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Stripes and holes in a two-dimensional model of spinless fermions or hardcore bosons
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We consider a Hubbard-like model of strongly interacting spinless fermions and hardcore bosons on a square
lattice, such that nearest neighbor occupation is forbidden. Sttilmes of holes across the lattice forming
antiphase walls between ordered dompiae a favorable way to dope this system below half filling. The
problem of a single stripe can be mapped to fermions in one dimension, which allows understanding of its
elementary excitations and calculation of the stripe’s effective mass for transverse vibrations. Using Lanczos
exact diagonalization, we investigate the excitation gap and dispersion of a hole on a stripe, and the interaction
of two holes. We also study the interaction of a few stripes, finding that they repel and the interaction energy
decays with stripe separation as if they are hardcore particles moving iftransversgdirection. To deter-
mine the stability of an array of stripes against phase separation into a particle-rich phase and a hole-rich liquid,
we evaluate the liquid's equation of state, finding that the stripe-array is not stable for bosons but is possibly
stable for fermions.
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[. INTRODUCTION computational techniques. We will also discuss the relevance
of our work to spinfull stripegin Sec. VIII B).
Stripes have been an area of active study in high-
temperature superconductivity research since Tranquada and A. The model
co-worker$ observed the coexistence of superconducting The Hamiltonian is
and stripe domain order for the material
La g-xNdp 4Sr,CuQ, at around doping=0.125. Theorists
have focused in particular on thel model, using a variety H= —tz (cichJrchci)JrVE ﬁiﬁj , (1.9
of computational techniques, for example, exact D D
d|agonallzat|or?,.quantgm Monte qulé,and DMRG'*The it periodic boundary conditions on the square lattice. We
t-J model and its variants are believed to be a reasonablyy,qy poth the spinless fermion and the hardcore boson ver-
good model of the competition between charge and spin dejons of this modelc! andc; are the spinless fermion or

grees of freedom which is crucial in the formation of stripespargcore boson creation and annihilation operators ai site

in cuprates and important in explaining exper!mental dataﬁi:CiTCi the number operatorthe nearest-neighbor hopping
for example, angle-resolved photoemission

6 Sloectraamplitude, andVv the nearest-neighbor interaction strength.
(ARPE_S' . At each site there can be at the most one particle. Further-
_ Inthis paper, we present a systematic study of a stronglygare we study the strong-correlation limit of the model and
interacting model ofspinlessfermions. This model is the take V= +o, i.e., infinite nearest-neighbor repulsion.
simplest model of interacting electrons with nontrivial states e spinless fermion or hardcore boson model with infi-
in two dimensions—a spinless analog of the Hubbard modehjte nearest-neighbor repulsion involves a significant reduc-
and in this model, stripes, that are lines of holes across thgon of the Hilbert space as compared to the Hubbard model.
lattice, are natural objects when doping from the half-filledThe Hubbard model on the>44 lattice at half filling, with 8
limit. Our results do not have direct implications for experi- spin-up and 8 spin-down electrons has 1 310 242 states in the
ments on cuprates because for that, a spinfull model such asrgest matrix block, after reduction by particle conservation,
thet-J model would be needed; however, as we will show intranslation, and the symmetries of the squale.our model
this paper, this model is valuable because it gives us a comwith infinite V, after using particle conservation and transla-
crete understanding of the emergence of these extendetion symmetry(but not point group symmetrigsthe largest
fluctuating, and quantum mechanical stripes from the undematrix for the 7<7 system has 1906 532 statésith 11
lying, microscopic particles. We can diagonalize much largeparticles. We can therefore compute for all fillings the 7
systems than possible for spinfull models, for example, ax7 system whereas for the Hubbard mod&i4tis basically
system of one length-12 stripe with two holes on theI2  the limit. This also means that at certain limits we can obtain
lattice or two length-8 stripes on thex®8 lattice. As exact results that are difficult to obtain in the Hubbard model, for
diagonalization works on the Hubbard and thkmodels are example, we can exactly diagonalize a system of two
limited to very small lattices, a more thorough analysis on arlength-8 stripes on the>828 lattice.
analog model is helpful. Furthermore, just as the Ising model This is one of the two papers that we are publishing to
gives us insight on more realistic models of magnetism, wesystematically study the phase diagram of the spinless fer-
believe that this model can shed light on spinfull models andnion or hardcore boson model on the square lattice with
is a good example system for testing new theoretical anéhfinite nearest-neighbor repulsion. In the other p&pee
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. O . O . O . No known electron system realizes our model, even ap-

proximately. A “half-metallic” ferromagnét**>~meaning
O ‘ O ’ O . O that for one _spin state, the conduction band is all fillgd or all

empty—realizes a spinless model for the other spin state.
However in the best-known half metals, the mangariftes,
the formation of inhomogeneities is dominated by lattice dis-
tortions and orbital degeneraci@sot to mention static pin-
ning disordey, so that quantum-fluctuating defects find no
role in current theories of manganitgd.he same may be
true for the Verwey transition in magnetité,which was
modeled previously with spinless electrdis Conceivably
the spinless model could be realized in an array of semicon-
ductor quantum dots in a magnetic fi¢fd.

Our (fermion) model could be considered a caricature of
the spinfult-V model (U=« extended Hubbard modekith
large V, whenever charge fluctuations are more important
than spin fluctuations. This models certain two-dimensional
organic (supejconductors’ such asf-(BEDT-TTF),l5, but

FIG. 1. An isolated holelshown in the boxin a halffiled  these materials cannot be doped away from 1/4 filling. If a
region cannot move. A row of holda stripe can slide along in the dopable realization is found, stripes are expe%&m(j the
vertical direction, with the arrows showing the possible moves. present work would be a starting point to study such systems.

The most plausible realization of the boson version of our
study the dilute limit of this mode(1.1), focusing on the ~model would be an adsorbed gas ‘e on a substrate with

problem of a few particles, and that limit is dominated by Square symmetry(The same model—but on a triangular

two-body interactions. In the present paper, we study théattice—has been introduced independently to mdt on

near-half-filled limit of our model, where stripes are naturalnanotubé&?) The fermion case could similarly be realized,

objects. in principle, by spin-polarized®He, however it would be
With infinite nearest-neighbor repulsion, the maximumdifficult to achieve a degree of polarization sufficient to ne-

filling fraction (particle per sitg for our model is 1/2, for ~glect the minority spin state. _

both spinless fermions and hardcore bosons. At exactly half Another recent realization of the boson model consists of

filling, the particles form a checkerboard configuration thatcold, dilute gases in an artificial two-dimensional lattice cre-

cannot move. Adding a single hole to it cannot produce moated by optical trap&’ Exact diagonalization techniques

tion either because the hole is confined by neighboring paicould be particularly pertinent to these experiments, since the

ticles. A natural way to add holes to this system is to alignPotential may be changed suddenly in experiments thus pro-

them in a row going across the system, as indicated in Fig. 1€cting the ground state wave function of one Hamiltonian

We call this row of holes a stripe and it is the subject of studyonto the eigenstates of another Sfiés the techniques of

in this paper. cooling fermion gases are pgrfecl?éda spinless fermion
For many systems with certain aspect ratiesy., the 6  System is.naturally realized, since accessu_ble magnetic fields

X 7 lattice depicted in Fig.)1the stripe state is the one with €an polarize these systems eadity unavoidably, if mag-

the smallest number of holes and nonzero energy. Here weetic trapping is used in the cooling proces$his paper

have an interesting kind of physics of extended, fluctuating@PPears to be the first using exact diagonalizatas op-

and quantum mechanical objects, that are results of colle20sed to DMRG to investigate the properties of interacting

tive motions of many particles. stripes in szp5at|ally extended systems with a microscopic
Spinless models related to the present one have been jflamiltonian:

voked occasionally in the literatitéut usually in the con-

text of a specific question about spinfull models: it was rec-

ognized that a spinless model would capture the same

physics with fewer complications. The only systematic work  This paper is organized as follows. Fi@ Sec. I) we

on phase diagram of spinless fermions is by UAfiglow-  describe briefly our exact diagonalization code for studying

ever, the method is expansion around infinite dimensionalitythe near-half-filled limit of our model. We use translation

this will have special difficulty with arrays of domain walls, symmetry to block diagonalize the Hamiltonian matrix. A

since wall fluctuations and the attendant kinetic energy argraph viewpoint motivates a method of building basis states

strongly suppressed in high dimensions. from a starting configuration and explains the relation be-
The Falicov-Kimball model is an alternate way to sim- tween boson and fermion energy spectra.

plify the Hubbard model, which is also commonly presented Next (Sec. Il) we study the problem of a single stripe.

in a spinless fornt! and develops stripelike incommensurate Here particles can only move in one direction, effectively

patterns:> However, this model includes a second immobilereducing the 2D problem to a 1D one. This one-stripe prob-

(classical species of electron, so its stripes cannot havdem maps exactly to a spin-1/2 chain, and further to fermions

quantum fluctuation$® in one dimension. Using the single-stripe energy dispersion

B. Paper organization
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relation along the direction perpendicular to the stripe, we

obtain stripe effective mass for motion in that direction. oo
In the next two sections, we study the problem of one or 4

two holes on a stripe(For the one-hole case, bosons and P °oHOPO @
fermions have the same energy spectiuve determine the (0.5 3 8OO0 P
dispersion relatiorienergy gap and effective maser one 2D 102070 O
hole moving on a stripe and study the binding of two holes.

It is informative to study the finite-size dependence of energy 1 (P 6ONO10O P
on the lattice dimensions in both directions: in particular, it OC/ 5 loulsmw)

decays exponentially as a function of the lattice size perpen (4.0)
dicular to the stripe, which we explain quantitatively in terms
of the stripe tunneling through a barrier between two poten-
tial wells. FIG. 2. Square lattices with periodic boundaries: (%00,5)

One of the motivations for studying our model is our in- ©n the left and (4,1x (1,5) on the right. Site numbers are shown,
terest in a simple model of interacting stripes. In Sec. VI wellowing the numbering convention, upward and rightward.
have exactly diagonalized systems with two, three, and four

stripes and find that the stripes repel. The interaction energies Formulas for the number of configuratiofia cases with
scale as the inverse square of stripe spacing, wiiiké the and without stripesare given in the Appendix. The ensemble

abovementioned tunneling scenarfollows from the one- of all basis configurations defines the classical “hard-square

. ,26 g . .ppe
dimensional nature of the stripe’s transverse motion in ouf2tlic® gas.™ That has a critical point at fillifg N
systems. =0.3681), above which the typical largh-state has check-

Finally (Sec. VI)) we discuss the stability of an array of €rboard long-range ordefObserven, is near the midpoint
stripes by fitting the diagonalization results in the intermedi-Of the coexistence interval found in thguantummodels
ate filling limit and using a Maxwell construction. Our inter- (S€C. VI).] Phase separation and stripes are thus induced by
est is whether at the intermediate-filling limit the stripe-arraynOPPINg kinetic energy and are not found in tequilibrium
case or a phase-separated case with hole-rich regions aRtassical modet” , o o _
particle rich regions is stable. The conclusion is, interest- The CO”_f'QUfaUOH by itself Is In.suff.|C|ent to define the
ingly, that the boson stripe array is not stable and the fermiolii_’ai““"S ket, since we need to specify its sign or p_hase facto_r_ To
stripe array is very close to the stability limit and is possibly fix the fermion sign, we must establish an arbitrary ordering
stable. of sites and always write configurations in this order. Then

In our earlier publication, Ref. 33, we focused on theWe denote the basis stae)=c{ ¢, --cf |0),
stability of the stripe array. The present paper contains more The site ordering convention used in this paper is to start
systematic and more updated results and a substantial nuwith site O at the lower left corner and move upward along a
ber of important new results on, for example, boson andattice column until we encounter the cell boundaries defined
fermion statistics, stripe effective mass, and stripe-stripe inby the boundary vectoiR; andR,, and then shift rightward
teraction. We also present new data on the stripe-array usirgnd repeat in the next column, progressing until all sites have
larger systems. been numbered. Figure 2 shows two example systems:

(4,0)x(0,5) and (4,1x(1,5).
In this basis set the Hamiltonian E(L..1) acts as

II. BASIS STATES AND DIAGONALIZATION PROGRAM

In this section, we describe our exact diagonalization _(_
code. We begin by describing our convention for labeling Him)=( t)m;w s(n.m)jm), @)
basis states, which is crucial to keep track of sign factors in .

the fermion case. Then we introduce a geometrical way t§'here M denotes the set of states created by hopping one
view the basis states as nodes on a graph and apply this Rticle in [n) to an allowed nearest-neighbor site. For
classify the conditions under which the boson and fermiorPosonss(n,m)=1 always and for fermions(n,m)==*1

problems have the same energy spectrum. and the matrix element iém|H|n)=—s(n,m)t if me M
and 0, otherwise.

