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Elementary excitations of ferromagnetic metal nanoparticles
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We present a theory of the elementary spin excitations in transition-metal ferromagnet nanoparticles which
achieves a unified and consistent quantum description of both collective and quasiparticle physics. The theory
starts by recognizing the essential role played by spin-orbit interactions in determining the energies of ferro-
magnetic resonances in the collective excitation spectrum and the strength of their coupling to low-energy
particle-hole excitations. We argue that a crossover between Landau-damped ferromagnetic resonance and
pure-state collective magnetic excitations occurs as the number of atoms in typical transition-metal ferromag-
net nanoparticles drops below approximately 104, about where the single-particle level spacing,d, becomes
larger thanAaEres, whereEres is the ferromagnetic resonance frequency anda is the Gilbert damping param-
eter. We illustrate our ideas by studying the properties of semirealistic model Hamiltonians, which we solve
numerically for nanoparticles containing several hundred atoms. For small nanoparticles, we find one isolated
ferromagnetic resonance collective mode below the lowest particle-hole excitation energy, atEres'0.1 meV.
The spectral weight of this pure excitation nearly exhausts the transverse dynamical susceptibility spectral
weight. Asd approachesAaEres, the ferromagnetic collective excitation is more likely to couple strongly with
discrete particle-hole excitations. In this regime the distinction between the two types of excitations blurs. We
discuss the significance of this picture for the interpretation of recent single-electron tunneling experiments.

DOI: 10.1103/PhysRevB.68.014423 PACS number~s!: 75.75.1a, 73.21.La
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I. INTRODUCTION

In bulk condensed-matter systems, normal metals
Fermi liquids; their low-energy excitation spectra can
placed in one-to-one correspondence with those of co
sponding noninteracting electron systems as argued by
dau more than 50 years ago. Recent single-electron tunne
spectroscopy studies of metallic nanoparticles,1 in which the
discrete excitation spectra of small systems containing
than one thousand to tens of thousands of atoms are inv
gated, have allowed Landau’s enormous simplification of
teracting fermion physics to be examined quite directly. W
a few caveats and some exceptions, the wide variety of
teresting phenomena that have been studied using sin
electron tunneling spectroscopy can be understood u
ideas from independent-particle quantum mechanics.
though they can still be regarded as Fermi liquids for ma
purposes, metals with nearly continuous broken symmet
~in particular, the ferromagnetic transition metals that are
focus of this paper! support low-energy collective excitation
in addition to Landau’s particle-hole excitations. When sp
orbit coupling is neglected, the broken symmetry
itinerant-electron ferromagnets is continuous and the col
tive excitations are Goldstone bosons whose energy vani
in the long-wavelength limit. Recent single-electron tunn
ing spectroscopy studies2,3 have succeeded in resolving th
excitation spectra of ferromagnetic transition-metal nanop
ticles with diameters below 4 nm. The discrete resonan
seen in the tunneling experiments measure the low-en
0163-1829/2003/68~1!/014423~17!/$20.00 68 0144
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many-electron excitation spectra of a single-domain fer
magnetic nanoparticle. The ultimate objective of this pape
to shed light on the physics that is responsible for the r
and complex behavior seen experimentally, which includ
hysteretic behavior, nonmonotonic field dependencies, an
much denser low-energy excitation spectrum than would
expected based on a noninteracting quasiparticle model.
approach is based on a weak-coupling description of a
tallic ferromagnet in which spin-orbit interactions cause c
lective and particle-hole excitations to be coupled at l
energies, and the classical micromagnetic description o
ferromagnetic metal nanoparticle emerges naturally w
quantum effects are unimportant.

Our theory builds on earlier work,4,5 which captures sev-
eral features of the experimental spectra, especially w
nonequilibrium excitations6 are considered, but does not pr
vide a unified and consistent quantum description of h
collective and quasiparticle excitations are coupled by sp
orbit interactions. The purpose of this paper is to deve
such a description and illustrate its implications by applyi
a simplified but qualitatively realistic microscopic model th
we have recently introduced.7

The elementary spin excitations in bulk itinerant-electr
ferromagnets are of two kinds: collective spin excitatio
~spin waves! and spin-flip particle-hole excitations~Stoner
excitations!. Spin-wave excitations are related to the colle
tive magnetization degree of freedom and form a branch
q-v space, which is gapless if the system is isotropic,
accord with Goldstone’s theorem. The main effects of sp
©2003 The American Physical Society23-1
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orbit interactions in the bulk are to generate an energy
Eres in theq50 collective mode, which is of the order of th
consequent magnetocrystalline anisotropy energy per ato
K'0.1 meV in cobalt8—and to introduce the possibility o
decay of long-wavelength collective excitations into partic
hole excitations,9,10 a process that contributes substantially
the collective excitation lifetime11 for the case of NiFe thin
films. In the absence of spin-orbit interactions, the ferrom
netic resonance is coupled only to spin-flip particle-hole
citations which at long wavelengths have a gap of the or
of the spin-splitting fieldD. Gapless spin-flip particle-hole
excitations are possible only at wave vectors exceeding
minimum q-space separation between majority- a
minority-spin Fermi surfaces. The separation in energy
long wavelengths between collective modes and the spin
particle-hole continuum implies that low-energy collecti
modes are only weakly damped. Beyond a critical value oq
the spin-wave branch merges with the continuum. Thus s
waves can decay into Stoner excitations. The strength of
decay process is sensitive to the character of the orb
involved in the particle-hole excitations.14 In the present
work we will focus on how this description of elementa
spin excitations in itinerant ferromagnets has to be alte
when the level spacing for quasiparticle excitationsd is finite
and approachesEres, a condition that is satisfied in the na
nometer particle-size range. Note thatd is inversely propor-
tional to particle volume, whileEres is approximately volume
independent for large nanoparticles. Since in a finite sys
there is no wave-vector conservation, collective modes
spin-flip particle-hole pairs cannot be simply separated,
like the bulk case. We will show that this fact, together w
the essential role played by spin-orbit interaction, has p
found consequences on the nature of the elementary
excitations in ferromagnetic metal nanoparticles.

The paper is organized in the following way. In Sec. II w
introduce two similar microscopic models for a magne
metal nanoparticle and explain how they are related to
phenomenological model considered previously. The mod
differ in that one accounts for the difference in the stren
of exchange interactions betweens andd electrons in transi-
tion metals, a feature whose consequences we wish to
dress specifically. In Sec. III we derive a path-integral f
mulation of theories based on these models.15 This point of
view provides a convenient language for explaining the
terplay between collective modes and particle-hole exc
tions, and for making contact with classical micromagne
theory. The spin-orientation fluctuation propagator in t
Gaussian approximation is discussed in Sec. IV. The pole
the fluctuation propagator occur at the elementary spin e
tations of the system. We will show that the ferromagne
resonance energyEres can be expressed as the quotient
anisotropy energy and Berry curvature coefficients wh
specify the Gaussian expansion of the action at low frequ
cies. We then discuss how the resonance evolves with
ticle size. Our main conclusions are summarized in Fig
For large particle sizes the ferromagnetic resonance weig
distributed over a large number of particle-hole excitatio
while for smaller particle sizes the ferromagnetic resona
appears as a pure quantum excitation. The crossover bet
01442
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the two regimes occurs approximately where the level sp
ing d is equal toAaEres, in which a is the bulk resonance’s
Gilbert damping factor.16 For typical transition-metal nano
particles this condition is satisfied in particles containing
the order of 104 atoms. For smaller particles, avoided cros
ings between collective and individual particle-hole exci
tions will occur occasionally as a function of system para
eters, for example, as a function of an external magnetic fi
used to reorient the magnetization. For nanoparticles c
taining fewer than approximately 102 atoms, avoided cross
ings with particle-hole excitations will usually not occur
any field orientation, and the nanoparticle can be conside
a molecular magnet in which only spin-orientation degre
of freedom are important at low energies.17 In Sec. V we will
present numerical results for a few-hundred-atom nano
ticle, which illustrate some of the these points. Finally
Sec. VI we summarize our findings and comment on th
relevance in understanding current tunneling experiment

II. QUANTUM MODELS OF A FERROMAGNETIC METAL
NANOPARTICLE

In this paper we consider two slightly different quantu
models chosen to describe both collective and quasipar
physics in a magnetic metal nanoparticle. We denote them
the local d-orbital exchange~LDE! model and long-range
exchange~LRE! model, respectively, for reasons that b
come clear below. We will see that these models, wh
solved within a mean-field approximation, are essentia
equivalent and provide a convenient quantum description
a ferromagnetic nanoparticle when the magnetization isco-
herent ~spatially constant across the sample!. Our use of
these models is motivated partly by the evident succes
spin-density-functional theory in describing ferromagneti
in transition metals; our formalism could easily be adapted
be compatible with this method of calculating the energies
different magnetic configurations. The models are intend
to be sufficiently realistic to capture generic aspects
transition-metal nanoparticle magnetism, but evidently m
features that can be important in practice such as variatio

FIG. 1. Crossing of relevant energy scales as a function of
number of atomsNa in a magnetic nanoparticle. Hered is the
single-particle mean-level spacing;Eres is the energy of the coheren
spin collective mode or ferromagnetic resonance energy;K is the
magnetocrystalline anisotropy energy per atom.
3-2
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exchange interaction strength and interatom hopping am
tudes near the surface of the nanoparticle.

