scattering center form a circular pattern wh
amplitude and wavelength depend upon the bias voltagv
5eV. However, if the gap hasdx22y2 symmetry, the ripples
0163-1829/2003/68~1!/014508~15!/$20.00 68 0145
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emanating from a scattering center appear as a characte
set of rays whose wavelength and amplitude vary with th
angular direction and the size of the bias voltagev5eV.1,6

Two examples of this are shown in Fig. 1. It is the ST
measurements of these modulations inN(x,v) that provide

FIG. 1. ~a! The local tunneling density of statesN(x,v) due to
scattering from a weak potential at the origin~Ref. 1!, for ~a! v
50.5D0 and ~c! v51.1D0. The length scale is set bykF

21 . These
results were obtained for a cylindrical Fermi surface with ad-wave
gapD(u)5D0cos(2u). The contours of the solid regions in~b! and
~d! correspond to the points wherev5Aek

21D2(u) for v50.5D0

and 1.1D0, respectively. The dashed line in~b! is the Fermi surface
for the noninteracting system. Theqa(v) wave vectors in~b!, in-
troduced in Ref. 4, connect the tips of various contours andq8(v)
connects what would be a diagonal nesting vector for the nor
state Fermi surface. TheQa(v) wave vectors shown in~d! are the
relevant nesting vectors whenv.D0.
©2003 The American Physical Society08-1
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information on the wave-vector and frequency depende
of the gap. Indeed, in their FT-STM power spectrum study
BISCO, Hoffman et al.2 and McElroy et al.4 found
frequency-dependent structure inP(q,v) which they argued
was consistent with the Fermi surface dependence ofD(k) as
seen from angle-resolved photoemission spectrosc
~ARPES! measurements.7 In this work,2,4 these authors sug
gested that the FT-STM data could be analyzed in terms
set of frequency-dependent wave vectorsqa(v) which con-
nect the tips of the constant energy contours specified by
quasiparticle dispersion relation

v5Aek
21Dk

2. ~3!

The contours of the solid regions shown in Figs. 1~b! and
1~d! are the constant quasiparticle energy contours for a
lindrical Fermi surfaceek5k2/2m2m with a gap Dk
5D0cos 2u for v50.5D0 and 1.1D0, respectively. Also
shown in Fig. 1~b! are several of theqa(v) wave vectors
introduced in Ref. 4. The wave vectorq8(v) is an additional
wave vector that we will discuss. The wave vectorsq1(v)
and q5(v), along with their symmetry-related counterpa
~not shown!, are associated with the structure of the ripp
in N(x,v) seen along thex andy axes of Fig. 1~a!. Likewise,
the wave vectorsq3(v), q8(v), and q7(v) determine the
structure of the ripples along the 45° axes of Fig. 1~a!.In
conjunction with this experimental work, Wang and Lee8 re-
cently reported numerical calculations for the case of a sin
impurity which clearly showed the quasiparticle interferen
arising fromq1(v) and q7(v). In addition, asv is varied
these calculations showed that a rich, kaleidescopelike st
ture appears in the wave-vector power spectrum when
folded back into the first Brillouin zone.

In a similar way, forv51.1D0, the wave vectorsQa
shown in Fig. 1~d! determine the structure ofN(x,v) seen in
Fig. 1~c!. Here the ripples along thex andy axes are associ
ated withQ2 and Q3 ~and their symmetry-related counte
parts in they direction!, while those along the diagonal ar
associated withQ1 ~and its counterparts!. In practice, when
v;D0, inelastic scattering leads to a damping of the ripp
in N(x,v), making the structure inuN(x,v)u associated with
the Qa wave vectors difficult to detect.

Now, the quasiparticle interference pattern shown in F
1~a! and 1~c! are for a single impurity. For a particular su
face region over which the STM measurements are ma
there will be an array of scatterers leading to a comp
overlap of ripples. Here we will discuss how the Fourie
transformed wave-vector power spectrumP(q,v) allows
one to disentangle the quasiparticle interference effects f
the static structure factors of the scatterers. In Sec. II
show that for the case of a weak scattering potential,P(q,v)
factors into one piece which contains information on t
nesting properties of the Fermi surface times a piece whic
proportional to the static structure factor of the scatterers.
also note that these measurements contain information on
one-electron self-energy. Various examples are analyze
show the type of information that is in principle contained
the FT-STM data. In Sec. III, the case of a layered tw
dimensional~2D! superconductor is studied with results f
01450
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boths-wave andd-wave gaps discussed. Section IV contai
our conclusions, and Appendixes A and B contain more
tails of the calculations.

II. FT-STM POWER SPECTRUM OF A 2D NORMAL
METALLIC LAYER

To begin, we first consider the case of a normal meta
2D layer. Suppose it is exposed to a weak potential

V5(
s
E d2xde~x!cs

†~x!cs~x!, ~4!

with de(x) an energy shift atx. For a BISCO-like system
this local energy changede(x) could arise from secondar
effects associated with disorder away from the CuO2 plane,
the regular potential of the BiO2 layer, or possibly a weak
static stripe potential. This interaction creates a ripple in
one-electron Green’s function, leading to a modulation in
local tunneling density of states. For the case of a we
potential which we will focus on, a Born approximation
appropriate so that the single-particle Green’s function
given by

G~x,x8,v!5G0~x2x8,v!1E d2x9G0~x2x9,v!

3de~x9!G0~x92x8,v!. ~5!

Here, G0(x,v) is the Green’s function of the unperturbe
system. Then the change in the single-spin tunneling den
of states at positionx is given by

dN~x,v!52
1

p
ImE d2x9G0~x2x9,v!de~x9!

3G0~x92x,v!. ~6!

Taking the spatial Fourier transform ofdN(x,v), on theL
3L grid of points$xl% specified by the STM measurement
one finds, forqÞ0, that

N~q,v!5 (
xlP(L3L)

e2 iq•xldN~xl ,v!52
de~q!

p
Im L~q,v!,

~7!

with

L~q,v!5E d2xeiq•xG0~x,v!G0~2x,v! ~8!

and

de~q!5E d2x

a2
de~x!e2 iq•x. ~9!

