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Wave-vector power spectrum of the local tunneling density of states: Ripples in d-wave sea
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A weak scattering potential imposed on a Gul@yer of a cuprate superconductor modulates the local
density of statedl(Xx,w). In recently reported experimental studies, scanning-tunneling magéxoé) have
been Fourier transformed to obtain a wave-vector power spectrum. Here, for the case of a weak scattering
potential, we discuss the structure of this power spectrum and its relationship to the quasiparticle spectrum and
the structure factor of the scattering potential. Examples of quasiparticle interferences in normal metals and
andd-wave superconductors are discussed.
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[. INTRODUCTION emanating from a scattering center appear as a characteristic
set of rays whose wavelength and amplitude vary with their

A weak scattering potential imposed on the Gu&yer of  angular direction and the size of the bias voltage eV.*®
a cuprate superconductor creates ripples in the local tunneFwo examples of this are shown in Fig. 1. It is the STM
ing density of statebl(x,w) due to quasipatrticle interference measurements of these modulationNifx, w) that provide
scattering. It was suggested that scanning-tunneling measure-
ments of the spatial and frequency structuré&l¢x, ») could @
provide information on th& and w dependence of the gap. 30
Recently, the introduction of high-resolution Fourier-
transform scanning-tunneling microscép§ (FT-STM) has

(=1
[T

provided a powerful new technique for studying this. In this . Aas DN ]
approach, a BISCO crystal is cleaved exposing a,Bi@er. ™ °© O Of { 3‘q E
Then an STM measurement of the local tunneling conduc- -10 -10 osh 7]
tancedlI(V,x)/dV is taken over a predeterminéd< L grid -20 -20 ' 1
of points that cover a region of order 600600 A. Assum- i ., o, Bl en e s
ing that the tunneling conductance is proportional to the un- =30 -20 -10 0 10 20 30 -8 k‘}ﬂ 05 1
derlying density of states of the Cu@ayer? these measure- X :
ments give an STM map of the local tunneling density of (©)
statesN(x,w) with w=eV. This map is then Fourier trans- o B ERER (a)
formed, ‘ e EAEN EEELS RAEAI AAAL
05 / E
N(g,w)= e "ININ(X, , ), 1 L oQ 1
Qo= > (X, ) ) £ o e ]
and the wave-vector power spectrum —05 [ — & 3
|N(q,w)|2 e T e S 205 o 05 1
P(q,w) — (2) 30 -20 -10 )(: 10 20 30 e

L2

FIG. 1. (a) The local tunneling density of statdfx,w) due to
cattering from a weak potential at the origiRef. 1), for (a) w
=0.504 and(c) o=1.1A,. The length scale is set kg *. These

determined. Typically, the square root of the power spectrums
which is proportional to the magnitude Ni(q,»), is plotted

and we will follow that practice as We”_' Herg, we will dis- results were obtained for a cylindrical Fermi surface witthaave
cuss the structure d?(q,w) and its relationship to the qua- gapA(6)=A,cos(2). The contours of the solid regions ih) and

siparticle spectrum and the structure factor of the scatteringd) correspond to the points whete=\/e2+ AZ(6) for =05,

potential. _ _ _ and 1.1\, respectively. The dashed line (b) is the Fermi surface
For an isotropicswave superconductor with a circular for the noninteracting system. Thg,(w) wave vectors inb), in-

normal-state Fermi surface, the ripplesNiGx,w) produced  troduced in Ref. 4, connect the tips of various contours aie)

by a weak scattering center form a circular pattern whos@onnects what would be a diagonal nesting vector for the normal

amplitude and wavelength depend upon the bias voltage state Fermi surface. TH,(w) wave vectors shown ifd) are the

=eV. However, if the gap had,2 .2 symmetry, the ripples relevant nesting vectors whes>A,,.
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information on the wave-vector and frequency dependencboths-wave andd-wave gaps discussed. Section IV contains
of the gap. Indeed, in their FT-STM power spectrum study ofour conclusions, and Appendixes A and B contain more de-
BISCO, Hoffman etal? and McElroy etal® found tails of the calculations.

frequency-dependent structure®q, ») which they argued

was consistent with the Fermi surface dependence(kj as Il. FT-STM POWER SPECTRUM OF A 2D NORMAL

seen from angle-resolved photoemission spectroscopy METALLIC LAYER

(ARPES measurementsin this work?* these authors sug-

gested that the FT-STM data could be analyzed in terms of a 10 begin, we first consider the case of a normal metallic
set of frequency-dependent wave vectqi§w) which con- 2D layer. Suppose it is exposed to a weak potential

nect the tips of the constant energy contours specified by the

guasiparticle dispersion relation VIES J' dzxée(x)wl(x)zrlzs(x), (4)

_ |2 2
©= Vet A © with Se(x) an energy shift ak. For a BISCO-like system

The contours of the solid regions shown in Figgo)land  this local energy changée(x) could arise from secondary
1(d) are the constant quasiparticle energy contours for a cygffects associated with disorder away from the Gylane,
lindrical Fermi surface e,=k%2m—pu with a gap A, the regular potential of the BiQlayer, or possibly a weak

=A,cos P for =054, and 1.1, respectively. Also static stripe potential. This interaction creates a ripple in the
shown in Fig. 1b) are several of the'q () wave vectors one-electron Green'’s function, leading to a modulation in the

introduced in Ref. 4. The wave vectgf(w) is an additional local t_unneli_ng densi@y of states. For the case_of a W?a"
wave vector that we will discuss. The wave vectqiéw)  POtential which we will focus on, a Born approximation is

and gs(), along with their symmetry-related counterpartsappmp“ate so that the single-particle Green’s function is
(not shown, are associated with the structure of the ripplesJiVen by

in N(x,w) seen along the andy axes of Fig. 1a). Likewise,

the wave vectorgj;(w), q'(w), and g;(w) determine the G(X,X',w)=Go(X—X',w)+f d’X"Go(x— X", )
structure of the ripples along the 45° axes of Figa)n
conjunction with this experimental work, Wang and £ ee- X 8e(X")Go(X" =X, w). 5

cently reported numerical calculations for the case of a single
impurity which clearly showed the quasiparticle interferenceHere, Go(x,w) is the Green’s function of the unperturbed
arising fromg;(w) andg;(w). In addition, asw is varied  System. Then the change in the single-spin tunneling density
these calculations showed that a rich, kaleidescopelike stru®f states at position is given by
ture appears in the wave-vector power spectrum when it is
folded back into the first Brillouin zone.

