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We consider electron transport in magnetic multilayers. In particular, we consider how electron transport is
affected by disorder at the interface between two layers. Standard semiclassical approaches characterize dif-
fusive scattering at interfaces with a specularity consgatich thatS is the fraction of electrons that are
specularly scattere@is typically considered to be the same for the reflected and transmitted electron beams.
Here we show for two models of interfacial disorder th@tSis not a constant, but depends on the angle of
incidence as well as the energy and the degree of interfacial disordetbaBds different for reflected and
transmitted electrons. The two different models that we consideflareandom point scatterers at a planar
interface between layers in a free electron approximation(ancandom substitutional disorder of atoms on
atomic layers near the interface. The latter model is treated within the coherent potential approximation using
the layer Korringa-Kohn-Rostoker method. The fraction of electrons scattered diffusel§(k) ] is shown to
have the same dependencekgrii.e., angle of incidengen the free electron limit of mod€R) as in model1).

Model (2) provides a realistic description of interfacial scattering that can be readily evaluated for technologi-
cally important systems such as Co-Cu.

DOI: 10.1103/PhysRevB.68.014433 PACS nuntder75.47.De, 72.16-d, 72.15.Gd

[. INTRODUCTION While several studies have attempted to incorporate dif-
fusive scattering into semiclassical and quantum interface
The discovery of giant magnetoresistan@@MR) and the modelsl,_most have relied on approximations in Wh'Ch the
. ) _ probability for diffuse scattering was assumed to be indepen-

reemergence of tunneling magnetoresistance rese4rch -
ent of the angle of incidence of the electron and of whether

have led t ive st f electronic transport in layer . . .
ave led to active study of electronic transport in layeredy "0+ o0 \was reflected or transmitfédThis approach is

magnetic systems. Magnetoresistance in these systems e ilar to the method used by Fuchs over 60 years ago to
sults both from spin-dependent scattering of the electrons L o a10

- : . model conductivity in thin metallic film&°In order to sat-
within the layer and from spin-dependent scattering at the

. ) i L isfy boundary conditions for the Boltzmann transport equa-
interfaces. Information on the scattering within the layers Car{ion, Fuchs assumed that each electron incident on a surface

be obtained experimentally by measuring the sheet resistan¢@ y 4 probabilityP of being specularly reflected and a prob-
of |nd|v_|dual fllms_ as a funcnqn (_)f thickness. This aIIow§ ability (1— P) of being diffusely(and isotropically reflected
one to infer effectl\(e electron lifetimes for the noqmagnetlc(Fig_ 1). The specular reflection probabili was assumed
layers and to obtain constraints on the lifetimes in the W pe the same for all electrons, independent of the angle of
spin channels for the magnetic layers. Information on elecincidence. A similar approach that invoked a constant specu-
tron Scattering rates at interfaces is more difficult to Obtain.|ar transmission and reflection probab"Wor electrons in-
Advances in both molecular dynamics simulations anccident on interfaces was introduced by Hood and Falicov
experimental techniques are now providing crucial informa-and has been used in other semiclassical models for
tion on the makeup of multilayer interface regicifsThese  multilayer transporf:** A number of papers have addressed
studies present convincing evidence that the interfaces ithese issues for free electron scattering at surfaces. Expres-
some technologically important multilayers can be approxi-sions have been developed which incorporate an angular de-
mated as locally crystalline with interdiffusion of different pendence of th& parameter for the case of reflection from
atom species occurring within a few layers of the interfacerough exterior surface’$:*?
We will adopt this model for the interfacial structure and The importance of specular scattering has been empha-
investigate the effects of disorder on the specular transmissized by recent experimental studies that have used oxide
sion and reflection and on the diffuse scattering. layers to enhance specular scattering and increase the giant
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Sec. IV, we discuss some of the implications of this research
on current Boltzmann transport models.

Il. SPECULAR AND DIFFUSE SCATTERING FOR THE
FREE ELECTRON MODEL

P=1 P=0

Complete Specular Scattering —_— Complete Diffusive Scatteri Consider an interface between two perfectly periodic lay-

ers. A Bloch electron incident from one layer will be either
FIG. 1. (Color online The specularity parametét is used for ~ reflected back into that layer or transmitted through the in-
matching boundary conditions in the semiclassical Boltzmanrierface to the opposite layer. If there is two-dimensional pe-
transport equation. The dependence of the specularity parameter siodicity in the plane of the layers including the interfacial
roughness is shown for two extremes cases: a smooth intefface (region, then the component of the crystal momentum of the
=1) and a rough interfaceP(=0). electrons parallel to the layers;, will be conserved and the
Bloch electron will be reflected with amplitudgk;) and

magnetoresistance effect in spin valves and magnetiHansmitted with amplitudé(k;). If, however, the interface is

multilayers!® While these techniques have been successfufiSorderedk; may no longer be conserved. In this section

in raising GMR, a detailed theory of the relationship between'© shal_l investigate these effects for the model of free elec-
9 y P ns with random point scatterefSERPS.:

; . ) ro
interfacial structure and specular scattering that can be ap- Z
b 9 p Let G¢(7)(r,r’;E) be the retardedadvanceyi one elec-

plied to real materials remains elusive. It should be noteq[ G function f ¢ ith inale interf ¢
that a novel approach to the problem of scattering at disorirgré '[’ekuinellérc]:(t:rcl)%nisogsiljs%zsntqowr:]ovi ?rgng ehclnrr]n?)r i?\?aoaus
dered interfaces which utilizes random matrix theory has = 9

i, i < >0. i
been presented recently!® In addition, the conductance potentialU, for =0 andU, for z>0. The Green function
. . . . . satisfies the equation
through magnetic multilayers with simulated disorder using

relatively small supercells has also been calculated.
A clear understanding of the probability for specular scat-
tering at interfaces is essential for the success of both

quanturi® and semiclassicitransport models. It is also ex- Here, the energy is assumed to have an infinitesimal positive
pected to be extremely important in understanding spinimaginary part. The advanced Green function satisfies the
dependent tunneling experiments. Recent calculdtioffs  same equation, but with the energy having an infinitesimal
have predicted extremely large tunneling magnetoresistanagegative imaginary part. Following standard techniques, we
for certain systems based on the assumption of transverseke advantage of the two-dimensional homogeneity of the
momentum conserving.e., speculdrtransmission through system in the absence of impurities to write the Green func-
interfaces. A better understanding of how these predictiontion as
are affected by interfacial disorder is badly needed.