Here a is the lattice spacing of theL3L STM grid andq
52p(nx ,ny)/La with nx and ny integers running from
2L/211 to L/2. The wave-vector power spectrum of th
local tunneling density of states, Eq.~2!, is therefore given
by
8-2
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P~q,v!5
1

N U1

p
Im L~q,v!U2

ude~q!u2. ~10!

HereN5L3L is the number of sites in the sampled regio
Thus, in the weak scattering Born approximationP(q,v)
separates into a pieceuIm L(q,v)/pu2 which describes the
quasiparticle interference and a pieceude(q)u2 which is the
static structure factorS(q) of the scattering potential.

For the random impurity case, one could imagine mak
STM maps over a large number of differentL3L regions.
Then by averaging the structure factor over these maps
would obtain

^ude~q!u2&
N

5nide2 ~qÞ0!, ~11!

whereni is the area impurity concentration andde is a site
energy shift. In this case,P(q,v) would simply be propor-
tional to nide2 times the quasiparticle interference fact
from a single impurity. However, this is not the way th
experiments are done. Rather, a single STM map on a fi
L3L grid of points covering a specific region is measure
In this case,ude(q)u2 versusq exhibits fluctuations blurring
the image ofuIm L(q,v)/pu, although one can still resolv
structure in false color 2D (qx ,qy) maps ofuN(q,v)u. How-
ever, as discussed in Appendix A, by averaging the po
spectrum over blocks of width (Dqx ,Dqy) about eachq, the
fluctuations can be reduced if the impurities are random
distributed. Naturally, this reduces the momentum resolut
However, if the change inq of the quasiparticle interferenc
response is predominately along a given momentum di
tion, one can average over a region ofq values perpendicula
to the direction of interest, reducing the fluctuations b
maintaining theq resolution in the direction of interest. Her
we will assume that a suitable average has been done an
the impurity structure factor given by Eq.~11!. Appendix A
contains a further discussion of the effect of impurity i
duced fluctuations.

For the case in which the scattering occurs from a reg
lattice such as the Bi lattice, one has

ude~q!u25de2N2dq,Gn
. ~12!

HereGn is a reciprocal lattice vector of the Bi lattice alon
with the satellite wave vectors associated with the sup
modulation of the BiO2 layer. One could also have a ‘‘ran
dom’’ array of stripe domains with

^ude~q!u2&.Ni H G/p

~qx2Qx!
21G2

1
G/p

~qy2Qy!21G2

1~qx→2qx ,qy→2qy!J de2. ~13!

HereQx52p/ l x with l x the stripe spacing, 2p/G is the char-
acteristic size of a domain, andNi is the average number o
domains in anL3L region. Here we have taken only the fir
Qx harmonic. The form factor associated with the cha
01450
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distribution of the stripes suppresses the response at hi
multiples of Qx . We will examine the effect of an array o
scattering centers in Sec. III.

Turning next to the quasiparticle interference respon
we begin by looking atG0(x,v) for a free 2D electron gas
In this case, forv.0,

G0~x,v!5E d2k

~2p!2

eik•x

v2ek1 id
52 ipN~0!H0

(1)~k~v!r !,

~14!

with ek5k2/2m2m and m5kF
2/2m. Here N(0)5m/2p is

the single-spin electron density of states for the 2D free e
tron gas,H0

(1) is the zeroth-order Hankel function of the fir
kind, r 5uxu, and

k~v!5kFA11
v

m
. ~15!

Whenk(v)r is large,

G0~x,v!;2 iN~0!S 2p

k~v!r D
1/2

ei [k(v)r 2 ~p/4!] ~16!

and the spatial modulation ofdN(x,v) which varies as the
square ofG0(x,v) is characterized by a wave vector

q~v!52kFA11
v

m
. ~17!

The quasiparticle interference response functionL(q,v)
for the 2D electron gas is calculated in Appendix B. T
result of this calculation shows9 that

1

p
Im L~q,v!5H 8pN2~0!

qAq224k2~v!
for q.2k~v!,

0 for q,2k~v!.
~18!

Thus, the wave-vector power spectrum for the 2D free el
tron gas has a cusp atq equals 2k(v). Here ImL(q,v)
vanishes forq,2k(v) and diverges as@q22k(v)#21/2 asq
approaches 2k(v) from larger values. As noted in Appendi
A, ReL(q,v) has a similar cusp asq approaches 2k(v)
from below. Basically, there is just a shift of phase ofp/2 in
L(q,v) when q passes trough 2k(v). If the impurities are
dilute, but the scattering from a given impurity is strong, o
still has P(q,v) proportional to the impurity concentration
However, in this case,10 because of the phase of thet-matrix
one will have singularities on both sides of 2k(v).

The experimental FT-STM data have been reported as
square root of the power spectrum or the ‘‘magnitud
uN(q,v)u of the Fourier transform of the STM measureme
of the local conductance map. Here we will follow this co
vention. For the case of weak Born scattering, the magnit
of N(q,v) is proportional touIm L(q,v)/pu. For the 2D
electron gas, in Fig. 2, we have plotteduN(q,v)u normalized
8-3
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to AniN(0)udeu/m versusq for various values ofv/m. Here,
with q in units of 2kF one has

uN̄~q,v!u5
uN~q,v!u

AniN~0!S udeu

m
D 5

1

2q

1

Aq22S 11
v

m
D
~19!

for (11v/m),q/2kF . As shown in Fig. 2, for the weak
scattering caseuN̄(q,v)u has a one-sided square root sing
larity at q/2kF5(11v/m)1/2. This singularity is cut off and
the response peak varies as (,kF)1/2 when the quasiparticle
mean free path is taken into account. In this case

FIG. 2. Plot of the normalizeduN(q,v)u vs q for a free electron
gas for various values ofv/m.
c

ve

01450
-

uN̄~q,v!u5
1

2pqE21

q221
de

G

S v

m
2e D 2

1G2

1

Aq22~11e!
,

~20!

with G5(,kF)21. Plots ofuN̄(q,v)u versusq for v50 and
several different values ofG are shown in Fig. 3.

