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Spin-wave dispersion and transition temperature in the cuprate antiferromagnet La2CuO4

M. Manojlović, M. Pavkov,* M. Škrinjar, M. Pantić, D. Kapor, and S. Stojanovic´
Department of Physics, Faculty of Sciences, University of Novi Sad, Trg D. Obradovic´a 4, Novi Sad, Serbia and Montenegro, Yugoslav

~Received 26 February 2003; revised manuscript received 21 May 2003; published 30 July 2003!

We have studied the spin-wave dispersion at low temperatures and the transition temperature (TN) of the
spin-12 antiferromagnet and high-TC parent La2CuO4. The values of the in-plane exchange parameters~includ-
ing first, second, and third nearest neighbors! are determined by an accurate fit to the recently experimentally
observed in-plane spin-wave spectrum, obtained by the high-resolution inelastic neutron scattering performed
on La2CuO4 @Phys. Rev. Lett.86, 5377~2001!#. The analysis of the Ne´el temperature shows that the in-plane
spin anisotropy (h) is much more significant than the three dimensionality, sinceTN of the three-dimensional
~3D!-antiferromagnet depends rather weakly on the value of the interlayer coupling (l'). We obtain that the
Néel temperature of the 3D-antiferromagnet varies only weakly within the very wide interval ofl' and the
Néel temperature of the anisotropic 2D (hÞ0, l'50) antiferromagnet does not differ from the 3D value for
the sameh. These conclusions are valid for both tetragonal and orthorhombic structures. However,h depen-
dence ofTN is essentially different: forh50, TN of the tetragonal structure becomes 0, whileTN of the
orthorhombic structure remains finite. These results are valid within the frame of the Tyablikov approximation.

DOI: 10.1103/PhysRevB.68.014435 PACS number~s!: 75.10.Jm, 75.30.Gw, 75.40.Gb, 74.72.Dn
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I. INTRODUCTION

The study of the magnetic and thermodynamic proper
of the high-TC superconductor parent compound La2CuO4,
which has been intensive in the last decade, is significant
at least, two reasons. First, it has been noticed that in
undoped regime high-TC superconductors have some pec
liar features, which are assumed to play an important r
in the mechanism of their transition to superconduct
phase. For that reason, a great attention is paid to un
standing the undoped-state properties of the high-TC cu-
prates. Second, La2CuO4 appears to be a very good approx
mation to the 2DS5 1

2 Heisenberg antiferromagnet~AF!
and, therefore, it is interesting from the purely theoreti
point of view.

The first model used for the description of the interactio
among Cu21 spins in La2CuO4 was simple 2D Heisenber
model with nearest-neighbor~NN! interactions only. How-
ever, recent experiments carried out on La2CuO4 ~Ref. 1!
have shown that complete description of the spin excitati
in La2CuO4 requires involving next neighbors, i.e., NNN
and NNNN-exchange couplings. In fact, experimentally o
tained spin-wave spectrum in Ref. 1 shows dispersion al
2D AF Brillouin zone boundary which can be explained on
by including NNN-exchange coupling between Cu21 spins.

Our intention in this paper was not only to fit 2D spi
wave spectrum from Ref. 1, but also to check if the sa
parameters, using the same model, can give correct valu
the phase transition temperature~the Néel temperature!. We
also tried to resolve the existing dilemma about the nat
~ferromagnetic or antiferromagnetic! of the interaction be-
tween NNN and NNNN.

From the phase diagram of La2CuO4,2 it can be seen tha
below the tetragonal-orthorhombic structural phase transi
temperature (Tst5530 K), La2CuO4 crystallizes in the face-
centered orthorhombic phase.3 However, upon doping, the
crystal structure of La2CuO4 changes~Fig. 1! into body-
centered tetragonal structure~so-calledT structure!,2 which
0163-1829/2003/68~1!/014435~8!/$20.00 68 0144
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also partially characterizes the superconductive phase,
viding thus the reason why many authors consider the tet
onal structure even in the studies of the undoped La2CuO4.
In this paper, the tetragonal phase of La2CuO4 will be con-
sidered, but it will also be shown that the orthorhomb
phase behaves in almost the same way~Appendix!.