In this paper, we investigate two models for scattering at ., 1 Kot
an interface between layers. We first examine interfacial scat- Go (rr ?E):FJ dke™*Gqy (z,2";E.kp), (2
tering within a free electron model with a steplike interface m
in which random point scatterers are confined to the interfawherep is a two-dimensional vector in the plane of the in-
cial plane. We also consider a more realistic model in whichgrface p=(x—x")x+ (y—y')y. By writing
Bloch electrons encounter an interface between cobalt and
copper in which there is interdiffusion between the cobalt S(z—27') A
and copper atoms over one or more atomic layers at the 5(r—r’):—2J dk”e'kn'P, 3
interface. In this model the electronic structure is calculated 4m
from first principles using the layer Korringa-Kohn-Rostoker
(LKKR) techniqué* with the disorder being treated within
the coherent potential approximatid&PA).>~2" We show
that both models lead to @ parameter that depends &j.

2

EhVZU
“omY V@

Gg (r,r';E)=5(r—r’). (1)

we obtain immediately the equation for the one-dimensional
Green functionGg (z,2';E K)):

2
The paper is organized into the following sections. In Sec. d_+ 2_m[E_ U(2)]- kﬁ Gg(z,z’;E,k”)
I, the specular and diffuse scattering of free electrons from dZ 42
random point scatterers confined to an interface is calculated
to lowest nonvanishing order in the strength of the potentials _ Z_m(s(z_zr) ()
using a Green-function-based technique. Closed-form ex- #? '

pressions are obtained for the specularity parameters for . .

transmission and reflection. In Sec. Ill, we compare resultd NiS €quation has a solution of the form
from the LKKR-CPA approach with the Green’s function

technique for the case of free electrons. We also determine G272 k)= 2m W (z-)Wg(z>) 5
the specularity parameter for a [Qu interface. Finally, in T 2 w :

014433-2



INTERFACIAL SCATTERING IN MAGNETIC . .. PHYSICAL REVIEW B68, 014433(2003

whereWV | (z) andWg(z) are solutions to the homogeneous om
Schralinger equation, satisfying boundary conditions on the Gy (z,2')= — 5
left and right sides, respectively. For the retarded Green 12 2ik;
function, ¥ vanishes forz— +«~ and ¥ vanishes forz

— —oo. W represents the Wronskian of the two solutions,

[eikzlzfz’\
+rek(zt2)] 7z>0, z2/>0. (8)

d¥r(z) d¥.(2) We(2) ®) Heret, , tg, I, , andrg are determined by boundary con-
dz dz RS ditions at the interface. These quantities and the Wronskian
of the system can be expressed in term&0andk,:

W=V (2z)

which can easily be shown to be independent.of
Writing W (r) andWg(r) as

e 2
\IIL(Z):e_ik22+rLeik22' z>0, L ko+ky’ R ky+ky’
\I,L(Z):tLeiiklz, z<0, k2_kl kl_kZ

Lotk Rtk

r

Vi(z)=tgek??, z>0,
~4ik;k,

Yr(z)=e*12+rge k12 z<0, (7) K +ky

©

we obtainG+(z,z’;E,kH) for the particular case of a single
interface az=0. The advanced Green function would have
been constructed from wave functions having opposite sign

for the exponentl_als. Def_|n|ng tthompo_nent of the mo- mission and reflection probabilities are equivalent to forms
mentum on either 25|de of the |£1terface ak% found in standard quantum mechanics textbooks for scatter-
=\(@m/h )(E—U1)—kj and ko= V(2m/A J(E=U2)—k[  ing from a potential step. Techniques for calculating trans-
and suppressing the argumeBtandk), we write the Green  mjssjon and reflection amplitudes have also been derived for

The flux-conserving transmission and reflection probabili-
ties for the ideal interface are given By(E k)=t tg and
Ro(E,kj)=|r |?>=|rg|? respectively. As expected, the trans-

function as the first-principles-based layer Korringa-Kohn-Rostoker
techniqué* and for the semiempirical tight-binding
techniquet®
IR ik ikoz' From the above equations we see that the electron Green
+ Y — —ik1znikoz < S : q e '
Go(22) #2 2ik1e e, 2<0, 2'>0, function can be related to the transmission or reflection am-

plitudes depending on whether its spatial arguments are on

the same or different sides of the interface. In order to cal-

culate the effects of interfacial disorder and roughness on the
e kiZ'glkaz 70 z'<0, probability of transmission or reflection, it is useful to con-
sider the quantityF=[dp'(G*(r,r")G(r’,r)), the prob-
ability for an electron(at the Fermi energyto propagate
from pointr to any point in the plane defined lzy. Here the

2m t
+ INee =
Go(22)= -5 70k,

Gg(Z,Z')Zz—m 1 [eik1|z—z’\+rRe—ikl(z+z’)]'

72 2ik, angular brackets indicate an average over the interfacial dis-
order. For the case of a perfect interface this quantity can be
z<0, z'<0, easily evaluated to give

1 - / /
F0=— dkH dkﬁGg(Z,Z/;kH)GO(Z’,Z;k”)é(k”—k”)
4772

m \? To(k)) _ |
) [ 20, 20,

if z<0, z’'<0.