Similarly, for an anisotropic system with

ek5
kx

2

2mx
1

ky
2

2my
2m, ~21!

one finds that

FIG. 3. Plot of the normalized mean free path correc
uN(q,v)u vs q for an electron gas withv50. HereG5(,kF)21:
G50 ~solid line!, G50.01 ~long-dashed line!, G50.05 ~dashed
line!, andG50.1 ~dotted line!.
1

p
Im L~qx ,qy ,v!5H 2

pg
mx

2
1

Aqx
21g2qy

2

1

Aqx
21g2qy

228mx~v1m!
for qx

21g2qy
2.8mx~m1v!,

0 for qx
21g2qy

2,8mx~m1v!,

~22!
.

ers

n-
r a

n

with g25mx /my . In this case the cusp in the power spe
trum follows a locus determined by

qx
21g2qy

258mx~m1v!, ~23!

which reflects the elliptical Fermi surface. In Fig. 4, we ha
plotted uN(q,v)u for v50 and g53 normalized to
Ani(mx/2p)udeu/m, which gives

uN̄~qx ,qy ,v!u5
1

2g

1

Aqx
21g2qy

2

1

Aqx
21g2qy

22S 11
v

m
D

,

~24!
-with qx andqy measured in units of 2kF
x 52(2mxm)1/2. Here,

we see thatuN̄(q,0)u vanishes inside the ellipse, Eq.~23!,
and has a square root divergence asq approaches the ellipse
There is a reductiong5(my /mx)

1/2 in the strength of the
cusp along theqy direction relative to theqx direction that
reflects the fact that the joint density of states which ent
L(q,v) depends on the curvature of the Fermi surface.

Turning now to the case of a tight-binding band, we co
sider first the simple nearest-neighbor hopping band fo
square lattice with unit lattice spacing:

ek522t~coskx1cosky!2m. ~25!

The Fermi surface is shown in Fig. 5 form52t, corre-
sponding to a small fillinĝn&'0.31, which we have chose
8-4
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to illustrate what happens when ImL(q,w) is folded back
into the first Brillouin zone. In the following tight-binding
band structure calculations, we will assume thatN(x,v) is
measured on a grid of points corresponding to the sites of
lattice. In this case,

L~q,v!5
1

N (
k

G0~k1q,v!G0~k,v!, ~26!

with

G0~k!5
1

v2ek1 id sgn~v!
. ~27!

FIG. 4. Plot of the normalizeduN(q,v)u vs q, Eq. ~24!, for an
elliptical Fermi surface withg25mx /my59 andv50. In ~a! qx

50 and in~b! qy50.

FIG. 5. Fermi surface of a near-neighbor tight-binding band,
~28!, with m/t521.0 corresponding to a site fillinĝn&'0.31.
01450
eHere,N5L3L is the number of lattice sites andk andq are
defined in the first Brillouin zone with components runnin
from 2p to p. We have set the lattice spacinga51. This
choice of the grid simplifies the calculations but has the c
sequence that all results are folded back into the first B
louin zone. It is this downfolding that leads to the kaleid
scopic patterns in the numerical results shown in Ref. 8
the experimental FT-STM measurements,2,4 a smaller grid
spacing was used leading to aq-space power spectrum whic
looks more like the extended zone picture for theq vectors of
interest.

Carrying out the momentum sum in Eq.~26!, we find the
results for uIm L(q,v)/pu shown in Fig. 6. Here, in Fig.
6~a!, q varies along the diagonala cut shown in Fig. 5 with
qx5qy . In this case,uN̄(q,v)u exhibits a similar cusp to tha
of the free electron system whenuqxu>2kF

xy52 cos21@2(m
1v)/4t#. This same type of behavior is shown as the das
curve for theb cut with qy50 in Fig. 6~b!, where we have
displaced the numerical results by62p corresponding to an
extended zone scheme. Here, the cusp occurs foruqxu>2kF

x

52 cos21@2(2t1m1v)/2t# which is greater thanp for theb
cut of Fig. 5. In practice, the numerical data are obtained
the ‘‘reduced’’ (2p,p) zone so that theqy50 b cut appears
as the solid curve shown in Fig. 6~b!. As v is increased, the
characteristicq values can move across the boundary of
first zone and be mapped back via a reciprocal lattice vec
This can then lead to a situation in which the square r
singularity is approached from smallerq values with
uN̄(q,v)u vanishing whenq exceeds a critical value a
shown by the solid curve in Fig. 6~b!. As noted, it is this
.

FIG. 6. uIm L(q,v)/pu for the tight-binding band, Eq.~25!,
with t51 vs q for v50 and ~a! the diagonal cuta and ~b! the
horizontal cutb indicated in Fig. 5. The dashed curves show t
results in the second Brillouin zone. For cuta, 2kF

xy.0.8p, so the
solid curve in the first Brillouin looks similar to the free electro
response. However, for cutb, 2kF

x .1.3p, so that the dashed curv
in ~b! looks similar to the free electron response and the solid cu
in the first Brillouin zone results from folding the dashed cur
back into the first zone.
8-5
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folding of the FT-STM power spectrum into the reduc
zone that leads to the kaleidoscopic 2D (qx ,qy) patterns for
different v values which have been reported.8

Finally, consider the case of a tight-binding band, like th
found for BISCO. Here, one has a next-near-neighbor h
ping t8 so that

ek522t~coskx1cosky!24t8coskxcosky2m. ~28!

