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Stripes and holes in a two-dimensional model of spinless fermions or hardcore bosons

N. G. Zhang* and C. L. Henley
Department of Physics, Cornell University, Ithaca, New York 14853-2501
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We consider a Hubbard-like model of strongly interacting spinless fermions and hardcore bosons on a square
lattice, such that nearest neighbor occupation is forbidden. Stripes~lines of holes across the lattice forming
antiphase walls between ordered domains! are a favorable way to dope this system below half filling. The
problem of a single stripe can be mapped to fermions in one dimension, which allows understanding of its
elementary excitations and calculation of the stripe’s effective mass for transverse vibrations. Using Lanczos
exact diagonalization, we investigate the excitation gap and dispersion of a hole on a stripe, and the interaction
of two holes. We also study the interaction of a few stripes, finding that they repel and the interaction energy
decays with stripe separation as if they are hardcore particles moving in one~transverse! direction. To deter-
mine the stability of an array of stripes against phase separation into a particle-rich phase and a hole-rich liquid,
we evaluate the liquid’s equation of state, finding that the stripe-array is not stable for bosons but is possibly
stable for fermions.

DOI: 10.1103/PhysRevB.68.014506 PACS number~s!: 74.20.Mn, 71.10.Fd, 71.10.Pm, 05.30.Jp
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I. INTRODUCTION

Stripes have been an area of active study in hi
temperature superconductivity research since Tranquada
co-workers1 observed the coexistence of superconduct
and stripe domain order for the materi
La1.62xNd0,4SrxCuO4 at around dopingx50.125. Theorists
have focused in particular on thet-J model, using a variety
of computational techniques, for example, exa
diagonalization,2 quantum Monte Carlo,3 and DMRG.4,5 The
t-J model and its variants are believed to be a reasona
good model of the competition between charge and spin
grees of freedom which is crucial in the formation of strip
in cuprates and important in explaining experimental da
for example, angle-resolved photoemission spec
~ARPES!.6

In this paper, we present a systematic study of a stron
interacting model ofspinlessfermions. This model is the
simplest model of interacting electrons with nontrivial sta
in two dimensions—a spinless analog of the Hubbard mo
and in this model, stripes, that are lines of holes across
lattice, are natural objects when doping from the half-fill
limit. Our results do not have direct implications for expe
ments on cuprates because for that, a spinfull model suc
the t-J model would be needed; however, as we will show
this paper, this model is valuable because it gives us a c
crete understanding of the emergence of these exten
fluctuating, and quantum mechanical stripes from the un
lying, microscopic particles. We can diagonalize much lar
systems than possible for spinfull models, for example
system of one length-12 stripe with two holes on the 7312
lattice or two length-8 stripes on the 8328 lattice. As exact
diagonalization works on the Hubbard and thet-J models are
limited to very small lattices, a more thorough analysis on
analog model is helpful. Furthermore, just as the Ising mo
gives us insight on more realistic models of magnetism,
believe that this model can shed light on spinfull models a
is a good example system for testing new theoretical
0163-1829/2003/68~1!/014506~22!/$20.00 68 0145
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computational techniques. We will also discuss the releva
of our work to spinfull stripes~in Sec. VIII B!.

A. The model

The Hamiltonian is

H52t(
^ i , j &

~ci
†cj1cj

†ci !1V(
^ i , j &

n̂i n̂ j , ~1.1!

with periodic boundary conditions on the square lattice.
study both the spinless fermion and the hardcore boson
sions of this model.ci

† and ci are the spinless fermion o
hardcore boson creation and annihilation operators at sii,
n̂i5ci

†ci the number operator,t the nearest-neighbor hoppin
amplitude, andV the nearest-neighbor interaction streng
At each site there can be at the most one particle. Furt
more, we study the strong-correlation limit of the model a
takeV51`, i.e., infinite nearest-neighbor repulsion.

The spinless fermion or hardcore boson model with in
nite nearest-neighbor repulsion involves a significant red
tion of the Hilbert space as compared to the Hubbard mo
The Hubbard model on the 434 lattice at half filling, with 8
spin-up and 8 spin-down electrons has 1 310 242 states in
largest matrix block, after reduction by particle conservati
translation, and the symmetries of the square.7 In our model
with infinite V, after using particle conservation and trans
tion symmetry~but not point group symmetries!, the largest
matrix for the 737 system has 1 906 532 states~with 11
particles!. We can therefore compute for all fillings the
37 system whereas for the Hubbard model 434 is basically
the limit. This also means that at certain limits we can obt
results that are difficult to obtain in the Hubbard model, f
example, we can exactly diagonalize a system of t
length-8 stripes on the 8328 lattice.

This is one of the two papers that we are publishing
systematically study the phase diagram of the spinless
mion or hardcore boson model on the square lattice w
infinite nearest-neighbor repulsion. In the other paper,8 we
©2003 The American Physical Society06-1
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N. G. ZHANG AND C. L. HENLEY PHYSICAL REVIEW B68, 014506 ~2003!
study the dilute limit of this model~1.1!, focusing on the
problem of a few particles, and that limit is dominated
two-body interactions. In the present paper, we study
near-half-filled limit of our model, where stripes are natu
objects.

With infinite nearest-neighbor repulsion, the maximu
filling fraction ~particle per site! for our model is 1/2, for
both spinless fermions and hardcore bosons. At exactly
filling, the particles form a checkerboard configuration th
cannot move. Adding a single hole to it cannot produce m
tion either because the hole is confined by neighboring p
ticles. A natural way to add holes to this system is to al
them in a row going across the system, as indicated in Fig
We call this row of holes a stripe and it is the subject of stu
in this paper.

For many systems with certain aspect ratios~e.g., the 6
37 lattice depicted in Fig. 1!, the stripe state is the one wit
the smallest number of holes and nonzero energy. Here
have an interesting kind of physics of extended, fluctuati
and quantum mechanical objects, that are results of co
tive motions of many particles.

Spinless models related to the present one have bee
voked occasionally in the literature9 but usually in the con-
text of a specific question about spinfull models: it was r
ognized that a spinless model would capture the sa
physics with fewer complications. The only systematic wo
on phase diagram of spinless fermions is by Uhrig.10 How-
ever, the method is expansion around infinite dimensiona
this will have special difficulty with arrays of domain walls
since wall fluctuations and the attendant kinetic energy
strongly suppressed in high dimensions.

The Falicov-Kimball model is an alternate way to sim
plify the Hubbard model, which is also commonly presen
in a spinless form,11 and develops stripelike incommensura
patterns.12 However, this model includes a second immob
~classical! species of electron, so its stripes cannot ha
quantum fluctuations.13

FIG. 1. An isolated hole~shown in the box! in a half-filled
region cannot move. A row of holes~a stripe! can slide along in the
vertical direction, with the arrows showing the possible moves.
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No known electron system realizes our model, even
proximately. A ‘‘half-metallic’’ ferromagnet14,15—meaning
that for one spin state, the conduction band is all filled or
empty—realizes a spinless model for the other spin st
However in the best-known half metals, the manganite16

the formation of inhomogeneities is dominated by lattice d
tortions and orbital degeneracies~not to mention static pin-
ning disorder!, so that quantum-fluctuating defects find n
role in current theories of manganites.~The same may be
true for the Verwey transition in magnetite,17 which was
modeled previously with spinless electrons.15! Conceivably
the spinless model could be realized in an array of semic
ductor quantum dots in a magnetic field.18

Our ~fermion! model could be considered a caricature
the spinfult-V model (U5` extended Hubbard model! with
large V, whenever charge fluctuations are more import
than spin fluctuations. This models certain two-dimensio
organic~super!conductors19 such asu-(BEDT-TTF)2I3, but
these materials cannot be doped away from 1/4 filling. I
dopable realization is found, stripes are expected20 and the
present work would be a starting point to study such syste

The most plausible realization of the boson version of o
model would be an adsorbed gas of4He on a substrate with
square symmetry.~The same model—but on a triangula
lattice—has been introduced independently to model4He on
nanotube.21,22! The fermion case could similarly be realize
in principle, by spin-polarized3He, however it would be
difficult to achieve a degree of polarization sufficient to n
glect the minority spin state.

Another recent realization of the boson model consists
cold, dilute gases in an artificial two-dimensional lattice c
ated by optical traps.23 Exact diagonalization technique
could be particularly pertinent to these experiments, since
potential may be changed suddenly in experiments thus
jecting the ground state wave function of one Hamiltoni
onto the eigenstates of another one.23 As the techniques of
cooling fermion gases are perfected,24 a spinless fermion
system is naturally realized, since accessible magnetic fi
can polarize these systems easily~or unavoidably, if mag-
netic trapping is used in the cooling process!. This paper
appears to be the first using exact diagonalization~as op-
posed to DMRG! to investigate the properties of interactin
stripes in spatially extended systems with a microsco
Hamiltonian.25

B. Paper organization

This paper is organized as follows. First~in Sec. II! we
describe briefly our exact diagonalization code for study
the near-half-filled limit of our model. We use translatio
symmetry to block diagonalize the Hamiltonian matrix.
graph viewpoint motivates a method of building basis sta
from a starting configuration and explains the relation b
tween boson and fermion energy spectra.

Next ~Sec. III! we study the problem of a single stripe
Here particles can only move in one direction, effective
reducing the 2D problem to a 1D one. This one-stripe pr
lem maps exactly to a spin-1/2 chain, and further to fermio
in one dimension. Using the single-stripe energy dispers
6-2
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STRIPES AND HOLES IN A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 014506 ~2003!
relation along the direction perpendicular to the stripe,
obtain stripe effective mass for motion in that direction.

In the next two sections, we study the problem of one
two holes on a stripe.~For the one-hole case, bosons a
fermions have the same energy spectrum.! We determine the
dispersion relation~energy gap and effective mass! for one
hole moving on a stripe and study the binding of two hol
It is informative to study the finite-size dependence of ene
on the lattice dimensions in both directions: in particular
decays exponentially as a function of the lattice size perp
dicular to the stripe, which we explain quantitatively in term
of the stripe tunneling through a barrier between two pot
tial wells.

One of the motivations for studying our model is our i
terest in a simple model of interacting stripes. In Sec. VI
have exactly diagonalized systems with two, three, and f
stripes and find that the stripes repel. The interaction ener
scale as the inverse square of stripe spacing, which~like the
abovementioned tunneling scenario! follows from the one-
dimensional nature of the stripe’s transverse motion in
systems.

Finally ~Sec. VII! we discuss the stability of an array o
stripes by fitting the diagonalization results in the interme
ate filling limit and using a Maxwell construction. Our inte
est is whether at the intermediate-filling limit the stripe-arr
case or a phase-separated case with hole-rich regions
particle rich regions is stable. The conclusion is, intere
ingly, that the boson stripe array is not stable and the ferm
stripe array is very close to the stability limit and is possib
stable.

In our earlier publication, Ref. 33, we focused on t
stability of the stripe array. The present paper contains m
systematic and more updated results and a substantial n
ber of important new results on, for example, boson a
fermion statistics, stripe effective mass, and stripe-stripe
teraction. We also present new data on the stripe-array u
larger systems.

II. BASIS STATES AND DIAGONALIZATION PROGRAM

In this section, we describe our exact diagonalizat
code. We begin by describing our convention for labeli
basis states, which is crucial to keep track of sign factors
the fermion case. Then we introduce a geometrical way
view the basis states as nodes on a graph and apply th
classify the conditions under which the boson and ferm
problems have the same energy spectrum.

A. Basis states

Each basis state withM particles corresponds 1-to-1 to
configurationwhich is an array of theM occupied site num-
bers (i 1 ,i 2 , . . . ,i M). Any configuration with two neares
neighbors occupied is excluded because of the infiniteV in
the Hamiltonian Eq.~1.1!. Periodic boundary conditions ar
specified by two lattice vectorsR1 and R2 ~which will be
calledboundary vectorsin the following!, such that for any
lattice vectorr we haver1n1R11n2R2[r , wheren1 and
n2 are two integers.
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Formulas for the number of configurations~in cases with
and without stripes! are given in the Appendix. The ensemb
of all basis configurations defines the classical ‘‘hard-squ
lattice gas.’’26 That has a critical point at filling27 nc
50.368(1), above which the typical large-N state has check
erboard long-range order.@Observenc is near the midpoint
of the coexistence interval found in thequantummodels
~Sec. VII!.# Phase separation and stripes are thus induced
hopping kinetic energy and are not found in the~equilibrium!
classical model.28

The configuration by itself is insufficient to define th
basis ket, since we need to specify its sign or phase facto
fix the fermion sign, we must establish an arbitrary order
of sites and always write configurations in this order. Th
we denote the basis stateun&5ci 1

† ci 2
†
•••ci M

† u0&,
The site ordering convention used in this paper is to s

with site 0 at the lower left corner and move upward alon
lattice column until we encounter the cell boundaries defin
by the boundary vectorsR1 andR2, and then shift rightward
and repeat in the next column, progressing until all sites h
been numbered. Figure 2 shows two example syste
(4,0)3(0,5) and (4,1)3(1,5).

