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Spin-wave dispersion and transition temperature in the cuprate antiferromagnet LaCuO,
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We have studied the spin-wave dispersion at low temperatures and the transition tempdigtwethe
spin+ antiferromagnet and higliz parent LaCuQ,. The values of the in-plane exchange parametarsud-
ing first, second, and third nearest neighb@r® determined by an accurate fit to the recently experimentally
observed in-plane spin-wave spectrum, obtained by the high-resolution inelastic neutron scattering performed
on La,CuQ, [Phys. Rev. Lett86, 5377(2001)]. The analysis of the N# temperature shows that the in-plane
spin anisotropy ¢) is much more significant than the three dimensionality, sihg®f the three-dimensional
(3D)-antiferromagnet depends rather weakly on the value of the interlayer coupling (Ve obtain that the
Neel temperature of the 3D-antiferromagnet varies only weakly within the very wide interval aind the
Neéel temperature of the anisotropic 2B 0, A\, =0) antiferromagnet does not differ from the 3D value for
the sameyn. These conclusions are valid for both tetragonal and orthorhombic structures. Howelagen-
dence ofTy is essentially different: forp=0, Ty of the tetragonal structure becomes 0, whilg of the
orthorhombic structure remains finite. These results are valid within the frame of the Tyablikov approximation.
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[. INTRODUCTION also partially characterizes the superconductive phase, pro-
viding thus the reason why many authors consider the tetrag-
The study of the magnetic and thermodynamic propertie®nal structure even in the studies of the undopegCLED,.
of the highT superconductor parent compound,CaQO,, In this paper, the tetragonal phase of,CaO, will be con-
which has been intensive in the last decade, is significant fogidered, but it will also be shown that the orthorhombic
at least, two reasons. First, it has been noticed that in thphase behaves in almost the same Wagpendix.
undoped regime highiz: superconductors have some pecu- This paper is organized as follows. In Sec. Il, we define
liar features, which are assumed to play an important roléhe effective Hamiltonian and derive the spin-wave spectrum
in the mechanism of their transition to superconductiveand the expressions for the magnetization and thel Men-
phase. For that reason, a great attention is paid to undeperature, using the method of the spin Green functi@?.
standing the undoped-state properties of the RAigheu-  Section Ill contains the analysis of our results both for low
prates. Second, LEuUQ, appears to be a very good approxi- and high(close toTy) temperatures, i.e., we compare our
mation to the 2DS=3 Heisenberg antiferromagnéAF)  spin-wave spectrum to that obtained experimentally and as
and, therefore, it is interesting from the purely theoreticalanother test we calculate the ®leemperature for the ob-
point of view. tained values of exchange parameters. The consequences of
The first model used for the description of the interactionghe results are summarized in the concluding Sec. IV.
among Ca* spins in LaCuQ, was simple 2D Heisenberg
model with nearest-neighbdNN) interactions only. How- || sp|N-WAVE SPECTRUM: THE NE EL TEMPERATURE
ever, recent experiments carried out on,Ca0O, (Ref. 1)
have shown that complete description of the spin excitations The initial point of our considerations is the effective spin
in La,CuQ, requires involving next neighbors, i.e., NNN- Hamiltonian, referring to the orthorhombic phase of
and NNNN-exchange couplings. In fact, experimentally ob-LaCuQ;, written in the following form?
tained spin-wave spectrum in Ref. 1 shows dispersion along
2D AF Brillouin zone boundary which can be explained only =3 E
by including NNN-exchange coupling between?Cuspins. (o1
Our intention in this paper was not only to fit 2D spin-
wave spectrum from Ref. 1, but also to check if the same . - .
parameters, using the same model, can give correct value for +)‘3<§4> Si- Si+53+<i; ) )‘HS'S‘ML]
the phase transition temperatuthe Nesl temperature We e i
also tried to resolve the existing dilemma about the nature .
(ferromagnetic or antiferromagnetiof the interaction be- +hom X (—)'a-S$xS ;| (1)
tween NNN and NNNN. oy
From the phase diagram of 1L(au04,2 it can be seen that ) ) )
below the tetragonal-orthorhombic structural phase transition Here,J describes NN in-plane exchange coupling;and
temperature T,= 530 K), La,CuO, crystallizes in the face- s (\i=Ji/J,i=2, 3 describe NNN and NN'\llN in-plane
centered orthorhombic phadédowever, upon doping, the €xchange couplings and are equivaleni£\3);" 7 repre-
crystal structure of LgCuO, changes(Fig. 1) into body- ~ Sents the in-plane spin anisotropy; and, and\ ., explic-
centered tetragonal structufso-calledT structuré,> which itly describe different interlayer couplings in the orthorhom-