In a similar way, foro=1.1A,, the wave vectors),
shown in Fig. 1d) determine the structure of(x,w) seen in ,
Fig. 1(c). Here the ripples along theandy axes are associ- XGo(X" =X, @). (6)

ated withQ, and Qs (and their symmetry-related counter- r4ying the spatial Fourier transform @N(x,), on theL

parts in they direction, while those along the diagonal are grid of points{x} specified by the STM measurements,
associated witlQ, (and its counterpartsin practice, when  5na finds forq#0, that

w~A,, inelastic scattering leads to a damping of the ripples
in N(x,), making the structure ifN(x, )| associated with _ Se(q)
the Q,, wave vectors difficult to detect. N(gw)= > e 95N(x,0)= - ——ImA(q,),
Now, the quasiparticle interference pattern shown in Figs. xetxt) m

) : : : )
1(a) and Xc) are for a single impurity. For a particular sur-
face region over which the STM measurements are madeyith
there will be an array of scatterers leading to a complex
overlap of ripples. Here we will discuss how the Fourier-
transformed wave-vector power spectruhfq,o) allows
one to disentangle the quasiparticle interference effects from
the static structure factors of the scatterers. In Sec. Il wé&"
show that for the case of a weak scattering poterfid}, )
factors into one piece which contains information on the
nesting properties of the Fermi surface times a piece which is
proportional to the static structure factor of the scatterers. We
also note that these measurements contain information on tiéere a is the lattice spacing of thexXL STM grid andq
one-electron self-energy. Various examples are analyzed te 2w(n,,ny)/La with n, and n, integers running from
show the type of information that is in principle contained in —L/2+1 to L/2. The wave-vector power spectrum of the
the FT-STM data. In Sec. lll, the case of a layered two-local tunneling density of states, E@®), is therefore given
dimensional(2D) superconductor is studied with results for by

1
SN(X,w)=— ;Imj d?X"Go(x— X", w) Se(X")

A(q,w)=J d?x€9XGy(X, )Gy — X, ®) (8)

d?x B
5e(q)=f ¥56(X)e a-x, (9)
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2 distribution of the stripes suppresses the response at higher

|6e(q)|>. (100 multiples of Q,. We will examine the effect of an array of
scattering centers in Sec. lll.

HereN=L XL is the number of sites in the sampled region. ~ Turning next to the quasiparticle interference response,

Thus, in the weak scattering Born approximatiBiqg,»)  We begin by looking aGo(X, w) for a free 2D electron gas.

separates into a piedém A(q,)/|? which describes the In this case, forw>0,

quasiparticle interference and a pidé(q)|? which is the

1/1
P(q,w)=N‘;ImA(q,w)

static structure factoB(q) of the scattering potential. d’k  elx . 1

For the random impurity case, one could imagine makingGO(X"")zf (27)2 w—ek+i5= —ImN(OHg (k(@)r),
STM maps over a large number of differenik L regions. (14)
Then by averaging the structure factor over these maps one
would obtain with e,=k?2m—u and u= k§/2m. Here N(0)=m/27 is

the single-spin electron density of states for the 2D free elec-

(| 5e(q)|?) B ) tron gas,Hgl) is the zeroth-order Hankel function of the first
N Nide” (q#0), (D kind, r=|x|, and

wheren; is the area impurity concentration add is a site )

energy shift. In this case€?(q,w) would simply be propor- k(w)=ke\/1+ ; (15

tional to n;8e? times the quasiparticle interference factor

from a single impurity. However, this is not the way the Whenk(w)r is large,
experiments are done. Rather, a single STM map on a finite

L XL grid of points covering a specific region is measured.

In this case]de(q)|? versusq exhibits fluctuations blurring Go(X, w)~—iN(0)
the image oflim A(q,w)/ x|, although one can still resolve

structure in false color 2Dd,qy) maps ofN(g,w)|. How- a4 the spatial modulation @iN(x,w) which varies as the
ever, as discussed in Appendix A, by averaging the POWELq are 0fG,(x, w) is characterized by a wave vector
spectrum over blocks of widthA(,,Aq,) about eacly, the

fluctuations can be reduced if the impurities are randomly

distributed. Naturally, this reduces the momentum resolution. [
However, if the change ig of the quasiparticle interference (@) =2Ke \/1+ .
response is predominately along a given momentum direc-

tion, one can average over a regiorgofalues perpendicular The quasiparticle interference response funciiq, )

to the direction of interest, reducing the fluctuations butfor the 2D electron gas is calculated in Appendix B. The
maintaining theg resolution in the direction of interest. Here result of this calculation showshat

we will assume that a suitable average has been done and use

™ | [kK(@)r — (/4)]
i[k(w)r— (w4
k(w)l’) e (16)

(17

the impurity structure facto'r given by E¢L1). Appendi{( A 87N2(0)
contains a further discussion of the effect of impurity in- 1 e for g>2k(w),
duced fluctuations. ~IMA(G,@)=1 avg™—4k*(w)
For the case in which the scattering occurs from a regular 0 for g<2k(w).
lattice such as the Bi lattice, one has (18
|5e(q)|2= 562N28q . (12) Thus, the wave-vector power spectrum for the 2D free elec-

tron gas has a cusp at equals X(w). Here ImA(q,)
. . — /
Here G, is a reciprocal lattice vector of the Bi lattice along Vanishes fox<2k(w) and diverges af—2k(w)]™*?asq
with the satellite wave vectors associated with the super@PProaches®w) from larger values. As noted in Appendix
modulation of the BiQ layer. One could also have a “ran- A, ReA(q,w) has a similar cusp ag approaches & v)

dom” array of stripe domains with from below. Basically, there is just a shift of phasemd® in
A(g,w) whenq passes troughK w). If the impurities are
T/ T/ dilute, but the scattering from a given impurity is strong, one
{| 55(q)|2>:Ni[ + still has P(q,w) proportional to the impurity concentration.
(A= Q*+I?  (g,~Qy)2+TI? However, in this cas& because of the phase of thenatrix

one will have singularities on both sides df(2v).