In this basis set the Hamiltonian Eq.~1.1! acts as

Hun&5~2t ! (
mPM

s~n,m!um&, ~2.1!

whereM denotes the set of states created by hopping
particle in un& to an allowed nearest-neighbor site. F
bosonss(n,m)51 always and for fermionss(n,m)561
and the matrix element iŝmuHun&52s(n,m)t if mPM
and 0, otherwise.

We use lattice translation symmetry to block diagonal
the Hamiltonian matrix̂ muHun&. The eigenstates that w
use are the Bloch states29

un,k&5
1

Nnk
(
l 50

N21

e2 ik•RlTl un&. ~2.2!

In this expressionk is a reciprocal lattice vector~one ofN,
whereN is the number of sites!, Rl is a lattice vector~the
order of l in the sum is not important!, Tl is translation by
Rl , and Nnk is a normalization factor. The original bas

FIG. 2. Square lattices with periodic boundaries: (4,0)3(0,5)
on the left and (4,1)3(1,5) on the right. Site numbers are show
following the numbering convention, upward and rightward.
6-3
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N. G. ZHANG AND C. L. HENLEY PHYSICAL REVIEW B68, 014506 ~2003!
statesun& are divided by translation into classes, and any t
states in the same class give the same Bloch state wit
overall phase factor. A representative is chosen from e
class and is used consistently to build the Bloch states. F
state un& we denote its representativeun̄ &, and the Hamil-
tonian matrix is block diagonal in the sense th

^m̄,k8uHun̄,k&50 whenk8Þk. The matrix^m̄,kuHun̄,k& is
diagonalized for eachk vector using the well-known Lanc
zos method.

B. State graph

It is helpful conceptually to represent specific cases of
Hamiltonian by thestate graph, in an abstract~or high-
dimensional! space, such that each node corresponds
basis state, and two nodes are joined by an edge of the g
if and only if the two states differ by one particle hop.~As
used in Sec. III A, our many-body Hamiltonian is almo
equivalent to a single particle hopping on the state grap!
The best-known precedent of this approach s Trugma
study of one-hole and two-hole hopping in thet-Jz model.30

Two states areconnectedif one state can be changed
another by a succession of hops. For states near half fil
ourV5` constraint forbids many hop moves, so the graph
sparse and can possess interesting topological propertie
evant to our spectrum.

1. Droplets and accessibility of states

We remarked~Fig. 1! that an isolated hole is unable t
hop; larger finite ‘‘droplets’’ of holes are still immobile
though they may gain kinetic energy from internal fluctu
tions. Specifically,20 if one draws a rectangle with edges
45° to the lattice around the droplet, so as to enclose ev
site which deviates from the checkerboard order, then~with
theV5` constraint! sites outside this rectangle can never
affected by fluctuations of the droplet.

Due to the droplets, the state graph~representing all state
with M particles! may be broken up into many disconnect
components, states which cannot access each other b
lowed hops. This happens if both boundary vectors are e
vectors, so that the system cell would support half filli
with a perfect checkerboard order. For slightly less than h
filling, the typical basis state consists of scattered immob
droplets of the kind just described. Each component co
sponds to a different way to assign the holes to droplets
merely a shifted way of placing the same droplets. Each
of droplet has its characteristic energy levels,31 and the sys-
tem energies are the sum, just like a system of noninterac
atoms, each having its independent excited levels.

When the state graph is disconnected, the Hilbert spac
correspondingly blocked into components which are not c
nected by matrix elements. This is beyond the blocking
cording to translational symmetry, which remains true.

2. Building basis set from a starting configuration

In systems with even-even boundary conditions, we
not mainly interested in the configurations with droplets, b
in those with two stripes.32 Since these are disconnecte
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from the rest of the Hilbert space, it speeds up the diago
ization by a large factor if it is limited to the stripe
configuration sub-block of the Hamiltonian matrix. The on
way to separate out this subblock is to generate basis s
iteratively from a starting configuration which has tw
stripes.

What of the case of even-odd or~equivalently! odd-odd
boundary conditions? These forceone stripe ~possibly with
additional holes, or possibly more stripes!. In every such
case~excludingL3L with odd L), the stripe can fluctuate
and absorb any droplets, so we believe the Hilbert spac
fully connected, and the diagonalization is not speeded
Nevertheless, for every case near half filling, we enumera
the basis from a starting configuration, as~we believe! this is
the fastest way to do so. Systematically enumerating all p
sible fillings by brute force would take more time than d
agonalization itself, since almost every brute-force trial co
figuration gets ruled out by theV5` constraint.

However, at low fillings~which we study in Ref. 8! the
brute-force enumeration is used. In that case, if we gener
from a starting configuration, there would be too many alt
nate routes to reach a given state. Hence much time woul
wasted in searches to check whether each newly reac
state was already on the basis state list.

Below we outline the algorithm for building basis stat
and the Hamiltonian matrix. To build basis states witho
using translation symmetry from a starting staten, we follow
the following steps.

~1! Apply hoppings ton and obtain statesn1 ,n2 ,n3 , . . . ,
see Fig 3. Form the basis state listn,n1 ,n2 ,n3 , . . . , that are
numbered 0, 1, 2, 3, . . . , andrecord the Hamiltonian matrix
elementsH0,1,H0,2,H0,3, . . . .

~2! Apply hoppings to the next state on the basis state
that has not been applied hopping to. Here fromn1 we get
n11,n12,n13, . . . . Add these to the basis state list to for
n,n1 ,n2 ,n3 , . . . ,n11,n12,n13, . . . . ~Note we should not
add states that are already on the list. For example, appl
hoppings ton1 will certainly give n back again. Do not in-
clude this state in level 2 states. When computing Hermit
matrix elements we only needHp,q for p,q.! If n11 is the

FIG. 3. Building basis states from a given staten. Applying
all allowed hoppings ton ~the level 0 state! gives the states
n1 ,n2 ,n3 , . . . . Applying hoppings ton1 ~a level 1 state! gives
level 2 statesn11,n12,n13, . . . . The basis state list is the
n, n1 ,n2 ,n3 , . . . ,n11,n12,n13, . . . ,n21,n22, . . . ,n111,n112, . . . .
Note that when applying hoppings to a state, only add states
already on the list. We call this graph of states connected by h
ping thestate graph.
6-4
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STRIPES AND HOLES IN A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 014506 ~2003!
mth element on the list, record the matrix elemen
H1,m ,H1,m11 ,H1,m12 , . . . .

~3! Repeat the previous step until all the states on the
have been applied hopping to and no new states are cre

We finish with a basis state list n,n1 ,n2 ,
n3 , . . . ,n11,n12,n13, . . . ,n21,n22, . . . ,n111,n112, . . . , and
we have stored the Hamiltonian matrix elements. Wh
building the Bloch basis states in Eq.~2.2!, the procedure is
similar to the above, except we apply hopping to represe
tive states of each class of translation related states and
store the representatives of the resulting states.

C. Boson and fermion statistics

In this paper we study both the boson and the ferm
versions of our model Eq.~1.1!, and one question that w
often ask is when bosons and fermions have the same s
trum. In this section, we introduce a graph-based way
study the relationship between boson and fermion spect

Using Eq.~2.1!, we know that ifb is a state that can b
obtained from the statea by one nearest-neighbor hop, the
we have

^buHua& f5s~b,a!^buHua&b , ~2.3!

where the subscriptsf and b denote the fermion and boso
matrix elements, respectively, and we have used the fact
s(b,a)51 for bosons. If we can write

s~b,a!5s~b!s~a!, ~2.4!

i.e.,s(b,a) as a product of a functions that depends on on
state only, then Eq.~2.3! can be written as a matrix equatio

H f5SHbS, ~2.5!

whereSa,b5da,bs(a). BecauseS5S21, it is a similarity
transformation, and then the eigenvalues ofH f are identical
to that ofHb . Indeed, this is a much stronger condition th
having identical eigenenergy spectra: theeigenstatesare also
identical ~modulo a sign!, so, e.g., an operator which de
pends on the basis state has the same expectation in th
son and fermion cases. On the other hand, if the functios
cannot be defined, the boson and fermion Hamiltonians
not equivalent.

We can relate Eq.~2.4! to the loops which occur in virtu-
ally every state graph with the help of Fig. 4. Heres(b,a) is
defined on the arrow pointing froma to b, whereas the
function s(a) is defined on the nodea of the graph.

Figure 4 suggests a natural way to constructs(a). First
we choose a reference point. This should not matter and
one we choose is the starting state of the exact diagona
tion program, say 0. We sets(0)51. Then if one hop takes
a to b, defines(b)5s(b,a)s(a). This is certainly correct
if Eq. ~2.4! is true; but if the state graph has a loop, i.e., tw
different paths lead to the same stateb from 0, thens(b)
can be well defined only if they produce the same sign. T
answer is different for different state graphs~or disconnected
subgraphs of the state graph!, so it depends on system d
mensions and filling.
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We can check numerically whether the functions(a) is
well defined at the same time as we build the basis se
applying hopping, i.e. constructing the state graph in
form of a tree~Fig. 3!. We store a sign for each state, starti
with s(n)51 for staten in Fig. 3. As we expand the tree, w
compute the sign for the next level of states. Whenever
come to a state that is already on the list, we test whether
sign we produce following the current path equals that
ready stored for that state. Depending whether the sign
ways agrees or sometimes disagrees, we know the ferm
and boson problems are or are not equivalent. This metho
the basis for statements later in the paper on boson and
mion spectra~Secs. III A and VI A, and briefly in Secs. IV
and V!; it is not necessary to compute all the eigenvalues

The boson-fermion equivalence condition can be re-sta
in a way that is independent of the site ordering convent
at the start of Sec. II. Say each particle is originally nu
bered 1, . . . ,M and retains its number when it hops. The
s(a,b) is simply the sign of the permutation which chang
the string of particles~when they are listed according to th
site order!. The functions(a) is well defined if and only if
the product ofs(a,b) around any closed loop of the sta
graph is unity; in other words, if and only if any sequence
hops that restores the original configuration induces an e
permutation of the particles. When just two particles can
exchanged~an odd permutation!, as is obviously possible a
low fillings, the fermion and boson spectra are obviou
different.

III. A SINGLE STRIPE

It was first observed by Mila, in a model very similar t
ours, that the creation of stripes is more favorable than
isolated holes, as a way to dope the system below
filling.20,33 We shall finally address more rigorously th
phase stability of the stripe~Sec. VII!, but in this section we
will study the eigenstates of a single stripe in the system
Fig. 5 we show aLx54 andLy57 system with 12 particles
A stripe of length four is formed along thex direction. The
only four possible nearest-neighbor hops of the leftmost s
are indicated with arrows and the resulting four states
shown on the right. Note that with a single stripe, the p
ticles can only hop in they direction. It is not possible for

FIG. 4. Obtainings(a), that is defined for each state, from
reference state 0 and the step wise hopping sign functions(b,a),
that is defined on the arrow pointing froma to b. Define s(b)
5s(b,a)s(a). If the functions(b) is well defined, i.e., all paths
leading from 0 tob give the same sign, then the boson and ferm
spectra are identical.
6-5
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FIG. 5. A single stripe in the 437 system. For the leftmost state, the four possible hops are labeled, and the resulting configurat
shown on the right. The corresponding spin chain configurations are shown below~see Sec. III B!.
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them to move in any fashion in thex direction.
We also consider tilted boundaries (Lx ,b)3(0,Ly),

which force a tilt of b steps to the stripe because the s
(0,y) is identified with (Lx ,y1b). In Fig. 6, the (5,1)
3(0,7) and (6,2)3(0,7) systems are shown. Note becau
each stripe step is at 45 degree angle, an even~odd! horizon-
tal length of the stripeLx must produce an even~odd! num-
ber of total vertical stepsb. ThusLx1b is always even. For
a general (Lx ,b)3(0,Ly) system withLy odd, the single-
stripe states haveM5Lx(Ly21)/2 particles. Note also tha
for the tilted stripes, vertical hopping is again the only
lowed motion of the particles.

Diagonal stripes are observed in La2NiO 4,1 and they are
an interesting topic in thet-J model.34 However, in our
model withV5`, no hopping is possible away from a 45
edge of any domain. Thus a diagonal stripe has no kin
energy~unless there are additional holes, as discussed in
IV D ! and is disfavored.