A. Local d-orbital exchange model

The first model that we consider accounts qualitatively
the orbital dependence of exchange interaction strength
transition-metal itinerant-electron ferromagnets.7 We model
the nanoparticle as a cluster ofNa atoms located on the site
of a truncated crystal. The numerical results we present h
are for a cobalt cluster whose truncated fcc crystal is circu
scribed by a hemisphere whose equator lies in theXY plane
of the fcc crystal.18 The choice of a hemisphere is motivate
by the tunneling experiments of Refs. 2 and 3. We us
s-p-d tight-binding model for the quasiparticle orbitals, wi
18 orbitals per atom, including the spin degree of freedo
Nine orbitals per Co atom are occupied in neutral nanop
ticles. The full second-quantized Hamiltonian is

Ĥ5Ĥband1Ĥexch1Ĥso1ĤZee. ~1!

The second-quantized one-body term

Ĥband5(
i , j

(
s

(
m1 ,m2

tm1 ,m2 ,s
i , j ci ,m1 ,s

† cj ,m2 ,s ~2!

is written in terms of creation and annihilation operato
ci ,m1 ,s

† andcj ,m2 ,s labeled by atomic-site indicesi , j ; atomic

angular momentum indicesm1 ,m2; and spin indicess,s8.
We choose the spin-quantization axis to be along the di
tion of the magnetization, which is specified by a unit vec

V̂(Q,F) whereQ andF are the usual angular coordinat
defined with respect to the fcc crystal axes. The parame
tm1 ,m2 ,s
i , j are Slater-Koster parameters19 obtained after per-

forming a Löwdin symmetric orthogonalization procedure20

on the set of Slater-Koster parameters for nonorthogo
atomic orbitals of bulk spin-unpolarized Co.21 Here the ex-
change term is a short-range spin interaction involving o
the electron spins ofd orbitals on the same atomic site:

Ĥexch522Udd(
i

SW d,i•SW d,i , ~3!

where

SW d,i[ (
mPd

SW i ,m5 (
mPd

1

2 (
s,s8

ci ,m,s
† sW s,s8ci ,m,s8 , ~4!

with sW being a vector whose componentssa,a5x,y, andz
are the three Pauli matrices. The parameterUdd in Eq. ~3!
determines the strength of the exchange interaction and
set it equal to 1 eV in our numerical calculations.7 This
choice leads to the correct magnetization per atom in
bulk.

The spin-orbit couplingĤso is a local one-body operator

Ĥso5jd(
i

(
m,m8,s,s8

^m,suLW •SW um8,s8&ci ,m,s
† ci ,m8,s8 , ~5!
01442
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where the atomic matrix elementŝm,suLW •SW um8,s8&
[^ i ,m,suLW •SW u i ,m8,s8& depend on the spin-quantization ax
specified by the anglesQ and F. The energy scalejd ,
which characterizes the coupling between spin and orb
degrees of freedom, varies in the range from 50 to 100 m
in bulk 3d transition-metal ferromagnets.22 Finally, ĤZee is a
local one-body operator describing the Zeeman coupling
the orbital and spin degrees of freedom to an external m
netic fieldHW ext,

ĤZee52mB(
i

(
m,m8,s,s8

3^m,su~LW 1gsSW um8,s8!&•HW extci ,m,s
† ci ,m8,s8

52mB(
i

HW ext•H (
m,m8,s

^m,suLW um8,s!&ci ,m,s
† ci ,m8,s

1
gs

2 (
m,s,s8

ci ,m,s
† sW s,s8ci ,m,s8J , ~6!

with gs52. ĤZee plays an important role in manipulatin
many-body states. In Ref. 7 we have investigated the sp
trum of the microscopic Hamiltonian of Eq.~1!, treating the
quartic exchange interaction in the mean-field approxim
tion. We have focused in particular on the mesoscopic ph
ics of the quasiparticle energies and their complex beha
as a function of the magnetization orientation and exter
magnetic-field orientation and strength. This analysis,
though very relevant to the understanding of tunneling
periments, does not tell us anything about the quantizatio
the collective magnetization orientation dynamics. For t
purpose and for the purpose of making a connection with
classical micromagnetic theory, the path-integral appro
described in the next section provides a more use
language.

B. Long-range exchange model

Our microscopic LDE model, when solved in the mea
field approximation, is related to a toy model, originally i
troduced in Ref. 4, which can be regarded as the simp
possible model of a ferromagnetic metal nanoparticle. T
toy model Hamiltonian assumes identical exchange const
between all pairs of single-particle orbitals in the nanop
ticle:

Ĥ5(
n,s

cn,s
† cn,sen

2
U

8Na
(
n,m

(
s,s8,t,t8

cn,s8
† sW s8,scn,s•cm,t8

† sW t8,tcm,t

5Ĥband2
1

2

U

Na
SW •SW . ~7!

In Eq. ~7! cn,s
† andcn,s are Fermion creation and annihilatio

operators for a quasiparticle state characterized by orb
energyen and spin components; SW 5 1

2 (ncn,s8
† sW s8,scn,s is the
3-3
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total spin of the nanoparticle. The single-particle orbitals w
have an average spacing inversely proportional to the
ume of the nanoparticle~or the number of atomsNa) and are
expected to exhibit spectral rigidity.23 The one-body term in
this Hamiltonian,Ĥband, should be thought of as including
mean-field approximation to those spin-independent porti
of the interaction not captured by the exchange termĤexch

52 1
2 (U/Na)SW •SW . The many-particle spectrum of thi

Hamiltonian has been discussed in detail in Ref. 4.
This toy model Hamiltonian can be further augmente15

by a one-body spin-orbit coupling termHso. We can write
Ĥso as1

Ĥso5 (
n,m,s

vn,m
s cn,s

† cn,s̄ ,

with

vn,m
s 5~vm,n

s̄ !!52vm,n
s , vn,n

s 50, ~8!

where the conditions on the matrix elementsvn,m
s specified in

Eq. ~8! ensure thatĤso is Hermitian and invariant under tim
reversal; heres̄[2s.

Consider the orbital part of the microscopic Hamiltoni
given in Eq.~1!. SinceĤbandis quadratic, it can be diagona
ized by a canonical transformation as follows:

Ĥband5(
i , j

(
s

(
m1 ,m2

tm1 ,m2 ,s
i , j ci ,m1 ,s

† cj ,m2 ,s5(
n,s

cn,s
† cn,sen ,

~9!

where

cn,s5 (
i ,m,t

^n,su i ,m,t&ci ,m,t , ~10!

andun,s& are the orthonormal eigenvectors. The eigenval
en in Eq. ~9! can be identified with the doubly degenera
orbital energies of the toy model Hamiltonian in Eq.~7!. If
we now use Eq.~10! and the completeness of the eigensta
$u i ,m,t&% i ,m,t , we can rewrite the exchange interaction of E
~7! in the form

Ĥexch52
1

2

U

Na
SW •SW 52

U

2Na

1

4 (
i , j

SW i•SW j , ~11!

with SW i[(mSim . From Eq.~11! it is clear that the toy mode
Hamiltonian with equal exchange constants is equivalent
microscopic model with along-range exchangeinteraction,
coupling the spin of each atomic orbital at each atomic site
all others; hence the term LRE. We emphasize that the e
tron spins of all orbitals are coupled in this model, not ju
the spins ofd orbitals. From Eq.~11! it follows that in a
constrained mean-field approximation where the local m
ment^SW i& is forced to becoherentacross the sample and th
spins ofall atomic orbitals are exchange coupled, the mic
scopic LDE model and the LRE model would be equivale
01442
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~with 2Udd⇔U/8). Differences arise when only thed orbit-
als in the LDE model are exchange coupled, on which
comment below.