The Fermi surface fort8/t520.3 andm/t521.0 is shown
in Fig. 7. Results of a numerical calculation fo
Im L(q,v)/p for this case are plotted in Figs. 8~a! and 8~b!
for qy50 andqx5qy , respectively. Forqy50, the nesting
vector 3 is shown in Fig. 7. If we consider the closed Fer
surface around (p,p), one can see that the two points of th
closed Fermi surface that are connected by the wave ve

FIG. 7. Fermi surface of a tight-binding band with near a
next-near hopping, Eq.~28!, with t8/t520.3 andm/t521.0.

FIG. 8. uIm L(q,v)/pu vs q for v50 for the tight-binding
Fermi surface shown in Fig. 7.~a! qy50 and~b! qx5qy .
01450
t
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labeled 3 haveDq greater thanp. In fact, Dq/p.1.76, so
that when this is folded back into the first Brillouin zone, th
cusp occurs atDq/p.20.24. Also, as we saw previously i
Fig. 6~a! the cusp rises from smaller values ofq in the re-
duced zone although in an extended zone scheme it woul
approached from largerq values just as in the free electro
case. The peaks in the response forqx5qy shown in Fig.
8~b! arise from the nesting vectors labeled 1 and 2 in Fig

To conclude this section on the normal state, we cons
an electron-phonon system with a self-energyS(v) which
depends only upon the frequency. In this case, the mom
tum that enters the Hankel function givingG(x,v) is

k~v!>kF1
~v2S~v!

vF
. ~29!

The real part of the self-energy leads to a shift in the wa
length of the modulations and the imaginary part ofS leads
to their exponential decay on a scale,5vF /@22S2(v)#.
This behavior is reflected in a shift in the position and
rounding of the cusp in the power spectrumP(q,v). For
values ofv which are small compared to a typical phono
frequency

k~v!.kF1
~11l!v

vF
, ~30!

with l52N(0)ugu2/V0 the dimensionless electron-phono
interaction strength. Hereg is the effective electron-phono
coupling andV0 a typical phonon energy. Asv increases
2kF(v) will reflect the detailed dependence of both the re
and imaginary parts ofS(v).

III. FT-STM POWER SPECTRUM
OF A SUPERCONDUCTOR

Next consider the case of a superconductor. Here, for
on-site energy perturbation, we have1

dN~x,v!52
1

p
ImE d2x8@G~x2x8,v!G~x82x,v!

2F~x2x8,v!F~x82x,v!#de~x8!, ~31!

with G(x,v) the usual single-particle propagator,

G~x,v!5E d2k

~2p!2
eik•x

v1ek

v22ek
22Dk

21 id
, ~32!

andF(x,v) the anomalous Gor’kov propagator,

F~x,v!5E d2k

~2p!2
eik•x

Dk

v22ek
22Dk

21 id
. ~33!

In this case11

L~q,v!5E d2k

~2p!2
@G~k1q,v!G~k,v!

2F~k1q,v!F~k,v!#. ~34!
8-6
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FIG. 9. Plot of the normalizeduN(q,v)u vs q for an s-wave superconductor with a cylindrical Fermi surface andD/m50.1. ~a! Results
for positive values ofv5eV and ~b! for negative values ofv.
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For a 2D s-wave superconductor withDk5D and ek
5k2/2m2m, these Green’s functions have characteris
wave vectors

k6~v!5kFF16
Av22D2

m G1/2

. ~35!

The wavelength of the ripples indN(x,v) is set by 2k6(v).
For v,D, the ripples exponentially decay. If the impuri
perturbation involved a change in the size of the gap, th
would be a quasiparticle interference contribution involvi
k1(v)2k2(v)52kFAv22D2/m. The ripples associate
with this contribution vary on a length scale set byvF /D
which is of order the coherence length rather thankF

21 . It is
this type of spatial oscillation that is responsible for the T
masch oscillations.12 While Tomasch ripples atQT(v)
5k1(v)2k2(v) are not present for the case of a char
impurity in an isotropics-wave superconductor, they can a
pear for ad-wave superconductor as discussed below.

As shown in Appendix B, it is straightforward to evalua
Im L(q,v) for ans-wave BCS superconductor and one fin
that

1

p
Im L~q,v!54pN2~0!S v2Av22D2

Av22D2 D 1

q

1

Aq224k2
2 ~v!

~36!

for 2k2(v),q,2k1(v) and

1

p
Im L~q,v!

54pN2~0!S v2Av22D2

Av22D2 D 1

q

1

Aq224k2
2 ~v!

14pN2~0!S v1Av22D2

Av22D2 D 1

q

1

Aq224k1
2 ~v!

~37!

for 2k1(v),q. More generally, for an electron-phonon sy
tem the frequency-dependent complex gapD(v) would re-
01450
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place D. Normalizing by AniN(0)udeu/m, as previously
done for the free electron case, we have plotteduN̄(q,v)u
versusq in Fig. 9 for a BCSs-wave superconductor with
D/m50.1. The coherence factors in Eq.~36! and ~37! give
more weight to the 2k1(v) cusp for positive values ofv
associated with a bias voltage that probes the empty sta
Fig. 9~a!, while theq52k2(v) cusp is enhanced when th
bias is reversed as shown in Fig. 9~b!.

We turn next to the case of ad-wave superconductor with

Dk5D0~coskx2cosky!/2 ~38!

and a band structure given by Eq.~28! with t8/t520.3 and
m521.0. The Fermi surface for these parameters is sho
as a dashed line in Fig. 10~a!. The contours of the solid
regions correspond to the loci of points wherev
5Aek

21Dk
2 for v50.5D0 in Fig. 10~a! andv51.1D0 in Fig.