m )zf o LHRok) +2 Rere17]
H

h? 4k2(k))
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Thus F, can be expressed in terms of the transmission owhere the configurational average has been taken over the
reflection probabilities of the perfect interface divided by ve-interface impurity potential and the correlation coefficignt
locity factors that depend on the velocities in the leads. Foacts as a measure of the strength of the impurity scattering at

transmission we have the interface.
To(ky, ki) o(ky—ki) A. Specular transmission and reflection
4w2Fo=fdk”f gl DA, p | ection
hzvl(kH)vz(k‘i) In a condensed notation, the configurational average
(G*(r,r’')G~(r’,r)) can be written as
z<0, z'>0, (10
+te\_/ctoLetveTt v etvete. ..
and (ignoring the interference terms that dependzoh for (G7G7)=((Gg +Gg ViGo + G, ViGo ViGo ++-+)
reflection, X(Ggy +Go ViGy + Gy ViGy ViGy + -+ +))
A2E jdkfdk’[1+RO(k|'kﬁ)w(k”_kﬁ) =(G")(G™)+vertex corrections. (16)
o= I [ ﬁzvl(ku)vl(kﬁ) ' Because the configurational average restores the two-
dimensional periodicity, use of the separately averaged
z<0, z'<0, (1) Green functions irF yields

wherev,;=#k;/m and v,=%k,/m. These results are not

surprising given the known relationships between the Kubo 4772F=f dk(G™(z.2";kpG (Z',z;kp), (17
and Landauer formulas for conductarite> At the cost of

significantly greater complexity, rather than working with the where

quantity F, we could have worked witk' defined by

P 9 P P <G+(r,r’;E)>=$J dkje'M' (G (z,2';E k).
r_— r{ (A ’ . AT ’ rs
F fdp <&Zg(r,r )3Z,Q(r ,r)+8z,g(r,r )5Gr'n 18
9 9 9 9 > Thus, use of the separately averaged Green functiénl
—— —G(r,r"Gr',n)=G(r,r')y——G(r',r) ), yield expressions for the averaged transmission and reflec-
9z 97' 9z g7' tion probabilities that depend only on a single valuekpf
(12) Thesekj-conserving terms describe specular transmission
and reflection.
whereG(r,r')=Gg (r,r')—Gg (r,r'). Because ' includes We can evaluate the specular transmission and reflection
the current operator in its definition, it is proportional to the probabilities to lowest order within the FERPS model di-
transmission probabilitffor z<0, z' >0) without the veloc- rectly. If we take the configurational averageG@fr,r’), the
ity factors that appear in the denominator of EG)) and  second term in Eq13) drops out due to the properties of the
(12). perturbing potentialEq. (14)] and the averaged Green's
In the presence of interfacial disorder or roughness, théunction for the system is given to lowest order by
Green function can be expanded as
<G(r!r,)>:GO(r!r,)

G(r!r,):GO(r!rl)+f drleO(rle)Vi(rl)GO(rlrr’) _’_f dr]_J’ dr2<Go(r,r1)Vi(rl)Go(rl,r2)

+f fdrlerGO(rvrl)vi(rl)GO(rlvrz) XVi(rz)Go(ra,r)). (19

, Substituting forG, using Eq.(2) and for{V;(r,)V;(r,)) us-
XVi(rz)Go(rz,f Y+, (13) ing Eq,(lS?we o(t))tain gEq < |( l) |( 2)>
where G(r,r") is the Green’s function in the presence of
interface impurities and/,(r) is the interface impurity po-
tential.

In our case we have assumed that the distribution of ran-

(G(2,2':k) =Go(2.2':K)) + Go( 2,0:K)) Go(02'; |<H)4—77T2

dom point scatterers and the potenta({r) possess the fol- , ,
Iowing properties: P vl XJ dkj Go(0,0k|). (20)
(Vi(r))=0 (14) This form of the equation allows us to use the expressions
determined earlier for the ideal interface to calculate the av-
and erage Green's function. The first term in the above expres-
sion forG(z,z’;k|) represents an electron that travels fram
(Vi(NVi(r"))y=y8(p—p')5(2)8(2'), (15  to z’ without interacting with the impurities on the interface.
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The second term accounts for electrons that travel frpm Within the FERPS model, the reduction of specular trans-
scatter from an impurity a¢=0, and travel ta'. mission due to diffuse scattering is smallest at normal inci-
We first consider the case in whigtandz' are on oppo- dence and increases as the normal components of the veloc-
site sides of the interface< 0 z' >0. Substituting the forms ity on either side of the interface become small. Since the
for the one-dimensional Green functions from E§) we  second term is always positive, diffusive scattering from the
obtain interface can only reduce the transmission probability of
electrons(at least within lowest-order perturbation thepry
2m tg ., The apparent singularity in the specularity parameter for
(G™(z.2)=—5 5 -e "% v1(k;)—0, especially whem ;(k;)=v,(k), which makes it
h ! appear tha$, might become negative is an artifact of our use
of lowest-order perturbation theory. When higher-order terms
. (2D in the dimensionless parameteny/(%vg) are included as
described in the AppendiXand the artificial divergence
caused by the use of point impurities is handlidd specular
transmission and reflection probabilities are never negative.
We can obtain the probability for specular reflection by
evaluatingF for the case in which the Green function argu-

X

12N a0
27 2k, Y 0 (0;E)
which allows us to expres&G *){G™) to first order iny as

(G (2,2 k)G (Z',z:K)))
2

om To(k)) om tL(kH) ments,z and z_’ are on the same _side of the interface. The
= =] —"r — Green'’s function in this case is given by
72 ) 4Aki(kpka(k)) 72 2iky
r ’ /
. - Gg(z,z’;kH)ngL(z,z’;k“)Jr%e"kl(”Z ), (25
X[Gg (0;E)—Gq (0;E)]|. (22 1K1

where Gg"(z,z’;kH) is the Green function for an infinite

Note that the equal-argument three-dimensional Greefedium Witf pro,perties_ of the material on the left side. For
function that appears in Eq21), Gi(0;E)=Go(r,r;E) this case(G ™ (z,z";k))) is given to first order iny by
wherer lies at the interface, is formally divergent. This prob-
lem is inherent in the randord-function model in three di- (G*(2,2'1k))) =
mensions and can be avoided by considering scattering from <
scatterers with small but finite size or by cutting off the di-
vergent integral over momentum at a vakjg,, which is on 2m (1+rg)? N
the order of the size of the scatterétghe divergence, how- X rf“? TMYG (0E) .
ever, does not affect the imaginary part of the equal-
argument Green function which appears in E2p) and rep- (26)
resents the density of states at the interface:

2m e—iklzeiklz’ 2m e—iklze—iklz’

2 2k, pz 2k

In this form, we see that the reflection amplitugeis effec-
) tively modified by the presence of the impurity scattering

3_ 3
! z_m(M leading to an effective reflection amplitudg given by

Go (0;E) =G (0;E)=— (0P (0)F
1 2

3 42
=—2mingy(0;E), (23

wherefik,(0)=+2m(E—U;) and#k,(0)=+2m(E—U,).