FIG. 6. A single stripe in the (5,1)3(0,7) and the (6,2)
3(0,7) systems. The boundary conditions force a tilt of the stri
The corresponding spin-chains have totalSz equal to 1/2 and 1,
respectively~see Sec. III B and Ref. 37!.
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A. Boson and fermion statistics for one stripe

We find from diagonalization that for one-stripe system
with rectangular boundaries, the boson and fermion spe
are identical and are symmetric about zero. For a stripe
systems with tilted boundaries, there are complications.
the (2m11,1)3(0,2l 11) system, withm andl integers, the
spectrum is not symmetric about zero. In this case, witl
odd, the fermion spectrum is still identical to the boson sp
trum, but forl even, the fermion energies are the boson o
with a minus sign~and because the spectrum is no long
symmetric about zero, the fermion energies are not the s
as the boson energies!. For the (2m,2)3(0,2l 11) system,
the boson and fermion spectra are identical and symme
about zero.

All these numerical findings can be explained in terms
the state graph, extending Sec. II C. We must characterize
permutations induced by a sequence of particle hops wh
return to the same basis configuration. This is quite eas
the single stripe state, since~as already commented on i
Figs. 5 and 6!, particles move in they direction only. Our
discussion includes all (Lx ,b)3(0,Ly) systems~which are
tilted boundaries ifbÞ0). In these cases, particles are co
fined to the same column, and the net permutation is a p
uct of permutations in each column.

Consider the total particle permutation induced when
system returns to the starting state by a loop on the s
graph.35 If in this process the stripe as a whole makes no
movement across they boundaries, then in each column th
particles undo their hops and the net permutation is the id
tity. Thus, the only nontrivial loops are those in which th
stripe crosses they boundary. Indeed, since each hop mov
the stripe locally byDy562, the stripe must cross th
boundarytwice. The particles in each column have return
to the original positions with a cyclic permutation in ea
column, which has the sign

scol[~21!(Ly11)/2. ~3.1!

Therefore the sign of the system’s permutation isscol
Lx

which ~sinceLx1b is even! reduces to (21)b(Ly11)/2: the

.
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STRIPES AND HOLES IN A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 014506 ~2003!
fermion and boson spectra differ if and only if this phase
21, i.e., only whenb is oddand Ly[1(mod 4).

The6E symmetry of the single-stripe spectrum also fa
out from visualizing the Hamiltonian as a single particle ho
ping on the state graph~with amplitude2t521 for every
graph edge!, and recalling the spectrum depends only on
attributes of closed loops. We can always change our c
vention for the phase factors of the basis states, whic
equivalent to a ‘‘gauge transformation’’ on the nodes of t
state graph. Whenever a state graph isbipartite, meaning
every closed loop on it has an even number of edges,
well defined to divide the basis states into ‘‘even’’ and ‘‘odd
classes. If we change the phase factor by21 for every
‘‘odd’’ basis state, every edge@everys(n,m) factor# picks up
a factor 21. By gauge equivalence, the new Hamiltoni
matrix has the same spectrum. Yet on the other hand,
manifestly the same as the old matrix witht→2t, so it has
the sign-reversed spectrum; this proves the6E symmetry.
Now, the nontrivial loops in the state graph are those t
pass the stripe twice across they boundary; this motion re-
quiresLxLy[N hops. Thus, the state graph is bipartite a
the spectrum has6E symmetry, if and only ifN is even.

If N is odd, the gauge-invariant effect of reversingt→
2t is to change the net product ofs(n,m) around every
nontrivial loop by a factor21. But we showed that switch
ing Fermi and Bose statistics creates the same sign: h
the fermion spectrum is the inverse of the boson spectrum
observed.

B. Fermion representation of a stripe

In Figs. 5 and 6, we have indicated a natural map fr
any configurationy(x) of the stripe to a state of a spin cha
of lengthLx . Here it is obvious the spin length is one-ha
for each stripe step,y(x11)2y(x), can take only two
values.36 The up step of the stripe is mapped to an up s
and the down step to a down spin, for example, the leftm
configuration in Fig. 5 maps to a spin stateu↓↑↓↑&. The
result is the so-called spin-1/2XX chain37 and is well studied
and exactly solvable.38 This map was first noted by Mila,20

who used it to evaluate the exact ground state energy
stripe, and we have discussed it briefly in Ref. 33.39,40 Here
we introduce a map to fermions which will be used in la
sections to calculate stripe effective mass.

Each configuration of ‘‘spins’’ can be mapped to a on
dimensional~1D! lattice gas of particles: every↑ becomes an
occupied site, and every↓ becomes a vacant one. The tot
number of ‘‘up’’ steps, i.e., fermions, isN1[(Lx1b)/2 if
the boundary vector along the stripe is (Lx ,b). The1y hop
of a real particle on the square lattice~implying a 2y fluc-
tuation of the stripe! translates to a spin exchange↑↓→↓↑ in
the XX chain, and finally to a1x hop of a 1D particle.

As is well known,41 in one dimension hardcore particle
may always be treated as fermions: if there is no path
them to exchange, then the statistics has no physical m
ing. One can describe the system as one-dimensional spi
fermions which arenoninteracting, as the Fermi statistics i
already sufficient to keep two particles from occupying t
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same site. The explicit relation of the stripe pathy( i ) to the
1D spin and fermion representations is

y~ i 11!2y~ i ![2Siz[2n̂i21, ~3.2!

wheren̂i[ci
†ci . The effective one-dimensional Hamiltonia

is

H52t(
i

~ci 11
† ci1ci

†ci 11!, ~3.3!

thus the dispersion is

22t cosq, ~3.4!

where q is the one-dimensional wave vector. We can co
struct exactly the ground state by filling the lowest-ener
plane-wave states, up to the one-dimensional Fermi ve
np (5p/2 for an untilted stripe!; here n5N1 /Lx is the
density of one-dimensional fermions, corresponding to
stripe slope 2n21. All excited states correspond exactly
other ways of occupying the 1D fermion states.

1. Excitations of a stripe

If a stripe is coarse-grained as a quantum-fluctuat
string, then it can be approximated using a harmonic Ham
tonian

H5
1

2E dxFrS dy

dt D
2

1KS dy

dxD
2G ,

5(
q

1

2F Pq
2

r*
1Kq2yq

2G . ~3.5!

Herer* is the effective mass density per unit length of t
stripe, and the stiffnessK is analogous to a string tension
The long-wave excitations of such a ‘‘string’’ are the qua
tized capillary waves known asripplons, which have disper-
sion

v5cuqu with c5AK/r* , ~3.6!

andq is the one-dimensional wave vector.
On the other hand, in the microscopic representation

1D fermions, the fundamental excitation is evidently a p
ticle or hole, which corresponds to a mobilekink of the
stripe. The ripplon is thus a composite excitation, a kin
antikink bound state. In the equivalent language of the sp
1/2 XX model, the ripplon maps to a magnon~hydrodynamic
mode!, while the kink maps to a spinon. The fractionaliz
tion of the spin-1 magnon into two spin-1/2 spinons is
familiar fact, as this system is a special case of a Luttin
liquid.42

We can use the Fermi sea representation to extract
parameters in Eq.~3.5!. As noted above, the 1D Fermi wav
vector is (11dy/dx)p/2 and by Eq.~3.4! the total energy is
(q occ(22t)cosq, where this notation means the sum ov
occupied 1D fermion states. Equating the energy density
to small tilts to 1

2 K(dy/dx)2, we obtainK5pt/2. Next, the
ripplon velocity is the same velocity as the Fermi veloc
6-7
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N. G. ZHANG AND C. L. HENLEY PHYSICAL REVIEW B68, 014506 ~2003!
c5vF52t/\. ~This is a standard fact of one-dimension
Fermi seas.! With Eq. ~3.6!, that implies

r* 5p\2/8t. ~3.7!

2. Stripe roughness

The 1D Fermi sea representation also allows the ex
computation of stripe fluctuations as a function ofx. It is
straightforward to show~after rewriting in terms of wave
operators! that at half filling

^~2n̂i21!~2n̂i 1r21!&55
1 if r 50,

0 for even rÞ0,

2
4

p2r 2
for odd r .

~3.8!

We also know from Eq.~3.2! that

y~ i 1R!2y~ i !5 (
j 5 i

R21

~2n̂ j21!. ~3.9!

This and Eq.~3.8! give that

^@y~ i 1R!2y~ i !#2&5R1
8

p2 (
r odd51

R21 S 1

r
2

R

r 2D ,

'const1
4

p2
ln R. ~3.10!

Not surprisingly, the same result can be derived via the ze
point intensities of the harmonic ripplon modes, of Eqs.~3.5!
and ~3.6!.

Equation ~3.10! means that, due to the anticorrelatio
evident in Eq.~3.8!, the transverse deviations of the strip
grow slowly with length. Thus, if it moves transversely ov
larger distances, the stripe can often be approximated
single rigid object. This approximation will be invoked i
several sections below to explain how energy splittings
pend on the system sizeLy in the transverse direction.

C. Phase factors and stripe effective mass

The mappings described in Sec. III B are less trivial th
they appeared, due to two related facts. The first fact is
the mapping of stripe to spins~or to 1D particles! is
many-to-one,39 and the second fact is that the statistics of
hardcore particles is not quite as irrelevant as suggeste
Sec. III B: theycan be permuted by moving them in thex
direction through the periodic boundary conditions. As
well known, this induces additional phase factors in a fin
system. Consider, for example, a sequence of2y hops along
a stripe, such that exactly one particle hops in each colu
The net effect on the real particle configuration is to trans
the stripe by~0,2!; in the fermion case, a sign factorscol

h is
also picked up, whereh is the number of columns in which
the real particle hop crossed the cell boundary, and Eq.~3.1!
is the fermion sign picked up from the resulting rearran
ment of creation operators among sites in a column.@Note
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that, here and for the rest of this discussion, we limit cons
eration to lattices in which the second boundary vector
(0,Ly).# Meanwhile, the same sequence of real particle h
maps to a cyclic permutation of the 1D particles in the1x
direction – exactly one1x hop occurs on every bond alon
the chain.

If the wave vector of our eigenstate is taken as (kx ,ky),
the stripe configuration shifted by (0,2) ought to have
amplitude in the wave functionei2ky times the amplitude of
the original configuration. In a 1D fermion system, howev
the actual phase factor is (21)N121, i.e., the number of
fermions that are cyclically permuted. We can account for
the phase factors by modifying the one-dimensional chain
that a particle hopping around its periodic boundary con
tion picks up a phaseeif in other words by inserting a fluxf
into the ring,43 where f52ky1(N121)p is sufficient to
account for the two phases mentioned above, in the bo
case; in the fermion case, an additional term1

2 Lx(Ly11)p is
needed.44 Finally it is equivalent, modulo 2p, to replaceLx
by b in the last term

f52ky1~N121!p1F1

2
b~Ly11!pG

fermions

, ~3.11!

where the last term is included only in the fermion case, a
even then it is zero in a rectangular system.@Notice thatLy is
always odd when the boundary vector is (0,Ly) transverse to
the stripe, and the other boundary vector (Lx ,b) must be
even.# It follows that the allowed 1D wave vectors ar
(2pm1f)/Lx , wherem is any integer.

We getf50 when the numberN1 of 1D fermions is odd
and f5p when N1 is even; either way, the 1D fermion
occupied in the ground state are placed symmetrically ab
q50. In any eigenstate, the real wavevector componen
kx5(q occq, thus kx50 for the stripe ground state in
any rectangular system. It is not hard to compu
(q occ(22t)cosq to obtain the~exact! total ground state
energy

Estripe~0,0!522t/sin~p/Lx!, ~3.12!

which implies the stripe energy is22t/p per unit length in
the thermodynamic limit.20 All our numerical results for
stripe states agree with Eq.~3.12! ~see Table I!.

When, as mentioned in Sec. III B 1, we model the stri
direction as a free particle moving in one dimension, it
useful to know its effective massm* . The minimum-energy

TABLE I. Stripe effective massm* @Eq. ~3.15!# using single-
stripe excited state energies withk5(0,ky), with Ly5101.

Lx Estripe(0,0) Estripe(0,2p/101) m*

4 22.8284271 22.8270590 1.4143276
6 24.0000000 23.9991400 2.2500806
8 25.2262519 25.2256198 3.0615292
10 26.4721360 26.4716350 3.8627623
12 27.7274066 27.7269913 4.6587845
14 28.9879184 28.9875635 5.4517988
6-8
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FIG. 7. A 637 system with a stripe and a hole. The hole is indicated by the box. It is initially lying on the stripe~leftmost state!. The
arrows indicate the particles hops that result in the hole moving along the stripe to the right~middle state!. It is also possible for the stripe
to fluctuate and leave the hole immobile~rightmost state!.
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state of a single stripe withkyÞ0 consists of rigid motion in
that direction, so for smallky we expect

Estripe~0,ky!2Estripe~0,0!>
\2ky

2

2m*
. ~3.13!

