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We present a theory of the elementary spin excitations in transition-metal ferromagnet nanoparticles which
achieves a unified and consistent quantum description of both collective and quasiparticle physics. The theory
starts by recognizing the essential role played by spin-orbit interactions in determining the energies of ferro-
magnetic resonances in the collective excitation spectrum and the strength of their coupling to low-energy
particle-hole excitations. We argue that a crossover between Landau-damped ferromagnetic resonance and
pure-state collective magnetic excitations occurs as the number of atoms in typical transition-metal ferromag-
net nanoparticles drops below approximately,1@bout where the single-particle level spaciagbecomes
larger than\/ZEres, whereE,is the ferromagnetic resonance frequency and the Gilbert damping param-
eter. We illustrate our ideas by studying the properties of semirealistic model Hamiltonians, which we solve
numerically for nanoparticles containing several hundred atoms. For small nanoparticles, we find one isolated
ferromagnetic resonance collective mode below the lowest particle-hole excitation endfgy~&t.1 meV.

The spectral weight of this pure excitation nearly exhausts the transverse dynamical susceptibility spectral
weight. Asé approache#EEres, the ferromagnetic collective excitation is more likely to couple strongly with
discrete particle-hole excitations. In this regime the distinction between the two types of excitations blurs. We
discuss the significance of this picture for the interpretation of recent single-electron tunneling experiments.

DOI: 10.1103/PhysRevB.68.014423 PACS nunider75.75+a, 73.21.La

I. INTRODUCTION many-electron excitation spectra of a single-domain ferro-
magnetic nanoparticle. The ultimate objective of this paper is
In bulk condensed-matter systems, normal metals aré shed light on the physics that is responsible for the rich
Fermi liquids; their low-energy excitation spectra can beand complex behavior seen experimentally, which includes
placed in one-to-one correspondence with those of corréhysteretic behavior, nonmonotonic field dependencies, and a
sponding noninteracting electron systems as argued by Lamauch denser low-energy excitation spectrum than would be
dau more than 50 years ago. Recent single-electron tunnelirexpected based on a noninteracting quasiparticle model. Our
spectroscopy studies of metallic nanopartidié@swhich the  approach is based on a weak-coupling description of a me-
discrete excitation spectra of small systems containing leswllic ferromagnet in which spin-orbit interactions cause col-
than one thousand to tens of thousands of atoms are investective and particle-hole excitations to be coupled at low
gated, have allowed Landau’s enormous simplification of in-energies, and the classical micromagnetic description of a
teracting fermion physics to be examined quite directly. Withferromagnetic metal nanoparticle emerges naturally when
a few caveats and some exceptions, the wide variety of inquantum effects are unimportant.
teresting phenomena that have been studied using single- Our theory builds on earlier work? which captures sev-
electron tunneling spectroscopy can be understood usingral features of the experimental spectra, especially when
ideas from independent-particle quantum mechanics. Alnonequilibrium excitatiorfsare considered, but does not pro-
though they can still be regarded as Fermi liquids for manyide a unified and consistent quantum description of how
purposes, metals with nearly continuous broken symmetriesollective and quasiparticle excitations are coupled by spin-
(in particular, the ferromagnetic transition metals that are therbit interactions. The purpose of this paper is to develop
focus of this papersupport low-energy collective excitations such a description and illustrate its implications by applying
in addition to Landau’s particle-hole excitations. When spin-a simplified but qualitatively realistic microscopic model that
orbit coupling is neglected, the broken symmetry ofwe have recently introduced.
itinerant-electron ferromagnets is continuous and the collec- The elementary spin excitations in bulk itinerant-electron
tive excitations are Goldstone bosons whose energy vanishéarromagnets are of two kinds: collective spin excitations
in the long-wavelength limit. Recent single-electron tunnel-(spin waveg and spin-flip particle-hole excitationsStoner
ing spectroscopy studied have succeeded in resolving the excitations. Spin-wave excitations are related to the collec-
excitation spectra of ferromagnetic transition-metal nanopartive magnetization degree of freedom and form a branch in
ticles with diameters below 4 nm. The discrete resonance§-o space, which is gapless if the system is isotropic, in
seen in the tunneling experiments measure the low-energgccord with Goldstone’s theorem. The main effects of spin-