Thus the specular part of the transmission probability for theAlthough this form contains the divergent equal-argument
disordered interfaceT (k;), can be written as the transmis- Green function, the lowest-order expression for the reflection
sion probability for the ideal interface multiplied by a factor probability again contains only the well-defined imaginary
that depends ok . This dependence dq can, of course, be part

translated into a dependence on the angle of incidence:

— 2m (1+rg)?

_ = +/n-
rR_rR+ ﬁz 2|k1 '}’G (OvE) (27)

87 vi(ky)[v1(k)) —va(k)]
. R(k))=Ry(kj)— —— ny(0;E).
am _yo(0B) _ () =Rall)= 3 [va(kp +va(kpT? 7ol 0
h (k) +oa(ky) (28)
(24

T(ky)=To(kp)Si(k)=To(kp| 1 -

H K dva(k h f ol The expression for the effective reflectiviy(k|) can also
ere vy (k) andv,(k)) are thez components of electron o oyhressed in terms of a specularity constant for reflection

velocity in each material for a givek;. The specularity ,nq the reflection probability for an ideal interface. This is
factor for transmission at the rough interface is given by

Si(kj). The transmission equation derived above is similar toglven as

expressions for point scatterers at an interface previously de- R(k)) =S, (k) Ro(k)), (29)
rived using wave function boundary matching

conditions®?33 whereS, (k) is given by
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Kx/KF2 The total flux removed from the specular beams by the
10 —— interfacial disorder is given by
Z 1-S; )
4( ] 4’7T 2U1( ”)

Fy=—— yng(0;E) . (32)
] — S B R PR ETOIE

i ~ S R This flux must reappear as diffuse flux if current is to be
6: conserved.
gl 18,
10 B. Diffuse scattering

-1 08-06-04-02 0 02 04 06 08 1
Ki/KF1 In addition to the specular part of the transmitted and

FIG. 2. 1- S and 1-S, in the FERPS model. The Fermi mo- rTeg'e‘t:ted fluxes, the:je "‘f’l'” tt).e d'ﬁ“f)e'g.li.cattfreg.ﬁe'edm”?
mentumkg; corresponds to 0.5 electrons per spin charied., as € transmission and refiection probabiliues for diftuse scat-

in Cu) while ke, corresponds to 0.3 electrons per spin chate., tering can be obtained from the nonconserving contribu-

as in majority Co. The values of + S, and 1- S, are measured in  1ONS t0 (G"G™). For the simple model of free electrons
terms of the dimensionless parametennya/#?, wherea is the W'tQ rangorp point scattering this is given in lowest order by
lattice constant for an assumed fcc lattice. (GgVGy Gy VG ). Thus the lowest-order vertex correction

to F is given by

hov2kp)—vik) fdp dpldpz( )fdk|dk”dk dK{"y8(p1— p2)

Again, the apparent singularity for a symmetric interface
which makes it appear th& might become negative is an
artifact of our use of lowest-order perturbation theory. It is K (pap) a _ ., ,
shown in the Appendix tha®, is always greater than zero. xer Go (kj12,21)Go (Kj ,21,2")

A few general observations may be made concerning the X G (K! 2" ,25)Gg (K" 25,2). (33)
specularity functions for reflection and transmission within 0 2720 0 %2
the FERPS modell) The relative effect of diffuse scatter- This can be evaluated to yield
ing on the reflected beam can be much larger than its effect

m
P J' dk f dk

on the transmitted beam, (
1-Skp)  va(kp—valkp’ 1 1

Y
ve 4
1-Si(kp)  2v4(k)) (31 167
X .
especially wherv,(kj)=~v,(kj). (2) For the case of trans- (ke (k) +ka(kp 12 [ke(k) +ka(k[)]?
mission, increased surface roughness can only reduce specu-
lar transport across the interface, whereas for the case @omparison with Eq(10) allows us to write the diffuse con-
reflection, interfacial disorder can either increase or decreagebution to the transmission as
the specular reflection depending on the electron velocities

S (k)=

X 8(21) 8(z,) €I (P~ PDg Ki-(p1=p")glK[ - (p" = p2)

(34)

for each material at a particular value kf. This model T,o(ky k)
actually predicts that interfacial disordecreaseshe specu-
larly reflected flux forv,(k))>v4(k)). (3) Specular trans- 16y va(ky) vz(kﬁ)

mission remains symmetric in the sense that transmission = ; o
from left to right remains the same as from right to left. 4m?h? [v1(kp) +va(k)]? [va(kf) +va(k()]?
Specular reflection, however, is no longer symmetric in the (35)
presence of a disordered interface.

The specularity parameters are plotted both as functionSimilarly, the diffuse contribution to reflection is given by
of kj/kg1 andk; /Kg, in Fig. 2. Note that within this model

the diffuse scattering in reflection vanisheskas: kg, where R,c(Kj :kﬁ)
kr1>kg,. Generally, however, the model predicts the effects
of diffuse scattering to be significantly greater for the re- 16y v1(k)) vl(kH’)

flected beam than for the transmitted beam. The range of = ; TR
k./ke; for which no values are given for-1S, corresponds 4wt [o1(kp) +va(k]? o (ki) +va(k)]®
to the values ok which yield total reflection; that is, there is (36)
no specular transmission probability because the transmitted

waves are evanescent. The total diffuse flux
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Fa= | OKIIT,clky kD +Ruclk KT @D

!
is easily seen to be equal to the missing specular flux giveh” '

in Eg. (32).

16y V1—-x2

PHYSICAL REVIEW B68, 014433(2003

For the particular case of the FERPS model, the transmis-
sion and reflection depend only on the magnitudéoénd
Thus the expressions for the transmission and reflection
can be simplified for visualization as

VI-y?

Tye(Xy)=

where x=K|/ke1, Y=K|/Kgz, and a=Kkg,/kg;. For K
>kg, (equivalent tox>a), the Green functions in E433)
yield

h2U|:11)|:2 (\/1_X2+ \/aZ_XZ)Z (\/1_y2+ \/a—Z_yZ)Z’

(39

pointlike disorder considered here there is no evidence for
enhancement of diffuse scattering near the forward scattering
direction K =k{).