This paper is organized as follows. In Sec. II, we defi
the effective Hamiltonian and derive the spin-wave spectr
and the expressions for the magnetization and the Ne´el tem-
perature, using the method of the spin Green functions~GF!.
Section III contains the analysis of our results both for lo
and high~close toTN) temperatures, i.e., we compare o
spin-wave spectrum to that obtained experimentally and
another test we calculate the Ne´el temperature for the ob
tained values of exchange parameters. The consequenc
the results are summarized in the concluding Sec. IV.

II. SPIN-WAVE SPECTRUM: THE NE´ EL TEMPERATURE

The initial point of our considerations is the effective sp
Hamiltonian, referring to the orthorhombic phase
La2CuO4, written in the following form:4

Ĥ5JS (
^ i ,d1&

SW i•SW i 1d1
1h (

^ i ,d1&
Si

zSi 1d1

z 1l2 (
^ i ,d2&

SW i•SW i 1d2

1l3 (
^ i ,d3&

SW i•SW i 1d3
1 (

^ i ,d' j
&

l' j
SW i•SW i 1d' j

1lDM (
^ i ,d1&

~2 ! iaW 1•SW i3SW i 1dD . ~1!

Here,J describes NN in-plane exchange coupling;l2 and
l3 (l i5Ji /J,i 52, 3! describe NNN and NNNN in-plane
exchange couplings and are equivalent (l25l3);1 h repre-
sents the in-plane spin anisotropy; andl'1

andl'2
explic-

itly describe different interlayer couplings in the orthorhom
©2003 The American Physical Society35-1
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bic phase. The last term in Eq.~1! represents Dzyaloshinsk
Moriya interaction, which describes a small rotation of Cu6
octahedra about thea axes, but can be neglected at low tem
peratures since it produces a very small gap in the Brillo
zone center.1,3 On the other hand, this interaction vanish
due to symmetry in the tetragonal phase, while in the ort
rhombic phase its influence at finite~close to transition! tem-
peratures can also be neglected since there exist strong
perimental evidence~Ref. 5 Sec. 3! that the system of
coupled spins in La2CuO4 is sufficiently well described by
2D Heisenberg model with the small anisotropy of the Is
type.

We shall consider here the tetragonal phase, when
Hamiltonian ~1! simplifies since, as mentioned abov

FIG. 1. Unit cell of the La2CuO4 in ~a! tetragonal and~b! ortho-
rhombic phase with exchange interactions labelled.2 Only
Cu21-ions are shown. Two different orientations of spins are
noted bys andd.
ee
e
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Dzyaloshinski-Moriya interaction vanishes (lDM50) and
the interlayer coupling becomes equivalent for all the out-
plane NN (l'1

5l'2
).

It can be also seen from Eq.~1! that the so-called ring
~cyclic! exchange, considered by many authors1,6 is not taken
into account for reasons to be explained later.

In order to derive the spin-wave spectrum, we use
Tyablikov Green functions for the spin operators. Using t
equations of motion for the following pairs of operato
(Ŝ1(a); Ŝ2(b)) and (Ŝ2(a); Ŝ1(b)), we obtain, actually, due
to the structure of the Hamiltonian, two independent syste
of equations of motion for the Green functions, one of whi
is sufficient to derive all the relevant expressions. As an
ample, we quote here the equation of motion for G

^^Ŝm,rW
1(a)uB̂&&E in energy~E! representation:

-

FIG. 2. Spin-wave dispersion in La2CuO4 along the high sym-
metry directions in 2D AF Brillouin zone~for the tetragonal phase!.
The circles are the experimental results of Ref. 1 for La2CuO4 at 10
K. The solid line is the result of a fit to the spin-wave dispersi
result ~19! leading to the exchange coupling constants giv
in Eq. ~33!.
E^^Ŝm,rW
1(a)uB̂&&5

i

2p
^@Ŝm,rW

1(a) ,B̂#&1JS (
d1

~^^Ŝm,rW
z(a)

Ŝm,rW 1d1

2(b) uB̂&&1~11h!^^Ŝm,rW 1d1

z(b)
Ŝm,rW

1(a)uB̂&&!