0163-1829/2003/68)/01442317)/$20.00 68014423-1 ©2003 The American Physical Society



A. CEHOVIN, C. M. CANALI, AND A. H. MacDONALD PHYSICAL REVIEW B 68, 014423 (2003

orbit interactions in the bulk are to generate an energy gap

E,esin theq=0 collective mode, which is of the order of the d<alZE

consequent magnetocrystalline anisotropy energy per atom— | Bulk Ferromagnetic Resonance

K~0.1 meV in cobaft—and to introduce the possibility of -
decay of long-wavelength collective excitations into particle- | KN, >38>a'2E_, |

hole excitations;*°a process that contributes substantially to

the collective excitation lifetimé for the case of NiFe thin |[Ferromagnetic Resonance = Pure state_]

films. In the absence of spin-orbit interactions, the ferromag-
netic resonance is coupled only to spin-flip particle-hole ex- 2

citations which at long wavelengths have a gap of the order | Molecular Magnet |

of the spin-splitting fieldA. Gapless spin-flip particle-hole 15

excitations are possible only at wave vectors exceeding the S N

.. B n . a
minimum ¢-space separation between majority- and

minority-spin Fermi surfaces. The separation in energy at FIG. 1. Crossing of relevant energy scales as a function of the
long wavelengths between collective modes and the spin-flipumber of atomsV, in a magnetic nanoparticle. Her® is the
particle-hole continuum implies that low-energy collective single-particle mean-level spaciri§sis the energy of the coherent
modes are only weakly damped. Beyond a critical valug of spin collective mode or ferromagnetic resonance eneigig the
the spin-wave branch merges with the continuum. Thus spimagnetocrystalline anisotropy energy per atom.
waves can decay into Stoner excitations. The strength of this
decay process is sensitive to the character of the orbitalhe two regimes occurs approximately where the level spac-
involved in the particle-hole excitatiori.In the present ing & is equal toyaE,., in which « is the bulk resonance’s
work we will focus on how this description of elementary Gilbert damping factot® For typical transition-metal nano-
spin excitations in itinerant ferromagnets has to be alteregarticles this condition is satisfied in particles containing on
when the level spacing for quasiparticle excitatiétis finite  the order of 16 atoms. For smaller particles, avoided cross-
and approachek,.s, a condition that is satisfied in the na- ings between collective and individual particle-hole excita-
nometer particle-size range. Note thiais inversely propor- tions will occur occasionally as a function of system param-
tional to particle volume, whil&,.sis approximately volume eters, for example, as a function of an external magnetic field
independent for large nanoparticles. Since in a finite systernsed to reorient the magnetization. For nanoparticles con-
there is no wave-vector conservation, collective modes anthining fewer than approximately 4@toms, avoided cross-
spin-flip particle-hole pairs cannot be simply separated, unings with particle-hole excitations will usually not occur at
like the bulk case. We will show that this fact, together with any field orientation, and the nanoparticle can be considered
the essential role played by spin-orbit interaction, has proa molecular magnet in which only spin-orientation degrees
found consequences on the nature of the elementary spif freedom are important at low energi€dn Sec. V we will
excitations in ferromagnetic metal nanopatrticles. present numerical results for a few-hundred-atom nanopar-
The paper is organized in the following way. In Sec. Il we ticle, which illustrate some of the these points. Finally in
introduce two similar microscopic models for a magneticSec. VI we summarize our findings and comment on their
metal nanoparticle and explain how they are related to theelevance in understanding current tunneling experiments.
phenomenological model considered previously. The models
differ in that one accounts for the difference in t_he strel_"ngtl]ll QUANTUM MODELS OF A FERROMAGNETIC METAL
of exchange interactions betwesandd electrons in transi- NANOPARTICLE
tion metals, a feature whose consequences we wish to ad-
dress specifically. In Sec. Il we derive a path-integral for- In this paper we consider two slightly different quantum
mulation of theories based on these mod@f§his point of  models chosen to describe both collective and quasiparticle
view provides a convenient language for explaining the inphysics in a magnetic metal nanoparticle. We denote them as
terplay between collective modes and particle-hole excitathe local d-orbital exchanggLDE) model and long-range
tions, and for making contact with classical micromagneticexchange(LRE) model, respectively, for reasons that be-
theory. The spin-orientation fluctuation propagator in thecome clear below. We will see that these models, when
Gaussian approximation is discussed in Sec. IV. The poles afolved within a mean-field approximation, are essentially
the fluctuation propagator occur at the elementary spin exciequivalent and provide a convenient quantum description of
tations of the system. We will show that the ferromagnetica ferromagnetic nanoparticle when the magnetizatiocois
resonance energl,.c can be expressed as the quotient ofherent (spatially constant across the sampl®ur use of
anisotropy energy and Berry curvature coefficients whichthese models is motivated partly by the evident success of
specify the Gaussian expansion of the action at low frequenspin-density-functional theory in describing ferromagnetism
cies. We then discuss how the resonance evolves with pain transition metals; our formalism could easily be adapted to
ticle size. Our main conclusions are summarized in Fig. 1be compatible with this method of calculating the energies of
For large particle sizes the ferromagnetic resonance weight ifferent magnetic configurations. The models are intended
distributed over a large number of particle-hole excitationsto be sufficiently realistic to capture generic aspects of
while for smaller particle sizes the ferromagnetic resonancéransition-metal nanoparticle magnetism, but evidently miss
appears as a pure quantum excitation. The crossover betwefgatures that can be important in practice such as variation in
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exchange interaction strength and interatom hopping amplizhere the atomic matrix elementsu,s|L-S/u’,s')