_ We use lattice translation symmetry to block diagonalize
A. Basis states the Hamiltonian matrix(m|H|n). The eigenstates that we

Each basis state withl particles corresponds 1-to-1 to a Use are the Bloch stafés
configurationwhich is an array of thé occupied site num-
bers (1,i5, ...,im). Any configuration with two nearest
neighbors occupied is excluded because of the infiita
the Hamiltonian Eq(1.1). Periodic boundary conditions are
specified by two lattice vectorR; and R, (which will be In this expressiork is a reciprocal lattice vectaione of N,
calledboundary vectorsn the following), such that for any whereN is the number of sitgsR, is a lattice vector(the
lattice vectorr we haver +n;R;+n,R,=r, wheren; and order ofl in the sum is not importapt T, is translation by
n, are two integers. R, and N, is a normalization factor. The original basis

N

-1
e "RiT |n). (2.2

nlo= -
nky=—
Nnk =0
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stategn) are divided by translation into classes, and any two n

states in the same class give the same Bloch state with a \

overall phase factor. A representative is chosen from eact

class and is used consistently to build the Bloch states. For i I m n -
state|n) we denote its representatiya ), and the Hamil- \ / \ \
tonian matrix is block diagonal in the sense that Ny Ny g e Do Dy Mge. N3 Oy Nz

diagonalized for eack vector using the well-known Lanc-
z0s method. 0y My .

(m,k’|H|n,k)=0 whenk’#k. The matrix(m,k|H|n,k) is /

FIG. 3. Building basis states from a given stateApplying

B. State graph all allowed hoppings ton (the level 0 state gives the states

It is helpful conceptually to represent specific cases of ouP1:M2.Ns, - - - . Applying hoppings ta, (a level 1 stategives
Hamiltonian by thestate graph in an abstract(or h|gh_ level 2 Statesnll,nlz,nl3,... . The basis state list is then
dimensional space, such that each node corresponds to & M1:M2:N3, .- N11,M12,Nggs - 0 M21, N2, w11 Mgy o

basis state, and two nodes are joined by an edge of the gra;')\ﬁ’te that when_applying hoppings to a state, only add states not

if and only if the two states differ by one particle haps a!ready on the list. We call this graph of states connected by hop-

used in Sec. Il A, our many-body Hamiltonian is almost P'"9 thestate graph

equivalent to a single particle hopping on the state gpaph.

The best-known precedent of this approach s Trugman'§rom the rest of the Hilbert space, it speeds up the diagonal-

study of one-hole and two-hole hopping in thd, model®® ization by a large factor if it is limited to the stripe-
Two states areonnectedf one state can be changed to configuration sub-block of the Hamiltonian matrix. The only

another by a succession of hops. For states near half fillingyay to separate out this subblock is to generate basis states

our V= constraint forbids many hop moves, so the graph igteratively from a starting configuration which has two

sparse and can possess interesting topological properties rékipes.

evant to our spectrum. What of the case of even-odd ¢equivalently odd-odd
boundary conditions? These foroae stripe (possibly with
1. Droplets and accessibility of states additional holes, or possibly more stripesn every such

case(excludingL x L with odd L), the stripe can fluctuate
and absorb any droplets, so we believe the Hilbert space is
fully connected, and the diagonalization is not speeded up.
Nevertheless, for every case near half filling, we enumerated
the basis from a starting configuration,(®se believe this is

e fastest way to do so. Systematically enumerating all pos-
sible fillings by brute force would take more time than di-
agonalization itself, since almost every brute-force trial con-
figuration gets ruled out by thé=c constraint.

However, at low fillings(which we study in Ref. Bthe
rute-force enumeration is used. In that case, if we generated
om a starting configuration, there would be too many alter-
ate routes to reach a given state. Hence much time would be
asted in searches to check whether each newly reached

We remarked(Fig. 1) that an isolated hole is unable to
hop; larger finite “droplets” of holes are still immobile,
though they may gain kinetic energy from internal fluctua-
tions. Specifically?’ if one draws a rectangle with edges at
45° to the lattice around the droplet, so as to enclose eve
site which deviates from the checkerboard order, tveith
the V=00 constrain} sites outside this rectangle can never be
affected by fluctuations of the droplet.

Due to the droplets, the state graplpresenting all states
with M particles may be broken up into many disconnected
components, states which cannot access each other by %l
lowed hops. This happens if both boundary vectors are evep
vectors, so that the system cell would support half filling
with a perfect checkerboard order. For slightly less than hal tate was already on the basis state list
filling, the typical basis state consists of scattered immobile '

o . Below we outline the algorithm for building basis states
droplets of the kind just described. Each component corez e Hamijtonian matrix. To build basis states without

sponds to a different way to assign the holes to droplets, or ina translation svmmetrv from tin follow

merely a shifted way of placing the same droplets. Each soy Se %Itloa\l/viigtsﬁepssy etry from a starting stafeve follo

of droplet has its characteristic energy levéignd the sys- (1) Apply hoppinés ton and obtain states: n- N

tem energies are the sum, just like a system of noninteractingee Fig 3. Form the basis state fist;,n,,n v tsk;allt.a{r'e
. 1,012,035 v vy

atoms, each having its m_dependent excited Iev_els. numbered 0, 1, 2,,3 .. , andrecord the Hamiltonian matrix
When the state graph is disconnected, the Hilbert space S
ementsHg 1,Hp2,Hos, - - - -

correspondingly blocked into components which are not con- (2) Apply hoppings to the next state on the basis state list

nected by matrix elements. This is beyond the blocking ac: . .
cording to translational symmetry, which remains true. that has not been applied hopping to. Here fropwe get

Nq1,Nq2,N13, . .. . Add these to the basis state list to form
n,Nqy,N5,N3, ... ,N11,N12,N43, ... . (Note we should not
add states that are already on the list. For example, applying

In systems with even-even boundary conditions, we ardoppings ton, will certainly give n back again. Do not in-
not mainly interested in the configurations with droplets, butclude this state in level 2 states. When computing Hermitian
in those with two stripe¥? Since these are disconnected matrix elements we only nead, , for p<q.) If ny, is the

2. Building basis set from a starting configuration
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mth element on the list, record the matrix elements 0

Him Hims1Himeo, oo 1/ \2
(3) Repeat the previous step until all the states on the list s

have been applied hopping to and no new states are created. /
We finish with a basis state listn,ng,n,, o(o)

o,
n3, P ,nll,nlz,nls, P ,n21,n22, P ,nlll,nllz, ey and S(B a)

we have stored the Hamiltonian matrix elements. When ’

building the Bloch basis states in E®.2), the procedure is o(B)

- ; B
similar to the above, except we apply hopping to representa-
tive states of each class of translation related states and also FIG. 4. Obtainingo(a), that is defined for each state, from a

store the representatives of the resulting states. reference state 0 and the step wise hopping sign funs(igna),
that is defined on the arrow pointing from to 8. Define o(B)
C. Boson and fermion statistics =s(B,a)a(a). If the functiona(pB) is well defined, i.e., all paths

] _leading from 0 toB3 give the same sign, then the boson and fermion
In this paper we study both the boson and the fermiorspectra are identical.

versions of our model Eq.1.1), and one question that we
often ask is when bosons and fermions have the same Spec-\ye can check numerically whether the functiafc) is

trum. In this section, we introduce a graph-based way tQue|| defined at the same time as we build the basis set by
study the relationship between boson and fermion spectra. applying hopping, i.e. constructing the state graph in the

Using Eq.(2.1), we know that if 3 is a state that can be ¢4rm of a tree(Fig. 3. We store a sign for each state, starting
obtained from the state by one nearest-neighbor hop, then i o(n)=1 for staten in Fig. 3. As we expand the tree, we
we have compute the sign for the next level of states. Whenever we

come to a state that is already on the list, we test whether the
(BIH|a)i=s(B,@)(BIH|a)y, (23 sign we produce following the current path equals that al-
ready stored for that state. Depending whether the sign al-
yyays agrees or sometimes disagrees, we know the fermion
a . : .
and boson problems are or are not equivalent. This method is
the basis for statements later in the paper on boson and fer-
_ mion spectraSecs. Il A and VI A, and briefly in Secs. IV
s(B.a)=o(p)o(a), 24 and V); it is not necessary to compute all the eigenvalues.
i.e.,s(8,a) as a product of a function that depends on one The boson-fermion equivalence condition can be re-stated

state only, then E¢2.3) can be written as a matrix equation in a way that is independent of the siFe or_derir_lg_ convention
at the start of Sec. Il. Say each particle is originally num-

Hi=3SH,S, (2.5 bered 1...,M and retains its number when it hops. Then
s(«a,B) is simply the sign of the permutation which changes
whereX , ;= 8, go(a). Becaus& =3 "1, it is a similarity  the string of particleswhen they are listed according to the
transformation, and then the eigenvaluedHgfare identical ~ site ordey. The functiono(«a) is well defined if and only if
to that ofH, . Indeed, this is a much stronger condition thanthe product ofs(«,8) around any closed loop of the state
having identical eigenenergy spectra: #igenstatesire also  graph is unity; in other words, if and only if any sequence of
identical (modulo a sigi so, e.g., an operator which de- hops that restores the original configuration induces an even
pends on the basis state has the same expectation in the hgermutation of the particles. When just two particles can be
son and fermion cases. On the other hand, if the funation exchangedan odd permutation as is obviously possible at
cannot be defined, the boson and fermion Hamiltonians ar®w fillings, the fermion and boson spectra are obviously
not equivalent. different.
We can relate Eg2.4) to the loops which occur in virtu-
ally every state graph with the help of Fig. 4. He(@, «) is
defined on the arrow pointing frorar to B, whereas the
function o(«) is defined on the node of the graph. It was first observed by Mila, in a model very similar to
Figure 4 suggests a natural way to constri€tr). First  ours, that the creation of stripes is more favorable than of
we choose a reference point. This should not matter and thigsolated holes, as a way to dope the system below half
one we choose is the starting state of the exact diagonalizdilling.?>*® We shall finally address more rigorously the
tion program, say 0. We set(0)=1. Then if one hop takes phase stability of the strip€Sec. VII), but in this section we
a to B, definea(B)=s(B,a)a(«). This is certainly correct will study the eigenstates of a single stripe in the system. In
if Eq. (2.4) is true; but if the state graph has a loop, i.e., twoFig. 5 we show d ,=4 andL,=7 system with 12 particles.
different paths lead to the same st@drom 0, theno(B) A stripe of length four is formed along thedirection. The
can be well defined only if they produce the same sign. Thenly four possible nearest-neighbor hops of the leftmost state
answer is different for different state graples disconnected are indicated with arrows and the resulting four states are
subgraphs of the state graptso it depends on system di- shown on the right. Note that with a single stripe, the par-
mensions and filling. ticles can only hop in the direction. It is not possible for

where the subscriptsand b denote the fermion and boson
matrix elements, respectively, and we have used the fact th
s(B,a)=1 for bosons. If we can write