The experimental FT-STM data have been reported as the
square root of the power spectrum or the “magnitude”
IN(q,w)| of the Fourier transform of the STM measurement
HereQ,= 2/l with I, the stripe spacing,2/1" is the char-  of the local conductance map. Here we will follow this con-
acteristic size of a domain, ard is the average number of vention. For the case of weak Born scattering, the magnitude
domains in arL. X L region. Here we have taken only the first of N(q,w) is proportional to|Im A(q,w)/#|. For the 2D
Q, harmonic. The form factor associated with the chargeelectron gas, in Fig. 2, we have plottfd(q, )| normalized

+ (= — Oy, Gy— — qy)] Se. (13
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a/2kg FIG. 3. Plot of the normalized mean free path corrected

IN(g,w)| vs g for an electron gas withw=0. Herel'=(¢kg) L
I'=0 (solid ling), I'=0.01 (long-dashed ling I'=0.05 (dashed
line), andI"=0.1 (dotted ling.

FIG. 2. Plot of the normalizefN(q,»)| vs q for a free electron
gas for various values ab/u.

to \/n;N(0)| S€|/ u versusq for various values ofo/ . Here,

. . . — 1 21 r 1
with g in units of &g one has N(g,w)|==— T de ,
N(q, )| IN(q, @)] 1 1 K (20)
q.0)|= =
\/— | Sel 2q ) I5) o
MO = q°—| 1+ — with T'= (¢kg) . Plots of|N(q, )| versusg for =0 and

(19) several different values df are shown in Fig. 3.
Similarly, for an anisotropic system with
for (1+ w/w)<g/2kg. As shown in Fig. 2, for the weak

scattering caséN(qg,w)| has a one-sided square root singu- k>2< k§
larity at q/2ke=(1+ w/w)Y2. This singularity is cut off and k" 2m, T om M (21)
the response peak varies ak¢)'2 when the quasiparticle g
mean free path is taken into account. In this case one finds that
2 1 1 2, .22
1 _mx > > 2 2 > 2 for qx+7 Qy>8mX(M+w)!
—IMA(Ge Gy, @)= TV T Vot yiay Vot yiay—8my(w+ u) (22)

0 for Q§+ y2q§<8mx(,u+ ),

with y?=m,/m, . In this case the cusp in the power spec-with g, andg, measured in units ofi =2 (2m,u) "2 Here,

trum follows a locus determined by we see thatN(q,0)| vanishes inside the ellipse, E(3),
2. o2 and has a square root divergencegagpproaches the ellipse.
Oxt+ v ay=8m(u+w), (23} There is a reductiory=(m,/m,)"2 in the strength of the
cusp along theg, direction relative to theg, direction that
reflects the fact that the joint density of states which enters
A(q,w) depends on the curvature of the Fermi surface.
Turning now to the case of a tight-binding band, we con-
sider first the simple nearest-neighbor hopping band for a

which reflects the elliptical Fermi surface. In Fig. 4, we have
plotted |[N(q,w)| for ®=0 and y=3 normalized to
Jni(my/27)| S|l w, which gives

_ 1 1 1 square lattice with unit lattice spacing:
|N(Qquva)|:2_ > > )
Y \/qx—i- yzqy \/ 2. 2o o) €= — 2t(cosk,+ cosk,) — u. (25
+ —| 1+ —
B 7 Gy w The Fermi surface is shown in Fig. 5 far=—t, corre-

(24 sponding to a small fillingn)~0.31, which we have chosen
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FIG. 4. Plot of the normalizetN(q,w)| vs g, Eq. (24), for an
elliptical Fermi surface withy?=m,/m,=9 andw=0. In (a) g
=0 and in(b) q,=0.

to illustrate what happens when Ik{q,w) is folded back
into the first Brillouin zone. In the following tight-binding
band structure calculations, we will assume tNék, w) is
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FIG. 6. |Im A(q,w)/| for the tight-binding band, Eq(25),
with t=1 vs q for =0 and(a) the diagonal cui and (b) the
horizontal cutb indicated in Fig. 5. The dashed curves show the
results in the second Brillouin zone. For ayt2kp’=0.8m, so the
solid curve in the first Brillouin looks similar to the free electron
response. However, for cbf 2kf=1.3w, so that the dashed curve
in (b) looks similar to the free electron response and the solid curve
in the first Brillouin zone results from folding the dashed curve
back into the first zone.

measured on a grid of points corresponding to the sites of thgore N=1 % L is the number of lattice sites akcandq are

lattice. In this case,

1
A(g,@)= g 2 Go(k+0,0)Gg(k@),  (26)
with
Go(k)= ! 2
of )_w—ek-l-iﬁsgr(w)' @7)
1 [ LI I . | | T 17 I L | LI I_
0.5 - -
: y ]
£ oL > ;
4 + _
_1 [ | I N | I | I I | I | I I 11 I_
-1 -0.5 0 0.5 1
k /m

defined in the first Brillouin zone with components running
from — & to m. We have set the lattice spaciag=1. This
choice of the grid simplifies the calculations but has the con-
sequence that all results are folded back into the first Bril-
louin zone. It is this downfolding that leads to the kaleido-
scopic patterns in the numerical results shown in Ref. 8. In
the experimental FT-STM measuremehtsa smaller grid
spacing was used leading t@space power spectrum which
looks more like the extended zone picture for theectors of
interest.