tudes near the surface of the nanoparticle. =(i,u,5|C-§li,u’,s') depend on the spin-quantization axis
_ specified by the angle® and ®. The energy scal&,,
A. Local d-orbital exchange model which characterizes the coupling between spin and orbital

The first model that we consider accounts qualitatively fordegrees of freedom, varies in the range from 50 to 100 meV
the orbital dependence of exchange interaction strengths im bulk 3d transition-metal ferromagneté Finally, A, is a
transition-metal itinerant-electron ferromagnétdle model local one-body operator describing the Zeeman coupling of
the nanoparticle as a cluster df, atoms located on the sites the orbital and spin degrees of freedom to an external mag-
of a truncated crystal. The numerical results we present hergetic fieldH
are for a cobalt cluster whose truncated fcc crystal is circum-
scribed by a hemisphere whose equator lies intNelane ~
of the fcc crystal® The choice of a hemisphere is motivated ~ 1zee™ —ne 2

exts

by the tunneling experiments of Refs. 2 and 3. We use a pokt 38

s-p-d tight-binding model for the quasiparticle orbitals, with X (S| (E+gsSI ' ,8")) - HexCl it s

18 orbitals per atom, including the spin degree of freedom.

Nine orbitals per Co atom are occupied in neutral nanopar- _ = -, +

ticles. The full second-quantized Hamiltonian is - “BZ Hex M% . (mSILIR'9))Ci ,,Ciur s
H=Hpangt Hexcrit Hsot H zee- 1 -
H band+ exch so Zee ( ) +% E CiT,/,L,SUS,S'Ci,,u,S’J' (6)

The second-quantized one-body term s’

with gs=2. I:IZee plays an important role in manipulating
Hoan > 2 2t el Cus (2)  many-body states. In Ref. 7 we have investigated the spec-
TS wpmp HRRT TR AR trum of the microscopic Hamiltonian of EL), treating the

quartic exchange interaction in the mean-field approxima-
ot andc. labeled by atomic-site indicdsj; atomic f[ion. We have fpcus_ed in particular on thg mesoscopic ph)_/s—

Liptg,S hipas ' ics of the quasiparticle energies and their complex behavior
angular momentum indiceg,u,; and spin indicess,s’. a5 a function of the magnetization orientation and external
We choose the spin-quantization axis to be along the dire¢nagnetic-field orientation and strength. This analysis, al-
tion of the magnetization, which is specified by a unit vectorthough very relevant to the understanding of tunneling ex-
Q(0,d) where® and® are the usual angular coordinates periments, does not tell us anything about the quantization of
defined with respect to the fcc crystal axes. The parametetbie collective magnetization orientation dynamics. For this
t,) ., are Slater-Koster paramet&tsobtained after per- purpose and for the purpose of making a connection with the
forming a Lavdin symmetric orthogonalization procedgte classical micromagnetic theory, the path-integral approach
on the set of Slater-Koster parameters for nonorthogondi€scribed in the next section provides a more useful
atomic orbitals of bulk spin-unpolarized GbHere the ex- 'anguage.