Neither model includes any magnetostatic dipole-dip
interactions, which can be important in some circumstanc
for example, when the nanoparticle is not close to spheri
but are easily incorporated in our discussion. Note, howe
that both models lead to strong shape dependence, bec
of surface effects which are important when the particle s
is small. In Sec. V we see that the structure of particle-h
excitations of the LDE model, when only the spins ofd
orbitals are coupled, is richer than when quasiparticle ma
ity and minority spins are simply shifted by a rigid exchan
field, as in the case of the LRE model.

III. AUXILIARY FIELD FORMULATION

A. Coherent-state functional-integral and Hubbard-
Stratonovich transformation

We consider first our LRE toy model. The extension to t
LDE model is straightforward and we comment on it belo
Following some familiar steps,24,25 we write the interacting
fermion partition function as an imaginary time cohere
state path integral

Z5E D@c̄~t!c~t!#exp~2S!, ~12!

where the actionS is

S5E
0

b

dtH(
n,s

c̄n,s~t!S ]

]t
2m Dcn,s~t!1H@c̄~t!,c~t!#J .

~13!

Here b51/kBT, m is the chemical potential, and we us
units such that\51. Since the exchange interaction term
our toy model is quadratic in the total electron spin—see
~7!—its contribution to the action for each time steptk
5ke5kb/N can be represented by a Gaussian integral o
a real vector fieldDW k[DW (tk) as

E dDW kexpH 2
Na

2U
DW k•DW k

1DW k•
1

2 (
n,s,s8

c̄n,s~tk!sW s,s8cn,s8~tk21!J
}e2Hexch[ c̄(tk),c(tk21)] . ~14!

Using this transformation for each time step, we obtain
following functional integral over a single auxiliary fiel
DW (t) that fluctuates in imaginary time:

Z5E D@c̄~t!c~t!#E D@DW ~t!#exp~2S!, ~15!

where the actionS is
3-4
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S5E
0

b

dtH Na

2U
DW ~t!•DW ~t!1(

n,s
c̄n,s~t!S ]

]t
2m Dcn,s~t!

1Hband@c̄~t!,c~t!#1Hso@c̄~t!,c~t!#

2
1

2
@DW ~t!1gsmBHW ext#•(

n,s
c̄n,s~t!sW s,s8cn,s~t!J .

~16!

This action can be written in another form which is esp
cially useful for small nanoparticles at low temperatures.
us consider the fluctuating one-body Hamiltonian

Ĥ1b@DW ~t!#5Ĥband1Ĥso2
1

2
@DW ~t!1gsmBHW ext#

•(
n,s

cn,s8
† sW s8,scn,s . ~17!

In Eq. ~15! we can replace the functional integral over t
fermionic coherent statesc̄(t),c(t) by a trace of the opera
tor,

expH 2E
0

b

dtĤ1b@DW ~t!#J 5expF2e(
k

Ĥ1b~DW k!G
5)

k
exp@2eĤ1b~DW k!#.

~18!

By inserting at each time steptk the resolution of the identity
Î 5(auCa(DW k)&^Ca(DW k)u, where$uCa(DW k)&%a is a complete
set of eigenstates of the one-body HamiltonianĤ1b(DW k), and
taking the T→0 limit, we obtain Z5*D@DW (t)#exp(2S),
with

S5e(
k

Na

2U
DW k•DW k2 ln$^C0~DW N!u

3exp@2eĤ1b~DW N21!#uC0~DW N21!&3•••3^C0~DW 1!u

3exp@2eĤ1b~DW N!#uC0~DW N!&%. ~19!

Note that the fluctuating fieldDW (t) is bosonic and satisfie
periodic boundary conditionsDW (0)5DW (b). Sincee→0 we
can rewrite the action in the form

S5E
0

`

dtS Na

2U
DW ~t!•DW ~t!2

1

e
$^C0@DW ~t1e!#u

3e2eĤ1b[DW (t)] uC0@DW ~t!#&21% D
5E

0

`

dtH Na

2U
DW ~t!•DW ~t!1E1b@DW ~t!#

1^C0u]C0 /]DW &•
]DW ~t!

]t J . ~20!
01442
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Here E1b@DW (t)# is the ground-state energy ofĤ1b@DW (t)#.
The approximations that are implicit in these manipulatio
are valid when collective fluctuations of the spin-splittin
field are not strongly coupled to particle-hole excitations.

Equation ~20! plays a crucial role in this paper. Th
quantity

Etot@DW ~t!#[
Na

2U
DW ~t!•DW ~t!1E1b@DW ~t!# ~21!

gives the quantum energy functional of the magnetic na
particle as a function of the fluctuating spin-splitting fie
DW (t); its classical limit, obtained by evaluating at zero fr
quency~i.e., staticDW independent of time! Etot@DW (t)#, cor-
responds to the phenomenological micromagnetic ene
functional for a coherent magnetic particle with magne
static contributions neglected.

The last term in the action

SBerry[E
0

`

dt^C0u]C0 /]DW &•
]DW ~t!

]t
~22!

is a Berry phase term, which is related to the reduction of
total spin component along the magnetization axis due
spin deviations from the ground-state configuration.26,27 As
we see in Sec. IV, the Berry phase contribution to the act
captures the quantization condition of the collective elem
tary excitations and the way in which spin-orbit interactio
affect this quantization condition.

The Hubbard-Stratonovich decoupling can also be car
out in the case of the LDE model of Eq.~3!. Here we should,
in principle, introduce an auxiliary fieldDW d,i(t) that is de-
pendent on the atomic sitei. Complicated inhomogeneou
and noncolinear spin-splitting fields can indeed occur
very small nanoparticles with a few tens of atoms.28,29In this
paper, however, we consider only acoherent, i.e., site-
independent spin-splitting field, which is a good approxim
tion for the relatively large nanoparticles (Na.50) in which
we are interested.

B. Mean-field approximation

The mean-field approximation for the action is obtain
by finding the value of the spin-splitting field at which it
minimized. Since the minimum occurs for a time
independent spin-splitting fieldDW MF , the Berry phase contri-
bution to the action does not enter at this level. In t
coherent-field approximation, the mean-field spin splitti
satisfies

Na

U
DW MF1

]E1b~DW !

]DW
uDW MF

5
Na

U
DW MF2^CMFuSW totuCMF&50,

~23!

where uCMF&[uC0(DW MF)&. DW MF may be determined eithe
by minimizing the energy functional or by solving the se
consistent-field equations implied by the second form of E
~23!. The same set of mean-field equations can be deri
3-5
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directly from the more general expression for the action
which the functional integral over fermion Grassmann va
ables is still present.25

IV. GAUSSIAN FLUCTUATIONS

Our theory of elementary magnetic excitations of meta
nanoparticles is based on a Gaussian fluctuation theor
which the action is expanded to second order around
static mean-field values of the auxiliary fields. It proves
formative to contrast two approaches that can be use
evaluate the Gaussian fluctuation action. In the first appr
mation we work directly with the Berry phase and ener
terms in the action, which are rather transparently relate
micromagnetic theory and Landau-Liftshitz semiclassical
namics. This approach cannot, however, deal directly w
the coupling of collective and particle-hole elementary ex
tations. In the second approach we expand the action to
ond order aroundDMF , without introducing the quasistati
energy functional as an intermediate step. We see that
two approaches are equivalent in the limit of energ
smaller than the minimum particle-hole excitation energy

A. Energy functional approach

If we are interested only in low-energy excitations, whi
have slow dependence on imaginary time, we can appr
mate the energy function by its dependence onstatic field
variations as follows:

Etot~DW !5EMF1
1

2
D̃aFNada,b

U
1

]2E1b~DW !

]Da]Db UDW MFG D̃b,

~24!

where D̃a[Da2DMF
a , and EMF[Etot(DW MF). Since ampli-

tude variations are energetically more costly, the domin
fluctuations of the order parameter will be rotations. T
second derivative represents the expansion of the microm
netic energy around its extremum; the dependence of en
on orientation is generally referred to as the anisotropy
ergy of the nanoparticle.

The bosonic fieldDW (t) is periodic in@0,b#. Therefore the
Berry phase contribution to the action given in Eq.~22! can
be rewritten as the closed line integral that is path depen
but not dynamics dependent:

SBerry5 R dDW •^C0u]C0 /]DW &. ~25!

Since

K C0U ]

]DW
C0L 1K C0U ]

]DW
C0L !