§i'§i+51+772 SiZSZ+51+)\22 §i'§i+a‘2
) (i,61) (i,55)
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FIG. 2. Spin-wave dispersion in k&uO, along the high sym-
b metry directions in 2D AF Brillouin zon€or the tetragonal phage
a) ) The circles are the experimental results of Ref. 1 foyQu#0, at 10

K. The solid line is the result of a fit to the spin-wave dispersion
result (19) leading to the exchange coupling constants given
in Eq. (33).

FIG. 1. Unit cell of the LaCuQ, in (a) tetragonal andb) ortho-
rhombic phase with exchange interactions labefle®nly
CW?"-ions are shown. Two different orientations of spins are de-
noted byO and @.

Dzyaloshinski-Moriya interaction vanishes\{,,=0) and

the interlayer coupling becomes equivalent for all the out-of-
bic phase. The last term in E(l) represents Dzyaloshinski- y Ping a

- . . . . plane NN 0, =\, ).

Moriya interaction, which describes a small rotation of GuO L 2 .
octahedra about theaxes, but can be neglected at low tem- It can be also seen_from Eql) that theﬁgq-called fing
peratures since it produces a very small gap in the BriIIouin(CyC“C) exchange, considered by many autnolis not taken
zone centet:® On the other hand, this interaction vanishes/Mto account for reasons to b.e explained later.
due to symmetry in the tetragonal phase, while in the ortho- n _order to derive _the spin-wave spectrum, we use the
rhombic phase its influence at finifelose to transitiontem- Tyabll_kov Green f_unctlons for the Spin ope_rators. Using the
peratures can also be neglected since there exist strong e‘?@“a“orjs of mOt'OP for Ehe following pf"“rs of operators
perimental evidencgRef. 5 Sec. B that the system of (S°®; S™) and §™®@; S*®), we obtain, actually, due
coupled spins in LgCuO, is sufficiently well described by t0 the structure of the Hamiltonian, two mc_iependent systems
2D Heisenberg model with the small anisotropy of the Ising_Of equations of motion for the Green funct|ons_, one of which
type. is sufficient to derive all the relevant. expressions. As an ex-

We shall consider here the tetragonal phase, when th@mple, we quote here the equation of motion for GF
Hamiltonian (1) simplifies since, as mentioned above, ((S;’(EHB))E in energy(E) representation:

B8 = 5 (5,9 B +3[ 3 (F98,2, 1B+ (1+ (&Y, 5 01B))

m,p ~m,p+ 35, m,p+6; " m,p

P2 G815, B Sy 0, S 1B+ (S Bingh o, BN+ (S 15,80, 1B))

m,p ~(m,p) + (m,p)+0, ~m,p m,p ~(m,p) + (m,p)+3, “mp

a3 (SR80, 1B)—(E. 5018 . @

m,p ~m,p+ m,p+3;~m,p
i=23

Here ') denotes the spin of the &l-ion in themth plane,  that temperature region. Since this decoupling seems not to

the pogifion within the plane is specified By anda=a,b provide satisfying results at lO.W tempera.\t.uréewen for

refers to the sublattice. ferromagnel%, we use here_ a Igmd of modlfle_d Callen de-
The basic problem with the equations of ty{® is how co_uplmg apprOX|mat|.on, vyhlch is, for the particular case of

to close the system by decoupling the higher-order GreefiPin 2z based on the identity

functions. Close to the N temperature, one can use the - P

Tyablikov decoupling approximatichyvhich is suitable for Sg=S5754 S - ©)
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In that case, the decoupling procedure for antiferromagnets ighere ® =~ (q)=($~ &~ )g and ® +(Q) (S S+>q are the

given in the following form:

Am A g#f
((SgSr1B) — S

(1—§<é;ég>)<<éf|é>>

1oiin ) ae s
~S(& 55 1B,

which enables the comparison to the boson approximation
(e.g., Dyson-Maleevand also makes possible better consid-

(4)

correlation functions. The quantltlea{q) in tetragonal phase
are given by

eration of the quantum spin fluctuations in the antiferromag-

netic ground state.