Ill. A SINGLE STRIPE

014506-5



N. G. ZHANG AND C. L. HENLEY

| HON NON NN NON NON NN NON J

ON NON NOINON NON NOEENC O
® O O

0 OO

O O
O

O @O

| JON

trid

N

FIG. 5. Asingle stripe in the A7 system. For the leftmost state,

Pyt

PHYSICAL REVIEW B68, 014506 (2003

O 06000 e e6O0e e
0 000 e0O Oe

O O @O

O

O O

O O
O ON NGO
ON L JON OGN J

byt

LT

the four possible hops are labeled, and the resulting configurations are

shown on the right. The corresponding spin chain configurations are shown tsglevec. Il B.

them to move in any fashion in thedirection.
We also consider tilted boundaries,(b)*x(0O.L,),

A. Boson and fermion statistics for one stripe

We find from diagonalization that for one-stripe systems

which force a tilt ofb steps to the stripe because the siteyith rectangular boundaries, the boson and fermion spectra

(0yy) is identified with L,,y+b). In Fig. 6, the (5,1)

are identical and are symmetric about zero. For a stripe in

% (0,7) and (6,2X(0,7) systems are shown. Note becausesystems with tilted boundaries, there are complications. For

each stripe step is at 45 degree angle, an évdd horizon-

tal length of the strips., must produce an eveidd num-
ber of total vertical stepb. ThusL,+b is always even. For
a general [,,b)*x(0L,) system withL, odd, the single-
stripe states hav®l=L,(L,—1)/2 particles. Note also that
for the tilted stripes, vertical hopping is again the only al-
lowed motion of the particles.

Diagonal stripes are observed in NiO 4, and they are
an interesting topic in the-J model®* However, in our
model withVV=0o0, no hopping is possible away from a 45°
edge of any domain. Thus a diagonal stripe has no kineti

energy(unless there are additional holes, as discussed in Sel

IV D) and is disfavored.

LTy

FIG. 6. A single stripe in the (5,%(0,7) and the (6,2)
X (0,7) systems. The boundary conditions force a tilt of the stripe
The corresponding spin-chains have toflequal to 1/2 and 1,
respectively(see Sec. Il B and Ref. 37

bt

the (2m+1,1)X (0,2 + 1) system, withm and| integers, the
spectrum is not symmetric about zero. In this case, With
odd, the fermion spectrum is still identical to the boson spec-
trum, but forl even, the fermion energies are the boson ones
with a minus sign(and because the spectrum is no longer
symmetric about zero, the fermion energies are not the same
as the boson energied-or the (2n,2)x (0,2 +1) system,
the boson and fermion spectra are identical and symmetric
about zero.

All these numerical findings can be explained in terms of

Ehe state graph, extending Sec. Il C. We must characterize the

ermutations induced by a sequence of particle hops which
réturn to the same basis configuration. This is quite easy in
the single stripe state, sindas already commented on in
Figs. 5 and & particles move in the direction only. Our
discussion includes allL{,b)x(0,L,) systems(which are
tited boundaries ib#0). In these cases, particles are con-
fined to the same column, and the net permutation is a prod-
uct of permutations in each column.

Consider the total particle permutation induced when the
system returns to the starting state by a loop on the state
graph®® If in this process the stripe as a whole makes no net
movement across theboundaries, then in each column the
particles undo their hops and the net permutation is the iden-
tity. Thus, the only nontrivial loops are those in which the
stripe crosses thg boundary. Indeed, since each hop moves
the stripe locally byAy=+2, the stripe must cross the
boundarytwice The particles in each column have returned
to the original positions with a cyclic permutation in each
column, which has the sign
(_ 1)(Ly+ 1)/2_ (31)

Ocol=
Therefore the sign of the system’s permutationoig,"x
which (sinceL,+b is even reduces to ¢ 1)P(ty* D2 the
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fermion and boson spectra differ if and only if this phase issame site. The explicit relation of the stripe paih) to the

—1, i.e,, only wherb is oddand L,=1(mod 4). 1D spin and fermion representations is
The = E symmetry of the single-stripe spectrum also falls ~
out from visualizing the Hamiltonian as a single particle hop- y(i+1)—y(i)=25,=2n;—1, (3.2

ping on the state graptwith amplitude—t=—1 for every ~ _ . . I
graph edgg and recalling the spectrum depends only on thewherenizcifci . The effective one-dimensional Hamiltonian

attributes of closed loops. We can always change our corl®

vention for the phase factors of the basis states, which is

equivalent to a “gauge transformation” on the nodes of the H= —tz (cLlciJrciTcHl), 3.3
state graph. Whenever a state graphbiisartite, meaning :

every closed loop on it has an even number of edges, it ighus the dispersion is

well defined to divide the basis states into “even” and “odd”

classes. If we change the phase factor by for every —2t cosq, (3.9

“odd” basis state, every eddeverys(n,m) factoq] picks up where g is the one-dimensional wave vector. We can con-

a factor —1. By gauge equivalence, the new Ham'lton'an,struct exactly the ground state by filling the lowest-energy

matrix has the same spectrum. Yet on the other hand, it i§j5ne.wave states, up to the one-dimensional Fermi vector
manifestly the same as the old matrix with» —t, soithas (=m/2 for an untilted stripe here =N, /L, is the

the sign-reversed spectrum; this proves the symmetry.  gensity of one-dimensional fermions, corresponding to a

Now, the nontrivial loops in the state graph are those thakyine slope 22— 1. All excited states correspond exactly to
pass the stripe twice across thdoundary; this motion re-  ipar ways of occupying the 1D fermion states.
quiresL,L,=N hops. Thus, the state graph is bipartite and

the spectrum has E symmetry, if and only ifN is even. 1. Excitations of a stripe

If N is odd, the gauge-invariant effect of reversing
—t is to change the net product sfn,m) around every
nontrivial loop by a factor—1. But we showed that switch- .
ing Fermi and Bose statistics creates the same sign: hen{@nian
the fermion spectrum is the inverse of the boson spectrum, as

observed. H= %J dx

If a stripe is coarse-grained as a quantum-fluctuating
string, then it can be approximated using a harmonic Hamil-

2

d
y+K

Pldt

dy\?
dx

P2

q 2,2
p—*+Kq Yal- (3.5

B. Fermion representation of a stripe _ E E
q 2

In Figs. 5 and 6, we have indicated a natural map from
any configuratiory(x) of the stripe to a state of a spin chain

. i . _ H * is the effecti densit it length of th
of lengthL,. Here it is obvious the spin length is one-half erep” 1S e ENective Mass censity per unit ‘engin ot the

f h stri ¢ 1) tak v t ' stripe, and the stiffnesk is analogous to a string tension.
or each stripe stepy(x+1)—y(x), can take only two The long-wave excitations of such a “string” are the quan-

values®® The up step of the stripe is mapped to an up spin. - : : :
Il k asppl hich h -
and the down step to a down spin, for example, the Ieftmogglizoend capillary waves known atpplons which have disper

configuration in Fig. 5 maps to a rs?ein stdtel | 7). The

result is the so-called spin-1%X chair’’ and is well studied —c with  c= JVK/o* 36
and exactly solvabl&® This map was first noted by Mil#, o=clq| P 39
who used it to evaluate the exact ground state energy of andq is the one-dimensional wave vector.

stripe, and we have discussed it briefly in Ref.*3%? Here On the other hand, in the microscopic representation by
we introduce a map to fermions which will be used in later1D fermions, the fundamental excitation is evidently a par-
sections to calculate stripe effective mass. ticle or hole, which corresponds to a mobikénk of the

Each configuration of “spins” can be mapped to a one-stripe. The ripplon is thus a composite excitation, a kink-
dimensional1D) lattice gas of particles: everlybecomes an antikink bound state. In the equivalent language of the spin-
occupied site, and every becomes a vacant one. The total 1/2 XX model, the ripplon maps to a magn@rydrodynamic
number of “up” steps, i.e., fermions, bl . =(L,+hb)/2 if mode, while the kink maps to a spinon. The fractionaliza-
the boundary vector along the stripe Is,(b). The+y hop  tion of the spin-1 magnon into two spin-1/2 spinons is a
of a real particle on the square lattiGenplying a —y fluc-  familiar fact, as this system is a special case of a Luttinger
tuation of the stripgtranslates to a spin exchange— |1 in  liquid.*?
the XX chain, and finally to at+x hop of a 1D particle. We can use the Fermi sea representation to extract the

As is well known?! in one dimension hardcore particles parameters in E¢(3.5). As noted above, the 1D Fermi wave
may always be treated as fermions: if there is no path fowector is (1+dy/dx) /2 and by Eq(3.4) the total energy is
them to exchange, then the statistics has no physical meai-, o{ —2t)cosq, where this notation means the sum over
ing. One can describe the system as one-dimensional spinlesscupied 1D fermion states. Equating the energy density due
fermions which arenoninteracting as the Fermi statistics is to small tilts to3K (dy/dx)?, we obtainK = 7rt/2. Next, the
already sufficient to keep two particles from occupying theripplon velocity is the same velocity as the Fermi velocity
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c=vg=2t/h. (This is a standard fact of one-dimensional

Fermi seas.With Eq. (3.6), that implies
p* = mwh?/8t. (3.7

2. Stripe roughness

The 1D Fermi sea representation also allows the exag

computation of stripe fluctuations as a function»oflt is
straightforward to showafter rewriting in terms of wave
operator} that at half filling

1 if r=0,

0 forevenr=+0,

((2m=1)(2n;,,—1))= (3.9
—m forodd r.
We also know from Eq(3.2) that
R—-1
y(i+R)—y(i)= ,E=. (2n;—1). (3.9
This and Eq.(3.8) give that
(ly(i+R)—y(i)]*) =R+ 8 5 LR
i —y(i = — —— =,
y y a2 éa=1 \ I r2
4
~const —2In R. (3.10
T

PHYSICAL REVIEW B68, 014506 (2003

TABLE |. Stripe effective massn* [Eq. (3.19] using single-
stripe excited state energies with=(0k,), with L,=101.

Lx Estipd 0,0) Estipd 0,27/101) m*

4 —2.8284271 —2.8270590 1.4143276

6 —4.0000000 —3.9991400 2.2500806
—5.2262519 —5.2256198 3.0615292

10 —6.4721360 —6.4716350 3.8627623

12 —7.7274066 —7.7269913 4.6587845

14 —8.9879184 —8.9875635 5.4517988

that, here and for the rest of this discussion, we limit consid-
eration to lattices in which the second boundary vector is
(0.Ly).] Meanwhile, the same sequence of real particle hops
maps to a cyclic permutation of the 1D particles in the
direction — exactly one-x hop occurs on every bond along
the chain.