1l'(
d'

~^^Ŝm,rW
z(a)

Ŝ(m,rW )1d'

1(a) uB̂&&2^^Ŝ(m,rW )1d'

z(a)
Ŝm,rW

1(a)uB̂&&1^^Ŝm,rW
z(a)

Ŝ(m,rW )1d'

2(b) uB̂&&1^^Ŝ(m,rW )1d'

z(b)
Ŝm,rW

1(a)uB̂&&!

1l2 (
d i

i 52,3

~^^Ŝm,rW
z(a)

Ŝm,rW 1d i

1(a) uB̂&&2^^Ŝm,rW 1d i

z(a)
Ŝm,rW

1(a)uB̂&&!D . ~2!
t to

e-
of
HereŜm,rW
(a) denotes the spin of the Cu21-ion in themth plane,

the position within the plane is specified byrW , anda5a,b
refers to the sublattice.

The basic problem with the equations of type~2! is how
to close the system by decoupling the higher-order Gr
functions. Close to the Ne´el temperature, one can use th
Tyablikov decoupling approximation,7 which is suitable for
n

that temperature region. Since this decoupling seems no
provide satisfying results at low temperatures~even for
ferromagnets8!, we use here a kind of modified Callen d
coupling approximation, which is, for the particular case
spin 1

2 based on the identity

Ŝg
z5S2Ŝg

2Ŝg
1 . ~3!
5-2
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In that case, the decoupling procedure for antiferromagne
given in the following form:

^^Ŝg
zŜf

6uB̂&& →
gÞ f

SF S 12
1

S
^Ŝg

2Ŝg
1& D ^^Ŝf

6uB̂&&

2
1

S
^Ŝg

6Ŝf
6&^^Ŝg

7uB̂&&G , ~4!

which enables the comparison to the boson approxima
~e.g., Dyson-Maleev! and also makes possible better cons
eration of the quantum spin fluctuations in the antiferrom
netic ground state.

After decoupling and transforming to the mome
tum space, we obtain the following system of equatio
for GFs Gaa

12(kW ,E)5^^Ŝ1(a)uŜ2(a)&&kW ,E and Gba
22(kW ,E)

5^^Ŝ2(b)uŜ2(a)&&kW ,E :

@E2JSe~kW !#Gaa
12~kW ,E!2JSI~kW !Gba

22~kW ,E!5
i

2p
2^Ŝz(a)&,

JSI~kW !Gaa
12~kW ,E!1@E1JSe~kW !#Gba

22~kW ,E!50. ~5!

Here the quantitiese(kW ) andI (kW ) are given by the following
expressions:

e~kW !5z1@~11h!~12F!2F1#1
z'

2
l'~12F2F'

ab!

2l2$z2@12g2~kW !#~12F1F2!1z3@12g3~kW !#

3~12F1F3!%2
z'

2
l'@12g'

aa~kW !#~12F1F'
aa!,

~6!

I ~kW !5z2g1~kW !@12F2~11h!F1#

1
z'

2
l'g'

ab~kW !~12F2F'
ab!, ~7!

with the quantitiesF given by

F5
1

SN (
qW

F21~qW !, ~8!

F1[
1

SN (
qW

g i~qW !F22~qW !, ~9!

F i[
1

SN (
qW

g i~qW !F21~qW !, i 52,3, ~10!

F'
aa[

1

SN (
qW

g'
aa~qW !F22~qW !, ~11!