In the 1D fermion representation, this state is constructed
shifting the ground state Fermi sea by a wave vec
2ky /Lx , as follows from the first term in the phase sh
Eq. ~3.11!. From this one obtains Estripe(0,ky)
5Estripe(0,0)cos(2ky /Lx). Combining that with Eqs.~3.12!
and ~3.13!, one obtains

m* 5
\2Lx

2

8t
sin~p/Lx!. ~3.14!

For a long stripe, Eq.~3.14! implies an effective mass den
sity r* [ limL→`m* /Lx in agreement with Eq.~3.7!.

To obtain the effective massm* from exact diagonaliza-
tion data, we use the smallestky52p/Ly with a largeLy
5101. Eq.~3.13! gives the following expression to extra
m* numerically:

m* >
~2p/Ly!2

2@Estripe~0,2p/Ly!2Estripe~0,0!#
. ~3.15!

The results are shown in Table I; they agree perfectly w
Eq. ~3.14!.

It should be noted that the above calculation of the pha
is entirely equivalent to that of Green and Chamon21,22

~where it is applied to a stripe on a triangular lattice!, except
that we include the case that the particles are fermions.

IV. ONE HOLE ON A STRIPE

For a system with a single stripe, we have seen that
ticle motion is strictly limited to sliding in the direction per
pendicular to the stripe, and this enables us to map our t
dimensional system to a one-dimensional spin chain
solve it exactly. With holes added to the stripe state, a nu
ber of new motions are allowed. In Fig. 7 we show a 637
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system with a stripe and a hole. We see that the hole can
move along the stripe and the stripe can fluctuate and le
the hole stranded~i.e., immobile!. In this section we study
the one-hole-with-a-stripe problem.

Motion of holes has been analyzed on domain walls in
anisotropic t-J model ~the t-Jz model with some added
terms!, using essentially analytical techniques.45 The most
interesting observation in Ref. 45 is that the charge-carry
‘‘holon’’ is associated with a kink of the wall, and thus ca
ries a transverse ‘‘flavor’’~reminiscent of our model’s behav
ior in Sec. IV D!. A hole on our stripe differs in an importan
way from the holes on a stripe in thet-Jz model.45,46First, in
our case the reference stripe already has 1/2 hole per
length, whereas in Refs. 45 and 46 it is a plain domain w
without holes. Second,Jz /t was not too large in those mod
els, so that hopping of the hole several steps away from
stripe has a noticeable contribution in the wavefunctio
while it is unimportant in our case.

From diagonalization, we observe that for systems w
rectangular boundaries, the boson and fermion one-h
with-a-stripe spectra are identical. The numerical method
scribed in Sec. II C is used to check whether the funct
s(a) is well defined using the state graph in Fig. 3. For
Lx3Ly system withLx even andLy odd, the one-hole-with-
a-stripe state hasM5(Lx21)Ly/221 particles. For the one
hole systems we checked, for example, 439 with M515,
4311 with M519, and 637 with M517, s(a) is always
well defined.47

A. Energy dependence onL y

When a hole is added to a stripe, more hops are allow
and the state gains kinetic energy, so the ground state en
is lower than that of the single stripe of the same length.
define the energy difference

D~Lx ,Ly![Ehole~Lx ,Ly!2Estripe~Lx!, ~4.1!

whereEhole(Lx ,Ly) is the ground state energy of one ho
with a stripe on aLx3Ly lattice andEstripe(Lx) the ground
state energy of a single stripe with lengthLx . Here
6-9
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Ehole(Lx ,Ly) is the same for bosons and fermions, as
discussed above, andEstripe(Lx) does not depend onLy @see
Eq. ~3.12!#.

A plot of D(Lx ,Ly) vs Ly shows a fast decay inLy so we
try the following exponential fitting function:

D~Lx ,Ly!5D̃~Lx!2A~Lx!e
2Ly / l (Lx), ~4.2!

where D̃(Lx)5D(Lx ,`), A(Lx), and l (Lx) are fitting pa-
rameters that depend on the length of the stripeLx . @We will
investigate the dependence onLx of D̃(Lx) later in Sec.
IV C.# We choose a minus sign in front ofA(Lx) because
D(Lx ,Ly),D̃(Lx); in Eq. ~4.2!, A(Lx) is positive.

This fitting form, Eq.~4.2!, suggests the following linea
regression check:

ln@D~Lx ,Ly12!2D~Lx ,Ly!#5C2
Ly

l ~Lx!
, ~4.3!

whereC is a constant that depends onA, l, andLx , but not
on Ly . In Fig. 8 we plot ln@D(Lx ,Ly12)2D(Lx ,Ly)# vs Ly for
Lx54,6,8,10,12,14 andLy55,7,9, . . . . The linear fit is
good for all data sets.

B. Stripe potential well and effective mass

How can we account for the exponential fitting form, E
~4.2!? Let us consider the hole fixed at some position and
stripe meandering iny direction. In Fig. 7, we have show
that the hole can be in contact with the stripe or the stripe
fluctuate away, leaving the hole behind and immobile. Wh
the stripe is in contact with the hole, the energy is lower th
the energy of a single stripeEstripe, which is also the energy
when the stripe is separated from the hole. Because we
periodic boundary conditions in they direction, we can use a
periodic array of potential wells to model they motion of the
stripe; the well is at the position of the hole.

FIG. 8. ln@D(Lx ,Ly12)2D(Lx ,Ly)# vs Ly for Lx

54,6,8,10,12,14, whereD(Lx ,Ly)5Ehole2Estripe @Eq. ~4.1!#. The
slope for eachLx curve is21/l (Lx) in Eq. ~4.3!.
01450
e

.
e

n
n
n

ve

In Fig. 9 we show potential wells separated by a barrier
thicknessd. E0 is the ground state energy of an isolated we
andE2 the ground state energy of the multiple-well syste
which corresponds to a symmetric state and is lower thanE0.
From standard quantum mechanics textbooks~see, e.g., Ref.
48!, we know that the amplitude to tunnel between adjac
wells decays exponentially with their separation

E22E052Ae2d/ l , where,
1

l
5

A2m~V02E0!

\
,

~4.4!

where m is the mass of the particle in the well, and th
constantA is positive ~because the wave function ofE0 is
symmetric in one well!.

As far as our hole-with-a-stripe problem is concerned,
well separationd is Ly , the barrier heightV0 is Estripe, the
ground state energy of one isolated wellE0 is Ehole(Lx ,Ly
5`), and the ground state energyE2 of the system with
tunneling isEhole(Lx ,Ly). Therefore, Eq.~4.4! for the wells
with tunneling translates into the following equation for o
hole-with-a-stripe problem

Ehole~Lx ,Ly!2Ehole~Lx ,`!52A~Lx!e
2Ly / l (Lx). ~4.5!

Using the definition forD(Lx ,Ly), Eq. ~4.1!, we see that Eq.
~4.5! is exactly the fitting form we used before, Eq.~4.2!. In
addition, the inter-well tunneling amplitude Eq.~4.4! gives
us a way to calculate the effective massm* (Lx) of the stripe
of lengthLx ,

1

l ~Lx!
5A2m* ~Lx!@Estripe~Lx!2Ehole~Lx ,`!#, ~4.6!

where we have set\51. We get

m* ~Lx!5
1/l 2~Lx!

2@Estripe~Lx!2Ehole~Lx ,`!#
. ~4.7!

Using the linear fitting slopes in Fig. 8@that are21/l (Lx)],
we can computem* (Lx) using Eq.~4.7!, and our results are
shown in Table II. The effective mass results are consis
with that obtained from the single-stripe energy dispers
relation in Table I.

FIG. 9. Potential well and barrier potential used to understa
the exponential decay of one-hole energy inLy in Eq. ~4.2!. y is the
stripe position in the direction perpendicular to the stripe,V0 the
depth of the well,E0 the ground state energy of one isolated we
E2 (,E0) the ground state energy including the tunneling betwe
wells ~symmetric state!, and d the separation between two wells
E22E0 decays exponentially ind as in Eq.~4.4!.
6-10
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The main physical significance of the result in this sect
is its implications for the anistropic transport of holes in
stripe array.49,50 The conductivity transverse to the strip
depends completely on mechanisms which transfer h
from one stripe to the next. The high energy of t
‘‘stranded’’ state, in which the hole is immobile and off th
stripe, means that holes are mainly transferred when
stripes collide, either directly at contact or else by a dela
transfer, such that the hole spends a short time in a stran
state until the second stripe fluctuates to absorb it.

C. Hole dispersion andL x dependence

In this section we fixLy and study the dependence
D(Lx ,Ly) on the length of the stripeLx . In Fig. 10 we plot
the energy differenceD(Lx ,Ly) for (Lx ,b)3(0,7) systems
with b50,1,2.51

We see from Fig. 10 the following fitting function~justi-
fied in Sec. IV D! works well for both rectangular and tilte
lattices

TABLE II. Stripe effective massm* calculated from Eq.~4.7!
using the potential-well model for the one-hole-with-a-stripe pro
lem. l (Lx) is the decay length in Eq.~4.2! obtained from linear
fitting in Fig. 8; Ehole(Lx ,Ly) is used to approximateEhole(Lx ,`)
using the largeLy listed in the table@as the exponential decay o
Ehole(Lx ,Ly) in Ly is fast, see Sec. IV A#; andm* (Lx) is the effec-
tive mass of the length-Lx stripe calculated using Eq.~4.7!.
Estripe(Lx) has appeared in Table I.

Lx Ly Ehole(Lx ,Ly) l (Lx) m* (Lx)

4 25 23.00000009 1.4659 1.3561
6 25 24.29850460 0.8724 2.2009
8 25 25.60276427 0.6648 3.0050
10 21 26.89914985 0.5553 3.7979
12 19 28.18958713 0.4868 4.5652
14 17 29.47602246 0.4388 5.3197

FIG. 10. D(Lx ,Ly)5Ehole2Estripeas a function of 1/Lx for three
classes of lattices (Lx ,b)3(0,7) with b50,1,2.
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D̃~Lx!5D1
C~b!

Lx
. ~4.8!

This fitting form enables us to extrapolate the energy g
formed by adding one hole to an infinitely long (Lx) stripe.
The intercepts of the three curves for the three differ
classes of lattices all approachD520.66. Later, in Sec. VII,
we will study the stability of an array of stripes and we w
use the value forD because we want to know whether hol
added to a stripe stick to the stripe to form a wide stripe o
new stripe.D is the energy lowered by adding a hole to
stripe and will be relevant there. It is a binding energy in t
sense that one hole off the stripe~immobile! has zero energy

A hole is mobile along a stripe; one expects its dispers
relation to be

E~q!5D1
\2

2mh*
q2 ~4.9!

on a long stripe oriented in thex direction, whereq is the
hole’s wave vector. We can estimate the effective mass in
~4.9! from the numerics, if the lowest-energy state with sy
tem wave vectork5(q,0) is produced by boosting the hol
to wave vectorq. At small q, this has a much smaller exc
tation energy than the ripplons~stripe excitations! which
have linear dispersion@Eq. ~3.6!#. Indeed, the numerica
spectra for systems withLx510 andLy55 show these con-
trasting dispersions for a stripe with and without a hole. F
ting the differenceE(q)2E(0) to \2/mh* (12cosq), as a
plausible guess, we estimate\2/2mh* '0.3t; the effective
massmh* of a hole bound to a stripe is thus about six times
big as that of a free particle in an empty background~for
which \2/2m* 5t).

D. Hole and stripe steps

How does the hole interact with the stripe fluctuations?
some models, hole hopping is suppressed if the stripe is ti
away from its favored direction. In that case, the ‘‘gard
hose effect’’ is realized:52 stripe fluctuations are suppresse
when the hole is present, so as to optimize the kinetic ene
of the hole on the stripe.53

However, in our model, a stripe tilt actually enhances h
hopping. This is clear in the extreme case of a stripe at sl
11, as occurs at maximum filling in theL3L square system
with L odd: the bare stripe has zero energy. When the sys
is doped by placing one hole along an edge of the stripe~see
Fig. 11!, the accessible configurations are equivalent to
one-dimensional chain of the same model, with lengthL
andL21 particles on it. The one-dimensional chain has t
domain walls, one of which appears as a down step of
stripe, and the other of which appears as an up-step boun
a hole on the stripe. In the limit of largeL, each domain wall
has kinetic energy22t. The total energy is24t, or about
seven times larger than the energy difference2D for a stripe
with no tilt.