Carrying out the momentum sum in E®@6), we find the
results for|lm A(q,w)/s| shown in Fig. 6. Here, in Fig.
6(a), q varies along the diagonal cut shown in Fig. 5 with

dx=0y . In this case|N(q, )| exhibits a similar cusp to that

of the free electron system whéq,|=2k®=2 cos [ —(u
+w)/4t]. This same type of behavior is shown as the dashed
curve for theb cut with q,=0 in Fig. 6b), where we have
displaced the numerical results by2 7 corresponding to an
extended zone scheme. Here, the cusp occurffpe 2ki

=2 cos —(2t+u+w)/2t] which is greater thamr for theb

cut of Fig. 5. In practice, the numerical data are obtained in
the “reduced” (— m,7) zone so that the, =0 b cut appears

as the solid curve shown in Fig(l§. As w is increased, the
characteristiqy values can move across the boundary of the
first zone and be mapped back via a reciprocal lattice vector.
This can then lead to a situation in which the square root
singularity is approached from smalleg values with

FIG. 5. Fermi surface of a near-neighbor tight-binding band, Eq.|ﬁ(q,w)| vanishing whenq exceeds a critical value as

(28), with u/t=—1.0 corresponding to a site fillingn)~0.31.

shown by the solid curve in Fig.(6). As noted, it is this
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FIG. 7. Fermi surface of a tight-binding band with near and

next-near hopping, Eq28), with t'/t=—0.3 andu/t=—1.0.

folding of the FT-STM power spectrum into the reduced

zone that leads to the kaleidoscopic 2@, (g,) patterns for
different o values which have been reported.

Finally, consider the case of a tight-binding band, like that
found for BISCO. Here, one has a next-near-neighbor hop-

pingt’ so that
(28)

The Fermi surface fot’/t=—0.3 andu/t=—1.0 is shown
in Fig. 7. Results of a numerical
Im A(q,w)/ for this case are plotted in Figs(a88 and 8b)

€= — 2t(cosk, + cosk,) — 4t cosk,cosky — u.

for q,=0 andqg,=q,, respectively. Fog,=0, the nesting
vector 3 is shown in Fig. 7. If we consider the closed Fermi
surface around+, 7), one can see that the two points of this

PHYSICAL REVIEW B8, 014508 (2003

labeled 3 have\q greater thanr. In fact, Aq/7=1.76, so
that when this is folded back into the first Brillouin zone, the
cusp occurs ahq/ 7= —0.24. Also, as we saw previously in
Fig. 6(a@) the cusp rises from smaller values @fn the re-
duced zone although in an extended zone scheme it would be
approached from largeg values just as in the free electron
case. The peaks in the response dorq, shown in Fig.
8(b) arise from the nesting vectors labeled 1 and 2 in Fig. 7.
To conclude this section on the normal state, we consider
an electron-phonon system with a self-enebfw) which
depends only upon the frequency. In this case, the momen-
tum that enters the Hankel function givil@(x,w) is

(0—3(w)

UF

K(w)=kg+ (29
The real part of the self-energy leads to a shift in the wave-
length of the modulations and the imaginary parofeads

to their exponential decay on a scaleevg /[ —23,(w)].
This behavior is reflected in a shift in the position and a
rounding of the cusp in the power spectriiq,w). For
values ofw which are small compared to a typical phonon
frequency

(1+MNw
k(w)=kg+ ———,
UF

(30)
with A =2N(0)|g|?/Q, the dimensionless electron-phonon
interaction strength. Herg is the effective electron-phonon
coupling andQ, a typical phonon energy. A& increases
2ke(w) will reflect the detailed dependence of both the real

calculation for and imaginary parts ak ().

Ill. FT-STM POWER SPECTRUM
OF A SUPERCONDUCTOR

closed Fermi surface that are connected by the wave vector Next consider the case of a superconductor. Here, for an

0.8 : —
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I qy= qx
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qQ,/7
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|
-

FIG. 8. [ImA(q,w)/m| vs q for w=0 for the tight-binding
Fermi surface shown in Fig. 7a) g,=0 and(b) q,=q, .

on-site energy perturbation, we have

1
SN(X, )= — ;Imj d’X'[G(x—X",0)G(X' —X,w)

—F(X—X",0)F(X' —X,w)]de(x"), (31
with G(X,w) the usual single-particle propagator,
G(x,w)zJ d% gik-x w+ € . (32
(2m)? w?—e—AZ+i6
andF(X,) the anomalous Gor’kov propagator,
F(x,w)=f LI - . (33
(2m)? w?—€2—A2+i6
In this casé"
2
A(q,w>=f ek awcke)
—F(kt0,0)F(k)]. (34
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FIG. 9. Plot of the normalizetN(q, )| vs g for an s-wave superconductor with a cylindrical Fermi surface arg.=0.1. (a) Results
for positive values ofv=eV and(b) for negative values ob.

For a 2D swave superconductor with,=A and €,  place A. Normalizing by Vn;N(0)|5e|/u, as previously
=k?2m—u, these Green’s functions have characteristicdone for the free electron case, we have plofte¢, w)|

wave vectors versusq in Fig. 9 for a BCSs-wave superconductor with
\/TAZ 2 A/u=0.1. The coherence factors in E@6) and (37) give
K. (w)=ke| 1+ @ } (35) more weight to the R, (w) cusp for positive values ob
- associated with a bias voltage that probes the empty states,

Fig. 9a), while theq=2k_(w) cusp is enhanced when the
bias is reversed as shown in Figh®
We turn next to the case ofchwave superconductor with