After decoupling and transforming to the momen-
tum space, we obtain the following system of equations

for GFs G., (K,E)=((S"@|5 @) and G, (k,E)

=((S VIS @))ce

[E—JSe(K)]GL, (k,E)—ISIK)G,, (K, E)——2<SZ<a>>

JSI(k)G T (K,E)+[E+JSe( k)]Ggaf(k E)=0.

Here the quantities(k) andl (k) are given by the following

expressions:
e(K)=z,[(1+ 7)(1— D) — q>1]+ M(l O — D20

~No{Zo[ 1= y5(K)](1— @+ D) +25[ 1 — y5(K)]

(5

X(1- ‘1>+<1>3)}— M[l YKL= D+ D7),

1(K)=2Zo7,(K[1—®— (1+ 7)D4]

Z >
5N YR (L- @ - @),

with the quantitiesb given by

1 -
=ﬁ§¢<m
1 .
Oy= 2 Y(@DP (@),
q
1 .
?;E%m¢Wm =23,
@@—Eyw-wL

1 - >
PP=g 2 @@,

(6)

@)

8

©)

(10

(11)

12

1
y1(q) = 5 (cogp,a+ cogy,a), (13
y,(q) = cogj,acogy,a, (14
1

y3(q) = 5 (cosa+cos,a), (15

- - ., a
Y@ =7(a)= CO%w%(qx— q), (16

ab, 7 ba, 7 g.C a
yi(@) =7 () =cos5cos;(atay). (17

The number of the corresponding neighbors is denoter by
(i=1,2,31).

Spin-wave spectrum is obtained from systé€m in the
form

E(K)=JSVe(k)—12(k)=JSw(K). (18)

Since Ref. 1 gives the spin-wave spectrum of the 2D (
=0) spin isotropic =0) model at low temperaturesT (
=10 K), in order to compare our expression to theirs, we
use the following form of the energy of spin excitations:

E(k;0)=4J9(1—®(0)—D1(0)—N\5{[1— y(K)]
X[1—®(0)+D5(0)]+[1— y5(K)][1—D(0)

+®3(0)]})? = YA(K)[ 1~ D(0) —@4(0) 1?12,
(19
where®;(0)=d,(T=0).
From Eq.(19) it can be seen that

limE(Kk)=0,
k—0

which agrees with the fact that the spin isotropic magnets
possess the Goldstone mode.

Solving Eq.(5), we arrive at the following expressions for
the GFs:

. i
Gl (KE)=5-20

A(K) B®)
—+ — |, (20
E-E(k) E+E(K)

G, (K,E)==—2¢ C(k + D(K) ) (22)
ba A 27 T E—E(k) E+E(K)/)’
where
o=(5)=S(1-®), (22)
.1 E(lZ) -1 e(lZ)
Alk)=o+ 20(K)’ K=3 20(K)’
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) e(k) ) (k) In the case of spin isotropic magnep£0), this expression
C(k)y=-— —, D(k)= —. for the sublattice magnetization is in agreement with
20(k) 20(k) Mermin-Wagner theorem.
Using the standard procedure, we obtain the correlation func- [N order to obtain the expression for theéléemperature,
tions, which figure in Eqs(8)—(12): we use the Tyablikov decoupling approximatiom Eqgs.(6),

(7), and (18) one needs to pur=S(1—®) and ®;=0, i

. €(|2) =1,2,3], which leads to the following expressions:
O HR)=S(1-D)| L —1| +25(1— )
(k) E(R)=Jo\[' (0P[R, (27)
e(lZ) 1 23 .

w(k) €501’ €'(R)=21(1+ )+ SN, ~\ofz[1-75(K)]

L 1(K) 1(K) 1 . z, -
=_ _ — - Pp)— — +2z3[1— K= =N [1- k)], (28
" (k)=—9(1 CI))w(IZ) 25(1 q))w(E) T z[ 1= ys( I} = 5 A [1=7%(K], (28

(24)
. .z .