5K C0U ]

]DW
C0L 1K ]

]DW
C0UC0L

5
]

]DW
^C0uC0&50, ~26!

the Berry phaseSBerry is pure imaginary. For small amplitud
rotations around the direction ofDMF , the closed line inte-
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gral, Eq. ~25!, is equal to the product of the area of th
enclosed path and the Berry curvature,

C~DMF!5 ẑ•¹W 3K C0U]C0

]DW
L 5K ]C0

]Dx U]C0

]Dy L
2K ]C0

]Dy U]C0

]Dx L . ~27!

Unlike the integrand of Eq.~25!, the Berry curvature is in-
dependent of gauge, i.e., it is independent of the arbitr
phase choice made for the many-electron wave function
each magnetization orientation. For small fluctuations the
tegrand in Eq.~25! can be chosen to be anything whose c
is the constantC(DMF) ẑ. For example, one convenien
choice, analogous to the symmetric gauge choice for a c
stant magnetic field, leads to

SBerry5
C~DMF!

2 R @ ẑ3DW #•dDW , ~28!

if we choose theẑ direction to be the direction ofDW MF . This
line integral can be parametrized in terms of the imagin
time variable,

SBerry5
C~DMF!

2 E
0

b

dt@D̃x]tD̃
y2D̃y]tD̃

x#, ~29!

which can also be written in frequency space as

SBerry5
1

2b (
ivn

ivnC~DMF!@D̃x~2 ivn!D̃y~ ivn!

2D̃y~2 ivn!D̃x~ ivn!#. ~30!

Equation~30! shows that the Berry phase contributes a te
linear in frequencyvn to the imaginary part of the quadrati
Gaussian fluctuation action. We see in the next section
the same contribution to the action arises from a small
quency expansion of the spin-fluctuation propagator ker
defined in the next section.

1. Calculation of the Berry’s curvature

We now briefly discuss the numerical evaluation of Be
curvatures26 evaluated at the mean-field-solution point. W
start from the expression forSBerry given by Eq.~25!, and
consider paths on the unit sphere of exchange-field orie
tions. A small area closed path centered on the mean-fi
orientation encloses a small area on the unit sphere wh
normal is the direction ofDMF , which we take as theẑ
direction. Using Stoke’s theorem and taking the Berry c
vature out of the surface integral, we obtain

SBerry5C~DMF!E
area

dSD . ~31!
3-6
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For our calculation we consider as a closed path a sm
right triangle in thexy plane of sidesDx5Dy5DMFu, where
u is a small angle describing the rotation around thex andy
axes. Then

SBerry5
1

2
C~DMF!DMF

2 u2. ~32!

This Berry phase can also be expressed as26

iSBerry52Im ln@^CMFuC0~DW x!&^C0~DW x!uC0~DW y!&

3^C0~DW y!uCMF&#, ~33!

whereuC0(DW x)& anduC0(DW y)& are the single Slater determ
nants of lowest energy for exchange fields that differ fro
the mean-field value byDxx̂ andDyŷ, respectively. Equation
~32! can be obtained by expandinguC0(DW x)& and uC0(DW y)&
to quadratic order inDx and Dy , remembering that

^C0u(]/]DW )C0& is pure imaginary. The expression for th
Berry phase given in Eq.~32! is very suitable for numerica
calculations, since the wave functionsuC0(DW x)& and
uC0(DW y)& can be easily calculated. The arbitrary phases
the wave functions at the three vertices explicitly can
since each wave functionand its complex conjugate appea
in Eq. ~32!. If we choose the arbitrary phases in such a w
that the matrix elements ofuC0(DW x)& and uC0(DW y)& with
uCMF& are real and positive, then the Berry phase is given
the simplified expression

iSBerry5Im ln^C0~DW x!uC0~DW y!&. ~34!

Finally, one can show that the Berry phase~or Berry cur-
vature! of the many-body wave function is given by the su
of the Berry phases~or curvatures! of the occupied single-
particle states, even in the presence of spin-orbit interact
The easiest way to prove this is to show that

K C0U ]

]DW
C0L 5(

n

occ K fnU ]

]DW
fnL , ~35!

where fn are single-particle eigenstates of the one-bo
Hamiltonian. The gradient in Eq.~35! acts separately on th
single-particle wave functions and hence it can be regar
as a sum of single-particle operators. It follows that the Be
phase can expressed as

iSBerry5(
n

occ

Im ln^fn~DW x!ufn~DW y!&. ~36!

2. Berry phase without spin-orbit coupling

For the case of no spin-orbit coupling, the Berry pha
term can be calculated analytically and is equal to the nu
ber of singly occupied orbitals times the usual spin-1/2 Be
phase. To show this, let us consider a many-body wave fu
tion within the long-range exchange model describing a s

polarized in the directionV̂[DW /D,
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uC0~DW !&5)
s

~u~V̂ !cs↑
† 1v~V̂ !cs↓

† !)
d

cd↑
† cd↓

† u0&

[uC0~V̂ !&, ~37!

where the indexs runs over theN↑2N↓ singly occupied
states and the indexd over theN↓ doubly occupied states

The functionsu(V̂) and v(V̂) are written in terms of the

anglesQ andF specifying the unit vectorV̂(Q,F),

u~V̂ !5cos~Q/2!, ~38!

v~V̂ !5eiFsin~Q/2!. ~39!

We obtain

U]C0~V̂ !

]V̂
L 5(

s
S ]u

]V̂
cs↑

† 1
]v

]V̂
cs↓

† D )
s8Þs

~u~V̂ !cs↑
†

1v~V̂ !cs↓
† !)

d
cd↑

† cd↓
† u0&. ~40!

Hence, for rotations of the spin-splitting field,

K C0U]C0

]DW
L 5K C0U]C0

]V̂
L 5(

s
S u!

]u

]V̂
1v!

]v

]V̂
D

5(
s

i
12cos~Q!

2 sin~Q!
F̂5 i

N↑2N↓
2

12cos~Q!

sin~Q!
F̂,

~41!

and the Berry phase,

SBerry5E
0

b

dtK C0U]C0

]V̂
L • dV̂

dt

5 R K C0U]C0

]V̂
L •dV̂

5 i
N↑2N↓

2 R dF@12cos~QF!#s

5 i @N↑2N↓#
A@V̂#

2
, ~42!

whereA@V̂# is the area enclosed by the pathV(t) on the

unit sphere, andA@V̂#/2 is the usual spin-1/2 Berry phase.
the presence of spin-orbit interactions, the Berry phase
comes highly nontrivial as we discuss in Sec. V.

For a path enclosing the small right triangle described

Sec. IV A 1,A@V̂#5u2/2,

SBerry5 i
u2S

2
, ~43!

C~DMF!5 i
S

DMF
2

, ~44!

where S5(N↑2N↓)/2 is the total spin in the nanoparticl
ground state.
3-7
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B. Gaussian fluctuations: Perturbation theory approach

The Gaussian fluctuations theory can be derived m
generally by formally integrating out the fermions and th
expanding to second order aroundDMF without making any
quasistatic approximations. We discuss the case of the lo
range exchange interaction first and then indicate w
changes occur in the short-range (d only! exchange model
The formally exact expression for the action is

S5E
0

b Na

2U
DW •DW 2 ln det@]t1H1b~DMF

a 1D̃a!#, ~45!

whereH1b(D) includes, in addition to its single-particle hop
ping and spin-orbit terms, the spin-splitting terms2(DW MF

1HW ext)•sW1D̃asa. It is the second of these two terms that
treated perturbatively. First-order terms in the expansion v
ish, since the mean-field value ofDW is an extremum of the
action. The second-order terms can be obtained by a stan
calculation with the following result:

Sfluc5
1

2b (
ivn

D̃b~2 ivn!Kba~ ivn!D̃a~ ivn!, ~46!

where the kernelKba( ivn) is the inverse of the exchange
field-fluctuation propagator and is given by

Kba~ ivn!5da,b

Na

U
1(

I ,J

nF~jJ!2nF~j I !

ivn1jJ2j I
^JusbuI &^I usauJ&,

~47!

where uI & is a mean-field electron eigenstate andj I is the
corresponding eigenvalue with energies measured from
chemical potential.

Fluctuations in the magnetization orientation around
mean-field directionẑ5DW MF /DMF are described by the trans
verse diagonalKxx , Kyy and off-diagonalKxy , Kyx compo-
nents of the kernel. It is customary to introduceK12( ivn)
and K21( ivn). When the spin-orbit interaction is presen
K11( ivn) and K22( ivn) do not vanish and they play
role. Note that

K21~ ivn!5K12~2 ivn!, ~48!

K11~2 ivn!5K11~ ivn!, ~49!

K22~ ivn!5K11~2 ivn!!. ~50!

It follows from Eq. ~47! that

Kxx5Na /U1~K121K21!/41~K111K22!/4, ~51!