The wavelength of the ripples iBN(X, w) is set by X (w).
For w<A, the ripples exponentially decay. If the impurity
perturbation involved a change in the size of the gap, there
would be a quasiparticle interference contribution involving _ _
k. (w)—k_(0)=2keJw?>—A?%/n. The ripples associated A= Rol cosky—cosk,)/2 38
with this contribution vary on a length scale set by/A and a band structure given by E@8) with t'/t=—0.3 and
which is of order the coherence length rather than. Itis ~ u=—1.0. The Fermi surface for these parameters is shown
this type of spatial oscillation that is responsible for the To-as a dashed line in Fig. (. The contours of the solid
masch oscillation¥? While Tomasch ripples aiQ:(w)  regions correspond to the loci of points where
=k, (w)—k_(w) are not present for the case of a charge= \/ek2+ AE for w=0.5A in Fig. 10@) andw=1.1A in Fig.
impurity in an isotropics-wave superconductor, they can ap- 10(b). Results forllm A (g, )/ | at various values ob less
pear for ad-wave superconductor as discussed below. thanA, are shown in Fig. 1(b) for g,=q, and Fig. 11b) for
As shown in Appendix B, it is straightforward to evaluate q,=0. For the diagonal cut witg,=q, , there is a response
Im A(q,w) for ans-wave BCS superconductor and one findsat the wave vecton,(w) shown in Fig. 10a) which con-
that nects the end points of the?= €2+ A2 contour. This peak is
similar to the peak we have seen in the case of the ellipse
w—Jw’—A%\1 1 discussed in the previous section. There are two identical
JwZ—AZ q JPP—4KZ () contributions coming from the two contours on opposite
(36) sides of the Fermi surface. As the bias voltagé=w in-
creases, one sees thp{ w) peak moves to larger values of
for 2k_(w)<q<2k,(w) and momentum. This reflects the increase in magnitude of the
1 wave vectorg,(w) asw is increased and can provide infor-
ZImA(q, o) mation on thek dependence of the Fermi surface and g4p.
m In addition, there is a contribution coming fragg(w) which
connects the tips of two opposite contours which increases
0= Vo~ A? 1 1 more slowly withw. Finally, there is a response associated
Vo?—A? 4 g?—4k* (w) with g’ shown in Fig. 108). This is the response due to the
wave vector labeled 1 in Fig. 7 and shown in the diagonal
o+ Jo—A%\1 1 gx=dy response of the normal metal with this same band
Jo?— A2 a \/q2—4k2 () (37 structure in Fig. &). Approximate analytic results for the
* d-wave case are given in Appendix B, EGB14) and(B17).
for 2k, (w)<qg. More generally, for an electron-phonon sys-  Similarly in Fig. 11(b), for q,=0 one finds structure as-
tem the frequency-dependent complex gafw) would re-  sociated with the wave vectory; and g5 shown in Fig.

1 2
;Im A(g,w)=4m7N*(0)

=4WN%O%

+47N?(0)
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FIG. 10. Characteristic wave vectors for dawave superconductor with a tight-binding band, Eg8), with t'/t=—0.3, u/t
=-—1.0, andA,=0.1. The contours of the solid regions correspond to the points wkaere/ek2+ Akz with (@) @=0.5A; and (b)
=1.1A,. The dashed line ifa) shows the Fermi surface of the noninteracting systenth)liQ; andQs (Q4 andQ,) connect the innermost
(outermosk surfaces whileQ; connects the outermost surfaces.

10(a). As discussed by McElroet al.* this structure arises regions in quadrants 2 and 4, which give rise to a cusp whose
from a peak in the joint density of states associated with thenajor axis is perpendicular to that due to quadrants 1 and 3,
overlap of the ends of two opposite’=e2+AZ contours. there are cusps from scattering processes between the four
Just as for the case of the elliptical Fermi surface previouslyiodal regions. In addition, there is the response associated
discussed, the strength of the cusp depends upon the curvgith the nodal wave vectog’. In order to see this more
ture of the dispersion. The increaseqg{ @) with increasing  clearly, we have calculated (q,w) for the case in which
w again provides information on the Fermi surface and t'=0. In Fig. 12 we compare the results fom A (q, w)/ 7|
The peak atis(w) initially increases withs and would con-  calculated witht’ =0 [Fig. 12)] and witht'/t=— 0.3 Fig.
tinue to increase in an extended zone but here, dor 12(b)]. In both cases, we clearly see the contributions|f
~0.25, it is reflected back into the first Brillouin zone. andqy. In addition, aq’ contribution from the nodal region
Finally, there is a weak cusp at low momentu(w) s also visible. They; contribution is weaker for the case in
associated with the Tomasch int(iference process. whicht’=0. In this case we also find thhds|<|q’| as one
Note that the response seen|M(q,w)| associated with can see from the insets in the figures.
quasiparticle interference is actually characterized by a con- When w is greater tham\,, structure in|[N(q,w)| is as-
tinuous curving cusp in theg(,q,) plane whose intensity is sociated with theQ, vectors shown in Fig. 10), for
related to the joint density of thie and k+q quasiparticle ~=1.1A,. In this case, for,=qy,, |[N(q,®)| exhibits struc-
states. When we take into account all four quadrants, théure atg,=Q;, Q,, andQg; see Fig. 189). The weak struc-
structure in the power spectruR(q, w) in the first Brillouin  ture at large momentum transi®y, is similar to the structure
zone becomes much richer. Not only are there cusps assodar the normal state labeled “1” in Fig. 8, since the gap
ated with scattering processes confined to similar contouvanishes along the diagonal. The structurefatand Qs

(b)

(a)
4 N 0.4 — T T T
0 1 e A w=0.54, 0 K | ; | - | . w=0.54, FIG. 11. ||m A(q,w)/rr| VS g
T |

0.4 — for a d-wave superconductor with

4 T T

2L e g |% | o2 L g q C a tlght-blnqllng ,baild given by
/ Eq. (28 with t'/t=—0.3, u/t

0 — N w=0.3754, o e ; ' . w=0.3754, =—1.0, andA,=0.1t. Here (a)

4 T ozl T shows results for a diagonal cut
2| J\qv 4/ . 01 ™ % 9 for qx=g, and (b) shows results
o L A Je-0a2ss, o . . — | w=0.258, for a horizontalg, =0 cut. Theq,,
2 — T T ] T T andq’ vectors are shown in Fig.
L a, q/4, | 0.1 G s\ 10(a).
0 S R L AL w=0.14, 0 | - | ! ©=0.14,