F'
ab[

1

SN (
qW

g'
ab~qW !F22~qW !, ~12!
01443
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whereF22(qW )5^Ŝ2Ŝ2&qW and F21(qW )5^Ŝ2Ŝ1&qW are the
correlation functions. The quantitiesg(qW ) in tetragonal phase
are given by

g1~qW !5
1

2
~cosqxa1cosqya!, ~13!

g2~qW !5cosqxacosqya, ~14!

g3~qW !5
1

2
~cos2qxa1cos2qya!, ~15!

g'
aa~qW !5g'

bb~qW !5cos
qzc

2
cos

a

2
~qx2qy!, ~16!

g'
ab~qW !5g'

ba~qW !5cos
qzc

2
cos

a

2
~qx1qy!. ~17!

The number of the corresponding neighbors is denoted bzi
( i 51,2,3,').

Spin-wave spectrum is obtained from system~5! in the
form

E~kW !5JSAe2~kW !2I 2~kW ![JSv~kW !. ~18!

Since Ref. 1 gives the spin-wave spectrum of the 2D (l'

50) spin isotropic (h50) model at low temperatures (T
510 K), in order to compare our expression to theirs,
use the following form of the energy of spin excitations:

E~kW ;0!54JS†„12F~0!2F1~0!2l2$@12g2~kW !#

3@12F~0!1F2~0!#1@12g3~kW !#@12F~0!

1F3~0!#%…22g1
2~kW !@12F~0!2F1~0!#2

‡

1/2,

~19!

whereF i(0)[F i(T50).
From Eq.~19! it can be seen that

lim
k→0

E~k!50,

which agrees with the fact that the spin isotropic magn
possess the Goldstone mode.

Solving Eq.~5!, we arrive at the following expressions fo
the GFs:

Gaa
12~kW ,E!5

i

2p
2sS A~kW !

E2E~kW !
1

B~kW !

E1E~kW !
D , ~20!

Gba
22~kW ,E!5

i

2p
2sS C~kW !

E2E~kW !
1

D~kW !

E1E~kW !
D , ~21!

where

s5^Ŝz&5S~12F!, ~22!

A~kW !5
1

2
1

e~kW !

2v~kW !
, B~kW !5

1

2
2

e~kW !

2v~kW !
,

5-3
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C~kW !52
e~kW !

2v~kW !
, D~kW !5

e~kW !

2v~kW !
.

Using the standard procedure, we obtain the correlation fu
tions, which figure in Eqs.~8!–~12!:

F21~kW !5S~12F!S e~kW !

v~kW !
21D 12S~12F!

3
e~kW !

v~kW !

1

eE(kW )/u21
, ~23!

F22~kW !52S~12F!
I ~kW !

v~kW !
22S~12F!

I ~kW !

v~kW !

1

eE(kW )/u21
.

~24!

The sublattice magnetization is given by the expressio

s5
1

2
2

1

N (
kW

^Ŝ2Ŝ1&kW . ~25!

Inserting Eq.~23! in Eq. ~25!, we obtain the following ex-
pression:

s5
1

2

1

1

N (
kW

e~kW !

v~kW !
1

2

N (
kW

e~kW !

v~kW !

1

eE(kW )/u21

. ~26!
K

t p

o
to
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In the case of spin isotropic magnet (h50), this expression
for the sublattice magnetization is in agreement w
Mermin-Wagner theorem.

In order to obtain the expression for the Ne´el temperature,
we use the Tyablikov decoupling approximation@in Eqs.~6!,
~7!, and ~18! one needs to puts5S(12F) and F i50, i
51,2,3,'], which leads to the following expressions:

E~kW !5JsA@eT~kW !#22@ I T~kW !#2, ~27!

eT~kW !5z1~11h!1
z'

2
l'2l2$z2@12g2~kW !#

1z3@12g3~kW !#%2
z'

2
l'@12g'

aa~kW !#, ~28!

I T~kW !5z2g1~kW !1
z'

2
l'g'

ab~kW !. ~29!