Kyy5Na /U1~K121K21!/42~K111K22!/4, ~52!

and

Kxy5 i ~K122K21!/42 i ~K112K22!/4, ~53!

Kyx52 i ~K122K21!/42 i ~K112K22!/4. ~54!

The transverse fluctuation action of the long-range
change model is quite simple in the absence of spin-o
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interactions. The componentsK115K2250, since the spin
of the quasiparticle states is a good quantum number.~This
property depends only on spin-rotational invariance a
holds for the short-range exchange model as well.! Further-
more, since the electron mean-field eigenstates factorize
spin and orbital factors, identical spin-up and spin-do
wave functions are split energetically byDMF and we obtain

K12~ ivn!5
N↑2N↓

ivn2~DMF1Hext!
5K21~2 ivn!. ~55!

In examining the consequences of this simple property
the Gaussian action kernel, we first considerKxy( ivn). We
see from Eq.~55! that when there is no spin-orbit interactio
Kxy( ivn50)50, a property that reflects invariance und
rotations of exchange-field orientation around theẑ axis. By
expandingKxy( ivn) aroundivn50, we obtain

Kxy~ ivn!'2 ivni
N↑2N↓
2DMF

2
52

iS

DMF
2

ivn . ~56!

By inserting Eq.~56! into Eq. ~46! and comparing the resul
with Eq. ~30!, we can identify the term ofKxy( ivn) linear in
ivn , iS/DMF

2 , with the Berry curvature,C(DMF), in agree-
ment with Eq.~44!.

Similarly, the expansion ofKxx( ivn)5Kyy( ivn) around
ivn50 yields

Kxx~ ivn!5Kyy~ ivn!'
Na

U
2

N↑2N↓
2DMF

1O~vn
2!

501O~vn
2!, ~57!

where in the last equality of Eq.~57! we have used the mean
field relationship (U/Na)S5DMF between the total magneti
zation of the nanoparticle and the spin-splitting field. T
vanishing of the diagonal componentsKxx and Kyy at vn
50 is again a result of rotational invariance. In the abse
of spin-orbit interactions there is a collective mode at ze
energy because of magnetization-orientation rotatio
invariance.

The physics that we wish to investigate in this paper
largely contained in the way that the simple results outlin
above are altered by spin-orbit interactions. As we ha
stated, both the Berry phase and the energy term in the ac
become highly nontrivial, a property that we now exami
from the perturbation theory point of view. From Eqs.~48!–
~54! it is clear thatKxx(vn), Kxx(vn), Kxy(vn), andKxy(v)
are real atvn50. Comparing Eq.~24! with the vn50 term
of Eq. ~46!, we see that the kernel coefficients reduce to
time-independent perturbation theory expressions for
second derivatives of the total energy with respect to
change field,]2Etot(DW MF)/]Dx]Dx, ]2Etot(DW MF)/Dy]Dy. In
its static limit, the fluctuation kernel reduces to one th
would be obtained from a classical theory with the micr
magnetic energy functional derived from a mean-field-the
calculation, or for accurate first-principles calculations
3-8
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solving spin-density-functional Kohn-Sham equations s
consistently. By expandingKab( ivn) around ivn50, we
obtain

Kxx~ ivn!'
]2Etot~DW MF!

]Dx]Dx
1O~vn

2!5~a1b!1O~vn
2!,

~58!

Kyy~ ivn!'
]2Etot~DW MF!

]Dy ]Dy
1O~vn

2!5~a2b!1O~vn
2!,

~59!

Kxy~ ivn!'
]2Etot~DW MF!

]Dx]Dy
2C~DMF!ivn5c2C~DMF!ivn ,

~60!

Kyx~ ivn!'
]2Etot~DW MF!

]Dy]Dy
1C~DMF!ivn5c1C~DMF!ivn ,

~61!

where

a5
Na

U
1

K12~0!

2
, b5

K11~0!1K11~0!!

4
, ~62!

and c52 i
K11~0!2K11~0!!

4
, ~63!

are real constants and the Berry curvature is

C~DMF!5
i

2 (
I ,J

nF~jJ!2nF~j I !

~jJ2j I !
2

u^Jus1uI &u2. ~64!

This expression for the Berry curvature can also be deri
from Eq.~27! by using time-independent perturbation theo
expressions for the dependence of single-particle wave fu
tions on exchange-field orientation. Note that the leading
quency dependencies inKxx and Kyy are quadratic. These
equations are valid forivn smaller than the smallest particle
hole excitation energyujJ2j I u, as we discuss at greate
length below. So far we have completely disregarded am
tude fluctuations of the exchange field, i.e., the compone
of the kernel involvingDz. It is obvious that in absence o
spin-orbit interactions

Kxz~ ivn!5Kzx~ ivn!5Kyz~ ivn!5Kzy~ ivn!50, ~65!

Kzz~ ivn!5
Na

U
1

dn,0

4 (
I

]nF

]j
uj5j I

. ~66!

When the spin orbit is present, the off-diagonal compone
involving Dz are, in principle, nonzero. However, it turns o
that they are always very small~see the next section!; there-
fore we will typically neglect them and only keepKzz( ivn)
5Na /U. This approximation amounts to neglecting t
weak dependence of the magnitude of the exchange fiel
its orientation.
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C. Excitation spectrum

The kernel of the fluctuation action is thematrix inverse
of the exchange-field propagator, which is proportional to
spin-susceptibility linear-response function. We refer to t
propagator below as the spin susceptibility,

xab~ ivn!5@K~ ivn!21#ab . ~67!

The elementary magnetic excitations of the nanopart
~particle hole and collective! occur at real frequenciesv at
which xab(v) has poles. Herexab(v) is obtained by ana-
lytically continuing Eq. ~67! to real frequencies:ivn→v
1 ih. Let D(v) denote the complex function

D~v!5det@K~v!#. ~68!

The condition for the existence of a pole inxab(v) can be
expressed by the equation

D~v!50. ~69!

In order to make progress, we will assume that all the co
ponents ofK involving the longitudinal variablez are small
and can be disregarded, except forKzz(v). The expression
for the elementary excitation energy then simplifies to

D~v!'Kzz@Kxx~v!Kyy~v!2Kxy~v!Kyx~v!#50,
~70!

where we have used Eqs.~51! and ~53!.
Let us consider first the limit of small nanoparticle

where the single-particle mean-level spacingd is much
larger than the ferromagnetic resonance, which is of the
der of the anisotropy energy per atom,K. In cobalt, K
'0.1 meV, and if we use the bulk single-particle density
states21 we find that this limit is reached in nanoparticle
containingNa!104 atoms. In this case we expect a pu
ferromagnetic resonance mode with a large spectral we
that appears as a separate quantum state below the lo
particle-hole excitation energy.~We discuss the situation in
which particle-hole and collective excitations are not clea
separated at greater length below.! Using the expansions o
Eqs.~58!–~60!, we obtain

N a

U
$a22b22c22@ iC~DMF!#2v2%50, ~71!

which yields a low-energy pole at the real frequency

Eres5
Aa22b22c2

u iC~DMF!u
. ~72!

Around the pole we have

@D~v!#21'
Zres

Eres2v
, ~73!

where the ‘‘residue’’Zres is

Zres
2152

Na

U
Aa22b22c2u iC~DMF!u. ~74!
3-9
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Thus the collective excitations have a gap atEres. The gap is
proportional to thequotientof Aa22b22c2, which is essen-
tially the total anisotropy energy, and the Berry curvatu
C(DMF). For particles that are not too small, both quantit
are proportional to the particle volume, thusEres is approxi-
mately independent of particle volume and approximat
equal to the anisotropy energy/atom,K. The spectral weight
of the collective modeZres is inversely proportional to the
product of the same two quantities. The spectral weight
vided by the resonance frequency is proportional to the st
response of the exchange field, a quantity which can be
derstood simply by minimizing the total micromagne
energy.

The considerations described above apply when the
lective excitation energy is smaller than the lowest-ene
particle-hole excitation. Even in this limit where particl
hole and collective excitations are well separated,
exchange-field propagator does have some spectral weig
particle-hole excitations as well. The kernel~Eq. 47! must
have zeros between the poles that occur at each mean
particle-hole excitation energy. Therefore we expectD(v)
50 at v5ṽ j i 'v j i 5j I2jJ and the susceptibility to hav
additional poles atṽ j i . Let us expandD(v) around one of
these poles,

@D~v!#21'
@D8~ṽ j i !#

21

v2ṽ j i

. ~75!

Thus, in general the residue of each pole is proportional

Zj i 5@D8~ṽ j i !#
21. ~76!