This picture is supported by the trend of the stripe ene
with one hole, in the presence of a boundary vector (Lx ,b)
that forces a tilt. ForLx55 to 8, the minimum energy, as

-
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function ofb, occurs around 2.5.@The measured minimum i
at b52 in the case thatLx andb are even, and atb53 in the
odd case, while the second-lowest energies are atb54 and
b51, respectively.# This is consistent with the idea that th
hole on a stripe binds with some up steps54 which totalb0,
whereb0'2.5.

This would imply that holes tend to come in ‘‘up’’ an
‘‘down’’ flavors; this is not an actual quantum number, sin
the ‘‘steps’’ considered here~in contrast to ‘‘kinks’’ men-
tioned in Sec. III B 1! are not quantized objects. Our hol
step binding has a similar origin as that in Ref. 45: the lo
configuration is the same as a fragment of stripe rotated
from the main stripe.

A corollary of the hole-step binding is that a hole shou
force an extra tiltub2b0u/Lx on the remaining portion of the
stripe. Thus the tilt energy in Eq.~3.5! contributes a size
dependenceC(b)/Lx , where

C~b!5
1

2
K@~b2b0!22b2#5Kb0~b0/22b!, ~4.10!

that is 4.9, 1.0, and22.9 for b50, 1, and 2, respectively
This is consistent with the clear 1/Lx size dependence w
found numerically~see Fig. 10!; the fitted coefficients forb
51 and 2 are in reasonable agreement withC(b) as pre-
dicted by Eq.~4.10!. @PresumablyC(0) is reduced from our
prediction because the hole is not always, or not usua
bound to an up-step in the caseb50.#

V. TWO HOLES ON A STRIPE

When two holes meet on a stripe, they create eno
room that particles can exchange with each other, so
boson and fermion energy spectra are no longer the sam
in the one-hole case, we study the energy of the two-ho

FIG. 11. A 737 system is shown, at one particle less th
maximum filling. All motions in this system occur within the stri
bounded by dashed lines, which is equivalent to a 1431 chain of
spinlessV5` fermions. The stripe edge is indicated by thick so
lines.
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with-a-stripe problem as a function of the two directions
the lattice.

A. Energy dependence onL y

As in Eq. ~4.1! for the one-hole case, we define for th
Lx3Ly lattice the energy difference between the case of t
holes with a stripe and that of a single stripe

D2~Lx ,Ly!5E2holes~Lx ,Ly!2Estripe~Lx!, ~5.1!

where the subscript 2 denotes the two-hole case.@Strictly
speaking, we should writeD2

b, f(Lx ,Ly) and E2holes
b, f (Lx ,Ly)

because these quantities are not the same for bosons
fermions. Here, without the superscripts, they stand for b
cases.# Plots of D2(Lx ,Ly) vs Ly for bosons and fermions
show fast decay similar to that in the one-hole problem
Sec. IV, except here the boson and fermion curves appro
different values at largeLy .

As in Eq. ~4.2! for the one-hole problem, we write

D2~Lx ,Ly!5D̃2~Lx!2A2~Lx!e
2Ly / l 2(Lx), ~5.2!

ln@D2(Lx ,Ly12)2D2(Lx ,Ly)# vs Ly for bosons and fermions
have been plotted withLx54,6,8,10. The exponential depen
dence is checked nicely as in Fig. 8 for the one-hole ca
and the slopes are obtained and will be used for calcula
the effective mass in the next section.

B. Stripe potential well and effective mass

The resemblance of our treatment of the two-holes-w
a-stripe problem in Sec. V A with that of the one-hole pro
lem in Sec. IV A prompts us to ask whether the two-ho
problem can be studied using a one-dimensional effec
potential like the potential wells used in Sec. IV B. Here w
two holes, we have a more complicated problem because
relative positions of the two holes and the stripe can h
three cases: two holes on the stripe@with energy
E2holes(Lx ,`)], one hole on the stripe with one isolated ho
@with energyE1hole(Lx ,`)], or one stripe with two isolated
holes@with energyEstripe(Lx)].

As an approximation, we consider the deepest w
@E2holes(Lx ,`)# only because that is the most probable po
tion to find the particle. Then the effective mass equation
~4.7! is modified to become

m2* ~Lx!5
1/l 2

2~Lx!

2@Estripe~Lx!2E2holes~Lx ,`!#
, ~5.3!

wherel 2(Lx) comes from the linear fitting slopes. The resu
for m2* from this two-hole-with-a-stripe calculation are i
Table III. They are comparable to the one-hole results
Table II.

C. Energy dependence onL x and stripe-step binding

To compare with Fig. 10 for one hole with a stripe, in Fi
12 we plotD2(Lx ,Ly), for three classes of lattices (Lx ,b)
3(0,Ly57) with b50,1,2, vs 1/Lx . Here the 1/Lx fit, as in
Eq. ~4.8! for the one-hole problem, is no longer good. But w
6-12
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STRIPES AND HOLES IN A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 014506 ~2003!
can still extrapolate the energy gap of the two-hole state
the stripe state for an infinitely long stripe. For the (Lx,0)
3(0,7) lattices, the gap is extrapolated to be21.4 approxi-
mately, for bosons and fermions. Comparing to the sin
hole gap of20.65, we see that binding between holes is
strong.

The size dependence of two holes on one stripe can
interpreted by the notion~Sec. IV D! that holes are bound to
up- or down-steps. When the boundary vector is (Lx ,b) with
b50 or 1, the stiffness cost will be minimized if the hole
adopt canceling flavors ‘‘up’’ and ‘‘down’’~so long asb
,2b0'5). This may explain why theb50 curves in Fig.
12 seem to have a weak coefficient of 1/Lx . The fact that
D2'2D1 indicates weak interaction between the holes, a
that can only happen if the holes~of opposite flavors! tend to
repel.

However, on reflection it will be noticed that, in a suffi
ciently large system, added holes can be ‘‘condensed’
create segments of stripe oriented in the6 ŷ direction. These
‘‘90°’’ segments will surely appear in the ground state of o
stripe in a large system, as the energy per hole to increas
net stripe length is far lower than the energy to add a f

TABLE III. Stripe effective massm2* calculated from Eq.~5.3!
using the double-well potential model for the two-holes-with
stripe problem.l 2(Lx) is the decay length in Eq.~5.2! obtained from
linear fitting. E2holes(Lx ,Ly) is used to approxmateE2holes(Lx ,`)
using the largeLy listed in the table; andm2* (Lx) is the effective
mass of the length-Lx stripe calculated using Eq.~5.3!. The super-
scriptsb andf denote bosons and fermions, respectively.Estripe(Lx)
has appeared in Table I.

Lx Ly E2holes
b E2holes

f l 2
b l 2

f m2*
b m2*

f

4 19 23.896952 23.818556 0.5919 0.6135 1.3358 1.341
6 19 25.238613 25.204899 0.4317 0.4386 2.1664 2.157
8 19 26.524636 26.510024 0.3621 0.3643 2.9375 2.934
10 15 27.797992 27.790359 0.3167 0.3274 3.7605 3.537

FIG. 12. D2(Lx ,Ly)5E2holes2Estripe as a function of 1/Lx for
three classes of lattices (Lx ,b)3(0,7) with b50,1,2.
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hole hopping along the stripe. Thus, holes do attract, o
sufficiently long stripe. That does not contradict our nume
cal observation of repulsion: as just explained, the constr
of zero net kink ‘‘flavor’’ on a stripe forces two holes t
adopt opposite flavors, which repel, whereas the holes
form a single 90° segment all have the same flavor.

Two effects compete with the formation of 90° segme
in the case of short stripes or small numbers of added ho
~i! Say the stripe contains one 90° segment withh holes, that
extends62h ~not 6b0h) in they direction, which forces the
remainder of the stripe to have a slope72h/Lx and the
associated tilt energy Eq.~3.5!. ~ii ! Say the stripe contains
two 90° segments, with the opposite directions: no net slo
is forced, but twice as many 90° corners are present,
presumably each 90° bend costs energy~since it suppresse
stripe fluctuations!.

The implication is that theb50 andb51 curves in Fig.
12 are heading towards a well-defined asymptote at22D1,
corresponding to a pair of repelling, opposite-flavor hol
However, at sufficiently longLx , they must cross over to a
different curve with a lower asymptote, corresponding to
pair of attracting, same-flavor holes, bound into an incipi
90° segment. We conjecture that the entireb52 curve is in
the latter regime, while the downturn of theb51 curve at
the largestLx suggests it is beginning to make the crossov

VI. TWO AND MORE STRIPES

Starting from this section, we study the interaction amo
stripes. We use the same diagonalization program for
problem of one stripe and one stripe with holes that w
introduced in Sec. II. Again we do not exhaustively enum
ate all possible states with a given number of particlesM.
Instead, we build basis states from a starting state which
the stripes all merged together. The motivation of these s
ies is that an understanding of stripe-stripe repulsion i
prerequisite to calculating the stripe-array energy as a fu
tion of filling nearn51/2, which is needed to ascertain th
density at which the stripe array would coexist with a liqu
phase. Unfortunately, we can only study comparatively sh
stripes and the asymptotic form forLx→` is quite unsure
from our numerical results.

A. Boson and fermion statistics

We observe from exact diagonalization that for rectan
lar lattices with two stripes, the boson and fermion spec
are identical.55 In Fig. 13, we show two configurations o
two merged stripes. For a particle on the stripe we see
horizontal hops are limited by nearest-neighbor replusion
adjacent columns only. This means that, with two strip
particles cannot move freely along the stripe and the hopp
in the system is still primarily in the vertical direction. From
Fig. 13, we can also see, after trying some moves, that
cannot move one particle far away enough so as to excha
the position of two particles. This is a necessary condit
for boson and fermion spectra to be identical.

We also need to show that periodic boundary conditio
do not affect the spectra, and we use again the idea outl
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N. G. ZHANG AND C. L. HENLEY PHYSICAL REVIEW B68, 014506 ~2003!
in Sec. II C. We have, as we did for the one-stripe-with
hole problem in Sec. IV, numerically checked a number
systems with two stripes, for example, 4310, 638, and 8
310, and we find that for the cases we checked the func
s(a) is well defined.

B. Stripe-stripe interaction

From diagonalization of two stripes with stripe leng
Lx54,6,8, we observe that the highest-weight states in
ground state eigenvector have stripes far apart from e
other, and this suggests that stripes may repel. To study
interaction between two stripes quantitatively, we define
following function:

fLx~d!5
E2stripes~Lx ,Ly!22Estripe~Lx!

2Lx
, ~6.1!

where d is the distance between adjacent stripes~here d
5Ly/2 for two evenly spaced stripes!, E2stripesthe energy of
the two-stripe system, andEstripe the energy of one single
stripe.f is the energy cost per unit length per stripe due
stripe interaction, and it is positive for repelling stripes a
negative for attracting stripes.@When we are not considerin
the dependence offLx(d) on Lx , we will simply usef(d).#
In Fig. 14 we showf(d) for stripe length 4, 6, and 8. For a
cases,f(d) is positive~the stripes repel! and decays as th
stripe separationd increases. Observe thatf(d) for Lx58 is
much smaller than that forLx54,6. The behavior ofLx
58, which is not yet explained, is highly significant fo
extrapolation to the thermodynamic limit. The stripes w
Lx54,6 are so short that, from Sec. III up to here, theirLy
size dependence can be explained in terms of a particle m
ing in one dimension (y), completely ignoring their interna
fluctuations.

It is clear that asd→`, f(d)→0 and from the graphs i
does not decay exponentially. We try the following pow
law fitting function:

f~d!5
A~Lx!

da
. ~6.2!

FIG. 13. Two configurations of two merged stripes. The arro
indicate the possible hops of one particle along the stripe. Horiz
tal movement is limited to adjacent columns only.
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In Fig. 15 we plot ln@f(d)# vs ln(d) for Lx54,6 with d
56,8, . . .,56, i.e., the largest lattice forLx54 is 43112 and
for Lx56 is 63112. We see that the power-law assumpti
is good forLx54 with the decay exponenta ~slope in Fig.
15! close to 2. ForLx56 we observe that the slope ap
proaches 2 as the stripe separationd is large.

C. Power-law decay and stripe effective mass

In Sec. IV B, we explained the exponential decay of t
one-hole-with-a-stripe energy inLy by mapping the stripe
motion to a one-dimensional problem with a double-well p
tential. Here with two stripes in the system, we have sho
again that stripe fluctuations as a function ofx are limited,
and we expect that a one-dimensional potential can be s
cient in capturing the essential physics.