10~b!. Results foruIm L(q,v)/pu at various values ofv less
thanD0 are shown in Fig. 11~a! for qx5qy and Fig. 11~b! for
qy50. For the diagonal cut withqx5qy , there is a response
at the wave vectorq7(v) shown in Fig. 10~a! which con-
nects the end points of thev25ek

21Dk
2 contour. This peak is

similar to the peak we have seen in the case of the elli
discussed in the previous section. There are two ident
contributions coming from the two contours on oppos
sides of the Fermi surface. As the bias voltageeV5v in-
creases, one sees thatq7(v) peak moves to larger values o
momentum. This reflects the increase in magnitude of
wave vectorq7(v) asv is increased and can provide info
mation on thek dependence of the Fermi surface and gap2,4

In addition, there is a contribution coming fromq3(v) which
connects the tips of two opposite contours which increa
more slowly withv. Finally, there is a response associat
with q8 shown in Fig. 10~a!. This is the response due to th
wave vector labeled 1 in Fig. 7 and shown in the diago
qx5qy response of the normal metal with this same ba
structure in Fig. 8~b!. Approximate analytic results for the
d-wave case are given in Appendix B, Eqs.~B14! and~B17!.

Similarly in Fig. 11~b!, for qy50 one finds structure as
sociated with the wave vectorsq1 and q5 shown in Fig.
8-7
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FIG. 10. Characteristic wave vectors for ad-wave superconductor with a tight-binding band, Eq.~28!, with t8/t520.3, m/t
521.0, andD050.1t. The contours of the solid regions correspond to the points wherev5Aek

21Dk
2 with ~a! v50.5D0 and ~b! v

51.1D0. The dashed line in~a! shows the Fermi surface of the noninteracting system. In~b! Q3 andQ5 (Q4 andQ2) connect the innermos
~outermost! surfaces whileQ1 connects the outermost surfaces.
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10~a!. As discussed by McElroyet al.,4 this structure arises
from a peak in the joint density of states associated with
overlap of the ends of two oppositev25ek

21Dk
2 contours.

Just as for the case of the elliptical Fermi surface previou
discussed, the strength of the cusp depends upon the c
ture of the dispersion. The increase ofq1(v) with increasing
v again provides information on the Fermi surface andDk .
The peak atq5(v) initially increases withv and would con-
tinue to increase in an extended zone but here, forv
;0.25, it is reflected back into the first Brillouin zon
Finally, there is a weak cusp at low momentumqt(v)
associated with the Tomasch interference process.

Note that the response seen inuN̄(q,v)u associated with
quasiparticle interference is actually characterized by a c
tinuous curving cusp in the (qx ,qy) plane whose intensity is
related to the joint density of thek and k1q quasiparticle
states. When we take into account all four quadrants,
structure in the power spectrumP(q,v) in the first Brillouin
zone becomes much richer. Not only are there cusps as
ated with scattering processes confined to similar con
01450
e

ly
va-

n-

e

ci-
ur

regions in quadrants 2 and 4, which give rise to a cusp wh
major axis is perpendicular to that due to quadrants 1 an
there are cusps from scattering processes between the
nodal regions. In addition, there is the response associ
with the nodal wave vectorq8. In order to see this more
clearly, we have calculatedL(q,v) for the case in which
t850. In Fig. 12 we compare the results foruIm L(q,v)/pu
calculated witht850 @Fig. 12~a!# and witht8/t520.3 @Fig.
12~b!#. In both cases, we clearly see the contributions ofq3
andq7. In addition, aq8 contribution from the nodal region
is also visible. Theq3 contribution is weaker for the case i
which t850. In this case we also find thatuq3u,uq8u as one
can see from the insets in the figures.

When v is greater thanD0, structure inuN(q,v)u is as-
sociated with theQa vectors shown in Fig. 10~b!, for v
51.1D0. In this case, forqx5qy , uN(q,v)u exhibits struc-
ture atqx5Q1 , Q2, andQ3; see Fig. 13~a!. The weak struc-
ture at large momentum transferQ1 is similar to the structure
for the normal state labeled ‘‘1’’ in Fig. 8, since the ga
vanishes along the diagonal. The structures atQ2 and Q3
t

.

FIG. 11. uIm L(q,v)/pu vs q
for a d-wave superconductor with
a tight-binding band given by
Eq. ~28! with t8/t520.3, m/t
521.0, andD050.1t. Here ~a!
shows results for a diagonal cu
for qx5qy and ~b! shows results
for a horizontalqy50 cut. Theqa

and q8 vectors are shown in Fig
10~a!.
8-8
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WAVE-VECTOR POWER SPECTRUM OF THE LOCAL . . . PHYSICAL REVIEW B 68, 014508 ~2003!
correspond to interference processes between the particl
and holelike BCS quasiparticles. Just as for thes-wave case,
for v.0, the coherence factor gives more weight to theQ2
process. Results foruN(q,v)u versusqx for qy50 are shown
in Fig. 13~b!. In this case, structure appears associated w
qx5Q4 andQ5 with the coherence factors leading to a lar
response atQ4 for positivev. As noted earlier, in the cuprat
superconductors lifetime effects suppress thisv.D0 struc-
ture, making it difficult to see in the experimental studies

The structure in the quasiparticle interference respo
can also be seen in the intensity map plots ofuIm L(q,v)/pu
over the (qx ,qy) plane. One such map forv50.5D0 is
shown in Fig. 14. Here one sees that the response is ch
terized by continuous curving intensity cusps in the (qx ,qy)
plane. Like the case of the elliptical Fermi surface, the int
sity can have significant variations along the cusps due to
curvature of the quasiparticles dispersion relation. Going
from the origin alongqx5qy as in Fig. 12~b!, one first sees a
bright ~high-intensity region! cusp associated withq7. At
large momentum values along this same 45° line one se
narrow bright line associated withq8 scattering processe
which connect the outer edges of thev5Aek

21Dk
2 enve-

lopes. Finally, the brighter, curved region of intensity ne
the (p,p) corner arises fromq3 interference processes ass
ciated with the inner boundaries of these contours. The br
regions near (qx /p50.85, qy /p50.3) and (qx /p
50.3, qy /p50.85) arise from interference effects asso
ated withq2 andq6 of Fig. 10~a!.