D. Coupling between collective and particle-hole excitations

If we increase the size of the nanoparticle to a few th
sand atoms, the lowest particle-hole excitation energyv j i
'd will start to approachEres from above. In this situation
the pole atEres will start to lose its collective character. Asd
becomes much smaller thanEres, the ferromagnetic reso
nance mode will no longer be a single excitation, but inste
appear as enhanced spectral weight in response function
be spread over several particle-hole excitations. If we furt
increase the nanoparticle size, we start to approach the
modynamic limit, where the collective ferromagnetic res
nance will be spread over a large number of particle-h
excitations. IfEres is the frequency at which Eq.~70! holds,
by expandingD(v) near Eres the ferromagnetic collective
mode has a width given by

G52
Im D~Eres!

ReD8~Eres!
. ~77!

The susceptibility then has a resonant denominator and
ferromagnetic mode has the shape of an asymme
Lorentzian.30

It is possible to relate the typical value of matrix eleme
between single-particle states that appear in the kernel f
large nanoparticle and the Gilbert damping parameter u
ally used to characterize the width of a ferromagnetic re
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nance line.16 The Gilbert damping parametera is the ratio
between the linewidth and the resonance frequency. It is
mally introduced as a phenomenological damping param
in Landau-Liftshitz equations of motion for the magnetiz
tion direction; these equations are implied by the lo
frequency dynamics discussed above. Taking the continu
limit for the particle-hole excitation spectrum and assum
that we have approximate rotational symmetry about
exchange-field-orientation axis, it follows from the precedi
analysis that31

a5
Im@Kxx~v5Eres!#

Im@Kxy~v5Eres!#
;

p

2d2uC~DMF!u
u^JusxuI &u2, ~78!

where the overbar denotes an average over typical part
hole matrix elements for states near the Fermi energy. N
that a approaches a constant and the typical matrix elem
scales such asN A

21 in the limit of large nanoparticles.
We can estimate the number of individual particle-ho

excitations that contribute to the ferromagnetic resonanc
a large nanoparticle. The density of states for particle-h
excitations grows linearly with energy and at the resona
energy is;Eres/d

2. The number of particle-hole excitation
in the resonance is the width of the resonanceaEres times
this density of states,;aEres

2 /d2. This expression implies a
condition for the crossover to pure-state ferromagnetic re
nance whend5AaEres. The crossover is therefore expecte
to occur at larger particle sizes when the ferromagnetic re
nance is sharp. Even when the particle is small enough
the resonance is not normally coupled with particle-hole
citations, avoided crossings between these two types of
citations will frequently occur as the external magnetic fie
or other parameters are varied. We can describe such
avoided crossing by assuming that the low-frequency li
can be taken for all but one of the particle-hole excitati
contributions to the kernel. To briefly explain what happe
in this limit, for which the kernel can be written as the su
of a partKxx

smoothwith a smooth frequency dependence and
part Kxx

res with a resonant frequency dependence, we assu
that the particular particle-hole excitation contributes only
Kxx

res, making a contribution

Kxx
res~v!5

2v i j

v22v i j
2

u^JusxuI &u2. ~79!

It follows that the poles of the exchange-field propaga
occur at energies

v65
Eres1v i j

2
6$@~Eres2v i j !/2#21V2%1/2, ~80!

whereV is an avoided crossing gap. Using Eq.~78! we find
that V;aEres. The size of the avoided crossing gap th
occurs in a small nanoparticle when a particle-hole excitat
energy is tuned through a collective excitation energy by
external field or another parameter is specified by the fe
magnetic resonance width in the limit of a large particle.

It is important to note that the experiments in Refs. 2 a
3 are carried out for nanoparticles containingNa'1500 at-
3-10
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oms. Thus these experiments are probing the most intere
and difficult intermediate regime of particle size, where t
lowest particle-hole excitation energyv j i 'd→AaEres.

V. NUMERICAL RESULTS AND DISCUSSION

In this session we present numerical calculations p
formed on our two ferromagnetic nanoparticle models wh
illustrate and support all the main points of the theory
elementary spin excitations developed above. Since we
deal with nanoparticles containing up to 260 atoms, we
pect, on the basis of our theoretical considerations, that
exchange-field correlation function will normally display on
main peak at energies below the lowest particle-hole exc
tion. In addition to verifying this expectation, we see that t
ferromagnetic resonance mode is characterized by a ver
teresting behavior when manipulated with an external m
netic field to bring it in coincidence with a particle-hole e
citation.

As mentioned already in Sec. IV, in discussing the diff
ent components of the kernel and the susceptibility we t

the z direction along the direction of the magnetization,V̂.
We also choose they direction to lie in the equatorialXY
plane of the nanoparticle. Then thex direction is fixed by the
condition of being orthogonal to bothz andy. Therefore the
x and y components of the kernel describetransversespin
fluctuations with respect to the direction of the magneti
tion, but these directions in general are not symmetry dir
tions with respect to the crystal structure or the nanopart

geometry. The direction ofV̂ is determined by minimizing
the classical micromagnetic energy functionalEtot(DW ), or
equivalently, by solving the mean-field equations se
consistently. The variation ofEtot(DW ) as a function ofQ and
F has been studied in detail in Ref. 7. The main conclusi
are summarized in Fig. 2, where we plotEtot(DW ) in the
(Q,F) plane atHW ext50 for a hemispherical nanoparticl
consisting ofNA5143 Co atoms, arranged in a fcc lattice.

this case the magnetization directionV̂ lies in theXY plane
(Q5p/2), along one of the four directions corresponding

FIG. 2. Anisotropy landscapeEtot(DW ) as a function ofQ andF
for a 143-atom hemispherical nanoparticle.Etot is periodic inF,
with periodp/2.
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the four degenerate shallow minima ofEtot(DW ). By applying
an external field some of these minima become classic
metastable and we can have different hysteretic behav
with zero, one, or two reversals of the magnetic mome
depending on the direction of the field.

A. Real part of Kxx„v…

We first consider the spectral representation of the ke
defined in Eq.~47!. In Fig. 3~a! we plot ReKxx( ivn) vs
Re(ivn)—after analytical continuationivn→v1 ih – for a
26-atom nanoparticle for the case of the LRE model. C
sistent with Eqs.~55! and ~57!, for zero spin orbit~SO! we
find that the kernel has just one pole at a particle-hole e
tation energy equal toDMF , and a gapless zero. With SO
interaction included, many more matrix elements^Jus1uI &
will be nonzero, and consequently many more poles co
sponding to these particle-hole excitations will appear in
kernel. This is shown in Fig. 3~b!, where we can see that th
poles with largest residues still correspond to particle-h
excitations nearDMF . Although not visible in Fig. 3~b! be-
cause of its very small residue, the first pole in the ker
occurs at an energy of order of the single-particle mean-le
spacingd, which for this particle size is approximately 2
meV. This is shown in Fig. 4, where we enlarge a sm
energy window at very low energies.

Similar results for the LDE model are shown in Fig. 5. W
can see@Fig. 5~a!# that the kernel has already several po
even in the absence of SO coupling, since not all the ener
of majority- and minority-spin states are shifted by the sa
rigid spin-splitting field, as they were in the case of the LR
model. Most of the poles are still concentrated nearDMF ,
however. The special properties of the LRE model wh
result in rigidly split mean-field bands do not, therefore,
troduce special artificial features in the low-energy excitat
spectrum. From Fig. 5~b! it would seem that SO interactio
does not introduce major effects, merely broadening the p
existing pole structure. In fact SO interaction changes
analytical structure of the kernel at low energies, as it did
the LRE model. Indeed, Fig. 6 shows that when the SO
included the first pole ofKxx occurs again at an energy of th

FIG. 3. Real part of the transverse diagonal component of
kernel for a hemispherical 26-atom nanoparticle, the long-range
change model.~a! Without spin-orbit~SO! interaction.~b! With SO
interaction.
3-11
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order of the single-particle mean-level spacing. We find t
most of these low-energy particle-hole excitations invo
pairs of states that havemostlythe sameminority-spin char-
acter, as expected, because essentially all states around
level are minority-spin states. Obviously matrix eleme
^J,↓us1uI ,↓& are identically zero and therefore there are
poles at these low energies when SO coupling is not pres
It is only when SO coupling is present that these states ob
a small admixture of majority-spin character which produc
nonzero matrix elements. It is important to note that ev
when the rare presence of majority-spin states near the F
level is recognized, their matrix elements with minority-sp
states close in energy are always very small because
orbital wave functions are almost orthogonal.