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

q,/m q,/m
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i J 1 Q, 4 g9,=q,
0 1 I 1 I 1 t'/tzo'o r\r\'\
4 — 0.5 0.75 1
| 1 _\u —TT ] (b) i T T T T T
FSIN : ®
-xo [0 |9 93 A 1
21 0 k, /7T 1 q' — 1
;—-—H—-\J\N L /t= 197°
0 f |/\\ 1 t/t__oa .
0 0.25 0.5 0.75 1 0 R
q,/™ 0 0.25 0.5 0.75 1
FIG. 12. |ImA(q,w)/ 7| vs g for a diagonal cut in whichy, q,/™
=dy . (&) shows resu!ts for a tight-binding band with't=0 and FIG. 13.|Im A(q, »)/ | vs q for ad-wave superconductor with
(b) shows results fot /t_= —0.3. w=0.54, and the other param- 5 tight-binding band given by Eq(28) with t'/t=—0.3, w/t
eters are the same of Fig. 11. =-1.0, Ap=0.1, and w=1.1A,. Here (a) shows results for a

diagonal 45° cut forj,=q, and(b) shows results for a horizontal
correspond to interference processes between the particlelikg=0 cut. TheQ, vectors are shown in Fig. 18).
and holelike BCS quasiparticles. Just as for shveave case,
for >0, the coherence factor gives more weight to@e  ture oriented along thg axis with a spacing of four lattice
process. Results foN(q, )| versusy for g,=0 are shown sites. For the parameters we have chosgliw)= /2 for
in Fig. 13b). In this case, structure appears associated withw=0.54 with A, the maximum value of the-wave gap.
ax=Q, andQs with the coherence factors leading to a largeAs seen in Fig. 15, the ordered array of stripe scattering
response af, for positivew. As noted earlier, in the cuprate centers produces an oriented set of ripples. These give rise to
superconductors lifetime effects suppress thisA, struc-  the structure iNfN(q, )| shown in Fig. 16 foig= /2. Here
ture, making it difficult to see in the experimental studies. we have assumed that there is quasiparticle scattering from a
The structure in the quasiparticle interference response
can also be seen in the intensity map plot§liof A (q, w)/ 7| 0 025 05 075 1.
over the @,q,) plane. One such map foo=0.5, is 1. -
shown in Fig. 14. Here one sees that the response is charac-
terized by continuous curving intensity cusps in tlg,(,)
plane. Like the case of the elliptical Fermi surface, the inten- 0.75
sity can have significant variations along the cusps due to the
curvature of the quasiparticles dispersion relation. Going out
from the origin alongy,=qy as in Fig. 12b), one first sees a qy 0.5
bright (high-intensity regioh cusp associated witlg;. At in
large momentum values along this same 45° line one sees a
narrow bright line associated with’ scattering processes 0.25
which connect the outer edges of the= \/ek2+ AE enve-
lopes. Finally, the brighter, curved region of intensity near y
the (,7r) corner arises frongs interference processes asso- ]
ciated with the inner boundaries of these contours. The bright 0 0.25 0.5 075 1.
regions near d/7=0.854q,/7=0.3) and (/7 qu
=0.3, q,/7=0.85) arise from interference effects associ-
ated withg, andqs of Fig. 10a). FIG. 14. Intensity map of the quasiparticle interference response
Finally, we consider the response oflavave supercon- |im A(q,w)/| for a d-wave superconductor plotted over the first
ductor when there is an ordered stripe array of weak scatte(q, ,d,) quadrant. Here, the band structure is given by(E8) with
ing centers. In Fig. 15 we show the ripples produced int’'/t=0.3 andu=—1.0; A, is given by Eq.(38) and the bias isv
N(X,w) when the scattering centers form a stripelike struc-=0.5A,,.

0.75
0.5

0.25
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random array of impurities as well as the stripes. These corg

tributions add incoherently so that

(loe(a)|?)~

Here Q,= /2 and we have takefh'=0.01 andA=0.5 in

Fig. 16 to illustrate the possible interplay of the scattering
from the random impurities and the stripes. The quasiparticlé
interference peak associated wih moves to lower values
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of g, asw increases while the response associated with the
ordered array of scattering centers remains fixedgat
=0.57 and only its amplitude changes with. For larger
values ofA, the stripes would be the dominant feature while
for smaller values of scattering from the random impurities
would dominate the power spectrum.

IV. CONCLUSIONS

Here we have discussed some detailed examples which
illustrate what can be learned from FT-STM studies of lay-
ered materials. For the case of a weak potential perturbation
we have seen that the wave-vector power spectrum of the
local tunneling density of stateB(q,), contains informa-
tion on the quasiparticle spectrum and the structure factor of
the scatterers. This is also the case for dilute impurities even
if they act as strong scattering centers aizdis replaced by
at matrix. For a normal metal, one can determine informa-
tion about the nesting properties of the Fermi surface from
the loci of the g-space cusps fow—0. In addition, the
dressed Fermi velocity can be obtained from thelepen-
dence of the position of the cusp. In fact, from thedepen-
dence of the cusp position and its rounding, one can, in prin-
ciple, obtain information on the real and imaginary parts of
the electron self-energy.

In the superconducting state, one can also obtain informa-
tion on both the wave-vector and frequency dependence of
he gapA(k,w). Again, just as in the case of a normal metal,
the signature of these quasiparticle interference effects are
continuous “arcs” of cusps i space. However, the inten-
sity variation along the arcs may be large due to changes in
the effective density of states associated with a given mo-
mentum transfeq, making the intensity appear more like
spots. The rapid change in intensity is due to the small pa-
ameterA,/t.

In addition to these effects, one can also obtain informa-
tion on the static structure factor of the scattering potential
(| 5€4)?). As discussed in Appendix A, for the case of a local
potential, averaging over Aq, by Aq, block of q values
about a givery leads to(| de,4|*)/N=n; 5e>. However, if the
scattering potential has long-range order, such as is the case
for the BiO, over layer in the BISCO studies, one should see
a g-dependent response in the wave-vector power spectrum
of the local tunneling density of states fqrvalues equal to
the reciprocal lattice vectors of the BjTayer. This response
will be particularly strong forw=A,. Similarly, it should be
possible to see evidence of pinned stripes in the structure
factor if they are preserit.