If the wave vector of our eigenstate is taken &g,k,),
the stripe configuration shifted by (0,2) ought to have an
amplitude in the wave functioa'?y times the amplitude of
the original configuration. In a 1D fermion system, however,
the actual phase factor is=1)N+71, i.e., the number of
fermions that are cyclically permuted. We can account for all
the phase factors by modifying the one-dimensional chain so
that a particle hopping around its periodic boundary condi-
tion picks up a phase ¢ in other words by inserting a flug
into the ring!® where ¢=2k,+ (N, —1)7 is sufficient to
account for the two phases mentioned above, in the boson
case; in the fermion case, an additional tézrm(Ler 1)mis

Not surprisingly, the same result can be derived via the zeroneeded Finally it is equivalent, modulo 2, to replacel,

point intensities of the harmonic ripplon modes, of E&s5)
and(3.6).

by b in the last term

Equation (3.10 means that, due to the anticorrelations
evident in Eq.(3.8), the transverse deviations of the stripe
grow slowly with length. Thus, if it moves transversely over
larger distances, the stripe can often be approximated aswehere the last term is included only in the fermion case, and
single rigid object. This approximation will be invoked in even then it is zero in a rectangular systéNptice thatl, is
several sections below to explain how energy splittings dealways odd when the boundary vector isl(f), transverse to
pend on the system sig, in the transverse direction. the stripe, and the other boundary vectdr, (o) must be
even] It follows that the allowed 1D wave vectors are
(2mm+ ¢)/L,, wherem is any integer.

The mappings described in Sec. Il B are less trivial than We get=0 when the numbeN., of 1D fermions is odd

they appeared, due to two related facts. The first fact is tha"imd $= w_when N, is even; either way, the 1D _ferm|ons

: . ) . , occupied in the ground state are placed symmetrically about
the mapping of stripe to spingor to 1D particley is —0. In anv eigenstate. the real wavevector component i
many-to-one? and the second fact is that the statistics of 1D~ - "' @Y €lgensiate, Ine real wavevector component 1s
hardcore particles is not quite as irrelevant as suggested =g oed, thlus Ke=0for Ithg stripe r?ro(;md state n
Sec. Il B: theycan be permuted by moving them in the any  rectangular system. ht IS not ?r to compute
direction through the periodic boundary conditions. As isEqOCC(_Zt)Cosq to obtain the(exac) total ground state
well known, this induces additional phase factors in a finite>"€"9Y
system. Consider, for example, a sequence gfhops along _ _ ;
a stripe, such that exactly one particle hops in each column. Estripd 0,0 = = 2t/sin(m/L,), 312
The net effect on the real particle configuration is to translatevhich implies the stripe energy is 2t/ per unit length in
the stripe by(0,2); in the fermion case, a sign factm*gOI is  the thermodynamic limit® All our numerical results for
also picked up, wherh is the number of columns in which stripe states agree with E(.12 (see Table)l
the real particle hop crossed the cell boundary, and(&d) When, as mentioned in Sec. Il B 1, we model the stripe
is the fermion sign picked up from the resulting rearrange-direction as a free particle moving in one dimension, it is
ment of creation operators among sites in a coluphtote  useful to know its effective mass*. The minimum-energy

¢=2k,+ (N, —1)m+ , (3.1

fermions

1
Sb(Ly+1)m

C. Phase factors and stripe effective mass
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FIG. 7. A 6X7 system with a stripe and a hole. The hole is indicated by the box. It is initially lying on the @&fprost statg The
arrows indicate the particles hops that result in the hole moving along the stripe to thawidtile statg It is also possible for the stripe
to fluctuate and leave the hole immobiléghtmost state

state of a single stripe witk,# 0 consists of rigid motion in  system with a stripe and a hole. We see that the hole can now

that direction, so for smak, we expect move along the stripe and the stripe can fluctuate and leave
the hole strandedi.e., immobilg. In this section we study
the one-hole-with-a-stripe problem.

(3.13 Motion of holes has been analyzed on domain walls in the
anisotropic t-J model (the t-J, model with some added

In the 1D fermion representation, this state is constructed byerms, using essentially analytical technigu®sThe most

shifting the ground state Fermi sea by a wave vectointeresting observation in Ref. 45 is that the charge-carrying

2k, /Ly, as follows from the first term in the phase shift “holon” is associated with a kink of the wall, and thus car-

Eq. (3.1). From this one obtains Egypd 0K,) ries a transverse “flavor{reminiscent of our model's behav-

Estipd 0,0)cos(&,/L,). Combining that with Eqs(3.12 ior in Sec. IV D). A hole on our stripe differs in an important

and(3.13, one obtains way from the holes on a stripe in theJl, model#>*®First, in

our case the reference stripe already has 1/2 hole per unit

length, whereas in Refs. 45 and 46 it is a plain domain wall

without holes. Secondl,/t was not too large in those mod-

, o , els, so that hopping of the hole several steps away from the

For a long stripe, Eq(3.14 implies an effective mass den- gyine has a noticeable contribution in the wavefunction,

sity p* =lim__..m*/L, in agreement with Eq(3.7). , while it is unimportant in our case.

~ To obtain the effective mass™* from exact diagonaliza- From diagonalization, we observe that for systems with

tion data, we use the smallelsj=2m/L, with a largeLy  rectangular boundaries, the boson and fermion one-hole-

:*101- Eq.(3.13 gives the following expression to extract \yith-a-stripe spectra are identical. The numerical method de-

m* numerically: scribed in Sec. Il C is used to check whether the function

o(a) is well defined using the state graph in Fig. 3. For a

21,2
y

Estripe(oyky) stnpe(o O)

h2L2

m* = sm(rr/LX) (3.149

8t

2
m* = (2m/Ly) (3.15  LxXL, system withL, even and., odd, the one-hole-with-
2[Esuripd 0,27/Ly) — Egripd 0,0)]° a-stripe state hall = (L,—1)L,/2—1 particles. For the one-
The results are shown in Table I; they agree perfectly wnH‘Ole systems we checked, for examples 9 with M =15,
Eq. (3.14. X 11 withM =19, and 6x7 with M=17, o(«a) is always

It should be noted that the above calculation of the phase‘é’e” defined"’
is entirely equivalent to that of Green and Chaftd

(where it is applied to a stripe on a triangular latfjcexcept A. Energy dependence orl
that we include the case that the particles are fermions. When a hole is added to a stripe, more hops are allowed
and the state gains kinetic energy, so the ground state energy
IV. ONE HOLE ON A STRIPE is lower than that of the single stripe of the same length. We

For a system with a single stripe, we have seen that palg_iefme the energy difference
ticle motion is strictly limited to sliding in the direction per- AlLe LY=Ev (Lo L) —Eou (L 4.1
pendicular to the stripe, and this enables us to map our two- (Lrby)=Enod Lo Ly) = Estrpd Ly, @)
dimensional system to a one-dimensional spin chain anwhereE,,dLx,L,) is the ground state energy of one hole
solve it exactly. With holes added to the stripe state, a numwith a stripe on a_, XL, lattice andEg;,{L) the ground
ber of new motions are allowed. In Fig. 7 we show &®  state energy of a single stripe with length,. Here
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0.0 . . : : —y
VO_ ——
-10.0 | .
Eg. ]| N
E,
-20.0 | . d

FIG. 9. Potential well and barrier potential used to understand
0 Lx=6, slope=—1.1463 theT expon(_e_ntial_ decay qf on_e-hole enerqunin Eq.(4.2).yis the
-30.0 - < Lx=8, slope=-1.5043 . stripe position in the direction perpendicular to the strigg,the
41x=10, slope=—1.8010 depth of the wellE, the ground state energy of one isolated well,
*Lx=12, slope=-2.0542 E, (<E,) the ground state energy including the tunneling between
% Lx=14, slope=-2.2788 . .

wells (symmetric state andd the separation between two wells.

-40.0 4 8 12 6 20 4 E,—E, decays exponentially id as in Eq.(4.4).

Ly

In(D(Ly+2)-D(Ly))

© Lx=4, slope=-0.6821

In Fig. 9 we show potential wells separated by a barrier of
FIG. 8. IHA(L,L+2)-A(L.L)] vs Ly, for L, thicknesdl. Eqis the ground state energy of an isolated well,
=4,6,8,10,12,14, wherd(Ly,L,)=Enoe— Estipe [EQ. (4.D]. The  andE, the ground state energy of the multiple-well system,
slope for eacti, curve is—1/(L,) in Eq. (4.3). which corresponds to a symmetric state and is lower Ban
From standard quantum mechanics textbo@e®, e.g., Ref.
EnoiLx,Ly) is the same for bosons and fermions, as we48), we know that the amplitude to tunnel between adjacent
discussed above, arftli,{L,) does not depend on, [see  wells decays exponentially with their separation
A A(Ly.L,) vsL, shows a fast decay ib 1 \2m(Vo—Eo)
plot o «:Ly) vsL, shows a fast decay in, so we _ m(Vo—Ep
try the following ex{)onengial fitting function: ’ E,—Eo=—Ae ?, where, I 7 '

(4.9
where m is the mass of the particle in the well, and the
~ - constantA is positive (because the wave function & is
where A(L,)=A(L,,»), A(L,), andI(L,) are fitting pa- symmetric in one well
rameters that depend on the length of the sttipe[We will As far as our hole-with-a-stripe problem is concerned, the
investigate the dependence &@n of A(L,) later in Sec. well separatiord is Ly, the barrier heighV, is Egyipe, the
IV C.] We choose a minus sign in front &f(L,) because ground state energy of one isolated Wej is EnoielLx,Ly

A(Ly,Ly)=A(L)—A(Lye W/, 4.2

A(LX,Ly)<Z(LX); in Eq. (4.2), A(Ly) is positive. =), and the ground state ener@, of the system with
This fitting form, Eq.(4.2), suggests the following linear tunneling isE,qdLy,Ly). Therefore, Eq(4.4) for the wells
regression check: with tunneling translates into the following equation for our

hole-with-a-stripe problem

IN[A(Ly,Ly+2)—A(Ly,Ly)|=C~— (4.3 EnotelLx:Ly) ~ Enaid Lx %)= —A(L e~ /(0. (4.5

Using the definition forA(L,,L), Eg.(4.1), we see that Eq.
whereC is a constant that depends #nl, andL,, but not  (4.5) is exactly the fitting form we used before, E4.2). In
onlL,. InFig. 8 we plot IRA(Ly,L,+2)—A(Ly,Ly)]vsL, for  addition, the inter-well tunneling amplitude E@t.4) gives
L,=4,6,810,12,14 and.,=5,7,9... . Thelinear fit is  us a way to calculate the effective mas&(L,) of the stripe
good for all data sets. of lengthL,,

Ly
(L'

B. Stripe potential well and effective mass

) L |(L ) :\/2m*(Lx)[Estripe(Lx)_Ehole(LX7°°)]v (4-6)
How can we account for the exponential fitting form, Eq. x

(4.2)? Let us consider the hole fixed at some position and theyhere we have sdt=1. We get

stripe meandering ity direction. In Fig. 7, we have shown

that the hole can be in contact with the stripe or the stripe can N2(Ly)

fluctuate away, leaving the hole behind and immobile. When m*(L,) = AE i L) —Enad La )] 4.7)

the stripe is in contact with the hole, the energy is lower than stripe,=x7 - =holet =

the energy of a single strigeipe, Which is also the energy Using the linear fitting slopes in Fig. [8hat are—1/(L,)],

when the stripe is separated from the hole. Because we hawee can computen* (L,) using Eq.(4.7), and our results are

periodic boundary conditions in thedirection, we can use a shown in Table Il. The effective mass results are consistent

periodic array of potential wells to model tygnotion of the  with that obtained from the single-stripe energy dispersion

stripe; the well is at the position of the hole. relation in Table I.
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TABLE II. Stripe effective massn* calculated from Eq(4.7) _ C(b)
using the potential-well model for the one-hole-with-a-stripe prob- A(Ly)=A+ - (4.8
lem. I(L,) is the decay length in Eq4.2 obtained from linear X

fitting in Fig. 8; EnoeLx,Ly) is used to approximatBnaLy,)  This fitting form enables us to extrapolate the energy gap
using the large., listed in the tablegas the exponential decay of f5rmed by adding one hole to an infinitely long,{ stripe.