Finally, we consider the response of ad-wave supercon-
ductor when there is an ordered stripe array of weak sca
ing centers. In Fig. 15 we show the ripples produced
N(x,v) when the scattering centers form a stripelike str

FIG. 12. uIm L(q,v)/pu vs q for a diagonal cut in whichqx

5qy . ~a! shows results for a tight-binding band witht8/t50 and
~b! shows results fort8/t520.3. v50.5D0 and the other param
eters are the same of Fig. 11.
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ture oriented along they axis with a spacing of four lattice
sites. For the parameters we have chosen,q5(v).p/2 for
v50.5D0 with D0 the maximum value of thed-wave gap.
As seen in Fig. 15, the ordered array of stripe scatter
centers produces an oriented set of ripples. These give ris
the structure inuN(q,v)u shown in Fig. 16 forq.p/2. Here
we have assumed that there is quasiparticle scattering fro

FIG. 13. uIm L(q,v)/pu vs q for a d-wave superconductor with
a tight-binding band given by Eq.~28! with t8/t520.3, m/t
521.0, D050.1t, and v51.1D0. Here ~a! shows results for a
diagonal 45° cut forqx5qy and ~b! shows results for a horizonta
qy50 cut. TheQa vectors are shown in Fig. 10~b!.

FIG. 14. Intensity map of the quasiparticle interference respo
uIm L(q,v)/pu for a d-wave superconductor plotted over the fir
(qx ,qy) quadrant. Here, the band structure is given by Eq.~28! with
t8/t50.3 andm521.0; Dk is given by Eq.~38! and the bias isv
50.5D0.
8-9
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L. CAPRIOTTI, D. J. SCALAPINO, AND R. D. SEDGEWICK PHYSICAL REVIEW B68, 014508 ~2003!
random array of impurities as well as the stripes. These c
tributions add incoherently so that

^ude~q!u2&;F11A
G/p

~qx2Qx!
21G2G . ~39!

Here Qx5p/2 and we have takenG50.01 andA50.5 in
Fig. 16 to illustrate the possible interplay of the scatter
from the random impurities and the stripes. The quasipart
interference peak associated withq1 moves to lower values

FIG. 15. Ripples inN(x,v) when there is an ordered array o
scattering centers running along they axis. Here the spacing be
tween the stripes corresponds to four lattice sites andv50.5D0.

FIG. 16. Structure inuN̄(q,v)u vs qx for random impurities and
an ordered array of stripes separated by four lattice spacings.
quasiparticle interference peaks associated withq1(v) andq5(v),
previously shown in Fig. 11~b!, are seen along with a peak atq
.0.5p which arises from the striped array of scattering centers
01450
n-

g
le

of qx asv increases while the response associated with
ordered array of scattering centers remains fixed atqx
.0.5p and only its amplitude changes withv. For larger
values ofA, the stripes would be the dominant feature wh
for smaller values ofA scattering from the random impuritie
would dominate the power spectrum.

IV. CONCLUSIONS

Here we have discussed some detailed examples w
illustrate what can be learned from FT-STM studies of la
ered materials. For the case of a weak potential perturba
we have seen that the wave-vector power spectrum of
local tunneling density of states,P(q,v), contains informa-
tion on the quasiparticle spectrum and the structure facto
the scatterers. This is also the case for dilute impurities e
if they act as strong scattering centers andde is replaced by
a t matrix. For a normal metal, one can determine inform
tion about the nesting properties of the Fermi surface fr
the loci of the q-space cusps forv→0. In addition, the
dressed Fermi velocity can be obtained from thev depen-
dence of the position of the cusp. In fact, from thev depen-
dence of the cusp position and its rounding, one can, in p
ciple, obtain information on the real and imaginary parts
the electron self-energy.

In the superconducting state, one can also obtain infor
tion on both the wave-vector and frequency dependenc
the gapD(k,v). Again, just as in the case of a normal met
the signature of these quasiparticle interference effects
continuous ‘‘arcs’’ of cusps inq space. However, the inten
sity variation along the arcs may be large due to change
the effective density of states associated with a given m
mentum transferq, making the intensity appear more lik
spots. The rapid change in intensity is due to the small
rameterD0 /t.

In addition to these effects, one can also obtain inform
tion on the static structure factor of the scattering poten
^udequ2&. As discussed in Appendix A, for the case of a loc
potential, averaging over aDqx by Dqy block of q values
about a givenq leads tô udequ2&/N.nide2. However, if the
scattering potential has long-range order, such as is the
for the BiO2 over layer in the BISCO studies, one should s
a q-dependent response in the wave-vector power spect
of the local tunneling density of states forq values equal to
the reciprocal lattice vectors of the BiO2 layer. This response
will be particularly strong forv.D0. Similarly, it should be
possible to see evidence of pinned stripes in the struc
factor if they are present.3

As discussed in the Introduction, we have focused on
case of weak scattering. As noted, in this limit, where t
Born approximation is adequate, one has a simple separa
of the response into the quasiparticle interference effe
which are contained inL(q,v) and the structure factor o
the scatterers which is contained in^udequ2&. Of course,
many-body interactions will give rise to additional effect
There will be screening, changingdeq to deq /e(q,0) where
e(q,0) is the zero-frequency dielectric constant.9 Further-
more, there will be vertex corrections so that, for examp
for a strongly interacting normal system one will have

he
8-10
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L~q,v!5E d2k

~2p!2
G~k,q,v!G~k1q,v!G~k,v!,

~40!

with G(k,q,v) the elastic vertex for momentum transferq
and zero energy transfer for an incoming particle with m
mentumk and energyv. Similar vertex corrections will oc-
cur in the superconducting state. In addition, the quasipa
cle dispersion relation can be altered by an interaction wh
breaks the translational symmetry,13 leading to a differentv
dependence ofuN(q,v)u.

Finally, there is the form factor of the tunneling prob
Here we have neglected the momentum dependence o
tunneling matrix element and simply assumed that the c
ductance map was proportional to the local tunneling den
of statesN(x,v). However, if this is not the case, a tunnelin
matrix element form factor

T~k!5(
l

eik• lT~ l ! ~41!

will enter so that for a superconductor

L~q,v!5
1

N (
k

T* ~k1q!T~k!@G~k1q,v!G~k,v!