Please notice that the contributions of the ferromagnetic~aa!
coupling@Eq. ~28!# and antiferromagnetic~ab! coupling@Eq.
~29!#, practically cancel in Eq.~27!. Using Eqs.~27!–~29!
and the fact thats→0 for T→TN , the Néel temperature can
be expressed as

uN5
J

C
, ~30!

where
C5
1

N (
kW

11h2l2@22g2~kW !2g3~kW !#1l'g'
aa~kW !

$11h2l2@22g2~kW !2g3~kW !#1l'g'
aa~kW !%22@g1~kW !1l'g'

ab~kW !#2
. ~31!
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We shall now analyze these results.

III. ANALYSIS OF THE RESULTS

We were able, by an accurate fit of our expression~19! to
experimentally determined 2D spin-wave spectrum at 101

to determine the system parametersJ and l2. In order to
evaluate these parameters, we applied the self-consisten
cedure of determining the quantitiesF @Eqs. ~8!–~12!#,
which themselves depend on the energy. As a result, we
tained a set of parameters, which, as will be seen, leads
correct description of the spin-wave spectrum in La2CuO4
~Ref. 1! and also correctly reproduces the Ne´el temperature.
The best fit is obtained for the following set of values:

F50.3469, F1520.6868, F250.3879,

F350.3012, ~32!

which give

J5141 meV~65%!, l250.0942~610%!. ~33!
,

ro-

b-
a

These values are very close to those given in Refs. 4 an
The inelastic neutron scattering data from Ref. 1 toget

with our fit result along the high symmetry directions in th
2D AF Brillouin zone are shown in Fig. 2.

In the series of papers,1,6,10 a valid fit of the spin-wave
spectrum was obtained for different sets of parametersJ,
l2, and JC). The starting point of these studies was t
Hubbard model (t-U model, wheret is the hopping energy
between NN Cu sites andU is the potential energy on a
given site;t/U!1), whose expansion produces the effecti
spin Hamiltonian with higher-order exchange terms, wh
arise from the coherent motion of the electrons beyond
sites.11 If the perturbation series is expanded to the ordert4

~i.e., four hops!, the effective Hamiltonian includes the fo
lowing NN-, NNN-, and NNNN-exchange coupling con
stants:J54(t2/U)224(t4/U3); J25J354(t4/U3), and also
the ring exchangeJC580(t4/U3).

In Ref. 1, a valid fit of the spin-wave spectrum at 10 K
obtained in two ways. First, the spin-wave spectrum is fit
with the parametersJ510464 meV; J2521863 meV
~i.e., for ferromagnetic NNN interaction!; J35JC50. Since
5-4
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J2,0 contradicts some theoretical predictions,1,12 which
give an antiferromagnetic NNN-exchange coupling const
(J2.0), another fit is presented in Ref. 1, using the s
Hamiltonian obtained by an expansion of the Hubba
Hamiltonian for t50.3060.02 eV and U52.260.4 eV,
which yields the following exchange constants:J5146.3
64 meV; J25J35260.5 meV; JC56168 meV. Fit ob-
tained with this set of parameters is also valid, yet it is
distinguishable from the previous one, obtained for the
romagneticJ2. This is the consequence of the fact thatJC
actually reduces the interaction between NN (J2JC/2
.110 meV) and the NNN-exchange coupling transfers
the ferromagnetic one (J22JC/4.214 meV). Moreover,
rather complicated exact expression for the equation of
tion for Ŝ1 in terms of spin operators indicates that in a
relevant approximation~Tyablikov, Callen, etc.! the term
with JC will be proportional to^Ŝz&3, i.e., in the expression
for the magnon energyJC is renormalized bŷ Ŝz&2. In the
vicinity of the phase transition temperature (s→0), this can
always be neglected.