) . N :
EnodLx,Ly) in Ly is fast, see Sec. IV handm*(L,) is the effec-  Thg intercepts of the three curves for the three different
tive mass of the lengthy stripe calculated using Eql4.7).  cjasses of lattices all approadh= —0.66. Later, in Sec. VI,
Esiipd L) has appeared in Table I we will study the stability of an array of stripes and we will
use the value foA because we want to know whether holes

L L Enoil L, L I(L * (L . . . : )

X y oL Ly) (L) m™ (L) added to a stripe stick to the stripe to form a wide stripe or a
4 25 —3.00000009 1.4659 1.3561 new stripe.A is the energy lowered by adding a hole to a
6 25 —4.29850460 0.8724 2.2009 stripe and will be relevant there. It is a binding energy in the
8 25 —5.60276427 0.6648 3.0050 sense that one hole off the stripgmmobile) has zero energy.
10 21 —6.89914985 0.5553 3.7979 A hole is mobile along a stripe; one expects its dispersion
12 19  —8.18958713 0.4868 45652  relation to be
14 17 —9.47602246 0.4388 5.3197 52

E(q)=A+— q° 4.9
2m

The main physical significance of the result in this section "

is its implications for the anistropic transport of holes in aon a long stripe oriented in the direction, whereq is the
stripe array®*° The conductivity transverse to the stripes hole’s wave vector. We can estimate the effective mass in Eq.
depends completely on mechanisms which transfer holeg.9) from the numerics, if the lowest-energy state with sys-
from one stripe to the next. The high energy of thetem wave vectok=(q,0) is produced by boosting the hole
“stranded” state, in which the hole is immobile and off the to wave vectorm. At small g, this has a much smaller exci-
stripe, means that holes are mainly transferred when thtation energy than the ripplonstripe excitations which
stripes collide, either directly at contact or else by a delayediave linear dispersiofEq. (3.6)]. Indeed, the numerical
transfer, such that the hole spends a short time in a strandegectra for systems with,=10 andL,=5 show these con-
state until the second stripe fluctuates to absorb it. trasting dispersions for a stripe with and without a hole. Fit-
ting the differenceE(q)—E(0) to #2/m¥ (1—cosq), as a
plausible guess, we estimate?/2m} ~0.3; the effective
_ _ . massm;; of a hole bound to a stripe is thus about six times as

In this section we fixL, and §tudy the _dependence of big as that of a free particle in an empty backgroufat
A(Ly,Ly) on the length of the stripe,. In Fig. 10 we plot  \yhich #2/2m* =1).
the energy differencé(L,,L,) for (Ly,b)X(0,7) systems
with b=0,1,2>*

We see from Fig. 10 the following fitting functiofusti-
fied in Sec. IV D works well for both rectangular and tilted How does the hole interact with the stripe fluctuations? In

C. Hole dispersion andL, dependence

D. Hole and stripe steps

lattices some models, hole hopping is suppressed if the stripe is tilted
away from its favored direction. In that case, the “garden
0.0 : : : hose effect” is realized? stripe fluctuations are suppressed
when the hole is present, so as to optimize the kinetic energy
02 {1 of the hole on the strip&
However, in our model, a stripe tilt actually enhances hole
0.4 | / 1 hopping. This is clear in the extreme case of a stripe at slope
® M +1, as occurs at maximum filling in tHexX L square system
2 =06 1 with L odd: the bare stripe has zero energy. When the system
:J’l is doped by placing one hole along an edge of the stspe
P -08 1 i Fig. 11), the accessible configurations are equivalent to a
2 .l N’\,\\ | one-dimensional chain of the same model, with length 2
W andL —1 particles on it. The one-dimensional chain has two
eyt | do_main walls, one of Whiqh appears as a down step of the
+(even,0)(0,7), Y=—-0.627093+1.959508 X stripe, and the ofcher of Whlc_h appears as an up-step bound to
_14 1 x(0dd,1)*(0,7) boson, Y=—0.6797201+0.8720104 X | a hole on the stripe. In the limit of larde each domain wall
* (aven,2)*(0,7), Y=-0.7025734-2.419695 X has kinetic energy- 2t. The total energy is-4t, or about
1.6 : : w : seven times larger than the energy differencé for a stripe
0.00 0.05 0.10 0.15 0.20 with no tilt.

x This picture is supported by the trend of the stripe energy

FIG. 10.A(Ly,Ly) =Enge— Esuipeas a function of 1/, for three  with one hole, in the presence of a boundary vectoy,b)
classes of latticesl(, ,b) x (0,7) withb=0,1,2. that forces a tilt. FoL,=5 to 8, the minimum energy, as a
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with-a-stripe problem as a function of the two directions of
the lattice.

A. Energy dependence orL

As in Eq. (4.2) for the one-hole case, we define for the
LyXL, lattice the energy difference between the case of two
holes with a stripe and that of a single stripe

A2(|-x:|—y):EZhoIeU—xvl-y)_Es'[ripe(Lx)a (5.9

where the subscript 2 denotes the two-hole c@Séictly

speaking, we should writd>"(L,,L,) and ESilyedLy.L,)

because these quantities are not the same for bosons and

fermions. Here, without the superscripts, they stand for both

cased,. Plots of A,(Ly,Ly) vs L, for bosons and fermions

show fast decay similar to that in the one-hole problem in

Sec. IV, except here the boson and fermion curves approach
FIG. 11. A 7x7 system is shown, at one particle less thandifferent values at largé,, .

maximum filling. All motions in this system occur within the strip  As in Eq. (4.2) for the one-hole problem, we write

bounded by dashed lines, which is equivalent to & 14chain of

Is.pinlessV=oO fermions. The stripe edge is indicated by thick solid Ao(Ly ,Ly) :ZZ(LX)—AZ(LX)e* Ly/|2(|—x), (5.2

ines.

IN[Ax(Lyx,Ly+2)—Ay(Ls,Ly)] vs L, for bosons and fermions
function ofb, occurs around 2.5The measured minimum is Nave been plotted with,=4,6,8,10. The exponential depen-
atb=2 in the case that, andb are even, and di=3 in the dence is checked nicely as in Fig. 8 for the one-hole case,
odd case, while the second-lowest energies ate=a¢ and and the slopes are obtained and will be used for calculating
b=1, respectively. This is consistent with the idea that the the effective mass in the next section.

hole on a stripe binds with some up st&pshich total by,
whereby~2.5. B. Stripe potential well and effective mass

This would imply that holes tend to come in “up” and  The resemblance of our treatment of the two-holes-with-
“down” flavors; th_is is not an.actual quantum number, since a-stripe problem in Sec. V A with that of the one-hole prob-
the “steps” considered heréin contrast to “kinks” men-  |em in Sec. IV A prompts us to ask whether the two-hole
tioned in Sec. Il B 1 are not quantized objects. Our hole- proplem can be studied using a one-dimensional effective
step binding has a similar origin as that in Ref. 45: the IocaEotential like the potential wells used in Sec. IV B. Here with
configuration is the same as a fragment of stripe rotated 90gyo holes, we have a more complicated problem because the
from the main stripe. relative positions of the two holes and the stripe can have

A corollary of the hole-step blndlng is that a hole ShOU'dthree cases: two holes on the Strid@vith energy
force an extra til{b—bo|/L on the remaining portion of the £, (1, ,%)], one hole on the stripe with one isolated hole
stripe. Thus the tilt energy in Eq3.5 contributes a size [with energyEpod Lx,)], or one stripe with two isolated
dependenc€(b)/Ly, where holes[with energyEgyipd L)1-

As an approximation, we consider the deepest well

1 [Esnoled Lx,2)] only because that is the most probable posi-

C(b)=5K[ (b~ bo)?—b?]=Kbg(bo/2—b), (4.10  ton to find the particle. Then the effective mass equation Eq.
(4.7) is modified to become

that is 4.9, 1.0, and 2.9 for b=0, 1, and 2, respectively. 12(L,)
This is consistent with the clearll/ size dependence we m3 (L) = 2 X , (5.3
found numerically(see Fig. 10 the fitted coefficients fob 2[ Estripd Lx) = E2noled Lx )]

=1 and 2 are in reasonable agreement vitfb) as pre-
dicted by Eq.(4.10. [PresumablyC(0) is reduced from our
prediction because the hole is not always, or not usuall
bound to an up-step in the cabe=0.]

wherel,(L,) comes from the linear fitting slopes. The results
for mj from this two-hole-with-a-stripe calculation are in
Yrable 11I. They are comparable to the one-hole results in
Table II.

V. TWO HOLES ON A STRIPE C. Energy dependence or, and stripe-step binding

When two holes meet on a stripe, they create enough To compare with Fig. 10 for one hole with a stripe, in Fig.
room that particles can exchange with each other, so th&2 we plotA,(L,,L,), for three classes of latticed (,b)
boson and fermion energy spectra are no longer the same. As(0,L,=7) with b=0,1,2, vs 1L, . Here the 1/, fit, as in
in the one-hole case, we study the energy of the two-holes=q. (4.8) for the one-hole problem, is no longer good. But we

014506-12



STRIPES AND HOLES IN A TWO-DIMENSIONA . .. PHYSICAL REVIEW B 68, 014506 (2003

TABLE lII. Stripe effective massn; calculated from Eq(5.3)  hole hopping along the stripe. Thus, holes do attract, on a
using the double-well potential model for the two-holes-with-a- sufficiently long stripe. That does not contradict our numeri-
stripe probleml(L,) is the decay length in E¢5.2) obtained from  cal observation of repulsion: as just explained, the constraint
linear fitting. EopoiedLx,Ly) is used to approxmatBsnqedL«,®)  of zero net kink “flavor” on a stripe forces two holes to
using the largd. listed in the table; andn; (L,) is the effective  adopt opposite flavors, which repel, whereas the holes that
mass of the lengths stripe calculated using E@5.3). The super-  torm a single 90° segment all have the same flavor.

scriptsb andf d_enote bosons and fermions, respectivElypd L ) Two effects compete with the formation of 90° segments

os appeared TR in the case of short stripes or small numbers of added holes.
i) Say the stripe contains one 90° segment \hitivles, that

Le Ly Egholes Egholes |g |; m‘gb m;f (i) y p g

extends* 2h (not = bgh) in they direction, which forces the

19 —3.896952 —3.818556 0.5919 0.6135 1.3358 1.3417 remainder of the stripe to have a slope2h/L, and the
19 —5.238613 —5.204899 0.4317 0.4386 2.1664 2.1574 associated tilt energy Eq3.5). (ii) Say the stripe contains
19 —6.524636 —6.510024 0.3621 0.3643 2.9375 2.9349 two 90° segments, with the opposite directions: no net slope

10 15 —7.797992 —7.790359 0.3167 0.3274 3.7605 3.5377 is forced, but twice as many 90° corners are present, and
presumably each 90° bend costs eneigjyice it suppresses

stripe fluctuation

can still extrapolate the energy gap of the two-hole state and The implication is that th&=0 andb=1 curves in Fig.
the stripe state for an infinitely long stripe. For the,0) 12 are heading towards a well-defined asymptote- at\ ,,
% (0,7) lattices, the gap is extrapolated to-bé.4 approxi- corresponding to a pair of repelling, opposite-flavor holes.
mately, for bosons and fermions. Comparing to the singlédowever, at sufficiently lond.,, they must cross over to a
hole gap of—0.65, we see that binding between holes is notdifferent curve with a lower asymptote, corresponding to a
strong. pair of attracting, same-flavor holes, bound into an incipient