2F~k1q,v!F~k,v!#. ~42!

For example, a tunneling form factor

T~k!5~coskx2cosky! ~43!

has been suggested for the case of an STM tip on a cup
superconductor.5 However, because the average tunnel
density of states in these STM experiments appears to
linearly with V at low voltages, we have modeled the tunn
ing as a direct process and neglected its momentum de
dence.

Note added in proof.For the case of strong scattering o
can use at-matrix to describe the single impurity problem
This can lead to resonant scattering processes and
structure in N(x,v),15 as well as alter the coherenc
factors8,16 affecting N(q,v). For the case of many impuri
ties, one may well need to also take into account interfere
processes involving multiple impurity centers.17
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APPENDIX A: RANDOM IMPURITY
STRUCTURE FACTOR

Suppose we have anL3L section of a lattice with a con
centration ofni impurities per unit area. Assume that if the
is an impurity at sitel it has a potentialde( l )51, while if
there is no impurity at sitel, de( l )50. For a given random
configuration of Ni impurities on L3L5N sites, corre-
sponding to an area impurity concentrationni5Ni /N, we
have

de~q!5(
l

eiq• lde~ l !. ~A1!

For this configuration of impurities we can define a pow
spectrum with

P~q!5
ude~q!u2

N
. ~A2!

There is of course a peak forq50, where

P~0!5
Ni

2

N
. ~A3!

However, for other values ofq, P(q) fluctuates aboutni . If
one were to averageP(q) over many realizations of inde
pendent impurity configurations,14

^P~q!&5ni for qÞ0. ~A4!

However, if we have anL3L lattice with a fixed configu-
ration of impurities, the power spectrumP(q), given by Eq.
~A2!, will exhibit fluctuations. If we averageP(q) over
blocks ofq of width (Dqx ,Dqy) about eachq, we can reduce
these fluctuations. Naturally, at the same time, the mom
tum resolution will be reduced. Define a block-smooth
P(q) average as follows:

P̄~q!5
1

N~Dqx ,Dqy! ( 8
Dqx ,Dqy

P~q!; ~A5!

here the prime on the sum indicates thatP(0) is replaced
with ni so that theq50 peak is not broadened from th
smoothing operation. The sum in Eq.~A5! is over a set ofq
points (2Dqx/2,Dqx/2) and (2Dqy/2,Dqy/2) about eachq.
HereN(Dqx ,Dqy) is the number of sites in theDqx by Dqy

block. We expect that the rms fluctuations ofP̄(q) will de-
crease inversely as the square root of the number ofq values
in the Dqx by Dqy block.

For example, consider a lattice withL5500 and one con-
figuration of random impurities withni50.01. The power
spectrumP(q), given by Eq.~A2!, versusqx for qy50 is
shown in Fig. 17~a!. Figures 17~b! and 17~c! show similar
plots for the smoothed power spectrumP̄(q), given by Eq.
~A5!, for square blocks withDqx5Dqy52p(2d11)/L for
d55 andd510, respectively. Figure 17~d! showsP̄(q) for
the case in which onlyDqy52p(2d11)/L is averaged with
d510. The solid line in each of these figures isni50.01.
8-11
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FIG. 17. Power spectrum, a
defined in Eq.~A2! for a random
configuration of impurities with
concentrationni50.01. Here~a!
shows the unaveraged results,~b!
and ~c! show the average ove
blocks of size Dqx5Dqy

52p(2d11)/L with d55 and
d510, respectively, and ~d!
shows the average over lines o
length Dqy52p(2d11) with d
510.
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It is clear from the results shown in Fig. 17 that one c
reduce the fluctuations in the power spectrum by averagin
over a region ofq space surrounding a givenq point. This is
of course just complementary to taking the originalL3L
spatial lattice, breaking it up intoLB3LB blocks with LB
52p/Dq, constructing the appropriate Fourier transform
each block, and then averaging over the blocks. The m
blocks one has, the smaller the rms fluctuations of the po
spectrum of the Fourier transform. Of course, dividing t
L3L system up into more blocks leads to a correspond
decrease in the momentum resolution. The momen
smoothing operation, Eq.~A5!, is just another way of block-
ing.

As a further test of these ideas, we calculate the rms
viation of P̄(q) from ni versus the momentum block siz
2d11:

FIG. 18. rms deviation ofP̄(q) from ni as defined in Eq.~A6!.
The straight lines represent the asymptotic behavior in whichD
;ani /(2d11).
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D5A1

N (
qÞ0

S P̄~q!2
1

N (
qÞ0

P̄~q! D 2

. ~A6!

In Fig. 18 we show thatD varies as (2d11)21 for larged
for several different concentrations of impurities. Th
straight lines on the plot represent the asymptotic behavio
which D;ani /(2d11) with a of order one.

Finally, we model the behavior of the magnitude of t
wave-vector Fourier transform of the local tunneling dens
of states by

uN~q!u5AP~q!3H 1

Aq2q!
if q.q!5p/4,

0 otherwise.

~A7!

The results forL5500 andni50.01 are shown in Figs. 19~b!
and 19~c! for the BlockAvg@ uN(qx ,qy50)u#, averaged over
a Dqx3Dqy square withd55 andd510, respectively. Fig-
ure 19~a! shows the unaveraged result. Similarly Fig. 19~d!
shows the LineAvg@ uN(qx ,qy50)u# versusqx for the case in
which we only average over aqy segment of widthDqy
52p(2d11)/L with d510. Thus theq averaging brings
out the underlying structure of the quasiparticle interferen
factor.