Figure 7 shows the low-frequency behavior of the ker
for our two models for the case of a 143-atom nanoparti
We see essentially the same trend as for the case of sm
nanoparticles: when the SO is included the first pole of
kernel occurs at an energy of the order of the single-part
mean-level spacing, which for this nanoparticle size is of
order of a few meV. Note also that at this particle size

FIG. 5. Real part of the transverse diagonal component of
kernel for a hemispherical 26-atom nanoparticle, the locald-orbital
exchange model.~a! Without SO interaction.~b! With SO interac-
tion.

FIG. 4. Low-energy behavior of the kernel for the same syst
as in Fig. 3. Solid line: without SO interaction; dashed line: with S
interaction. The vertical dotted line marks the position of the fi
particle-hole excitation, where ReKxx has a pole.
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residue of this low-energy pole is three orders-of-magnitu
smaller than the residues of the poles occurring nearDMF .

The existence of spin-flip particle-hole excitations at e
ergies of orderd has important implications: we show belo
that these particle-hole pairs can couple to the low-ene
spin collective mode when, by increasing the nanopart
size and/or by applying an external field, their energy sta
to approachEres.

B. Spectral function: Imaginary part of xxx„v… vs v

We now discuss the spin-fluctuation spectral function, t
is, the imaginary part of the spin susceptibility defined in E
~67!. In Fig. 8 we plot Imxxx(v) as a function ofv for a
143-atom hemispherical nanoparticle for several values
the external magnetic field. As expected from our discuss
in Sec. IV, for this nanoparticle size we find that in gene
the spectral function has only one pole that has substa
weight. At low external fields this pole occurs at a frequen
that satisfies Eq.~70!, well below the lowest particle-hole

e

FIG. 6. Low-energy behavior of the kernel for the same syst
as in Fig. 5. Solid line: without SO interaction; dashed line: with S
interaction. The vertical dotted lines mark the position of partic
hole excitations.

FIG. 7. Real part of the transverse diagonal component of
kernel at low energies, for a hemispherical 143-atom nanopart
~a! Long-range exchange model.~b! Local d-orbital exchange
model. Vertical dashed lines mark the position of particle-hole
citations, where ReKxx has poles.

t
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ELEMENTARY EXCITATIONS OF FERROMAGNETIC . . . PHYSICAL REVIEW B 68, 014423 ~2003!
excitation. It can therefore be identified as a spin collect
mode. In this regime the collective mode is an exact elem
tary excitation, at least within the Gaussian approximat
that we consider. The finite width in Fig. 8 is due to a fin
h in ivn→v1 ih. Apart from the ferromagnetic resonanc
pole, the susceptibility has other poles at higher energies
seen in Fig. 9, where we plotD(v) given in Eq.~70!. These
poles are all very close to MF particle-hole excitation en
gies and have virtually zero spectral weight for this parti
size, when the external field is zero. We can therefore id

FIG. 8. Imaginary part of the transverse diagonal spin susce
bility ( x component! at different external magnetic fields, for

hemispherical 143-atom nanoparticle in the LDE model.HW ext is in
the ZX plane at an anglep/4 with the Z axis. Hext50.15T is a
reversal point. This low-energy peak in the susceptibility cor
sponds to a spin collective mode due to coherent magnetiza
fluctuations. Vertical lines in~b! mark the position of the first
particle-hole excitation energy, which shifts down with increas
field. When the collective-mode energy approaches the particle-
excitation energy, the collective-mode peak splits and part of
spectral weight is taken away from the pole.

FIG. 9. Determinant of the kernel defined in Eq.~70!, for the
system of Fig. 8 at zero external field. The first zero of ReD(v) at
0.06 meV corresponds to the ferromagnetic resonance seen in
8. ReD(v) has other zeros very close to its poles that are locate
particle-hole energies~marked by vertical dashed lines!. The zeros
correspond to spin-flip particle-hole excitations, but their spec
weight in Fig. 9 is virtually zero unless they approach the ferrom
netic resonance mode.
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tify them as the spin-flip particle-hole excitations discuss
in Sec. IV C.

As shown in Fig. 8, we can use an external magnetic fi
to manipulate both energy and spectral weight of
collective-mode. From zero field to the reversal field, t
collective-mode energy and its spectral weight decrease.
yond the coercive field they both start to increase monoto
cally. As shown in Fig. 8~b!, if we keep increasing the field
the collective-mode energy starts to approach the fi
particle-hole excitation energy, whose energy decreases
increasing field. When the two energies are proximate
each other, the collective-mode peak splits into two clo
resonances: part of the spectral weight of the magnetiza
fluctuation is transferred to the nearby particle-hole exc
tion, as also illustrated in Fig. 10 where we plot the deriv
tive of D(v) at Eres as a function of the external field. Th
peak inD8 corresponds to a sudden decrease ofZresgiven in
Eq. ~76!: the collective mode can decay into a particle-ho
excitation. More precisely, we can say that the two types
excitations are coupled, and therefore it is no longer me
ingful to speak about spin collective modes as distinct fr
spin-flip particle-hole excitations. In our model the couplin
mechanism is provided by the spin-orbit interaction. Inde
we have checked that without spin-orbit interaction, noth
happens to the collective peak when its energy crosse
particle-hole excitation.

The coupling between collective modes and particle-h
excitations described above mimics what would happen
instead of manipulating the excitation energies with an
ternal magnetic field, we could progressively increase
size of the nanoparticle up to a few thousand atoms. In
caseEres would stay approximately constant butd would
decrease. When these two energy scales cross the lo
particle-hole excitations will start to interact with the colle
tive mode. It is therefore expected that in a nanoparticle w
a few thousand atoms whereEres'd, spin collective modes
and particle-hole pairs are strongly coupled.

Figure 11 shows the external field dependence of the
ergy of the collective-mode peak for a 143-atom and a 2
atom nanoparticle, respectively. The jumps in the energy
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FIG. 10. Derivative of the determinant of the kernel given in E
~70!, calculated atEres, as a function of the external field for th
system of Fig. 8.D8(Eres) is inversely proportional to the residue o
the collective-mode. The peak inD8(Eres) occurs where the
collective-mode energy and the first particle-hole excitation ene
cross.
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A. CEHOVIN, C. M. CANALI, AND A. H. MacDONALD PHYSICAL REVIEW B 68, 014423 ~2003!
the 143-atom nanoparticle correspond to reversal of the m
netic moment. Interestingly, we have found that the pe
energy follows accurately Eq.~72! for all values of the ex-
ternal field, even when its value is larger than the low
particle-hole energy.32 The energy gapEres, obtained ex-
trapolating the curve at zero field, is approximately volum
independent, as expected from our general theory. We w
like to point out that at low fields (Heff<1 T) Eres
;0.1 meV, which is of the order of the anisotropy consta
atom K in cobalt,8 and is also of the order of the tunnelin
resonance spacing observed in Refs. 2 and 3.

C. Anisotropic fluctuations

The dynamical susceptibility displays spatial anisotro
in its transverse diagonal components due to the strong
isotropy of the micromagnetic energy functional. We illu
trate this point in Fig. 12 by plotting Imxxx(v) together with
Im xyy(v). We can see that also Imxyy(v) has only one
dominating collective-mode peak at the same energy of
collective-mode in Imxxx(v). This is obvious since in both
cases the collective-mode energy is given by Eq.~70!. How-

FIG. 11. Variation of the collective-mode energy~low-energy
peak in the susceptibility! as a function of the external field fo

143-atom and 260-atom nanoparticles.HW ext is in theZX plane at an
anglep/4 with theZ axis. ~b! The detailed low-field behavior. The
discontinuities for the 143-atom nanoparticle correspond to mag
tization reversal points.~There are no reversal points in the 26
atom system for this external field direction.!
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ever, theweight of the pole in the two spectral functions
different and its variation as a function of the external field
opposite. At large fields the difference betweenx andy com-
ponents disappears and the transverse susceptibility bec
isotropic. We find the same trend for hemispherical nanop
ticles containing 143 or 260 atoms.

We can get an intuitive understanding of this behavior
looking again at the classical micromagnetic energy fu

tional Etot(V̂) as a function ofQ and F, shown in Fig. 2.