The sublattice magnetization is given by the expression |T(k)22271(k)+7M YK (29

1 1 P Please notice that the contributions of the ferromagriesc
757N 2 (S7S"k. (29 coupling[Eq. (28)] and antiferromagnetitb) coupling[Eq.
K (29)], practically cancel in Eq(27). Using Eqgs.(27)—(29)
Inserting Eq.(23) in Eq. (25), we obtain the following ex-  and the fact thatr— 0 for T— Ty, the Neel temperature can

pression: be expressed as
! ! (26) 0 ) (30)
o= = =~ — . =_,
lee(k)+22 k) 1 NC
N ok NT ok eEWI_1 where
|
1 1+ 7= N[ 2= y2(K) — y3(K) ]+ A y2%(K)
C:NZ 7]"2 "2 za" ZLL" ab/’\12° (31)
k {1+ 7= N[ 2= y2(K) = y3(K) ]+ N ¥ T (K} = [ya(K) + A yI(K)]
|
We shall now analyze these results. These values are very close to those given in Refs. 4 and 9.
The inelastic neutron scattering data from Ref. 1 together
I1l. ANALYSIS OF THE RESULTS with our fit result along the high symmetry directions in the

2D AF Brillouin zone are shown in Fig. 2.
: _ _ 10 In the series of papers'®a valid fit of the spin-wave
experimentally determined 2D spin-wave spectrum at 10 K, spectrum was obtained for different sets of parametérs (

to determine the system parameté'rand Ao. In ordgr to \o, and J¢c). The starting point of these studies was the
evaluate these parameters, we applied the self-consistent pr, Ubbard model (U model, wheret is the hopping ener
cedure of determining the quantitieb [Egs. (8)—(12)], ' ppIng gy

which themselves depend on the energy. As a result, we Ot?_s/t:al\;]egirt]e":l/% <Sli SI\t;r?ozgtixlSa:]s(?oEOtfgéIL?(LeesntT]rgéf?encti/e
tained a set of parameters, which, as will be seen, leads togi in Ham,iltonian)\’/vith hi herE)order e>F<)chan e terms, which
correct description of the spin-wave spectrum in,CaO, b g 9 '

(Ref. 1) and also correctly reproduces thée\esmperature arise from the coherent motion of the electrons beyond NN
The best fit is obtained for the following set of values: S.'tes'll If the perturbation Series 1s exp_and_ed to the order
(i.e., four hopg, the effective Hamiltonian includes the fol-

We were able, by an accurate fit of our expressit®) to

®=0.3469, ®,=—0.6868, ®,=0.3879 lowing NN-, NNN-, and NNNN-exchange coupling con-
’ ’ ’ stantsJ=4(t?/U) — 24(t*/U%); J,=J;=4(t*/U%), and also
_ the ring exchangd.=80(t*/U?).
®3;=0.3012, 32 ST : .
3 (32 In Ref. 1, a valid fit of the spin-wave spectrum at 10 K is
which give obtained in two ways. First, the spin-wave spectrum is fitted

with the parameters]=104+4 meV,; J,=—18*+3 meV
J=141 me*5%), \,=0.0942+10%). (33 (i.e., for ferromagnetic NNN interactionJ;=J-=0. Since
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TABLE I. Néel temperature Ty) dependence on, for =9

X 10" % in tetragonal phase. 700
600 |
AL 5x10°° 104 10°°® 102 10! 0(2D)

—~ S00F

Ty (K) 325 325 325.3 3273 346.7 325 E%
= 400f
300 F
J,<0 contradicts some theoretical predictidré, which s00k

give an antiferromagnetic NNN-exchange coupling constant
(J,>0), another fit is presented in Ref. 1, using the spin 100 £
Hamiltonian obtained by an expansion of the Hubbard L . . N
Hamiltonian for t=0.30=0.02 eV and U=2.2+0.4 eV, 0 0.2 0.4 0.6 0.8
which vyields the following exchange constantk=146.3 1/ [log 7l