The diffuse reflection probability depends on whether the
electron is incident on the larger Fermi surface or the

T,o(X,y)= 16y  vi-x i~y smaller. For electrons incident from the material with the
e h2vpwE, 1—a? (V1-y?+a 2—y?)? smaller Fermi surfacépanel (c)] the diffuse scattering is
(39
(a)
Similarly, the diffuse reflection probability can be simpli- 0.6 m'”,
fied for visualization as 05 ’mm’m'm T
0.4 il
Ruc(X.Y) o o @%&ﬂﬂﬁva
_ 16y J1—x2 \/1—yz 0.1 L
- h2d, (V1-xP+a?-x)? (V1-y?+ Ja?-y?)?' 1

(40)

wherex=K; kg1, y=K{/kg;, anda=kg,/kg;. Forx ory
greater thara, the denominator again becomes 4.
Figure 3 shows plots of the diffuse scattering as a function
of k; and kH’ for transmission and reflection. The interface
considered in this particular example is appropriate to a free
electron model for the majority copper-cobalt interface, i.e.,
Fermi surfaces containing 0.5 electrons/at@@u) and 0.3
electrons/atom{Co). The diffuse transmissiofpanel(a)] is
symmetric in terms of whether the electron is incident from
the larger kg,) or smaller kg,) Fermi surface. The diffuse
transmission can be seen to be fairly uniform over much of
k”—kﬁ space. On the side of the interface with the smaller
Fermi surface, there is a small maximum for relatively large
values ofk| before it vanishes & =kg,. On the side of the
interface with the larger Fermi surface, there is a large maxi-
mum with discontinuous slope at the largest value ofor
which specular transmission is possible. For still larger val-
ues ofk;, there is a region for which diffuse transmission is
possible, but not specular transmission. In this region the
diffuse transmission rapidly decreases to z@with infinite
slope atk =Kkg;. Thus interfacial disorder allows transmis-
sion of electrons with an inciderk; (on the larger Fermi

FIG. 3. (Color online Calculated diffuse scattering in transmis-
sion (a) and reflectionb) and(c). Plotted values are dimensionless

surface that would normally be totally reflected and also and should be multiplied by H8h%r,ve, (transmission or
allows scattering into values &f on the larger Fermi surface 16y/h%2, (reflection. For panelb) electrons are incident from the
that are not accessible to specular transmission. For tharger Fermi surface and for pan@) from the smaller.
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relatively smooth and uniform with a weak maximum before Two Step Perfect Interface
vanishing when either the incident or reflectecequalske .

For electrons incident from the larger Fermi surfgpanel
(b)] there is a maximum in the diffuse reflection probability
for the value ofk| or k”’ for the critical angle at which total
reflection begins for the specular beam. This maximum
comes from the same sourfeanishing ofv,(k)] in Eg.
(33) as the maximum in the transmitted diffuse scattering.

Ill. LKKR-CPA CALCULATIONS

In this section, the LKKR method will be used to calcu-
late the probability for specular transmission and reflection FIG. 4. (Col find T te intert d wh
across an interface for the case of a more realistic model that F'C: 4- (Color onling Two separate interfaces are used when
should be appropriate for certain real interfaces such as thoéséudylng interface scattering for free electrons. The first interface is
that are formed by sputter or ion beam deposition of lavers 0? double potential step that has an intermediate potential level at the
cobalt and Coppeyr Fn the previous Secti(?n we ShOW)éd th interface equal to the average of the two bulk potentials. In the

.. . e q_tKKR calculation, this potential region is approximated as a CPA
the specular transmission and reflection probabilities fo%moy layer
electrons incident on an atomically disordered interface can

be obtained from the configuration-averaged Green function. , .
This is a quantity that the coherent potential ~Y ‘atoms.” In the LKKR approach(as in a real system

approximatiof®?’is designed to calculate. Thus, we can usethe disordered interface must have a finite width equal to that

the LKKR technigue to obtain the average Green function ir’f at léast one atomic layer. _ .
the coherent potential approximation for the disordered inter- 10(K|) @andRo(k;) are calculated by replacing the atomic
face and then calculate the transmission and reflection profi2yer of +U and —U potentials with an atomic layer df
abilities using this averaged Green functidriThis should =0 potentials as required by EqL4) (Fig. 4). The lattice
approximate the specular transmission and reflection prob:Pacings and atomic sphere radii are appropriate to a copper
abilities in the presence of the assumed interfacial disordefattice [layer thickness of 3.4083 a.u., the width of one
For both the free electron and real material interfaces, th@tomic layer of copper or cobalt in th@00) direction]. The

specularity functions for transmission and reflection are dePOtentials on the left and right sides of the step are given by
termined using the following equations: +U and —U, respectively, wherdJ =0.050 Ry. The free

electron energy was taken to be 0.664 Ryprresponding
approximately to the Fermi energy of copper
Tepalk)) The results of the LKKR-CPA calculation for the trans-

Sk = To(kp) mission specularity paramet& are compared to the ana-
lytic results derived in the previous section in Fig. 5. We find
remarkably good agreement between the LKKR-CPA ap-

S (k) = Repalk)) (41) proach and the analytic Green’s function technique, espe-

ST Rk

0.96
0.95
0.94 +
0.93
0.92

whereT;p4(k|) andR;p4(k)) are the transmission and reflec-
tion probabilities in the CPA case aiid(k)) andRqy(k)) are
similar quantities for the ordered interface.