Finally, we note that even without such block averagin
one is still able to see an image of the quasiparticle inter
ence response in an intensity plot of

uN̄~q,v!u5U1

p
Im L~q,v!Uude~q!u

AN
~A8!

over the (qx ,qy) plane. In Fig. 20 we show a plot o
uN̄(q,v)u for the same parameters that were used in Fig.
Here ude(q)u is obtained from Eq.~A1! with one realization
of an impurity concentrationni50.01. Comparing this figure
8-12
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FIG. 19. The magnitude of the
Fourier transform of the local tun
neling density of states, as define
in Eq. ~A7! for a random configu-
ration of impurities with concen-
tration ni50.01. Here~a! shows
the unaveraged results,~b! and~c!
show the average over blocks o
size Dqx5Dqy52p(2d11)/L
with d55 and d510, respec-
tively, and ~d! shows the average
over lines of lengthDqy52p(2d
11) with d510.
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with Fig. 14, one can see that while the structure is noisy,
key features remain clearly visible.

APPENDIX B: QUASIPARTICLE
INTERFERENCE RESPONSE

The quasiparticle interference response function for
2D free electron gas,

1

p
Im L~q,v!5

1

p
ImE d2xeiq•xG0~x,v!G0~2x,v!,

~B1!

can be directly evaluated using the expression forG0(x,v)
given by Eq. ~15!. Since the Hankel functionH0

(1)5J0

1 iN0, we have

1

p
Im L~q,v!

522pN2~0!E d2xeiq•xJ0~k~v!r !N0~k~v!r !

5H 8pN2~0!
1

q

1

Aq224k2~v!
, q.2k~v!,

0, q,2k~v!,

~B2!

with r 5uxu and

k~v!5kFS 11
v

m D 1/2

. ~B3!

We also note that carrying out the angular integration one
01450
e

e

as

ReL~q,v!

55
8pN~0!2

q2Aq224k2
lnUAq224k211

Aq224k221
U , q.2k~v!,

216pN~0!2

q2A4k22q2
tan21

q

A4k22q2
, q,2k~v!.

~B4!

Plots of the real and imaginary parts ofL(qv) are shown in
Fig. 21. As noted, in the Born approximation one only se
Im l(q,v). However, when the scattering is stronger, givi
rise to a phase shift, both Rel(q,v) and Iml(q,v) will be

FIG. 20. Intensity map ofuN̄(q,v)u for the same parameters tha
were used in Fig. 14. Hereude(q)u is obtained from Eq.~A1! with
one realization of an impurity concentrationni50.01.
8-13
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present in the quasiparticle interference response. The im
nary part ofL can also be evaluated by noting that, forv
.0,

1

p
Im L~q,v!5

1

p
ImE d2k

~2p!2

1

v2ek1q1 id

1

v2ek1 id

52E d2k

~2p!2
d~v2ek!

1

ek1q2ek
. ~B5!

Carrying out the angular integration one has

E
0

2pdf

2p

1

ek1q2ek
5H 2m

Aq424k2q2
, q2.4k2,

0, q2,4k2,

~B6!

so that

1

p
Im L~q,v!52N~0!E

2m

q2/8m2m
dekd~v2ek!

2m

Aq424k2q2
,

~B7!

which gives Eq.~B2! sinceN(0)5m/2p.
For the electron-phonon case in which the self-ene

S(v)5S1(v)1 iS2(v) only depends onv, the angular in-
tegral can be evaluated in the same way, leading to

1

p
Im L~q,v!

52N~0!E
2m

q2/8m2m
dek

1

p
S2~v!

@v2ek2S1~v!#21S2
2~v!

3
2m

Aq424k2q2
. ~B8!

FIG. 21. The real~solid line! and imaginary~dashed line! parts
of the quasiparticle interference response versusq for a noninter-
acting 2D electron gas.
01450
gi-

y

Here, as usual for the electron-phonon problem we have
glected vertex corrections.

For the case of a superconductor with scattering from
site charge potential,

L~q,v!5E d2k

~2p!2

~v1ek1q!~v1ek!2Dk1qDk

~v22Ek
21 id!~v22Ek1q

2 1 id!
,

~B9!

with Ek5Aek
21Dk

2. For a constants-wave gapDk5D0 and

1

p
Im L~q,v!52

2

p
ImE d2k

~2p!2

v1ek

v22Ek
21 id

1

ek1q2ek
.

~B10!

Making use of Eq.~B6!, we have

1

p
Im L~q,v!52N~0!E

2m

q2/8m2m
dekd~v22Ek

2!

3
2m

Aq424k2q2
~v1ek!. ~B11!

Carrying out theek integration leads to the results given b
Eqs.~36! and ~37! in the text.

For ad-wave superconductor, we have

1

p
Im L~q,v!52E dk2

~2p!2
d~v2Ek!

1

2Ek

3
~v1ek!~v1ek1q!2DkDk1q

Ek1q
2 2Ek

2
.

~B12!

This integral can be approximately evaluated whenv,D0

for the case in which ek5k2/2m2kF
2/2m and Dk

5D0cos(2u). For example, forq along the 45° direction with
q5qx5qy andqkFv/D0, one finds that

1

p
Im L~q,v!.N2~0!S 1

N~0!D0
D 1

kFAq

1

Aq2
kFv

D0

.

~B13!

This corresponds to the contribution which comes from
momentum transfer that connects the ends of onev
5Aek

21Dk
2 contour@i.e., aq7(v) wave vector# similar to the

case of the ellipse discussed in Sec. III. The enhancem
factor @N(0)D0#21 arises from the large curvature and r
sulting large density of states at the contours ends.

Keeping q along the 45° diagonal whereq5qx5qy ,
there are additional square root peaks in ImL(q,v)/p
which arise whenq connects two different contours. There
a q3(v)-like peak near which
8-14
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1

p
Im L~q,v!.

4pN2~0!

q S v

2D0
D 1

AkF2q

1

Aq3~v!2q
~B14!

when

q,q3~v!52kFF12
1

2 S v

2D0
D 2G . ~B15!

There is also a peak associated with

q8~v!52kFS 11
v

m D 1/2

, ~B16!
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