+4 meV,; J,=J3=2%0.5 meV; Jo=61+8 meV. Fit ob-

tained with this set of parameters is also valid, yet it is in- FIG. 3. The Nel temperature Ty) dependence om for \
distinguishable from the previous one, obtained for the fer=5x10"° in tetragonal phase.

romagneticJ,. This is the consequence of the fact that

actually reduces the interaction between NN-—@J:/2 The results from Table 1l show that in the 2D cabg
=110 meV) and the NNN-exchange coupling transfers tadecreases when becomes smaller and finally becomes 0 for
the ferromagnetic onelJg{—Jc/4=—14 meV). Moreover, 7=0 which is expected due to the Mermin-Wagner theorem.
rather complicated exact expression for the equation of moThe results obtained for the 3D case are almost indistinguish-
tion for $* in terms of spin operators indicates that in anyable from those obtained for the 2D cad@ble Il, Fig. 3,
relevant approximatior(Tyablikov, Callen, etg. the term @IS0 showing that the N temperature for the spin isotropic
with Jc will be proportional to(&%)2, i.e., in the expression 3D antiferromagnet becomes 0. The divergency of the quan-

- tity C given by Eq.(31) for »=0 is not only obtained nu-
for the magnon energy. is renormalized by S*)2. In the y -9 y Eq.31 7 y

icinitv of the ph t ition t tre-£0), thi merically, but also can be ruled out analytically. In fact, in
vicinity of the phase transition temperature , this can - - . )
always be neglected. the center of the 3D AF Brillouin zondK|—0), this quan

The fact that the experimental spin-wave spectrum can bgty is defined by the following integral:
fitted either with antiferromagneticJ¢>0) or with ferro-

magnetic §,<0) NNN-exchange coupling, points to the ne- C= 1 fkokzd kfwsinado

cessity of another, independent test of the above results. For 2m)3J)o 0

that reason, we calculated the éléemperaturgusing Egs.

(30) and (31)] with the above-mentioned set of parameters f 2w 1 d 34
[J=141 meV(=5%); \,=0.0942(- 10%)] for different o K2 o—3n,tn 2sinze] T BV

values of\, and .

First, the Nel temperatures were calculated for fixggd  From this expression it is obvious that the integration aer
varying only X, , in order to examine the influence of the is responsible for the divergency Gf
interlayer coupling. For the parametgr we take the value
»=10"2, which gives the best agreement with the experi- T siné
mental valueTy=325+5 K.*%12 The results obtained are C”fo 1-colo
shown in Table I.

The results from Table | show the following: for fixeg This fact appears to be the consequence of the Tyablikov
Ty varies only weakly within the very wide interval of, approximation, which, itself, is in the agreement with the
(107°-10"2). Even in 2D-case X, =0), Ty almost does Mermin-Wagner theorem. One should notice that the
not differ from its 3D value. We see that the influence of theMermin-Wagner theorem offers strict result only for one and
interlayer coupling becomes significant only fior >10"1, two dimensions, so our result does not contradict this theo-
which is not characteristic for these systems. rem.

In order to examine the influence of the spin anisotropy, We have also calculated the &ldemperature for the fer-
we also calculated the etemperature varyingy and tak-  romagnetic NNN-interaction, using for the parametéend
ing for A, value, \, =5X10 °. The results obtained are J, values given in Ref. 1:J=104+4 meV, J,=—18
given in Table Il and are also shown in Fig. 3. +3 meV. The obtained results also give the very weak de-

df—oo. (35

TABLE Il. The Neel temperatureTy) dependence ofy for A\, =5x107° in tetragonal phase.