The size dependence of two holes on one stripe can b80° segment. We conjecture that the enkire2 curve is in
interpreted by the notiofSec. IV D) that holes are bound to the latter regime, while the downturn of the=1 curve at
up- or down-steps. When the boundary vectollig,p) with  the largest, suggests it is beginning to make the crossover.
b=0 or 1, the stiffness cost will be minimized if the holes
adopt canceling flavors “up” and “down”(so long asb
<2bg~5). This may explain why th&=0 curves in Fig.
12 seem to have a weak coefficient of. 1/ The fact that Starting from this section, we study the interaction among
A,~2A, indicates weak interaction between the holes, andtripes. We use the same diagonalization program for the
that can only happen if the holésf opposite flavorstend to  problem of one stripe and one stripe with holes that was
repel. introduced in Sec. Il. Again we do not exhaustively enumer-

However, on reflection it will be noticed that, in a suffi- ate all possible states with a given number of partidies
ciently large system, added holes can be “condensed” tanstead, we build basis states from a starting state which has
create segments of stripe oriented in thg direction. These the stripes all merged together. The motivation of these stud-
“90°” segments will surely appear in the ground state of onei€s is that an understanding of stripe-stripe repulsion is a
stripe in a large system, as the energy per hole to increase tferequisite to calculating the stripe-array energy as a func-

net stripe length is far lower than the energy to add a fredion of filling nearn=1/2, which is needed to ascertain the
density at which the stripe array would coexist with a liquid

0.5 . . phase. Unfortunately, we can only study comparatively short

w0 o N

VI. TWO AND MORE STRIPES

stripes and the asymptotic form far,— is quite unsure
from our numerical results.
-1.0 | .
o _ A. Boson and fermion statistics
'f%l -15 | M _ We observe from exact diagonalization that for rectangu-
LIIJI lar lattices with two stripes, the boson and fermion spectra
8 are identicaP® In Fig. 13, we show two configurations of
§ 20} W g two merged stripes. For a particle on the stripe we see that
w! horizontal hops are limited by nearest-neighbor replusion to
+—+(468,10,12,0)(0,7) boson adjacent columns only. This means that, with two stripes,
25| mggg}ggggg Egzg: 1 particles cannot move freely along the stripe and the hopping
O -- O (46,8.10.12:0)*(0.7) fermion in the system is still primarily in the vertical direction. From
Fig. 13, we can also see, after trying some moves, that we
3.0 . . cannot move one patrticle far away enough so as to exchange
0.00 010 0.20 the position of two particles. This is a necessary condition
1/Lx . . :
for boson and fermion spectra to be identical.
FIG. 12. Ay(Ly,Ly) = Eznoies Estipe @s a function of 1/, for We also need to show that periodic boundary conditions
three classes of lattices {,b) % (0,7) withb=0,1,2. do not affect the spectra, and we use again the idea outlined
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FIG. 13. Two configurations of two merged stripes. The arrows 0.000 , , :
indicate the possible hops of one particle along the stripe. Horizon- T4 8 12 16 20
tal movement is limited to adjacent columns only. d(=Ly2)
1.0e-05 . . . .

in Sec. Il C. We have, as we did for the one-stripe-with-a-

hole problem in Sec. IV, numerically checked a number of

systems with two stripes, for examplex40, 6x8, and 8

X 10, and we find that for the cases we checked the functior ~ 80e-06
o(a) is well defined. *—¥lx=8

i(d)

B. Stripe-stripe interaction 6.0e-06 [ J

[«
From diagonalization of two stripes with stripe length
L,=4,6,8, we observe that the highest-weight states in the
ground state eigenvector have stripes far apart from eacl  4.0e-06
other, and this suggests that stripes may repel. To study th
interaction between two stripes quantitatively, we define the

following function:

2.0e-06 . ! L
4 6 8 10 12 14

EZstripe£ I-x ' Ly) - 2Estripe( Lx) d=Ly2)

2L, ' & FIG. 14. Stripe-stripe interaction energy castd) [Eq. (6.1)]

for stripe lengthL,=4,6,8. d is the distance between adjacent
whered is the distance between adjacent strighered  stripes i=L,/2). The solid lines are those that connect the data
=L,/2 for two evenly spaced stripg<€,yipesthe energy of  points.
the two-stripe system, anBgpe the energy of one single
stripe. ¢ is the energy cost per unit length per stripe due toin Fig. 15 we plot Ifi¢(d)] vs In(d) for L,=4,6 with d
stripe interaction, and it is positive for repelling stripes and=6,8, . . .,56, i.e., the largest lattice far,=4 is 4X 112 and
negative for attracting stripef/Vhen we are not considering for L,=6 is 6X 112. We see that the power-law assumption
the dependence @f“x(d) onL,, we will simply use¢(d).] is good forL,=4 with the decay exponerni (slope in Fig.
In Fig. 14 we showp(d) for stripe length 4, 6, and 8. For all 15) close to 2. ForL,=6 we observe that the slope ap-
cases(d) is positive(the stripes repgland decays as the proaches 2 as the stripe separatibis large.
stripe separatiod increases. Observe thatd) for L,=8 is
much smaller than that fok,=4,6. The behavior of,
=8, which is not yet explained, is highly significant for _ )
extrapolation to the thermodynamic limit. The stripes with  In Sec. IV B, we explained the exponential decay of the
L,=4,6 are so short that, from Sec. Il up to here, tigjr ~ One-hole-with-a-stripe energy in, by mapping the stripe
size dependence can be explained in terms of a particle movRotion to a one-dimensional problem with a double-well po-

ing in one dimensiony(), completely ignoring their internal tential. Here with two stripes in the system, we have shown
fluctuations. again that stripe fluctuations as a functionxoére limited,

It is clear that agl— =, ¢(d)—0 and from the graphs it and we expect that a one-dimensional potential can be suffi-
does not decay exponentially. We try the following power-Cciént in capturing the essential physics. _
law fitting function: Here we consider the two stripes as hard-core particles of
massm* moving in they direction only. This can be mapped
A(L,) to a pair of fermions on a one-dimensional ring of lengih
H(d)= X2 (6.2  mathematically very similar to the one-dimensional fermions
d« of Sec. Il C, that move in the& direction, but with a com-

¢tx(d) =

C. Power-law decay and stripe effective mass
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-4.0 T . . . . . 0.050 . . .
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-6.0 i
G—-©boson
= _. 0.030 =— fermion 1
) s
= -80 d 3
g 5
0.020 i
-10.0 | .
0.010 i
0 Lx = 4, In(phi)= -1.596418-1.982507 In(d)
O Lx = 6, In{phi)= —2.814488-1.913487 In(d)
-12.0 1 1 1 1 1 1 L L L
1.4 1.8 22 2.6 3.0 3.4 3.8 4.2 0'0003.0 4.0 5.0 6.0 7.0
In(d) d (= Ly/3)
FIG. 15. log-log plot of energy cost functiog(d) [Eq. (6.1)] -35 ' ' ' '
for stripe lengthL,=4,6, with d=6,8, ...,56. The slopddecay
exponenta in Eq. (6.2)] is close to 2 folL,=4, and forL,=6 the
slope approaches 2 as stripe separationcreases. Linear regres- ‘o

sion is used for alL,=4 data, and for th&,=6 data, only the ten
points with the largestl are used.

pletely different relation to the physicS The wave vectors

In{phi_3(d))
L
a

of these one-dimensional fermions are thus/L,, so the
total energy is
#? a\? h2x2 50| ]
E= (L—) — 6.3 50
m y m-Ly | OBoson, In(phi)=—1.394246-2.004119 In{d)
For the two-stripe problem, from curve fitting in Fig. 15, . . . .
the decay exponenit is close to 2 folL,=4. Using Eq(6.2) '5'51_0 12 14 16 1.8
for ¢(d), the definition for¢(d) in Eq. (6.1), andd=L,/2 In(d)
for two evenly spaced stripes, we obtain the following for- ) o _
mula for the two-stripe interaction energy FIG. 16. Stripe-stripe interaction energy c@sj(d) [Eq. (6.6)]
for three stripes with length 4L(=4). d is the distance between
8 adjacent stripesd=L,/3). Boson and fermion energies are slightly

(6.4) different. The log-log plot is shown below, showing for bosons an

X
E2$tripes_ 2 Estripe: 2
Ly exponent 2.004.

whereA is the factor in Eq(6.2).
Equationg6.3) and(6.4) give an expression for the effec-
tive mass of a stripe from two-stripe interaction

lated, linear regression still gives 1.91. The intercept for
L,=6 in Fig. 15 is not yet sufficient for us to use E§.5) to
calculate stripe effective mass.

71_2

TBLA

m* (L) (6.5 D. Three and four stripes

. L - . We have also studied the interaction of three and four
The linear fitting intercept in Fig. 15 gives, fan=4, A gyipes with stripe length.,=4. From diagonalization, we
=exp(—1.596418), and Eq6.5) then gives us the effective fing that for the two-, three-, and four-stripe fermion systems
massm* (4)=1.5222. In Table Il, thé,=4 stripe effective e computed, the ground state energy always appears in the
mass calculated in the one-hole-with-a-stripe problem i% = (0,0) sector, and the highest-weight states in the ground

1.3561, and in Table Il that from the two-hole problem is gate eigenvector have stripes far apart. To study the interac-
1.3417 for fermions and 1.3358 for bosons. All these result$iqy of three stripes, we define, in the same fashion as Eq.

for the effective mass of a short, length-four stripe are COM1g.1), the energy cost per unit length per stripe
parable.

It is clear that the shorter the stripes the better the one- Esstripeé LxsLy) = 3Estripd L)
dimensional approximating model is. Fhg=6, it can be ¢3(d)= 3L , (6.9
seen in Fig. 15 that the exponent approaches 2 in the trge- X
limit, but for d close to 56(the largest system that we calcu- where d=L/3 here. In Fig. 16 we plots(d) vs d and
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In[¢5(d)] vs In(d). First of all, with three or more stripes, If the true behavior, in the thermodynamic limit, is phase
unlike the two-stripe case, particles have enough room téeparation between the half-filled checkerboard state and a

exchange with each other when the stripes merge, and fehole-rich liquid, then—in a sufficiently large finite system—

mion and boson energies are no longer the sngelow-

the ground state would consist of one lafpet still immo-

ever, we see from the graph that boson and fermion energidsile) droplet in a checkerboard background, of the sort ex-
are only slightly differeny. It is clear that stripes repel and plained in Sec. Il B 1. However, in the smallish systems
the exponent ofp5(d) for L,=4 is 2.004 for the boson case tractable by exact diagonalization, the ground state would
(and practically the same for the fermion case, not shown iprobably be a stripe-array state, f@s we show in the fol-

the graph, close to 1.983, the exponent for the two-stripe|owing) the bulk energy density difference is quite small be-

L,=4 case(see Fig. 1b

The stripes are short enough in tixedirection to be

tween the stripe-array state and the phase-separated state, yet
the latter state must pay a considerable extra cost of the

treated as rigidsee Sec. Il They are, in effect, three hard- haqe-houndary line tension times the droplet's perimeter.

core particles moving in one dimension. Apart from the fact
that this one dimension runs aloggexactly the same prob-
lem was studied in Sec. Ill B, where we recalled that it is

convenient to convert such particles to fermions.