There are four equivalent minima in theXY plane at6X̂

6Ŷ, that is,Q5p/2 andF5p/41np/2, n51, 2, and 3.
Note, however, that the energy barrier separating the f
minima atQ5p/2 is very low. We can interpret the collec
tive mode as the zero-point motion of a two-dimension
anisotropic harmonic oscillator, whose potential is obtain
by expandingEtot(Q,F) to second order inQ andF around
one of the minima. Looking at thex component of the spec
tral function corresponds to exciting the collective oscillati
mainly in the hard direction. We can further pursue this an
ogy and clarify the effect of the external magnetic field.
magnetic field in theZX plane starts to decrease the lo
barriers separating the four minima. Thus the collectiv
mode energy decreases. This continues up to reversal.
that at reversal the collective-mode energy does not go
zero because the potential landscape has only a saddle
there: the potential still increases in the direction of the t
poles of the unit sphere (Q50,p/2). After the last reversa
has taken place, that is, once the magnetization has flippe
a stable minimum, a further increase of the magnetic fi
makes the spring constant of the harmonic oscillator stif
Hence the collective-mode energy starts to increase. This
havior is summarized in Fig. 11. At strong magnetic fiel
the energy functional is dominated by the Zeeman term
any anisotropy in the transverse fluctuations disappears.

Spherical particles have a more symmetric anisotropy
ergy landscape, without the strongXY easy-plane anisotropy
characteristic of hemispherical particles. A reversal point
this case will correspond to the disappearance of the en

barrier inEtot(V̂) in all directions perpendicular toD̂MF , or
at least to a less pronounced saddle point. Therefore sp
cal nanoparticles show a much stronger decrease
collective-mode energies at reversal points.

e-
i-

of
FIG. 12. Imaginary part of the transverse d
agonal spin susceptibility, withx and y compo-
nents. The external magnetic field is in theZX
plane at an anglep/4 with the Z axis. At high
external fields the two transverse components
the spin susceptibility become equal.~a! Hemi-
spherical 143-atom nanoparticle.~b! Hemispheri-
cal 260-atom nanoparticle.
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D. Berry curvature

We conclude this section with a discussion of the num
cal results for the Berry curvatureC(DMF) defined in Eq.
~27!. We have seen thatC(DMF) affects the quantization con
dition of the collective-mode energy given in Eq.~72!, and is
inversely proportional to its residue, Eq.~74!. Variations of
C(DMF) from the constant valueiS/DMF

2 reflect the nontrivial
role played by the spin-orbit interaction. In Fig. 13 we p
C(DMF) as a function of an external magnetic field for
143-atom nanoparticle. We have computedC(DMF) in two
different ways, according to Eq.~64! and Eqs.~32! and~33!,
respectively. The agreement between the two calcula
methods is excellent, especially at low fields@see Fig. 13~b!#.
The fact that the computation method based on Eq.~33!
works well is significant because this method relies only
the knowledge of the ground state for a given magnetiza
orientation, which, in principle, can be obtained with fair
good accuracy from density-functional calculations. Th
Eq. ~33! provides a very convenient expression for comp
ing C(DMF) beyond the mean-field approximation used in t
present work, and also for more realistic nanoparti
models.

From Fig. 13 we can see that the external field dep
dence ofC(DMF) is rather smooth and weak, except when t
system approaches a reversal point. At a reversal p
C(DMF) suffers a discontinuous jump. On the other ha
C(DMF) is completely insensitive to the crossings mention
above between the ferromagnetic resonance mode
particle-hole excitations, when the latter are of order'd. In
fact, if we look at the perturbative expression ofC(DMF)
given in Eq.~64!, we can see that there is no reason to exp
any large fluctuations of this quantity when the smallest
ergy denominator in the sum is'd. If the collective-mode
energy approaches a particle-hole excitation,C(DMF) will
still be well defined and smooth, but it will not tell us an
thing about how the collective-mode spectral weight is
pleted in favor of the nearby particle-hole excitation. In oth
words, the residue of the collective mode is inversely p
portional toC(DMF) only when the low-frequency expansio

FIG. 13. Berry curvatureC(DMF) for a 143-atom nanoparticle
computed using two different methods: the solid line is obtain
from Eq.~64!; the dashed line from Eqs.~32! and~33!. ~b! Behavior
at low fields.
01442
i-

n

n
n

s
-

e

-
e
nt
,
d
nd

ct
-

-
r
-

is valid, in which case it will be a smooth quantity. When t
collective-mode energy is close to a particle-hole excitat
energy of orderd, the low-frequency expansion is meanin
less. One must look at the derivative of the determin
D(v) calculated at the pole frequency, given in Eq.~76!, to
find the residue. An important exception occurs when
particle-hole excitation energy approaches zero~i.e., close to
mean-field quasiparticle level crossings!.17 These are events
that can occur only for some particular orientations of t
magnetization and at isolated values of the external fie
When the system is close to a mean-field quasiparticle le
crossing, the Berry curvature landscapeC(D) is strongly dis-
torted. In this case the fluctuations ofC(D) are a direct indi-
cation of the coupling between the collective mode a
particle-hole excitations, which obliterate the distinction b
tween them.

VI. CONCLUSIONS

In summary, we have developed a theory of element
spin excitations in ferromagnetic metal nanoparticles t
provides a consistent and unified quantum description
both quasiparticle and collective-mode physics. Our form
ism, based on a path-integral approach, allows us to ma
connection between microscopic exchange and spin-orbi
teractions, and classical micromagnetic theory. We h
shown that small nanoparticles have a collective excitatio
energies below the lowest particle-hole excitation ener
whose energy gapEres is given by the ratio of the anisotrop
energy and the total Berry phase of the system. As the sin
particle mean-level spacing decreases and becomes m
smaller thanAaEres, the collective excited states evolve in
a damped collective mode whose spectral weight is dist
uted over a large number of particle-hole excitations. Th
conclusions are summarized in Fig. 1.

We have illustrated these ideas by performing numer
calculations of nanoparticles containing up to 260 atoms,
scribed by a microscopic tight-binding model. We ha
found that for this particle size there is typically an isolat
collective excited state below the lowest particle-hole ex
tation which nearly exhausts the spectral weight of the
namical susceptibility. The energy gapEres is of the order of
0.1 meV, and is approximately independent of the parti
size. Occasional crossings between primarily single-part
and collective excitations occur as a function of applied m
netic field. Near the crossing point, the collective-mode pe
splits, as a result of resonant coupling between the two ty
of excitations that is nonzero because of spin-orbit inter
tions. These crossings become more common as the part
become larger and cannot be avoided for systems of na
particles with typically more than 10 000 atoms.

Although a detailed comparison with the tunneling tran
port experiments of Refs. 2 and 3 is beyond the scope of
present paper, our analysis sheds light on some essentia
tures which are quite relevant to the understanding of
experimental results. What emerges from our theory is a
ture of elementary excitations that is far more complex th
that derived from earlier phenomenological models, wh
the effect of spin-orbit interaction is accounted for only i
directly by means of an uniaxial anisotropy term in a gia

d
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spin Hamiltonian that represents the coherent magnetiza
dynamics. In particular, our results suggest that for the p
ticle size considered in the experiments quasiparticle
spin collective modes are most likely strongly entangled
spin-orbit interactions. It is not unconceivable that such
intertwined set of excitations could provide a rich low
energy tunneling spectrum, even in conditions of equilibriu
tunneling.

The energy gap of the ferromagnetic resonance mode
be viewed as the characteristic mean–energy-level spa
between coupled collective-quasiparticle excitations
scribed by an effective Hamiltonian. Interestingly enoug
the value ofEres deduced from our model calculations is
the order of the observed tunneling resonance level spac
This value, which is also of the order ofKbulk , is five times
larger than the anisotropy constant estimated from the m
sured switching field usingKsw5mB Hsw. The smallness of
Ksw is one of the properties that led the authors of Ref. 6
conclude that equilibrium spin excitations involving only th
lowest-spin multiplet cannot be resolved in the present
periments and therefore cannot explain the observed l
density of resonances. While the discrepancy betweenKsw
and Kbulk is still a puzzle33 @see, however, Ref. 34#, our re-
sults suggest that these low-lying excitations are in fact be
detected. These considerations do not necessarily imply
the main features of the tunneling experiments can be un
stood by equilibrium transitions alone. Measurements
gated devices3 convincingly support the hypothesis that no
s
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equilibrium transitions play a crucial role. The point that w
want to make here is that low-lyingequilibrium spin excita-
tionsare probably equally important for the interpretation
the experimental results.

It would be highly desirable to perform new tunnelin
experiments in more controlled situations and especially w
smaller nanoparticles, so that the spin excitations associ
with the electronic degrees of freedom and with the mag
tization collective coordinate could be more easily dise
tangled. The physical condition required to reach this regi
is that the single-particle mean-level spacing be larger t
the total anisotropy energy.~See Fig. 1.!17 For cobalt this
would imply dealing with nanoparticles containing of th
order of 100 atoms, which is within reach of present expe
mental capabilities.
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