7 51072 102 10°% 5x10% 104 10°% 10% 107 10% 10 o

T2P (K) 734.8 494.1 330.1 299.6 2465 196.6 163.4 139.8 1222 97.6 0
TﬁD (K) 734.8 4941 330.1 299.6 246.5 196.6 163.4 1398 1222 97.6 0
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FIG. 5. Spin-wave dispersion in k&uO, along the high sym-
metry directions in 2D AF Brillouin zondfor the orthorhombic

FIG. 4. The 2D AF Brillouin zone for the orthorhombic phase phase The solid line is the result of a fit to the spin-wave disper-
together with the selected path corresponding to that considered fQig, result(19) [with Egs. (A1)—(A3)].

the tetragonal structure.

there arez, =8 out-of-plane NN, which interact in different
manners: four of themz( /2) are coupled ferromagnetically
Ry P ) %%d the other four antiferromagnetically. This practically pro-
only for »=10"". For »=10"", the obtained values fofy qces the compensation of the terms involving interlayer
were higher than 500 K. Hence, these results show that fe'ifoupling as can be seen in expressi(2® and(29) for the
romagnetic NNN interaction can not yield the correcteNe yoaq0nal phase or in the analogous expressions written for
temperature for any parameter set that could be characterisifa orthorhombic phase. Moreover, in the tetragonal phase
for these systems. (in our approximationwe obtain the zero value for the’ Ble

In Appendix we review the complete calculation proce-iemnerature of the 3D spin isotropic antiferromagnet.
dure for the orthorhombic phase of 4GuO, and compare According to the Mermin-Wagner theorem, in order to

the behavior of this phase to the tetragonal one, consideringxmain AF long-range order &+0 K in lantanides, one
Spin-wave spectrum imd the eletemperature_ ) needs either anisotropy or three dimensionality. Taking into

Irkhin and Katanin® made a detailed comparison of the sccount that the Hubbard Hamiltonian yields the in-plane
re;ults obtained by Imgar spin-wave theory, :self—con'5|sten§pin isotropy, the importance of the in-plane spin anisotropy
spin-wave theory, Tyablikov decoupling, andNléxpansion g4 rajses the question whether the Hubbard Hamiltonian
showing that only the last one leads to the reasonable valyg, pe applied to these systems without any additional as-
of Ty. However, a more detailed analysis of their equationsy,mptions. It seems that this Hamiltonian is much more ad-
shows that the calculation is based on the simple cubic Stru%‘quate to use in thedoped superconductive phase, which,
ture, which is definitely an oversimplification. however, is questioned now by some recent redéits.

Finally, we wish to point out that the values of all the
IV. CONCLUSION parametersl,Jz, N, , 7), which lead to the bes’g fit of the
spin-wave spectrum and the correct value of thelNem-

It can be seen from the literature concerning the problem
of La,CuQ, that there exists a variety of both models and
parameters, which can fit more or less correctly the experi- 700
mentally determined spin-wave spectrum. It is shown in this 600 E
paper that the N& temperature analysis is the one which s
introduces a strong restriction to the choice of models and ~ 590}

pendence on the interlayer coupling, but show that thel Ne
temperatures close to the experimental value can be obtain

parameters. bﬁz 400 F
First, our analysis shows that NNN interaction has to be & _ & 3P
antiferromagnetic. Knowing that the ring exchange yields the F
effective ferromagnetic NNN interaction, this conclusion 200 ¢
opens a dilemma if taking this specific type of exchange 100 E 2D
coupling is justified.
Second, the analysis of the 8leemperature shows that 0 02 Y 06 Y

the in-plane spin anisotropy is much more significant than
the three dimensionalityin agreement with the opinion of
the authors of Ref. )9 sinceTy depends rather weakly onthe  FIG. 6. The Nel temperature ) dependance om for A (V)
value of the interlayer coupling. This can be explained by the=6x 107 and\{?’=107° in orthorhombic phase, for the 2D and
fact that either in tetragonal or in orthorhombic phase3D case.

1/ [log 7l
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TABLE Ill. Néel temperature Ty) dependence o™ (A{?)) for different Ax, =\{"—\(? and 7
=1.05x 10 2 in orthorhombic phase.