Let us consider the ground state of three fermions of mass

m* in a lengtht, box. They have wave vectogg=0 and
*2w/Ly, so the total energy is

%2 2|2
E= 0+2| —
2m* I-y

472 m*
= . (6.7)

2
Ly

For the three-stripe problem, we use the sami¥ télation
for ¢5(d), as in Eq.(6.2) for the two-stripe problem

A3(LX)
d2
whereA;(L,) is a constant. Rearranging E¢8.7) and (6.9

gives us a formula for stripe effective mass (L), similar
to the two-stripe formula in Eq6.5),

¢3(d)= , (6.8

L= 47
) 2T ALy

Using the linear fitting intercept in Fig. 16, we get for
=4, A3(4)=exp(~1.394246), and then from E¢6.9), we

m* ( (6.9

On the other hand, the stripe-array state in a finite system

._is extremely sensitive to boundary conditions: the concentra-

tion of holes may be just right to form one stripe across the

system, but if the boundary vectors are both even, the system
can only support an even number of stripes. Even if the

stripe-array is the correct thermodynamic answer at this hole
filling, the best state available to this finite system is a sepa-

rated droplet.

We conclude that one cannot accept the behavior of our
finite systems as a direct picture of the thermodynamic limit,
because finite systems are dominated by finite-size and topo-
logical effects. The correct approach is to determine the
equation of state for each competing phase by extrapolating
it to the thermodynamic limit, and only then to perform a
Maxwell construction to determine the phase stability. Note
that different extrapolation schemes may be appropriate for
qualitatively different phases.

In our short paper, Ref. 33, we have discussed the stability
of the stripe-array, so here we only show new results ob-
tained from a set of bigger lattices and compare our results
with works done with quantum Monte Carlo.

An important test of stripe-array stability is in the Max-
well construction shown in Fig. 17. The dashed tie-line is
tangent to the liquid curvésmall fillings) and is connected to
the half-filled state ah=1/2. It represents the coexistence of
the liquid state and the half-filled state, i.e., the phase sepa-

getm* (4)=1.4738, which is consistent with the two-stripe rated state. As shown in Ref. 33, the chemical potential of

result 1.5222 calculated in Sec. VI C.

the stripe-array, i.e., the energy per hole in creating a new

We have also calculated the energy for the smallest systripe isu* =4/m=1.273, using the fact that as the separa-
tem with four stripes: the %12 system with 16 particles. ton d between the stripes is large, the interaction energy per

Here the boson ground state energy-i40.8525 and the

length per stripe¢(d) [Eg. (6.1)] goes to zero(see Sec.

fermion energy— 10.8418, both higher than the energy of VI B) and the energy per length of an infinitely long stripe is

four indepedent stripes with length 4,11.3137.

VII. THE STRIPE-ARRAY

—2/7r, which can be obtained from mapping the stripe to
fermions in one dimensiofsee Sec. Ill ¢:2° The stripe-array
line, drawn from the half-filled limit, should then have slope
u*=1.273. The stripe-array case is stable when the stripe-

In this paper, we have studied the limit near the half-filled,array line is below the dashed line, otherwise the phase sepa-

checkerboard state, with cases of a single stripe, holes-on-gated state is stable. Therefore, to determine the stability of
stripe, and a few stripes. As we approach intermediate fillthe stripe-array against phase separation, we need to obtain
ings, around 1/4, we could have two situations: the separahe slope of the dashed liné-. [Here we are following the
tion of the system into particle-rich and hole-rich regions, ashotation in Ref. 33 and the superscript LC denotes the two
argued for the Hubbard mod&P® (and sometimes claimed states: liquid and CDWecharge-density-wave, i.e., half-filled

to be quite general for interacting fermions with short-rangestatg that are connected by the dashed [jne.

interactiony, or else an array of stripes. How do we know  To obtainu'C, we write energy per particle/M at in-
which state is the ground state for our model? How do weermediate fillinggthe liquid pari as a polynomial up to the
know whether the stripe-array state is stable? second order in particle density=M/N,
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FIG. 17. Stability of the stripe-array vs phase separation. Energy debdityvs particle densitpn=M/N. The stripe-array curve has
slopeu* =1.273. The dashed line is tangent to the liquid curve and is connected to the half-filled state. It represents the coexistence of the
two phases: liquid and half-filled states, i.e., a phase separated state. On the left is the case where the stripe-array line is below the dashec
line, and therefore the stripe array is stable. On the right is the case where the dashed line is below the stripe-array line, i.e., the phase
separated state is stabfe is the intersection of the tie-line with the liquid curve, and the key quantity is the slope of the dashgdfine

E phase diagram, Fig. 11 of Ref. 61, shows a first-order phase

M=A1+A2n+A3n2. (7.)  transition between the#, ) solid [i.e., the checkerboard
phasé and a superfluidthe hole-rich phagewith n<0.25.

Our results correspond to a single point\{,«/V)=(0,0)

on their plot; however, their phase boundary approaches that

point with a slop& 2.28, i.e., atu/t=2.28 in theV—x

limit, or w/t=2.4 in a related simulatiof? This is much

We should emphasize that this fitting form E@.1) is not

meant for the dilute limit §—0). This is for intermediate
fillings, with n~1/4. The slopeu‘® can be determined by
first solving forn*, the n coordinate of the intersection of larger than our resultu‘C~1.33. That is puzzling, since it

the dashed tie line with the liquid curvé. would imply either that the liquid statéwith density n
~ InFig. 18, we plot, for fermions and boso;M vsnat 0 25) has much lower energy than we found, or else that a
intermediate fillings (0.18n=<0.31) for a number of lattices  gtate exists ah~0.4 (in these finite systemdaving much
with lattice size ranging from 25 to £2.In Table IV we list lower energy than the stripe states we studied.
the quadratic fitting parameters obtained from diagonaliza- The evidence in Ref. 61 for phase separation rests on
tion data. For the ten lattices in Fig. 18, we obtaih®  histograms such as their Fig. 10 which exhibifer V
=1.254 for fermions angk"®=1.304 for bosons. =2.86 in an 8<8 system a bimodal probability distribution

In Table 1V, we have also included calculations for the for the densityn, in a grand canonical ensemble, with peaks
five smallest and five largest lattices in Fig. 18 separately. Wat n=0.5 (the checkerboard statand n~0.39, the latter
find that u' for both boson and fermion increases with in- being interpreted as a liquid state. For o= model, a
creasing lattice size. For the boson case, this means that feimilar plot at low temperature would show peaks rat
large lattices, the stripe array is not stable against phase sepa0.5 and atn=0.375. The latter peak represents a two-
ration (u"C> u* =1.273). For the fermion case, the result is stripe state with eight holes. Its energy+s—8+1+ 12
stable @“<u*) for the lattices that we have studied, but ~—10.45[using Eq.(3.12 and neglecting the stripe-stripe
w1 C is very close to the stability limit 1.273. The fermion interaction in light of Fig. 14 Our point is that examination
stripe array is possibly stable. of the most probable configurations is needed in order to

In our earlier publication, Ref. 33, we used the same polyjudge whether the coexisting state contains stripes or liquid
nomial fitting function, Eq(7.1), but we fixedA,=—4, cor-  droplets. Indeed, the discrete coexistence betweei.5
responding to the energy of a noninteracting particle, and ou@"d N=0.375 is an artifact of the periodic boundary
systems there went from 20 sites X&) to 36 sites (6 conditions—in the_ thermodynar_mc limit, vx_nthm the stripe-
X 6). The analysis in this section and the results in Table nArray phase, density varies continuously with the chemical

are obtained using the three-parametas ,@,,As3) fit for potential.

bigger lattices, from 25 sites (65) to 42 sites (& 7). The VIIl. CONCLUSION
conclusion in Ref. 33 wag"“=1.25(2) for fermions, and

wC=1.33(2) for bosons. A. Summary

Reference 61 simulated the boson case of our model Eq. In this paper we studied systematically a two dimensional
(1.2), using Quantum Monte Carlo, but witi<e. Their =~ model of strongly-interacting spinless fermions or hardcore
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-0.5 . . - program(Sec. 1), we studied in detail the problems of a
single stripe(Sec. Il), up to two holes on a stripE&Secs. IV
and V), stripe-stripe interaction of two, three, and four stripes
ol | (Sec. V), and finally the stability of an array of strip€Sec.
' VII). Our theoretical studies were aided with a substantial
amount of results obtained from exact diagonalization.
As mentioned in the Introduction, this model with spin-
= 0 (5,0)(0,5) . . :
S -15¢ oB~1)(1,5 less fermions or hardcore bosons is not intended to be a
< (5,-2)(2,5) realistic model of cuprates. Rather, this model is valuable in
4 (5,0)(0,6) helping us to understand how stripes as macroscopic objects
gzg’af’()é:’;f) arise from microscopic componerthe spinless fermion or
-20 >6.0)0.6) | hardcore boson particles in our moddlhe underlying phys-
+(6,-1)(1,6) ics is the quantum mechanics of the component particles that
E/Mo_5.454423.5970-27.186n* ;Egza)z()é,?;?) is described by a many-particle Sctinger equatiorfwhich
. . . we solve by exact diagonalizatipnStripes can perhaps be
'2'%_15 0.20 0.25 0.30 called anemergent phenomenamd are results of collective
n (M/N) motions of many microscopic particléhe original particles
05 . . . or holes. They can perhaps be considered in the same fash-
’ ion as phonons arising from collective lattice vibrations. And
like phonons, the stripes in our problem have a life of their
own, and we have tried, in this paper, to understand the new
10k ] physics they bring.
In a broad sense, what have we learned from this detailed
study of this model system? First, as is well known, quantum
< 0(5,0(0,5) systems in two dimensions are much more difficult to study
S -18 ¢+ 0G~1(1,5 than those in one dimension. Because of the presence of
< (5,-2)(2,5) strong repulsion, at the dense limit of our model, motion is
252%%)5) severely limited. We showed that for the problems of a single
v (5.0)(0,7) stripe, holes on a stripe and a few stripes, analytical results
—20 1 > (6,0)(0,6) 1 can be obtained by mapping the two-dimensional problems
+(6,-1)(1.,8) to one-dimensioinal ones which can in turn be studied using
E/M—6.138+27.839n—33.950n"n ;Eg:a%?f) the analytical tools available in one dimension. We showed
5 . . , the intricacies of each map, as we bellleve that. thIS'kInd.Of
0.15 0.20 0.25 0.30 map is also important for analytical studies of stripes in spin-
n (M/N) full models.
FIG. 18. Fermior(top) and bosor{bottom E/M vsn=M/N fit Another theme in this paper is the comparison of the bo-

for intermediate fillings (0.1&n=<0.31). The fermion data have son and fermion problems, as we want to understand the
larger spread than the boson data because of the fermion shell efubtle differences in the resulting stripes due to the differ-
fect. ence in the statistics of the underlying particles. Central to
this comparison is the state graph introduced in Sec. Il which
bosons on the square lattice Ed..1) near the half-filled describes graphically the relationship among basis states. For
limit. We considered an extended, quantum-fluctuating obthe problems of a single stripe, holes on a stripe, and a few
ject that is natural in our model at the dense limit—the stripestripes, we investigated the difference in eigenenergy with
After introducing our mode(Sec. ) and our diagonalization the help of the state graph and our computer program. And

TABLE IV. Fermion and boson fitting parametdis Eq. (7.1)] and the calculated* andu'C, for all ten
lattices in Fig. 18 and for the smallest and largest five lattices separately. Compared with the stripe-array
slope u* =1.273, the fermion stripe-array is stable against phase separatién<@*), and the boson
stripe-array is unstableut-C> u*).