The fact that the experimental spin-wave spectrum can
fitted either with antiferromagnetic (J2.0) or with ferro-
magnetic (J2,0) NNN-exchange coupling, points to the n
cessity of another, independent test of the above results.
that reason, we calculated the Ne´el temperature@using Eqs.
~30! and ~31!# with the above-mentioned set of paramete
@J5141 meV(65%); l250.0942(610%)] for different
values ofl' andh.

First, the Ne´el temperatures were calculated for fixedh,
varying only l' , in order to examine the influence of th
interlayer coupling. For the parameterh, we take the value
h.1023, which gives the best agreement with the expe
mental valueTN532565 K.4,9,13 The results obtained ar
shown in Table I.

The results from Table I show the following: for fixedh,
TN varies only weakly within the very wide interval ofl'

(1025– 1022). Even in 2D-case (l'50), TN almost does
not differ from its 3D value. We see that the influence of t
interlayer coupling becomes significant only forl'.1021,
which is not characteristic for these systems.

In order to examine the influence of the spin anisotro
we also calculated the Ne´el temperature varyingh and tak-
ing for l' value, l'5531025. The results obtained ar
given in Table II and are also shown in Fig. 3.

TABLE I. Néel temperature (TN) dependence onl' for h59
31024 in tetragonal phase.

l' 531025 1024 1023 1022 1021 0 ~2D!

TN ~K! 325 325 325.3 327.3 346.7 325
01443
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The results from Table II show that in the 2D caseTN
decreases whenh becomes smaller and finally becomes 0 f
h50 which is expected due to the Mermin-Wagner theore
The results obtained for the 3D case are almost indistingu
able from those obtained for the 2D case~Table II, Fig. 3!,
also showing that the Ne´el temperature for the spin isotropi
3D antiferromagnet becomes 0. The divergency of the qu
tity C given by Eq.~31! for h50 is not only obtained nu-
merically, but also can be ruled out analytically. In fact,
the center of the 3D AF Brillouin zone (ukW u→0), this quan-
tity is defined by the following integral:

C.
1

~2p!3E0

k0
k2dkE

0

p

sinudu

3E
0

2p 1

k2sin2 u@123l21l'/2 sin2w#
dw. ~34!

From this expression it is obvious that the integration oveu
is responsible for the divergency ofC:

C;E
0

p sinu

12cos2 u
du→`. ~35!

This fact appears to be the consequence of the Tyabli
approximation, which, itself, is in the agreement with t
Mermin-Wagner theorem. One should notice that t
Mermin-Wagner theorem offers strict result only for one a
two dimensions, so our result does not contradict this th
rem.

We have also calculated the Ne´el temperature for the fer
romagnetic NNN-interaction, using for the parametersJ and
J2 values given in Ref. 1:J510464 meV, J25218
63 meV. The obtained results also give the very weak

FIG. 3. The Ne´el temperature (TN) dependence onh for l'

5531025 in tetragonal phase.
0
0

TABLE II. The Néel temperature (TN) dependence onh for l'5531025 in tetragonal phase.

h 531022 1022 1023 531024 1024 1025 1026 1027 1028 10210 0

TN
2D ~K! 734.8 494.1 330.1 299.6 246.5 196.6 163.4 139.8 122.2 97.6

TN
3D ~K! 734.8 494.1 330.1 299.6 246.5 196.6 163.4 139.8 122.2 97.6
5-5
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M. MANOJLOVIĆ et al. PHYSICAL REVIEW B 68, 014435 ~2003!
pendence on the interlayer coupling, but show that the N´el
temperatures close to the experimental value can be obta
only for h.1026. For h.1023, the obtained values forTN
were higher than 500 K. Hence, these results show that
romagnetic NNN interaction can not yield the correct Ne´el
temperature for any parameter set that could be characte
for these systems.

In Appendix we review the complete calculation proc
dure for the orthorhombic phase of La2CuO4 and compare
the behavior of this phase to the tetragonal one, conside
spin-wave spectrum and the Ne´el temperature.