In order to make contact with the results of the previous
section we shall begin with a calculation that mimics the free

Specularity Parameter for Transmission

electron calculations of that section within the context of the 091 | Analytic
LKKR approach. Thus we assume, as in the last section, that 09

the electronic structure on either side of the interface is that ’

of free electrons. Within the LKKR approach which utilizes 089 r

the atomic sphere approximation, a uniform potential is ap- 0.88 | %
proximated by a superposition of uniform potentials within 0.87

slightly overlapping atomic spheres of volume equal to the 0 01 02 03 8-4 05 06 07 o8

volume per atom. Thus our LKKR approximation to the dis- X

ordered interface consists of atomic spheres of uniform po- g 5. The specularity parameter for transmission calculated
tential + U on the left of the interface and uniform potential for the free electron interface shows good agreement between the
—U on the right of the interface. Each of these is arrangednalytical Green functiofdotted line with crossesind LKKR-CPA

on a semi-infinite fcc lattice with the interface perpendicular(solid line with “+” symbols) approaches. The momentum states in
to the (100 direction. The interface consists of a single fcc whichk,=0 andk, is allowed to vary were considered. Units fgr
(100 layer of atomic spheres randomly occupiedb¥ or  are a.u:®. In this caselJ =0.05 Ry andy;;=0.292 Ry a.u’.
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Comparison of Predicted and Fitted Coefficients 1.05 T T
' ) ideal interface
U2a4 —_— o --!----)1-----)(-----K-----)(....*____*____x,___*"_*____*____*____
Fitted --5¢-- 4~ £ 995l interdiffused interface *§
0.1} E §
S 09}
o
S 085}
=001} §
€ 08¢
2
s 075
0.001 } [
0.7
X
0.65 1 1 1 1 1 1 1
0.00%1-001 Xl 51 0 01 02 03 04 05 06 07 08

U (Ry) k

X

FIG. 6. The fitted parametey which measures the strength of  FIG. 7. Transmission is shown for a sharp and interdiffused
the interfacial potential scattering in the FERPS model biid*  (100) Co|Cu interface. Transmission for the perfect interface is rep-
are plotted as a function dd, the interfacial potential used in the resented by a solid line with crosses). A dashed line with sym-
CPA. bols (X) is used for transmission across an interdiffused interface

modeled as a GgCus, alloy layer. In the case of the interdiffused
cially considering the fact that the LKKR method must ap-interface, there is enhanced diffusive scattering for higheand a
proximate the uniform potential by a sum of sphericalsignificant drop in overall transmission. Units fiof are a.u:>.
potentials. In agreement with the analytic results, the trans-
mission specularity parameter decreases rapidly aszthe model. Transmission in both cases drops as the momentum
component of the electron momentum or velocity becomesparallel to the interface increases and momentum perpen-
small. dicular to the interface vanishes. It should be noted, however,

The analytical Green’s function specularity parameter fitghat due to the close matching of the bands for majority Co
the specularity parameter for transmission in the LKKR-CPAand Cu, the overall transmission is still extremely high for
case using a correlation parametgs0.292 Ry a.u? for  most values ok, .

U=0.05 Ry. This is quite close to the estimate fobased Figure 8 shows the specular transmission and reflection
on dimensional arguments,y=U?a*=0.334 R¢a.u?,  probabilities on a logarithmic scale for the majority cobalt-
wherea is the step size. Figure 6 shows thafitted to the  copper(100) interface as a function of the degree of interfa-
transmission specularity parameter is approximatelcial intermixing. Two features are surprising about Fig. 8. In
0.87U2%a* over a large range in the potential step the absence of intermixing the transmission probability is

Interfacial scattering at &100) interface in a CfCu bi-  nearly unity and the reflection probability nearly zero over
layer is also considered using the LKKR-CPA technique. Inmost of the range ok;. For comparison, a free electron
this approach, the electronic structure of the entire interfacenodel for the ideal cobalt-copper interface withand R
region is calculated self-consistently. This interface regiorcalculated from Eqs(9) assuming Fermi sphere volumes of
consists of 16 atomic layers that are allowed to relax in théd.3 and 0.5 electrons/atom, respectively, would give a reflec-
process of achieving electronic self-consistency. During theion probability at least 30 times larger than that shown in
self-consistency process, these interfacial layers are suFig. 8 for most values ok;.
rounded by semi-infinite bulk copper adjacent to the relaxed In the absence of intermixingqR=1—T. At the lowest
copper and by semi-infinite bulk cobalt adjacent to the revalues of intermixing that we consideré6.1%), 1—T is
laxed cobalt. very slightly greater thaR. In addition to diffuse scattering,

It is assumed that the diffusive scattering arises from inthe difference betweeR and 1-T seen in Fig. 8 for the
terdiffusion of the two materials on the scale of a few atomiclowest intermixing may be due to numerical inaccuracies
layers. We therefore model the interface as having a smathat arise primarily because tAeand R matrices are calcu-
number of atomic layers in which the atoms are randomly Cdated using Green functions that have a small imaginary part
or Cu. The electronic structure of these layers is calculatetb the energy. This is needed to maintain their correct ana-
using the coherent potential approximation. In order to prodytic behavior. The increase in reflection for larigeis due to
vide a computational estimate of thg-dependent param-  the Fermi surface of copper being larger than that of majority
eter, the transmission and reflection probabilities of two syseobalt so that total reflection occurs when for a given value
tems are calculated, a {f@2u interface with no interdiffusion of k| there is no cobalt state for the electron to be refracted
and an interface with one or more layers of,Cag; _, alloy. into.

Figure 7 shows the transmission probability calculated for The second surprising feature is that substantial intermix-
a sharp(no interdiffusion) interface and the specular trans- ing of two atomic layers has only a small effect on the trans-
mission probability for an interface modeled with a single mission and reflection probabilities. The structure in the re-
atomic layer of composition GeCuys. The majority chan-  flection probability probably results from interference within
nel was chosen for this example because it has only onthe disordered layers which have a finite thickness.