Particle Lattice A, A, A; n* utC SA Stable?
Fermion all 10 —5.454 23.597 —27.186 0.251 1.254 Stable
small 5 —5.995 28.230 —36.825 0.255 1.240
large 5 —-5.102 20.586 —20.932 0.250 1.264
Boson all 10 —6.138 27.839 —33.950 0.233 1.304 Unstable
small 5 —6.378 29.929 —38.420 0.231 1.301
large 5 —5.994 26.580 —31.251 0.233 1.307
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for the problem of stripe-array stability, we obtained from 1/2 holes per unit length, as found in experiments; however,
diagonalization results an interesting conclusion that the bothose simulations are strongly influenced by thecessary
son stripe-array is not stable and the fermion stripe-array ispen boundary conditions on two sides.
very close to the stability limit and is possibly stable. The What relation can our spinless model have to these spin-
state graph, a representation of the interconnections amorfgll models? Firstly, at the intermediate fillings appropriate to
basis states, is another general theme that is equally impoa stripe array, the spinfull and spinless systems are modeled
tant in studies of stripes in spinfull models. in very similar ways: stripes are mutually repelling,
Furthermore, from the study of holes on a stripe, we seguantum-fluctuating strings. This level is appropriate to stud-
that hole motions on the stripe and away from the stripe caies of the anisotropic transport expected itnansupercon-
be effectively decoupled. We have extracted effective massefucting stripe array, as well as the stripe interactions, as has
describing such motions. and we have shown that resultseen emphasized by Zaan®i’! In the spinfull models,
from different senariogone stripe with one or two holes and only a little has been done to explicitly relate the macro-
the case of two or three stripeare all comparable. Another scopic parameters to the underlying microscopic mdtias
interesting result is regarding the interaction of a few stripesye have shown in this paper, in our model—unlike any spin-
as we observe from diagonalization that stripes tend to sepdull model—exact diagonalization can address phenomena
rate so to increase the freedom of particle movement alonguch as the effective mass and interactions of carriers on a
the stripes. And the fermion representation of stripes hastripe, long-wavelength stripe fluctuations, stripe-stripe re-
proven to be productive in a number of cases, giving us gulsion, or the transfer of carriers from one stripe to the next.
good way to estimate the stripe dispersion relation in theThus, not only analytically but numerically, we have gone
direction perpendicular to the stripe. quite far in extracting such parameters for our model.
This paper is one of the first using exact diagonalization Secondly, if spinfull stripes are stabilized at &ih the
to study stripes in extended systems. This is possible becauabsence of long-range repulsjoiit is by kinetic energy in
of the significant Hilbert space reduction afforded by ourthe same fashion that our stripes are stabilized. In either case,
model Eq.(1.1), spinless fermions or hardcore bosons witha fermion belonging to one domain hops transversely to the
infinite nearest-neighbor repulsion. We believe that this isstripe, andsince the stripe is also an antiphase domain)wall
one of the simplest microscopic lattice models with which tostill finds itself correctly placed in the order of the new do-
study stripes from the underlying particle dynamics. As ourmain. In our model, that order is the “checkerboard” pattern,
knowledge about the Ising model has helped us understanahich is enforced by the nearest-neighbor repuldfoffrom
and gain intuition on more realistic models of magnetism, wethis viewpoint,V is analogous to the antiferromagnetic cou-
argue that our work on this spinless modekluding also a pling J in the t-J model.(Our V—o° limit then corresponds
separate paper on the dilute lifjiican complement studies to the casel>t, which is the unphysical regime of theJ
on more experimentally relevant spinfull modelsee re- model)
marks in the following section An even more precise correspondence would be to stripes
in the t-J, model*>“® in that system(as in our$ the un-
doped, ordered state breaks a discfitmg-type symmetry,
B. Stripes in spinfull models and hence is practically inert, supporting no gapless Gold-

In the Introduction, we have mentioned a number of eX_stone(spin—wave; excitations—only the stripe itself has low-

perimental systems that can be modeled by our model, not&N€ray exqitations. If the ordered state had a continuous sym-
bly, an adsorbed gas dHe on a substrate. As our study has Mty as in the Hubbard drJ models, spin-wave modes

. . 2 . .
been motivated by a desire to understand more concretef@? mediate a i attractloﬁ between stripeswhered is
stripes in spinfull models, we make the following remarks. StfiP€ separation If short-distance kinetic energy were to

In real fermion systems, stripéantiphase domain walls avor & stripe array, the long-range force mediated by con-
containing holes have been a prominent object of experi- tinuous spm%lmplles phase separation in the limit of very
mental study in the high, cuprates:®~¢7 Stripe-based Small doping.

mechanisms have been proposed for high-temperature O_urstripes with an occupation _of 0.5 _hoIe per unit length
superconductivitf*8 but the prevalent current opinion is '€ insulating and correspond to insulating stripes of 1 hole
that stripes compete with superconductifity®’ per unit length in the-J model(the factor of two reflects the

Nevertheless, stripes are obviously clues to how th&l€nsity of the ordered background sjates implied in the

charge and spin degrees of freedom interact with each othe?iginal id?ags'm_'mabom stripe stabilization from a strong-
which is important in a majority of the highi; theories. ~coUPling viewpoint.
Stripes are modeled theoretically and numerically using the

same Hubbard modébr its variations, which were already

accepted as models of homogeneous phasess still un-

settled whether stripes are stabilized in this model, which There are a number of directions in which the work of this
omits long-range and even nearest-neighbor Coulomb repupaper might be extended. For example, our code handles
sion. The most explicit calculations are by density-matrixquite arbitrary periodic boundary conditions, not necessarily
renormalization groupDMRG), adapted to two-dimensional rectangular or square. Our key use of this feature was to
systems formed into strifs’ The results favor stripes with accurately measure the equation of state for the strongly in-

C. Future directions
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teracting liquid at densityn=~0.25, as used in Sec. VIl to ACKNOWLEDGMENT
decide the stripe-array stability. By including a wide variety We acknowledge support by the National Science Foun-

of differently shaped fermion system; in.Fig. (t8p plod, in dation under Grant No. DMR-9981744 and the Cornell Cen-
effect we a\glerage out the “noiseWhich is due to fermion o o Materials Researdl€CMR) for providing computing

shell effectS). An alternative way to do the same thing, resources. We thank G. G. Batrouni for helpful discussions,
which we have not implemented in the present work, wouldyng ¢ H. thanks Deepak Dhar, S. A. Kivelson, and R. H.

be to impose a phase factor across the boundary conditionjckenzie for suggestions about the literature.
and average over all phas@s.

A boundary condition could be used to investigate the 90°
bend of a stripe, which was discussed in Sec. V C. These APPENDIX: COUNTING BASIS STATES FOR THE
would force a diagonal stripe, as in Fig. 11, but additional PROGRAM
holes would be added to the stripe which are expected to
condense and form a segment at right angles. That geometﬁ(Ii
would permit estimation of the energy cost of the 90° bend

This study has focused entirely on eigenenergies; sincg, . ;s with the half-filled state or th@early-half-filled
our diagonalizations prowd'e the wave fu'nct|ons too,l Westripe array state. This count may be estimated by adapting
could have com_puted a _varlety of _mformatlve e_xpgzctatlonspau"ng,S trick for the ice model entrop§.’® The number of
suc_h as co_rrelann functions. We_ did mgke qualltat_lve ok_JserWays merely to distributdl particles overN sites, uncon-
vations using s_nap_shots pf the hlgh-we|ght_ed conflguratlon%ained, is {}) (where §)=Al/[B!(A—B)!]) implying the
In our diagonalizations with two or more stripeSec. VI D), usual entropy—n Inn—(1—n)in(1—n) as N—oe; this must
which started from a state with stripes all merged, theye corrected to account for the constraint of no nearest neigh-
highest-weight state in the ground state eigenvector haggrs. One chosen particle has a probability-(1)* to be
stripes far apart from each other, and nearly equally spacegee of nearest neighbors. If we pretend this event is inde-
as expected from the one-dimensional approximate wavgendent as each particle (ay) the even lattice is chosen in
functions of Sec. VI. Calculation of the probability distribu- turn, then thev/2 power of this probability is the chance for
tion for the stripe separation would provide a quantitativethe whole configuration to be valid. The net entropy is esti-
test of those wave functions. Similar calculations would givemated as—n In n—(1—3n)In(1—n); this attains its maximum
a more direct check of the exponential decay of the hol®.42 aroundn=0.24 implying the leading dependengé
probability as a function of its distance from a stripe, as~1.54" for the V= spinless case, as compared\e- 4N
predicted in Sec. V B; and would immediately reveal thein the Hubbard model case. In fact, for thx 7 lattice, the
attractive or repulsive tendency of two holes on a st(fpec.  block with M=11 particles has the largestranslation-
VC). reduced matrix dimension \'=1906532.

We studied the case ohestripe withtwo holes; the case Let Vi(Ly,L,) be the number of basis statgeerk vec-
of two stripes withonehole is also worth investigating. The tor) in a configuration withs stripes anch holes on it. This
finite-size dependence of the extra energy due to the holgrows exponentially with, but comparatively slowly with
would shed light on the processes by which the hole is trand-y, S0 we can handle quite lardg, and moderately large
ferred between stripes when they touch. Such processes drg-
critical to the transport properties of the stripe array, as con- In the case of one stripe, the map to A spin chain
sidered in Ref. 49 in the spinfull case. (Sec. 1l B) makes clear that, independent lof, the basis

Up to here, we discussed further kinds of measurementgas NLX_l(ti,z) states. Asymptotically AG(Ly,Ly)
which could be made on the same model system; variations. plx/|_ 32
are also possible of the model itself. The most obvious of The number of states with two stripes may be estimated
these is to trea¢ <. A large but finiteV may be handled in by placing them independently—the correction from disal-
the spirit of thet-J: the same highly restricted basis stateslowing overlaps is subdominant. That is the square of the
(which facilitated our diagonalizatiopare retained, but new one-stripe count, multiplied bl,L , for the possible vectors
hopping terms alonfR,0] and[1,1] type vectors appear, with offsetting one stripe relative to the other, i.fA/,ﬁ(LX,Ly)
amplitudes—t/V, wherever the intervening site would be ~25/L,32~4%L /L.
forbidden by the nearest-neighbor exclusion. It is not obvi- For one stripe with one hole, the basis states were counted
ous whether this tends to stabilize or to destabilize the stripéor L, <25 andL,<10. Empirically,
array. The inclusion of another form of correlated hopping
[Ref. 33, Fig. 8c)] can certainly stabilize or destabilize the
stripe array depending on its sigh. 1/ L

Finally, the same code is adaptable, almost without modi- Ni(Ly,Ly)= E(L 72
fications, to the triangular lattice. That may mod#le or X
“He atoms adsorbed on graphite or on carbon nanottf8s,
which implement a periodic boundary condition in one di- exactly, whereB(4)=—2, B(6)=—4, B(8)=-8, B(10)
rection. =—14; for L,=7, this appears to follow wittB(12)=

We find the number of basis statdé is maximum for
ngs n=M/N=~0.25, close to the fillingh* at which, in
the thermodynamic limi{see Sec. VI, a hole-rich liquid

)(Ly—1)+B(LX) (A1)
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—12, B(14)=66, B(16)=572. The linear increase with,

is due to the states with the hole away from the stripe.
For a stripe with two holes, EgA1) gets multiplied by an

hole relative to the first. Empirically\3(6,L,)=15L7
—47L,+4 (valid for Ly>L,); this is inferred fromL,<19.
For Ly=7, we found roughlyM(L,,7)~3.5L,22", for Ly

additional factorL,L, for the possible offset of the second up to 13.

*Present address: Dept. of Physics, George Washington Universit§?P.W. Leung and P.E. Oppenheimer, Comput. PBy§03(1993.
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