Here we consider the two stripes as hard-core particle
massm* moving in they direction only. This can be mappe
to a pair of fermions on a one-dimensional ring of lengthLy ,
mathematically very similar to the one-dimensional fermio
of Sec. III C, that move in thex direction, but with a com-

s
n-

FIG. 14. Stripe-stripe interaction energy costf(d) @Eq. ~6.1!#
for stripe lengthLx54,6,8. d is the distance between adjace
stripes (d5Ly/2). The solid lines are those that connect the d
points.
6-14
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STRIPES AND HOLES IN A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 014506 ~2003!
pletely different relation to the physics.56 The wave vectors
of these one-dimensional fermions are thus6p/Ly , so the
total energy is

E5
\2

2m*
2S p

Ly
D 2

5
\2p2

m* Ly
2

. ~6.3!

For the two-stripe problem, from curve fitting in Fig. 1
the decay exponenta is close to 2 forLx54. Using Eq.~6.2!
for f(d), the definition forf(d) in Eq. ~6.1!, andd5Ly/2
for two evenly spaced stripes, we obtain the following fo
mula for the two-stripe interaction energy

E2stripes22Estripe5
8LxA

Ly
2

, ~6.4!

whereA is the factor in Eq.~6.2!.
Equations~6.3! and~6.4! give an expression for the effec

tive mass of a stripe from two-stripe interaction

m* ~Lx!5
p2

8LxA
. ~6.5!

The linear fitting intercept in Fig. 15 gives, forLx54, A
5exp(21.596418), and Eq.~6.5! then gives us the effective
massm* (4)51.5222. In Table II, theLx54 stripe effective
mass calculated in the one-hole-with-a-stripe problem
1.3561, and in Table III that from the two-hole problem
1.3417 for fermions and 1.3358 for bosons. All these res
for the effective mass of a short, length-four stripe are co
parable.

It is clear that the shorter the stripes the better the o
dimensional approximating model is. ForLx56, it can be
seen in Fig. 15 that the exponent approaches 2 in the lard
limit, but for d close to 56~the largest system that we calc

FIG. 15. log-log plot of energy cost functionf(d) @Eq. ~6.1!#
for stripe lengthLx54,6, with d56,8, . . .,56. The slope@decay
exponenta in Eq. ~6.2!# is close to 2 forLx54, and forLx56 the
slope approaches 2 as stripe separationd increases. Linear regres
sion is used for allLx54 data, and for theLx56 data, only the ten
points with the largestd are used.
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lated!, linear regression still gives 1.91. The intercept f
Lx56 in Fig. 15 is not yet sufficient for us to use Eq.~6.5! to
calculate stripe effective mass.

D. Three and four stripes

We have also studied the interaction of three and f
stripes with stripe lengthLx54. From diagonalization, we
find that for the two-, three-, and four-stripe fermion syste
we computed, the ground state energy always appears in
k5(0,0) sector, and the highest-weight states in the gro
state eigenvector have stripes far apart. To study the inte
tion of three stripes, we define, in the same fashion as
~6.1!, the energy cost per unit length per stripe

f3~d!5
E3stripes~Lx ,Ly!23Estripe~Lx!

3Lx
, ~6.6!

where d5Ly/3 here. In Fig. 16 we plotf3(d) vs d and

FIG. 16. Stripe-stripe interaction energy costf3(d) @Eq. ~6.6!#
for three stripes with length 4 (Lx54). d is the distance between
adjacent stripes (d5Ly/3). Boson and fermion energies are slight
different. The log-log plot is shown below, showing for bosons
exponent 2.004.
6-15
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ln@f3(d)# vs ln(d). First of all, with three or more stripes
unlike the two-stripe case, particles have enough room
exchange with each other when the stripes merge, and
mion and boson energies are no longer the same.57 ~How-
ever, we see from the graph that boson and fermion ener
are only slightly different.! It is clear that stripes repel an
the exponent off3(d) for Lx54 is 2.004 for the boson cas
~and practically the same for the fermion case, not show
the graph!, close to 1.983, the exponent for the two-stri
Lx54 case~see Fig. 15!.

The stripes are short enough in thex direction to be
treated as rigid~see Sec. III!. They are, in effect, three hard
core particles moving in one dimension. Apart from the fa
that this one dimension runs alongy, exactly the same prob
lem was studied in Sec. III B, where we recalled that it
convenient to convert such particles to fermions.

Let us consider the ground state of three fermions of m
m* in a length-Ly box. They have wave vectorsqy50 and
62p/Ly , so the total energy is

E5
\2

2m*
F012S 2p

Ly
D 2G5

4p2/m*

Ly
2

. ~6.7!

For the three-stripe problem, we use the same 1/d2 relation
for f3(d), as in Eq.~6.2! for the two-stripe problem

f3~d!5
A3~Lx!

d2
, ~6.8!

whereA3(Lx) is a constant. Rearranging Eqs.~6.7! and~6.8!
gives us a formula for stripe effective massm* (Lx), similar
to the two-stripe formula in Eq.~6.5!,

m* ~Lx!5
4p2

27LxA3~Lx!
. ~6.9!

Using the linear fitting intercept in Fig. 16, we get forLx
54, A3(4)5exp(21.394246), and then from Eq.~6.9!, we
get m* (4)51.4738, which is consistent with the two-strip
result 1.5222 calculated in Sec. VI C.

We have also calculated the energy for the smallest
tem with four stripes: the 4312 system with 16 particles
Here the boson ground state energy is210.8525 and the
fermion energy210.8418, both higher than the energy
four indepedent stripes with length 4,211.3137.

VII. THE STRIPE-ARRAY

In this paper, we have studied the limit near the half-fille
checkerboard state, with cases of a single stripe, holes-o
stripe, and a few stripes. As we approach intermediate
ings, around 1/4, we could have two situations: the sep
tion of the system into particle-rich and hole-rich regions,
argued for the Hubbard model58,59 ~and sometimes claime
to be quite general for interacting fermions with short-ran
interactions!, or else an array of stripes. How do we kno
which state is the ground state for our model? How do
know whether the stripe-array state is stable?
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If the true behavior, in the thermodynamic limit, is pha
separation between the half-filled checkerboard state an
hole-rich liquid, then—in a sufficiently large finite system—
the ground state would consist of one large~but still immo-
bile! droplet in a checkerboard background, of the sort
plained in Sec. II B 1. However, in the smallish system
tractable by exact diagonalization, the ground state wo
probably be a stripe-array state, for~as we show in the fol-
lowing! the bulk energy density difference is quite small b
tween the stripe-array state and the phase-separated stat
the latter state must pay a considerable extra cost of
phase-boundary line tension times the droplet’s perimete

On the other hand, the stripe-array state in a finite sys
is extremely sensitive to boundary conditions: the concen
tion of holes may be just right to form one stripe across
system, but if the boundary vectors are both even, the sys
can only support an even number of stripes. Even if
stripe-array is the correct thermodynamic answer at this h
filling, the best state available to this finite system is a se
rated droplet.

We conclude that one cannot accept the behavior of
finite systems as a direct picture of the thermodynamic lim
because finite systems are dominated by finite-size and t
logical effects. The correct approach is to determine
equation of state for each competing phase by extrapola
it to the thermodynamic limit, and only then to perform
Maxwell construction to determine the phase stability. No
that different extrapolation schemes may be appropriate
qualitatively different phases.

In our short paper, Ref. 33, we have discussed the stab
of the stripe-array, so here we only show new results
tained from a set of bigger lattices and compare our res
with works done with quantum Monte Carlo.

An important test of stripe-array stability is in the Max
well construction shown in Fig. 17. The dashed tie-line
tangent to the liquid curve~small fillings! and is connected to
the half-filled state atn51/2. It represents the coexistence
the liquid state and the half-filled state, i.e., the phase se
rated state. As shown in Ref. 33, the chemical potentia
the stripe-array, i.e., the energy per hole in creating a n
stripe ism* 54/p51.273, using the fact that as the sepa
tion d between the stripes is large, the interaction energy
length per stripef(d) @Eq. ~6.1!# goes to zero~see Sec.
VI B ! and the energy per length of an infinitely long stripe
22/p, which can be obtained from mapping the stripe
fermions in one dimension~see Sec. III C!.20 The stripe-array
line, drawn from the half-filled limit, should then have slop
m* 51.273. The stripe-array case is stable when the str
array line is below the dashed line, otherwise the phase s
rated state is stable. Therefore, to determine the stability
the stripe-array against phase separation, we need to o
the slope of the dashed linemLC. @Here we are following the
notation in Ref. 33 and the superscript LC denotes the
states: liquid and CDW~charge-density-wave, i.e., half-fille
state! that are connected by the dashed line.#

To obtainmLC, we write energy per particleE/M at in-
termediate fillings~the liquid part! as a polynomial up to the
second order in particle densityn5M /N,
6-16
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FIG. 17. Stability of the stripe-array vs phase separation. Energy densityE/N vs particle densityn5M /N. The stripe-array curve ha
slopem* 51.273. The dashed line is tangent to the liquid curve and is connected to the half-filled state. It represents the coexisten
two phases: liquid and half-filled states, i.e., a phase separated state. On the left is the case where the stripe-array line is below
line, and therefore the stripe array is stable. On the right is the case where the dashed line is below the stripe-array line, i.e.,
separated state is stable.n* is the intersection of the tie-line with the liquid curve, and the key quantity is the slope of the dashed linemLC.
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5A11A2n1A3n2. ~7.1!

We should emphasize that this fitting form Eq.~7.1! is not
meant for the dilute limit (n→0). This is for intermediate
fillings, with n'1/4. The slopemLC can be determined by
first solving for n* , the n coordinate of the intersection o
the dashed tie line with the liquid curve.33

In Fig. 18, we plot, for fermions and bosons,E/M vs n at
intermediate fillings (0.19<n<0.31) for a number of lattices
with lattice size ranging from 25 to 42.60 In Table IV we list
the quadratic fitting parameters obtained from diagonal
tion data. For the ten lattices in Fig. 18, we obtainmLC

51.254 for fermions andmLC51.304 for bosons.
In Table IV, we have also included calculations for t

five smallest and five largest lattices in Fig. 18 separately.
find thatmLC for both boson and fermion increases with i
creasing lattice size. For the boson case, this means tha
large lattices, the stripe array is not stable against phase s
ration (mLC.m* 51.273). For the fermion case, the result
stable (mLC,m* ) for the lattices that we have studied, b
mLC is very close to the stability limit 1.273. The fermio
stripe array is possibly stable.

In our earlier publication, Ref. 33, we used the same po
nomial fitting function, Eq.~7.1!, but we fixedA1524, cor-
responding to the energy of a noninteracting particle, and
systems there went from 20 sites (435) to 36 sites (6
36). The analysis in this section and the results in Table
are obtained using the three-parameter (A1 ,A2 ,A3) fit for
bigger lattices, from 25 sites (535) to 42 sites (637). The
conclusion in Ref. 33 wasmLC51.25(2) for fermions, and
mLC51.33(2) for bosons.

Reference 61 simulated the boson case of our model
~1.1!, using Quantum Monte Carlo, but withV,`. Their
01450
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phase diagram, Fig. 11 of Ref. 61, shows a first-order ph
transition between the (p,p) solid @i.e., the checkerboard
phase# and a superfluid@the hole-rich phase# with n<0.25.
Our results correspond to a single point (t/V,m/V)5(0,0)
on their plot; however, their phase boundary approaches
point with a slope62 2.28, i.e., atm/t52.28 in theV→`
limit, or m/t52.4 in a related simulation.63 This is much
larger than our resultmLC'1.33. That is puzzling, since i
would imply either that the liquid state~with density n
'0.25) has much lower energy than we found, or else th
state exists atn'0.4 ~in these finite systems! having much
lower energy than the stripe states we studied.

The evidence in Ref. 61 for phase separation rests
histograms such as their Fig. 10 which exhibits~for V
52.86 in an 838 system! a bimodal probability distribution
for the densityn, in a grand canonical ensemble, with pea
at n50.5 ~the checkerboard state! and n'0.39, the latter
being interpreted as a liquid state. For ourV5` model, a
similar plot at low temperature would show peaks atn
50.5 and atn50.375. The latter peak represents a tw
stripe state with eight holes. Its energy is'28A111/A2
'210.45 @using Eq.~3.12! and neglecting the stripe-strip
interaction in light of Fig. 14#. Our point is that examination
of the most probable configurations is needed in order
judge whether the coexisting state contains stripes or liq
droplets. Indeed, the discrete coexistence betweenn50.5
and n50.375 is an artifact of the periodic bounda
conditions—in the thermodynamic limit, within the stripe
array phase, densityn varies continuously with the chemica
potential.