Irkhin and Katanin14 made a detailed comparison of th
results obtained by linear spin-wave theory, self-consis
spin-wave theory, Tyablikov decoupling, and 1/N expansion
showing that only the last one leads to the reasonable v
of TN . However, a more detailed analysis of their equatio
shows that the calculation is based on the simple cubic st
ture, which is definitely an oversimplification.

IV. CONCLUSION

It can be seen from the literature concerning the prob
of La2CuO4 that there exists a variety of both models a
parameters, which can fit more or less correctly the exp
mentally determined spin-wave spectrum. It is shown in t
paper that the Ne´el temperature analysis is the one whi
introduces a strong restriction to the choice of models
parameters.

First, our analysis shows that NNN interaction has to
antiferromagnetic. Knowing that the ring exchange yields
effective ferromagnetic NNN interaction, this conclusio
opens a dilemma if taking this specific type of exchan
coupling is justified.

Second, the analysis of the Ne´el temperature shows tha
the in-plane spin anisotropy is much more significant th
the three dimensionality~in agreement with the opinion o
the authors of Ref. 9!, sinceTN depends rather weakly on th
value of the interlayer coupling. This can be explained by
fact that either in tetragonal or in orthorhombic pha

FIG. 4. The 2D AF Brillouin zone for the orthorhombic pha
together with the selected path corresponding to that considere
the tetragonal structure.
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there arez'58 out-of-plane NN, which interact in differen
manners: four of them (z'/2) are coupled ferromagneticall
and the other four antiferromagnetically. This practically pr
duces the compensation of the terms involving interla
coupling, as can be seen in expressions~28! and~29! for the
tetragonal phase or in the analogous expressions written
the orthorhombic phase. Moreover, in the tetragonal ph
~in our approximation! we obtain the zero value for the Ne´el
temperature of the 3D spin isotropic antiferromagnet.

According to the Mermin-Wagner theorem, in order
explain AF long-range order atTÞ0 K in lantanides, one
needs either anisotropy or three dimensionality. Taking i
account that the Hubbard Hamiltonian yields the in-pla
spin isotropy, the importance of the in-plane spin anisotro
also raises the question whether the Hubbard Hamilton
can be applied to these systems without any additional
sumptions. It seems that this Hamiltonian is much more
equate to use in the~doped! superconductive phase, which
however, is questioned now by some recent results.15

Finally, we wish to point out that the values of all th
parameters (J,J2 , l' , h), which lead to the best fit of the
spin-wave spectrum and the correct value of the Ne´el tem-

for

FIG. 5. Spin-wave dispersion in La2CuO4 along the high sym-
metry directions in 2D AF Brillouin zone~for the orthorhombic
phase!. The solid line is the result of a fit to the spin-wave dispe
sion result~19! @with Eqs.~A1!–~A3!#.

FIG. 6. The Ne´el temperature (TN) dependance onh for l'
(1)

5631025 andl'
(2)51025 in orthorhombic phase, for the 2D an

3D case.
5-6
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TABLE III. Néel temperature (TN) dependence onl'
(1) (l'

(2)) for different Dl'5l'
(1)2l'

(2) and h
51.0531023 in orthorhombic phase.

l'
(1) 631025 1.531024 1.0531023 1.00531022

1025 TN(K) 333.0 333.0 333.1 333.2
l'

(1) 631025 1.531024 1.0531023 1.00531022

l'
(1)2l'

(2) 531025 TN ~K! 325.0 325.0 325.0 325.1
l'

(1) 231024 1.131023 1.0131022 1.00131021

1024 TN ~K! 334.6 334.6 334.7 334.9
ft

ci-

la

s
fo

is
g
e

he

2D
ed
nal

t

perature, are in a good agreement with the values most o
cited in the literature.
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APPENDIX

As mentioned in Sec. I, the undoped La2CuO4 crystallizes
in the orthorhombic (Bmab) phase4 below the temperature
Tst5530 K. Therefore, we shall repeat the whole calcu
tion, both for the spin-wave spectrum and the Ne´el tempera-
ture, for the orthorhombic phase of the system. In this pha
the magnetic cell is face-centered, characterized by the
lowing lattice constants:a55.338 A, b55.406 A, andc
513.141 A.4,5 The effective Hamiltonian of the system
given by Eq. ~1!, where the term representin
Dzyaloshinsky-Moriya interaction is neglected, as explain
in Sec. II.