As discussed in the Introduction, we have focused on the
case of weak scattering. As noted, in this limit, where the
Born approximation is adequate, one has a simple separation
of the response into the quasiparticle interference effects
which are contained im\(q,») and the structure factor of
the scatterers which is contained {hde,4|?). Of course,

FIG. 16. Structure iiN(q,®)| vs gy for random impurities and Many-body interactions will give rise to additional effects.
an ordered array of stripes separated by four lattice spacings. ThEnere will be screening, changini, to de,/e(q,0) where

quasiparticle interference peaks associated wjifw) andgs(w),
previously shown in Fig. 1b), are seen along with a peak at

€(q,0) is the zero-frequency dielectric constarfurther-
more, there will be vertex corrections so that, for example,

=0.57 which arises from the striped array of scattering centers. for a strongly interacting normal system one will have
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d2k APPENDIX A: RANDOM IMPURITY
A(q,w>=f oy (k@) Gkt 8,0)G(k o) STRUCTURE FACTOR
(40) Suppose we have dnxX L section of a lattice with a con-

centration ofn; impurities per unit area. Assume that if there

with I'(k,q,) the elastic vertex for momentum transfgr is an impurity at sitd it has a potentiabe(l)=1, while if
and zero energy transfer for an incoming particle with mo-there is no impurity at sité Se(l)=0. For a given random
mentumk and energyw. Similar vertex corrections will oc- configuration of N; impurities onLXL=N sites, corre-
cur in the superconducting state. In addition, the quasipartisponding to an area impurity concentratiop= N; /N, we
cle dispersion relation can be altered by an interaction whicthave
breaks the translational symmetijieading to a different»
dependence giN(q,w)|. -

Finally, thedre is the| form factor of the tunneling probe. 56(‘1):2 e'9l5e(l). (A1)
Here we have neglected the momentum dependence of the
tunneling matrix element and simply assumed that the conFor this configuration of impurities we can define a power
ductance map was proportional to the local tunneling densitgpectrum with
of statesN(x, w). However, if this is not the case, a tunneling

matrix element form factor |6e(q)|?
Pla)=— (A2)
T(k)=>, e*IT(I) (41)  There is of course a peak fogr=0, where
T
N2
will enter so that for a superconductor P(0)= WI (A3)

However, for other values daf, P(q) fluctuates aboun, . If
one were to averagB(q) over many realizations of inde-
pendent impurity configuratiort$,

1
Ag0) =5 2 THk+ ) T(K[G(k+q,0)G(k, )

—F(k+q,0)F(k,w)]. (42

P =n; for q#0. A4

For example, a tunneling form factor (Pan=n, a A4
However, if we have ah X L lattice with a fixed configu-

T(k)= (cosky— cosky) (43 ration of impurities, the power spectruf(q), given by Eq.

. (A2), will exhibit fluctuations. If we averagd(q) over
has been suggested for the case of an STM tip on a cupraﬁocks ofq of width (Aq,,Aq,) about eachy, we can reduce

superconductot. However, because the average tunnelingihese fluctuations. Naturally, at the same time, the momen-

density of states in these STM experiments appears to vakyjm resolution will be reduced. Define a block-smoothed
linearly withV at low voltages, we have modeled the tunnel-p(q) average as follows:

ing as a direct process and neglected its momentum depen-

dence. o
Note added in proof-or the case of strong scattering one P(q)=

can use &-matrix to describe the single impurity problem.

This can lead to resonant scattering processes and loc

structure in N(x,0)," as well as alter the coherence n; so that theq=0 peak is not broadened from the
ffiCt°r§' affectingN(q, ). For the case of many impuri-  gmqqthing operation. The sum in E@D5) is over a set ofy
ties, one may well need to also take into account mterferenchints (Aq/2,Aq,/2) and (—Aq,/2,Aq,/2) about eacty

. . . . . X! &y X yl &y y .
processes involving multiple impurity centérs. HereN(Ady,Aqy) is the number of sites in thia, by Ad,

block. We expect that the rms fluctuationsPfq) will de-
ACKNOWLEDGMENTS crease inversely as the square root of the numbenaflues
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N(Aq, Aq) AqXEAqy P(q); (A5)

Abre the prime on the sum indicates ti0) is replaced
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0.01 0.01 j?—ﬁ*
ﬁ?‘ﬁf
0 0
0 0.2 0.4 0. 0. 1
a/n
It is clear from the results shown in Fig. 17 that one can 1 _ 1 2
reduce the fluctuations in the power spectrum by averaging it D= N > P(q)— N (AB)
q#0 #o

over a region ofy space surrounding a givenpoint. This is

of course just complementary to taking the origimakL  |n Fig. 18 we show thab varies as (8+1)* for larged
spatial lattice, breaking it up intbgXLg blocks withLg  for several different concentrations of impurities. The

=2m/Aq, constructing the appropriate Fourier transform forstraight lines on the plot represent the asymptotic behavior in
each block, and then averaging over the blocks. The mor@hich D~ an;/(2d+ 1) with « of order one.

blocks one has, the smaller the rms fluctuations of the power Finally, we model the behavior of the magnitude of the
spectrum of the Fourier transform. Of course, dividing theyave-vector Fourier transform of the local tunneling density
L XL system up into more blocks leads to a correspondingf states by

decrease in the momentum resolution. The momentum

smoothing operation, EGA5), is just another way of block-

1
ing. — if g>q*=w/4,
As a further test of these ideas, we calculate the rms de- IN(g)|=VP(a)x\ Ja—q (A7)
viation of P(q) from n; versus the momentum block size 0 otherwise.
2d+1:

The results fok. =500 andh;=0.01 are shown in Figs. 19
and 19c) for the BlockAvd [N(qy,q,=0)|], averaged over
‘”[E ' aAg,xAg, square withd=5 andd= 10, respectively. Fig-
““““ . ure 19a) shows the unaveraged result. Similarly Fig(d)9
shows the LineAvgN(qy,q,=0)|] versusgy for the case in
E which we only average over g, segment of widthAg,
=2m(2d+1)/L with d=10. Thus theq averaging brings
out the underlying structure of the quasiparticle interference
gy factor.