VIII. CONCLUSION

A. Summary

In this paper we studied systematically a two dimensio
model of strongly-interacting spinless fermions or hardc
6-17
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N. G. ZHANG AND C. L. HENLEY PHYSICAL REVIEW B68, 014506 ~2003!
bosons on the square lattice Eq.~1.1! near the half-filled
limit. We considered an extended, quantum-fluctuating
ject that is natural in our model at the dense limit—the stri
After introducing our model~Sec. I! and our diagonalization

FIG. 18. Fermion~top! and boson~bottom! E/M vs n5M /N fit
for intermediate fillings (0.19<n<0.31). The fermion data hav
larger spread than the boson data because of the fermion she
fect.
01450
-
.

program ~Sec. II!, we studied in detail the problems of
single stripe~Sec. III!, up to two holes on a stripe~Secs. IV
and V!, stripe-stripe interaction of two, three, and four strip
~Sec. VI!, and finally the stability of an array of stripes~Sec.
VII !. Our theoretical studies were aided with a substan
amount of results obtained from exact diagonalization.

As mentioned in the Introduction, this model with spi
less fermions or hardcore bosons is not intended to b
realistic model of cuprates. Rather, this model is valuable
helping us to understand how stripes as macroscopic ob
arise from microscopic components~the spinless fermion or
hardcore boson particles in our model!. The underlying phys-
ics is the quantum mechanics of the component particles
is described by a many-particle Schro¨dinger equation~which
we solve by exact diagonalization!. Stripes can perhaps b
called anemergent phenomenonand are results of collective
motions of many microscopic particles~the original particles
or holes!. They can perhaps be considered in the same fa
ion as phonons arising from collective lattice vibrations. A
like phonons, the stripes in our problem have a life of th
own, and we have tried, in this paper, to understand the n
physics they bring.

In a broad sense, what have we learned from this deta
study of this model system? First, as is well known, quant
systems in two dimensions are much more difficult to stu
than those in one dimension. Because of the presenc
strong repulsion, at the dense limit of our model, motion
severely limited. We showed that for the problems of a sin
stripe, holes on a stripe and a few stripes, analytical res
can be obtained by mapping the two-dimensional proble
to one-dimensioinal ones which can in turn be studied us
the analytical tools available in one dimension. We show
the intricacies of each map, as we believe that this kind
map is also important for analytical studies of stripes in sp
full models.

Another theme in this paper is the comparison of the
son and fermion problems, as we want to understand
subtle differences in the resulting stripes due to the diff
ence in the statistics of the underlying particles. Centra
this comparison is the state graph introduced in Sec. II wh
describes graphically the relationship among basis states
the problems of a single stripe, holes on a stripe, and a
stripes, we investigated the difference in eigenenergy w
the help of the state graph and our computer program. A

ef-
e-array

TABLE IV. Fermion and boson fitting parameters@in Eq. ~7.1!# and the calculatedn* andmLC, for all ten

lattices in Fig. 18 and for the smallest and largest five lattices separately. Compared with the strip
slope m* 51.273, the fermion stripe-array is stable against phase separation (mLC,m* ), and the boson
stripe-array is unstable (mLC.m* ).

Particle Lattice A1 A2 A3 n* mLC SA Stable?

Fermion all 10 25.454 23.597 227.186 0.251 1.254 Stable
small 5 25.995 28.230 236.825 0.255 1.240
large 5 25.102 20.586 220.932 0.250 1.264

Boson all 10 26.138 27.839 233.950 0.233 1.304 Unstable
small 5 26.378 29.929 238.420 0.231 1.301
large 5 25.994 26.580 231.251 0.233 1.307
6-18
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STRIPES AND HOLES IN A TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 014506 ~2003!
for the problem of stripe-array stability, we obtained fro
diagonalization results an interesting conclusion that the
son stripe-array is not stable and the fermion stripe-arra
very close to the stability limit and is possibly stable. T
state graph, a representation of the interconnections am
basis states, is another general theme that is equally im
tant in studies of stripes in spinfull models.

Furthermore, from the study of holes on a stripe, we
that hole motions on the stripe and away from the stripe
be effectively decoupled. We have extracted effective mas
describing such motions. and we have shown that res
from different senarios~one stripe with one or two holes an
the case of two or three stripes! are all comparable. Anothe
interesting result is regarding the interaction of a few strip
as we observe from diagonalization that stripes tend to s
rate so to increase the freedom of particle movement al
the stripes. And the fermion representation of stripes
proven to be productive in a number of cases, giving u
good way to estimate the stripe dispersion relation in
direction perpendicular to the stripe.

This paper is one of the first using exact diagonalizat
to study stripes in extended systems. This is possible bec
of the significant Hilbert space reduction afforded by o
model Eq.~1.1!, spinless fermions or hardcore bosons w
infinite nearest-neighbor repulsion. We believe that this
one of the simplest microscopic lattice models with which
study stripes from the underlying particle dynamics. As o
knowledge about the Ising model has helped us unders
and gain intuition on more realistic models of magnetism,
argue that our work on this spinless model~including also a
separate paper on the dilute limit8! can complement studie
on more experimentally relevant spinfull models~see re-
marks in the following section!.

B. Stripes in spinfull models

In the Introduction, we have mentioned a number of e
perimental systems that can be modeled by our model, n
bly, an adsorbed gas of4He on a substrate. As our study h
been motivated by a desire to understand more concre
stripes in spinfull models, we make the following remark

In real fermion systems, stripes~antiphase domain walls
containing holes! have been a prominent object of expe
mental study in the high-Tc cuprates.1,64–67 Stripe-based
mechanisms have been proposed for high-tempera
superconductivity,64,68 but the prevalent current opinion i
that stripes compete with superconductivity.65–67

Nevertheless, stripes are obviously clues to how
charge and spin degrees of freedom interact with each o
which is important in a majority of the high-Tc theories.
Stripes are modeled theoretically and numerically using
same Hubbard model~or its variations, which were alread
accepted as models of homogeneous phases!. It is still un-
settled whether stripes are stabilized in this model, wh
omits long-range and even nearest-neighbor Coulomb re
sion. The most explicit calculations are by density-mat
renormalization group~DMRG!, adapted to two-dimensiona
systems formed into strips.4,5 The results favor stripes with
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1/2 holes per unit length, as found in experiments; howe
those simulations are strongly influenced by the~necessary!
open boundary conditions on two sides.

What relation can our spinless model have to these s
full models? Firstly, at the intermediate fillings appropriate
a stripe array, the spinfull and spinless systems are mod
in very similar ways: stripes are mutually repellin
quantum-fluctuating strings. This level is appropriate to st
ies of the anisotropic transport expected in a~nonsupercon-
ducting! stripe array, as well as the stripe interactions, as
been emphasized by Zaanen.69–71 In the spinfull models,
only a little has been done to explicitly relate the mac
scopic parameters to the underlying microscopic model.34 As
we have shown in this paper, in our model—unlike any sp
full model—exact diagonalization can address phenom
such as the effective mass and interactions of carriers o
stripe, long-wavelength stripe fluctuations, stripe-stripe
pulsion, or the transfer of carriers from one stripe to the ne
Thus, not only analytically but numerically, we have go
quite far in extracting such parameters for our model.

Secondly, if spinfull stripes are stabilized at all~in the
absence of long-range repulsion!, it is by kinetic energy in
the same fashion that our stripes are stabilized. In either c
a fermion belonging to one domain hops transversely to
stripe, and~since the stripe is also an antiphase domain w!
still finds itself correctly placed in the order of the new d
main. In our model, that order is the ‘‘checkerboard’’ patte
which is enforced by the nearest-neighbor repulsionV. From
this viewpoint,V is analogous to the antiferromagnetic co
pling J in the t-J model.~Our V→` limit then corresponds
to the caseJ@t, which is the unphysical regime of thet-J
model.!

An even more precise correspondence would be to str
in the t-Jz model:45,46 in that system~as in ours! the un-
doped, ordered state breaks a discrete~Ising-type! symmetry,
and hence is practically inert, supporting no gapless Go
stone~spin-wave! excitations—only the stripe itself has low
energy excitations. If the ordered state had a continuous s
metry, as in the Hubbard ort-J models, spin-wave mode
can mediate a 1/d2 attraction72 between stripes~whered is
stripe separation!. If short-distance kinetic energy were t
favor a stripe array, the long-range force mediated by c
tinuous spins implies phase separation in the limit of ve
small doping.73

Our stripes with an occupation of 0.5 hole per unit leng
are insulating and correspond to insulating stripes of 1 h
per unit length in thet-J model~the factor of two reflects the
density of the ordered background state!, as implied in the
original ideas65,74,75about stripe stabilization from a strong
coupling viewpoint.

C. Future directions

There are a number of directions in which the work of th
paper might be extended. For example, our code han
quite arbitrary periodic boundary conditions, not necessa
rectangular or square. Our key use of this feature was
accurately measure the equation of state for the strongly
6-19
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N. G. ZHANG AND C. L. HENLEY PHYSICAL REVIEW B68, 014506 ~2003!
teracting liquid at densityn'0.25, as used in Sec. VII to
decide the stripe-array stability. By including a wide varie
of differently shaped fermion systems in Fig. 18~top plot!, in
effect we average out the ‘‘noise’’~which is due to fermion
shell effects8!. An alternative way to do the same thin
which we have not implemented in the present work, wo
be to impose a phase factor across the boundary condi
and average over all phases.76

A boundary condition could be used to investigate the 9
bend of a stripe, which was discussed in Sec. V C. Th
would force a diagonal stripe, as in Fig. 11, but addition
holes would be added to the stripe which are expected
condense and form a segment at right angles. That geom
would permit estimation of the energy cost of the 90° be

This study has focused entirely on eigenenergies; s
our diagonalizations provide the wave functions too,
could have computed a variety of informative expectatio
such as correlation functions. We did make qualitative ob
vations using snapshots of the high-weighted configuratio
In our diagonalizations with two or more stripes~Sec. VI D!,
which started from a state with stripes all merged,
highest-weight state in the ground state eigenvector
stripes far apart from each other, and nearly equally spa
as expected from the one-dimensional approximate w
functions of Sec. VI. Calculation of the probability distribu
tion for the stripe separation would provide a quantitat
test of those wave functions. Similar calculations would g
a more direct check of the exponential decay of the h
probability as a function of its distance from a stripe,
predicted in Sec. V B; and would immediately reveal t
attractive or repulsive tendency of two holes on a stripe~Sec.
V C!.

We studied the case ofonestripe withtwo holes; the case
of two stripes withonehole is also worth investigating. Th
finite-size dependence of the extra energy due to the
would shed light on the processes by which the hole is tra
ferred between stripes when they touch. Such processe
critical to the transport properties of the stripe array, as c
sidered in Ref. 49 in the spinfull case.

Up to here, we discussed further kinds of measureme
which could be made on the same model system; variat
are also possible of the model itself. The most obvious
these is to treatV,`. A large but finiteV may be handled in
the spirit of thet-J: the same highly restricted basis stat
~which facilitated our diagonalizations! are retained, but new
hopping terms along@2,0# and@1,1# type vectors appear, with
amplitudes2t2/V, wherever the intervening site would b
forbidden by the nearest-neighbor exclusion. It is not ob
ous whether this tends to stabilize or to destabilize the st
array. The inclusion of another form of correlated hoppi
@Ref. 33, Fig. 3~c!# can certainly stabilize or destabilize th
stripe array depending on its sign.33

Finally, the same code is adaptable, almost without mo
fications, to the triangular lattice. That may model3He or
4He atoms adsorbed on graphite or on carbon nanotubes21,22

which implement a periodic boundary condition in one
rection.
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APPENDIX: COUNTING BASIS STATES FOR THE
PROGRAM

We find the number of basis statesN is maximum for
fillings n[M /N'0.25, close to the fillingn* at which, in
the thermodynamic limit~see Sec. VII!, a hole-rich liquid
coexists with the half-filled state or the~nearly-half-filled!
stripe array state. This count may be estimated by adap
Pauling’s trick for the ice model entropy.77,78The number of
ways merely to distributeM particles overN sites, uncon-
trained, is (M

N ) „where (B
A)[A!/ @B!(A2B)! #… implying the

usual entropy2n ln n2(12n)ln(12n) as N→`; this must
be corrected to account for the constraint of no nearest ne
bors. One chosen particle has a probability (12n)4 to be
free of nearest neighbors. If we pretend this event is in
pendent as each particle on~say! the even lattice is chosen i
turn, then theM /2 power of this probability is the chance fo
the whole configuration to be valid. The net entropy is es
mated as2n ln n2(123n)ln(12n); this attains its maximum
0.42 aroundn50.24 implying the leading dependenceN
;1.54N for the V5` spinless case, as compared toN;4N

in the Hubbard model case. In fact, for the 737 lattice, the
block with M511 particles has the largest~translation-
reduced! matrix dimension,N51906532.