Applying the spin Green function method, we obtain t
spin-wave spectrum given by expression~19!, where the
quantitiesF are given by Eqs.~8!–~12! and the quantities
g(qW ) in the orthorhombic phase have the following form:
ri
in

01443
en

-

e,
l-

d

g1~qW !5cos
qxa

2
cos

qyb

2
, ~A1!

g2~qW !5 1
2 ~cosqxa1cosqyb!, ~A2!

g3~qW !5cosqxacosqyb, ~A3!

g'
aa~qW !5g'

bb~qW !5cos
qzc

2
cos

qyb

2
, ~A4!

g'
ab~qW !5g'

ba~qW !5cos
qzc

2
cos

qxa

2
. ~A5!

To reproduce the spin-wave spectrum, we consider the
Brillouin zone shown in Fig. 4. together with the select
path corresponding to that considered for the tetrago
structure.

Here, for instance, point (p;0) corresponds to the poin

( p
2 ; p

2 ) in the tetragonal 2D Brillouin zone, point (p;2p)
corresponds to (p;0), and so on. Taking this into account,
we obtain the spin-wave spectrum~Fig. 5! similar to the
previous one.

We have also calculated the Ne´el temperature for this
phase, using expression~30!, whereC is now given by
C5
1

N (
kW

11h1~l'
(1)2l'

(2)!2l2@22g2~kW !2g3~kW !#1l'
(2)g'

aa~kW !

$11h1~l'
(1)2l'

(2)!2l2@22g2~kW !2g3~kW !#1l'
(2)g'

aa~kW !%22@g1~kW !1l'
(1)g'

ab~kW !#2
. ~A6!
ent

ice
e
on-
First, we calculated the Ne´el temperatures varying
l'

(1)2l'
(2) and taking for the parameterh the value

h.1023, which gives the best agreement with the expe
mental value forTN . The obtained results are shown
Table III.
-

It can be seen from Table III that the best agreem
with the experimental value is obtained forl'

(1)2l'
(2)55

31025, as suggested in Ref. 4. One can also not
that the results differ very little from those for th
tetragonal phase, so the conclusions given in Sec. III c
0
186
TABLE IV. The Néel temperature (TN) dependence onh for l'
(1)5631025 and l'

(2)51025 in ortho-
rhombic phase.

h 531022 1022 1023 1024 1025 1026 1027 1028 1029 10210 0

TN
2D ~K! 726.6 485.2 321.7 239.1 190.1 157.8 134.8 117.7 104.5 93.9

TN
3D ~K! 726.6 485.6 322.6 243.5 206.2 192.5 188.1 186.7 186.2 186.1
5-7
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cerning the dependence on the interlayer coupling are
valid.

Next, we calculated the Ne´el temperatures varying
the parameterh. The results are shown in Table IV and
Fig. 6.

The results show that in the 2D case the behavior of
st

E
k

lls

e

01443
ill

e

orthorhombic phase is similar to the tetragonal phase.In
3D case, yet, we notice that whenh becomes smaller,TN
converges to the valueTN.186 K, which is the consequenc
of the fact that the quantityC in this phase@Eq. ~A6!# does
not diverge forh50, as can be seen from the followin
expression:
C~ ukW u→0!.
4

~2p!3E0

k0
k2dkE

0

p

sinuduE
0

2p 1

k2@cos2 u~l'
(1)2l'

(2)!1sin2u~126l21l'
(1)cos2w2l'

(2)sin2w!#
dw.

~A7!

It is obvious that this integral diverges only ifl'
(1)5l'

(2) , which is actually the case in the tetragonal phase.
tier,
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