Finally, we note that even without such block averaging,
one is still able to see an image of the quasiparticle interfer-
ence response in an intensity plot of

001Q

a 0.001 4™~

0.0001 |

M@0~ S im A 292 g
1e-05 ’ ™ , \/N
1 10 100
2l over the {Ix,qy) plane. In Fig. 20 we show a plot of
FIG. 18. rms deviation oP(q) from n; as defined in Eq(A6). IN(q,w)| for the same parameters that were used in Fig. 14.
The straight lines represent the asymptotic behavior in wiich Here|Se(q)| is obtained from Eq(Al) with one realization
~an;/(2d+1). of an impurity concentration; =0.01. Comparing this figure
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with Fig. 14, one can see that while the structure is noisy, the  ReA(q,w)

key features remain clearly visible.
sz(O)2 \/q — 42+ 1|

APPENDIX B: QUASIPARTICLE 2\/ 2_4k2 \/ —4Kk2— 1‘ 9>2k(w),
q vq q
INTERFERENCE RESPONSE =
The quasipatrticle interference response function for the B 16WN(O)2t _1—q g<2k(w)
an , @).
2D free electron gas, 94k’ —q Vake—q
(B4

1 1 :
—ImA(q,w)= —Imf d?x€9XGy(X,w)Go(— X, w),
o o . . .
(B1) Plots of the real and imaginary parts &{qw) are shown in
Fig. 21. As noted, in the Born approximation one only sees
ImA(qg,w). However, when the scattering is stronger, giving

can be directly evaluated using the expressionGg(x,w) rise to a phase shift, both Réq, «) and Im\ (g, «) will be

given by Eg. (15. Since the Hankel functiorH(()l)=J0
+iNg, we have

0 025 05 075 1.

1I A
7 mAae) :
0.75 & 10,75
=—277N2(0)f d?x€9*Jo(K(@)r)No(k(w)r)
0.5 0.5
8mN?(0) ! ! q>2k(w) P
T e w),
- 4N ak(w) B2) 0.25 i 0.25
0, q<2k(w), 1
. 0 | - - T 0
with r=|x| and 0 025 05 075 L
Qx/p
w12
k(w)=kg| 1+ ; (B3) FIG. 20. Intensity map 0|N(q,w)| for the same parameters that

were used in Fig. 14. Herl@e(q)| is obtained from Eq(A1) with
We also note that carrying out the angular integration one hasne realization of an impurity concentratiog=0.01.
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FIG. 21. The realsolid line) and imaginarydashed ling parts
of the quasiparticle interference response veigtdigr a noninter-
acting 2D electron gas.

present in the quasiparticle interference response. The imagi-
nary part ofA can also be evaluated by noting that, for

>0,
1I N _1I J d%k 1 1
7 MA@ @)=71m (2m)2 @ €xsqtid o—etio
2[ S stoa ®s)
= w— € .
(2m)? X €k+q~ €k
Carrying out the angular integration one has
2m
2rg 1 — g*>4K?
f o 1 | T (B6)
0 2T €kiq— €k y
0, ge<4ke,
so that
L mA(G0) 2N(0)fq2’8m_"d S )
—Im ,W)= € 0(w— €)———,
T q —u k k o — 4K22
(B7)

which gives Eq(B2) sinceN(0)=m/27.

For the electron-phonon case in which the self-energy

S (w)=341(w)+iZ,(w) only depends om, the angular in-
tegral can be evaluated in the same way, leading to

1| A
—Im (q,w)

12
p 2(w)

q2/8mf;L
=2N(0 d
( )f,u ek[w—ek—El(w)]2+E§(w)

2m

o S—__
Va*—4k’q

(B8)

PHYSICAL REVIEW B8, 014508 (2003

Here, as usual for the electron-phonon problem we have ne-
glected vertex corrections.

For the case of a superconductor with scattering from a
site charge potential,

A’k (0+ € q)(@+ ) — Ay gAx
(2m)% (0®—EF+i0)(w?—Ef, +i0)
(B9)

A@.o)= |

with E, = \/sk2+ Azk. For a constans-wave gapA,=A, and

d2k w+ €k 1

(27)? w?—E2+i6 €k+q~ €
(B10)

1| A = 2| j

Making use of Eq(B6), we have
1 2/8m—
~im A(q,w)zZN(O)Jq P e d(w?— E2)
—p

2m
X—m(w'i‘ €).

Carrying out thege, integration leads to the results given by
Egs.(36) and(37) in the text.
For ad-wave superconductor, we have

(B11)

2
(2m)?

><(w+ e (0 + 1) = Ay q

2 2
Ek+q_ Ek

1
;ImA(q,w)=2f o(w

- Ek)Z_Ek

(B12)

This integral can be approximately evaluated whea A,
for the case in which ek=k2/2m—k§/2m and Ay
=A,cos(%). For example, fog along the 45° direction with
g=0y=0dy andgkew/A,, one finds that

1I N N20< 1 ) 1 1
—ImA(g, @)= ()N(O)AO v

kF(l).

q— A_o
(B13)

This corresponds to the contribution which comes from a
momentum transfer that connects the ends of ane

= \/ek2+ Akz contour|i.e., ag;(w) wave vecto} similar to the
case of the ellipse discussed in Sec. lll. The enhancement
factor [N(0)Aq] ! arises from the large curvature and re-
sulting large density of states at the contours ends.

Keeping g along the 45° diagonal wherg=q,=qy,
there are additional square root peaks in Ay, w)/w
which arise whem connects two different contours. There is
a (3(w)-like peak near which
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EI N ~47TN2(0)(i) 1 1 where
7 M A e)="y 280/ ke —q Vaz(w)—q Lo ~4WN%Ow w) 1 !
B14 M) = o o a (@) Ja—aue)

when (B17)

when g>q'(w). In the limit A;—0, this last expression
) (B15) becomes

ok 1/ o \?
q<0s(@)=2kg|1— 3 24,

. . : 1 47N?(0)
There is also a peak associated with ZImA(Q @)= ——————— (B18)
a2 ™ avkeVg—2k(w)
"(w)= +— o
q'(@)=2k| 1 wno (B16) which is the free electron result E(B2) for w/u<1.
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