Bloch state for mosk points in both Co and Cu and might, ~ One feature of the specular transmission and reflection
therefore, be expected to have some similarity to the FERPBrobability that deserves special comment is the prediction
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1-Transmission Probability for CoCu Majority 1-8; for Co-Cu Majority

—— T ———— T 0.05

Fraction of two atomic layers intermixed
00 —— x=0.5
" 0.04

1

01 f

0.03

1-T
1-8,

0.01 =% “10% intermixing

0.02

0.001

0.01
no intermixing E

/0001 . . . . . . . 0 . . . . . .
’ 0

FIG. 9. 1-S; for majority cobalt copper. The fraction of inter-
mixing of two interfacial layers is indicated by (See caption to
Fig. 8)

0.1}

oot interface. Because the minority spin channel for cobalt has
multiple bands for most values &f, the transmission prob-
ability can be viewed as the total probability that an electron
in copper will be transmitted into any of the bands with the
same value of;. It is interesting that these calculations
predict that disorder can actually increase the transmission
for a few values ofk; for which the transmission of the
ordered interface is particularly low and can increase the
specular reflection for values &f where it is especially low.
FIG. 8. (Color onling Majority channel specular transmission One of the important resu“_s of Figs. 8 and 10 is that for
(subtracted from unityand specular reflection probabilities for an MOSt values ok; the transmission probability is much higher
interface between fcc cobalt and copper calculated in the cohere#ft the majority channel than for the minority channel. In
potential approximation. There are two intermixed atomic layers,
one with CyCo,_, on the cobalt side of the interface and one with Effect of 10% Disorder on Minority Transmission
Co,Cu, _, on the copper side where=0.1, . . .,0.5. The interface ' ' ' ' ' '
is assumed to be perpendicular to tA€0) direction.

0.001 F

0.0001 F

Reflection Probability

1e-05

1e-06

08
that atomic-scale impurities are relatively ineffective in caus- no mixing
ing diffuse scattering of electrons with sufficiently high
(k«>0.7 in this casgthat they undergo total internal reflec-
tion. In this regard the first-principles results appear to differ
qualitatively from those of the FERPS model. This observa-
tion should encourage strategies aimed at increasing current
in the plane—GMR by enhancing the channeling effect in
which electrons become trapped in the low-resistivity copper 0 o1 02 02 04 05 06 07 08
layer for parallel alignment of the moments, thus increasing kx
the GMR effect* Another feature of the calculated specular
reflection probability that should be noted is the prediction
that for certain values o, diffuse scattering can actually
increase the probability for specular reflection. This result is
consistent with the FERPS model results.

06| A

04 | A

Total Trasnsmission Probability
{

02 | 10% mixing on two layers \

Effect of 10% Disorder on Minority Reflection

08

Figure 9 shows the transmission specularity parameter for ~ § | 0% mixingon o ayers - ]
majority cobalt copper which may be compared with that for S
the free electrons with random point interfacial scatterers é 04l i
model shown in Fig. 2. One important difference is the van- ﬁ ---------------
ishing of the effect of diffuse scattering for electrons incident 02l |
on the interface with the highest values of transverse mo-
mentum, i.e., grazing incidence. 0

Figure 10 shows the calculated transmission and reflec-
tion probabilities for minority electrons at a cobalt-copper
interface. The reflection probability can be viewed as the FIG. 10. Specular transmission and reflection probabilities for
probability of an electron in copper being reflected off of thethe minority cobalt-copper interface.
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transmission and reflection probabilities can be obtained

from the averaged single-particle Green function. The specu-
larity parameter is demonstrated to be rather strongly depen-
dent onk; or equivalently on the angle of incidence of the  |n order to go beyond second-order perturbation theory
electron as it approaches the interface. For systems that a@ithin the FERPS model, it is convenient to consider the
proximate free electrons such as the majority spin channel abreen function expansion in tig representation. Defining

Co|Cu, the specularity parameter is highest for normal incithe k| representations for the Green’s function in the pres-

dence. ence of the interface impurity potenti®d;(r)=V;(p)(2)
The derived results for the FERPS model clearly showgnd for an ideal interface as

that the cases of reflection and transmission possess different
specularity parameters. This has direct implications for semi- ) 1 A . ) ,
classical Boltzmann transport models of magnetic multilay- G (r,r ;E)= x > ek PG (2,2 E Ky K
ers. Depending on the band structure of the two materials, k\l"\’l
diffuse scattering can lead to either enhanced or reduced (A1)
specular reflection. Within the FERPS model, however, in-
terdiffusion always reduces specular transmission across iﬁi—nd
terfaces.

T_he layer KKR-CPA approach p(ovides the ability to nu- Gg(r,r';E)z E z eikH-(p*p')Gg(Z,Z';E'kll), (A2)
merically approximate the specularity parameter for a realis- A
tic model of material interfaces. Results for(#00) CoCu .
interface provide an example which may illustrate some genrespectively, wherg@ =xx+yy is a two-dimensional vector
eral trends for scattering due to interfacial interdiffusion.in the plane of the interface with aréa we can rewrite the
Depositions which result in greater interdiffusion will lead to €xpansion for the Green’s function in the following way
increased diffusive scattering, reducing the specularity patsuppressing the energy arguméntor brevity):
rameter for transmission. For the FERPS model and for
(100 Cq Cu, the specularity parameter for transmission also G(z,z';kH ,k|'|) = Go(z,z';kH)ﬁka'
increases for high values &f. This is most likely due to the !
reduction of electron velocities near the Brillouin zone edge. +Go(z,0:k)T(K, ,kl")Go(o,z’;k"l)_

This work provides the tools necessary to build a semi-
classical model that incorporatab initio band structure in- (A3)
formation including a reasonab}e model of interface scatteryere the scattering matrix (which should not be confused
ing. Re'cently molecular dynamlps models ha}ve been able'tﬁ,ith the transmission probabilityis
determine the degree of interdiffusion for different deposi-
tion conditions Using the composition profiles obtained T(ky K[ =V;(ky—k|)
from these calculations, the LKKR-CPA model should pro- I FREE
vide accurate specularity parameters for different deposition

IV. CONCLUSION

APPENDIX

conditions. It is hoped that these issues can be addressed in +2,, V(K — K| Go(0,05k]) Vi (k| — k)

an upcoming work. Another issue that is dealt with here for- K|

mally (Appendi¥ and in the section on the FERPS model,

but not from first principles, is the full angular dependence of +> Vi(k)— kﬁ)GO(OvO;kﬁ)Vi(k“_ k‘"")
the diffuse scattering. We also hope to address this problem G

soon by developing a first-principles approach that would Il

sum the ladder diagrams for the vertex corrections. This ap- X Go(o,o;k“’)\/i(k"’l’_ kI’\H e (A4)
proach would be similar to the techniques that have been

applied to homogeneous systefns® and
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(G(k ,k|/|)> is diagonal and, therefore, according to Eq.
(A3), the averaged matrix is also diagonal.
To separate the specular and diffuse scatterings, it is use-

ful to represent|T(k|, ,k|'|)|2) entering Eq(A7) as

.1 —
Vi(kH_k\l):KJ dpe” "MK Vi(p)  (AS)

is the matrix element of the interface impurity potential.