N 6x10°°  15x10°4 1.05<10°8 1.005x 10 2
10°° Tn(K) 333.0 333.0 333.1 333.2
N 6x10°°  15x10°4 1.05x 1073 1.005< 1072
AB-—\@ 5x10°° Ty (K) 325.0 325.0 325.0 325.1
A 2x107*  1.1x10°° 1.01x 1072 1.001x10°*
104 Ty (K) 334.6 334.6 334.7 334.9
perature, are in a good agreement with the values most often R g.a  gyb
cited in the literature. 71(Q)=cos5-cos 5, (A1)
ACKNOWLEDGMENTS 7,(q)=L(cogp,a+ cogy,b), (A2)
This work was supported by the Serbian Ministry of Sci- .
ence and Technology, Project No. Ol 1895. ¥3(q) = cogyacogyyb, (A3)
- - g. q,b
APPENDIX ¥2%() = Y°(d) =cos5-cos -, (Ad)

As mentioned in Sec. |, the undoped,lCaiO, crystallizes
in the orthorhombic Bmab) phasé below the temperature . . 0,C Qe
Ts=530 K. Therefore, we shall repeat the whole calcula- be(Q)ZVEa(Q)ZCOS?COST- (AS5)
tion, both for the spin-wave spectrum and theeNempera-
ture, for the orthorhombic phase of the system. In this phaselo reproduce the spin-wave spectrum, we consider the 2D
the magnetic cell is face-centered, characterized by the foBrillouin zone shown in Fig. 4. together with the selected
lowing lattice constantsa=5.338 A, b=5.406 A, andc path corresponding to that considered for the tetragonal
=13.141 A% The effective Hamiltonian of the system is structure.
given by Eg. (1), where the term representing Here, for instance, point#;0) corresponds to the point

Dzyaloshinsky-Moriya interaction is neglected, as explaineq z;z) in the tetragonal 2D Brillouin zone, pointrf — )

in Sec. II. _ _ _ corresponds to+;0), and so on. dking this into account,
Applying the spin Green function method, we obtain thee optain the spin-wave spectrufig. 5 similar to the

spin-wave spectrum given by expressi@tB), where the previous one.

quantities® are given by Eqs(8)~(12) and the quantities ~ we have also calculated the  &letemperature for this

v(q) in the orthorhombic phase have the following form: phase, using expressig80), whereC is now given by

c-lys 1+ 7+ (AP =AD) =2 [ 2= 7,(K) = y3(K) ]+ A P 92(K) ”6)
NS {14 7+ NP =ND) = N[ 2 y2(K) = 73(K) ]+ NPy 2K) 1= [ya () + A D20k 12
|
First, we calculated the ™N¢ temperatures varying It can be seen from Table Ill that the best agreement

AD—\® and taking for the parameter; the value with the experimental value is obtained faf?—\(?=5
=103, which gives the best agreement with the experi-x10™°, as suggested in Ref. 4. One can also notice
mental value forTy. The obtained results are shown in that the results differ very little from those for the
Table III. tetragonal phase, so the conclusions given in Sec. Ill con-

TABLE IV. The Neel temperature Ty) dependence om for \{V=6x10"° and\{¥=10"° in ortho-
rhombic phase.

7 51072 102 10°® 10* 10°% 10® 107 10® 10° 101 o0

T2P (K) 726.6 485.2 321.7 239.1 190.1 1578 1348 117.7 1045 939 0
T,%,D (K) 726.6 485.6 322.6 2435 206.2 1925 188.1 186.7 186.2 186.1 186
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cerning the dependence on the interlayer coupling are stilbrthorhombic phase is similar to the tetragonal phase.In the
valid. 3D case, yet, we notice that whep becomes smallefTy

Next, we calculated the N¢ temperatures varying converges to the valuBy=186 K, which is the consequence
the parameter;. The results are shown in Table IV and in of the fact that the quantitg in this phasdEq. (A6)] does

Fig. 6. not diverge fory=0, as can be seen from the following
The results show that in the 2D case the behavior of th@xpression:

N Ko T 27 1
C(|k|—0)= f kzdkf sinadef . , de.
K (2m)%Jo 0 0 kcog O\ M=\ ) +sirPe(1— 6N, + N Mcogo— N Psirte)]
(A7)

It is obvious that this integral diverges onlyNf"=x!?, which is actually the case in the tetragonal phase.
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