Let N h
s(Lx ,Ly) be the number of basis states~per k vec-

tor! in a configuration withs stripes andh holes on it. This
grows exponentially withLx but comparatively slowly with
Ly , so we can handle quite largeLy and moderately large
Lx .

In the case of one stripe, the map to anXX spin chain
~Sec. III B! makes clear that, independent ofLy , the basis
has ;Lx

21(Lx/2
Lx ) states. Asymptotically N 0

1(Lx ,Ly)

;2Lx/Lx
3/2.

The number of states with two stripes may be estima
by placing them independently–the correction from dis
lowing overlaps is subdominant. That is the square of
one-stripe count, multiplied byLxLy for the possible vectors
offsetting one stripe relative to the other, i.e.,N 0

2(Lx ,Ly)
;2Lx/Lx

3/2;4LxLy /Lx
2 .

For one stripe with one hole, the basis states were cou
for Ly<25 andLx<10. Empirically,

N 1
1~Lx ,Ly!5

1

2 S Lx

Lx/2
D ~Ly21!1B~Lx! ~A1!

exactly, whereB(4)522, B(6)524, B(8)528, B(10)
5214; for Ly57, this appears to follow withB(12)5
6-20
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212, B(14)566, B(16)5572. The linear increase withLy
is due to the states with the hole away from the stripe.

For a stripe with two holes, Eq.~A1! gets multiplied by an
additional factorLxLy , for the possible offset of the secon

*Present address: Dept. of Physics, George Washington Unive
Washington, DC 20052.

1J.M. Tranquada, D.J. Buttrey, V. Sachan, and J.E. Lorenzo, P
Rev. Lett.73, 1003~1994!; J.M. Tranquada, B.J. Sternlieb, J.D
Axe, Y. Nakamura, and S. Uchida, Nature~London! 375, 561
~1995!.

2G.B. Martins, C. Gazza, and E. Dagotto, Phys. Rev. B62, 13 926
~2000!.

3J.A. Riera, Phys. Rev. B64, 104520~2001!.
4S.R. White and D.J. Scalapino, Phys. Rev. Lett.80, 1272~1998!.
5S.R. White and D.J. Scalapino, Phys. Rev. Lett.81, 3227~1998!.
6J. Eroles, G. Ortiz, A.V. Balatsky, and A.R. Bishop, Phys. Rev

64, 174510~2001!.
7H.Q. Lin and J.E. Gubernatis, Comput. Phys.7, 400 ~1993!.
8N.-G. Zhang and C.L. Henley, cond-mat/0207571~unpublished!.
9W. Kohn, Phys. Rev. Lett.19, 789 ~1967!.

10G.S. Uhrig and R. Vlaming, Phys. Rev. Lett.71, 271~1993!; G.S.
Uhrig and R. Vlaming, Physica B206 & 207, 694 ~1995!.

11J.K. Freericks, Phys. Rev. B47, 9263~1993!.
12R. Lemanski, J.K. Freericks, and G. Banach, Phys. Rev. Lett.89,

196403~2002!.
13The system Ba12xKxBiO3 is argued to have stripes of that sort, b

I.B. Bischofs, P.B. Allen, V.N. Kostur, and R. Bhargava, Phy
Rev. B66, 174108~2002!.

14R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Bu
chow, Phys. Rev. Lett.50, 2024 ~1983!; V.Yu. Irkhin and M.I.
Katsnel’son, Usp. Fiz. Nauk164, 705 ~1994! @Phys. Usp.37,
659 ~1994!#.

15J.R. Cullen and E. Callen, Phys. Rev. Lett.26, 236 ~1971!.
16J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and

Venkatesan, Nature~London! 392, 794 ~1998!.
17H. Seo, M. Ogata, and H. Fukuyama, Phys. Rev. B65, 085107

~2002!.
18See, e.g., E. Manousakis, J. Low Temp. Phys.126, 1501~2002!.
19R.H. McKenzie, J. Merino, and J.B. Marston, Phys. Rev. B64,

085109~2002!.
20F. Mila, Phys. Rev. B49, 14 047~1994!.
21D. Green and C. Chamon, Phys. Rev. Lett.85, 4128~2000!.
22D. Green and C. Chamon, Phys. Rev. B65, 104431~2002!.
23M. Greiner, O. Mandel, T. Esslinger, T.W. Ha¨nsch, and I. Bloch,

Nature~London! 415, 39 ~2002!.
24K.M. O’Hara, S.L. Hemmer, M.E. Gehm, S.R. Granade, and J

Thomas, Science298, 2179~2002!.
25Ref. 74 did investigate the tendency, as a function oft/J, for four

holes to line up@stripelike correlation# in the typical configura-
tions found in exact diagonalizations of thet-J model on up to
20 sites.

26D.S. Gaunt and M.E. Fisher, J. Chem. Phys.43, 2840~1965!.
27R.J. Baxter, I.G. Enting, and S.K. Tsang, J. Stat. Phys.22, 467

~1980!.
28In the driven ~classical! hard-square lattice gas, stripes will ove

come the blocking effect observed with random initial con
tions by R. Dickman, Phys. Rev. E64, 016124~2001!.
01450
hole relative to the first. Empirically,N 2
1(6,Ly)515Ly

2

247Ly14 ~valid for Ly.Lx); this is inferred fromLy<19.
For Ly57, we found roughlyN(Lx,7);3.5Lx

1/22Lx, for Lx
up to 13.

ity,

s.

.

-

.

.

29P.W. Leung and P.E. Oppenheimer, Comput. Phys.6, 603~1993!.
Note, some of the Bloch statesun,k& are zero and can in prin
ciple be left out of the basis set. In practice, we keep these st
and the resulting zero eigenvalues do not alter the results of
study.

30S.A. Trugman, Phys. Rev. B37, 1597 ~1988!. A state graph is
applied to the polaron problem in J. Boncˇa and S.A. Trugman,
Phys. Rev. Lett.79, 4874~1997!.

31The smallest one with nonzero energies has 3 holes insid
3A233A2 square: the energies are62 and~threefold degener-
ate! 0.

32Furthermore the two-stripe states had a lower energy, for the s
particle numberM. For a deeper discussion of this issue, see
beginning of Sec. VII.

33C.L. Henley and N.G. Zhang, Phys. Rev. B63, 233107~2001!.
34C. Morais Smith, Yu.A. Dimashko, N. Hasselmann, and A.O. C

deira, Phys. Rev. B58, 453 ~1998!.
35In the caseLy[3(mod 4), as in Fig. 5, a simpler argument

possible, which depends only on the numbering convention
Sec. II. A fermion sign can be introduced by a hop only when
hop takes a particle across they boundary, so the ordering of th
(Ly21)/2 particles in its column undergoes a cyclic permutat
with sign scol as defined in Eq.~3.1!. This is unity whenLy

[3(mod 4) so in Eq.~2.1! s(n,m)51 for every matrix element,
i.e., the boson and fermion Hamiltonians are identical.

36A generalization to higher spins is straightforward if the stri
step can take more than two values. See Ref. 45 for a map
of a strongly anisotropict-J model to a spin-1 chain.

37Note that when the periodic boundary conditions are rectangu
the stripe satisfiesy(Lx)5y(0). In thecorresponding states o
the spin chain, the totalz spin component is zero~see Fig. 5!.
For a system with ab-step tilt, the map to the spin-chain work
exactly as before, the only difference being that the result
spin configurations have( iSi

z5b/2 ~see Fig. 6!.
38E. Lieb, T. Schultz, and D. Mattis, Ann. Phys.~N.Y.! 16, 407

~1961!.
39The map from the stripe to a spin chain~or to 1D fermions! is not

one-to-one, since translation in they direction of a single-stripe
state gives the same spin-chain configuration. A rather analog
situation ~but one dimension higher! appears in the two-
dimensional quantum dimer model~QDM! @D.S. Rokhsar and
S.A. Kivelson, Phys. Rev. Lett.61, 2376~1988!#. In the QDM,
every dimer configuration maps to a surfacez(x,y) uniquely
except for an arbitrary shift ofz, analogous to oury(x) @C.L.
Henley, J. Stat. Phys.89, 483 ~1997!#. The two low-energy ex-
citations of the QDM are analogous: ripplon modes~compare
Secs. III B 1 and IV!, and transverse motion~or tunneling! of the
‘‘surface’’ through a periodic boundary condition~compare Eq.
~3.15!!. In the QDM, the dimer configuration is ‘‘real’’ and the
surface is an abstract mapping, which is exactly opposite to
situation with our stripes.

40We have checked that the eigenvalues and eigenvectors o
spin chain system match those of the spinless fermion and h
6-21



d
.

fu
y-

-

n
e

ys
on

o

,
fo
al

ev

u

r-

n
-

ho
on

ta
an
.

ve

in

en-

er,

nct

ad.

hys.
,

-

d a

we

59,
uces
es
r to

tly:

N. G. ZHANG AND C. L. HENLEY PHYSICAL REVIEW B68, 014506 ~2003!
core boson problems, using a spin diagonalization program
veloped for another project@P.A. Houle, N.G. Zhang, and C.L
Henley, Phys. Rev. B60, 15 179~1999!#. The code used in this
reference can diagonalize arbitrary spin systems for both the
Hamiltonian matrix and the cyclic permutation symmetr
reduced problem.

41E.H. Lieb and D.C. Mattis,Mathematical Physics in One Dimen
sion ~Academic, New York, 1966!.

42F.D.M. Haldane, Phys. Rev. Lett.45, 1358~1980!.
43This description has glossed over the complications that our o

dimensional wave functions are manifestly multivalued. W
must imagine that the many-body wave function of the 1D s
tem jumps to another ‘‘Riemann sheet’’ every time a 1D fermi
hops across the boundaries. This is familiar from the theory
anyons.

44The last term here does not yield thescol
h factor described above

but it is gauge equivalent to that. It gives the correct factor
the Ly iterated shifts by (0,2) required to return to the origin
stripe configuration, which isscol

LxLy5scol
Lx —recall thatLy must

be odd.
45O. Tchernyshyov and L.P. Pryadko, Phys. Rev. B61, 12 503

~2000!.
46A.L. Chernyshev, A.H. Castro Neto, and A.R. Bishop, Phys. R

Lett. 84, 4922~2000!.
47The motion of a hole on a stripe does induce large cyclic perm

tations, but it is argued that they are always even@C. L. Henley
~unpublished!#.

48D. Park, Introduction to the Quantum Theory~McGraw, New
York, 1964!.

49T. Noda, H. Eisaki, and S. Uchida, Science286, 265 ~1999!.
50J. Zaanen, Science286, 251 ~1999!.
51For (Lx,0)3(0,7) and (Lx,2)3(0,7) systems the boson and fe

mion energies are the same. For (Lx,1)3(0,7) this is not true,
and here we plot the boson energies. Note that this does
invalidate the result~that boson and fermion one-hole-with-a
stripe problems have the same energy spectra! checked in Sec.
IV because it was for rectangular systems.

52C. Nayak and F. Wilczek, Phys. Rev. Lett.78, 2465~1997!.
53This is analogous to the reason that, in the Hubbard model, a

moving in a half-filled background suppresses spin deviati
@Y. Nagaoka, Phys. Rev.147, 392 ~1966!#.

54Snapshots of the high-weight configurations in the ground-s
wave function do commonly show the hole combined with
up-step as in Fig. 11, but we did not study this quantitatively

55This is not true for systems withLx close toLy . For example, for
636 with M512, the lowest boson energy is27.98357 and the
fermion energy is27.92667. There we do not necessarily ha
two parallel stripes.

56Alternatively, the same two-stripe problem can be solved us
relative coordinates~center-of-mass frame!. It appears as one
particle with reduced massmr5m* /2 confined to a box
01450
e-

ll

e-

-

f

r

.

-

ot

le
s

te

g

(2Ly ,1Ly). The energy isE5\2p2/2mrLy
2 , which agrees

with Eq. ~6.3!.
57So strictly speaking, we should write something likef3b, f

Lx to
emphasizef3’s dependence onLx and the boson and fermion
statistics, but when we do not explicitly study these depend
cies, we neglect them inf3.

58P. Visscher, Phys. Rev. B10, 943 ~1974!.
59V.J. Emery, S.A. Kivelson, and H.Q. Lin, Phys. Rev. Lett.64, 475

~1990!; Phys. Rev. B42, 6523~1990!.
60These are square lattices (a,2b)(b,a) with a55,6 and b

50,1,2, and rectangular lattices 536, 537, and 637.
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