Go(z,2";k)) is the interface Green function which is diago-

nal in k; space and which describes electron transmission /i1¢. k')12y =Tk ki 28, o+ [T (ki k)2

through an idealdefect fre¢ interface. It is defined by Egs. Tk k1% = KTy k) KKy T G k1)

(8 and(9). . N TN (A9)
We need to determine the electron’s probability of trans- 1171

mission through and reflection from a disordered interfaceUsing this representation and noting thbé(kﬂ), Eq. (A8),

These can be expressed by means of the square modulusigfpurely imaginary, Eq(A7) may be rewritten as follows:
the propagator defined in EGA3) averaged over the inter-

facial disorder{|G(z,z ;k; k|)|?). Let us consider, e.g., the (IG(ky . kDI?)=Go(kp[H[1— 1M Gg (kpIm(T ™ (ky k) 1?
transmission probability. In this case, the Green’s function +|Go(kp)[ZIRET* (ki k)2 k.
G¢(z.2';ky) is defined by the first two expressions of Eq. o I “I

(8 (for z<0z'>0 or z>02z'<0) and|G(z,z k) .k|)I? +1Go(ky) 2L T(k)y k12
=|G(0,0;k||,k"‘)|2 does not depend oz and z. Thus, T (ke k28 NG (K2 (ALD
<|G(z,z';k|‘,k"|)|2> defining the transmission probability (T Ckyp ki) kaH]l okl (AL0)
may be written as where ImGg (kj)) = —2/h[v4(k)) +v(kj)]. Comparing the

NN '\i2 second right-hand terms of Eq#6) and (A10), we obtain
(G Ky kI =G (kg ki) (in this non-self-consistent approadbr, the vertex function,

+ 2 Gk ki) [PWiki ki) Wk ) = TRy RDIB) = [T (k) e
Kk (A11)
x[(G (k| k)2, (AB) It is easy to see that the flux-conserving transmission am-

) , ) plitude is related to the Green’s function through
whereG(k) k) =G(0,0k k) andW(k k) is the vertex
function. t(kyp k) =7 Vo (kv (kG T (kyky).  (AL2)

On the other hand, using EGA3), we get ) ) . , .
For an ideal interface, the transmission amplitidé?2) is

Gk kDD =1Go(ki)|28k v diagonal with respect tdk and defined by Eq.(A8),
(G k15 =1GoCkip |0 to(K| -kj) = Vi tr, Wheret, andtg are defined by Eq(9).
+ |Go(kll)|22 Re (T (ky k) Thus, according to Eq$A10) and(A12) we can define in

general the transmission probability as
XGg(kH)]tSka"‘ ) ,
(It(k, ,k|\)|2>:To(ku)st(k||)5k“k|"+Dt(ku K-
+[Go(kiD (T (k) k3 Golk) [, (A13)

(A7) Here, To(k;)=t_tg is the transmission probability for the
ideal interface,

where
2 Si(kp)={1+ 2 Im(T* (k[ ,kp)) i
_ - 1= m 11Kl
Gy (kj)=Ggq (K ’k”)_ih[vl(kH)+v2(kH)] (A8) filva(k)) +va(ky)]
4
and + [Re(T (k| .k))1?
A2 v (k) + o0k 12 “”
Ao [2m
va(k)= —\| 5 (E-Up)—Kf (A14)
h is the specularity factor for transmission at the rough inter-
and face, and

% \/Zm— Di(k) k)
_ - _ 12 ,
valky) =15\ 7z (B~ V27K 160 (ks (k)

= 2, 2 ! "\12
are the normal components of the electron velocity on either A Loa(k)) o2k ILoa(ky) +oalk))]
side of the interface. Note that the averaged Green’s function (A15)

Wik k)
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is the diffuse contribution to transmission, where the vertexs the specularity factor for reflection, and

function W(k| k) is defined by Eq(A11).
The probability of reflection from the interface may be

obtained in a similar manner to the transmission. It is conD (k| ,k"|)
venient to use the continuity relation at the interface which

results in the following relation between the transmission,

t(kky)), and reflectionr (k; k), amplitudes:

, ki) )
r(klvk|)=\/Zi—k)t(k,k”)—aklk' (A16)

or, in terms of the Green'’s function,

(ki) =1k ua (k]G (ki k) = 8
(A17)

which follows from Eq.(A12). Making use of Eqs(Al12)
and(A3), we arrive at the following result for the reflection
probability:

(Ir (kg k1) =RoCky) Sr (k) 8+ Dr(k ki,
(A18)

whereR, (k) =|r |?=|rg|? is the reflection probability for a
perfect interface,

S (k)= 1+4 valky)

———Im(T (k| ,k
otk oy T Y

. 16v5(k)
n2[od(k)) —v3(k))1?

[Re(T™ (k. ky))1?

(A19)

_ 16v4 (koK)
12[va (k) +va(ki 12 va(k]) +va(k]) ]2

Wk k)

(A20)

is the diffuse factor for reflection. It is interesting to note
from Egs.(A19) and(9) that random disorder at an interface
can result in a specular-reflected beam even when there is no
specular beam in the absence of disorder, i.e., when
=Up.

The general expressions presented here may serve as a
basis for calculation of transmission and reflection probabili-
ties at a rough interface. To do that one needs to use some
approximation for the scattering matrix. Particularly, in
order to determine the specularity factdfsl4) and (A19)
(which are never negatiye the average T matrix
(T (k),k|)) should be calculated. The diffuse fact¢#elL5)
and(A20) are determined by the vertex functigvi(k ,k|/|),

Eq. (A1l1), which is the variance oﬂ'*(kH ,k|") (from its
average value

To the lowest order of perturbation theory in the impurity
potentialV;(r) =V,(p) 6(z) with the properties given by Eqs.
(14) and (15) the general results of this appendix reduce to
the expressions given in the text of the paper. For example,
in this approximation Eq(A3) for the average Green’s func-

tion <G(z,z';kH .K|))) coincides with Eq(20).
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