change term is a short-range spin interaction involving only

is written in terms of creation and annihilation operators

the electron spins afl orbitals on the same atomic site: B. Long-range exchange model
Our microscopic LDE model, when solved in the mean-
" 2 & field approximation, is related to a toy model, originally in-
Hexer= —2Udd2i Sa,i-Sa.i s (©)) bp y gnatly

troduced in Ref. 4, which can be regarded as the simplest
possible model of a ferromagnetic metal nanoparticle. The

where toy model Hamiltonian assumes identical exchange constants
1 between all pairs of single-particle orbitals in the nanopar-
& 2 > ticle:
Sd,iE z Si,ﬂ: E E E CiT,;,L,so-S,S’Ci,;L,S’ ’ (4)
ned ped s,s’

with o being a vector whose componemts, «=x,y, andz
are the three Pauli matrices. The paramétgy in Eq. (3)

determines the strength of the exchange interaction and we _ U E E e o et G
set it equal to 1 eV in our numerical calculatiohhis BNG i g oy M S STe TmUTL M
choice leads to the correct magnetization per atom in the 1 U
k. " =
o : . Lo :Hband_ij\_/—s‘ S. (7
The spin-orbit couplindd, is alocal one-body operator a

In Eq.(7) c;’S andc, ¢ are Fermion creation and annihilation
A= §d2 2 <M:5||—'S|M,=5’>CiT,M,sCi,,u’,s’1 (5) operators for a IquaS|part|cIe s}at? cha:raciterlzed .by orbital
o' ss! energye,, and spin componerg S= 22nCp 05 Cn,s IS the
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total spin of the nanoparticle. The single-particle orbitals will (with 2U44=U/8). Differences arise when only theorbit-

have an average spacing inversely proportional to the volys in the LDE model are exchange coupled, on which we
ume of the nanoparticler the number of atom#&/,) and are  comment below.

expected to exhibit spectral rigidity. The one-body term in Neither model includes any magnetostatic dipole-dipole
this HamiltonianHy,,q, should be thought of as including a interactions, which can be important in some circumstances,
mean-field approximation to those spin-independent portionfor example, when the nanoparticle is not close to spherical,
of the interaction not captured by the exchange tétgy, butare easily incorporated in our discussion. Note, however,
_ —%(U/J\fa)é 8. The many-particle spectrum of this that both models Iea'd to strpng shape dependencel, bec_ause
Hamiltonian has been discussed in detail in Ref. 4. of surface effects which are important when the particle size

This toy model Hamiltonian can be further augmented is small. In Sec. V we see that the structure of particle-hole

by a one-body spin-orbit coupling teriig,. We can write exc_itations of the LDE .model, when only the spins d)f.
~ orbitals are coupled, is richer than when quasiparticle major-

Ho as ity and minority spins are simply shifted by a rigid exchange
field, as in the case of the LRE model.
Heo= 2 Uﬁ,mcg,scngi
nms 1. AUXILIARY FIELD FORMULATION
with A. Coherent-state functional-integral and Hubbard-
_ Stratonovich transformation
vﬁ,m:(vﬁnn)*:_va,n’ vﬁ,nzoi (8)

We consider first our LRE toy model. The extension to the

where the conditions on the matrix elements,, specified in LDE m_odel IS strwghtforward agsd we comment on it b.elow.
~ Following some familiar step¥;?> we write the interacting

Eq. (8) ensure thaH,,is Hermitian and invariant under ime  fermion partition function as an imaginary time coherent-

reversal; heres= —s. _ _ __ state path integral
Consider the orbital part of the microscopic Hamiltonian

given in Eq.(1). SinceHp,.qis quadratic, it can be diagonal- _
ized by a canonical transformation as follows: ZIJ DLy(7)p(7)]exp(—S), (12
~ i where the actiors is
Hband:iz’j Es M%z tiljl,ﬂz,sci]tul,scj,uz,sznzs Cl,scn,sfny
9) B — d —
S= | d7| 2 Yno(D| 5w [T+ HLP(T), (D]
0 n,s arT
where ’
(13
Cns= > (N,S|i, i, t)Ci o, (100 Here p=1KkgT, u is the chemical potential, and we use
Tt o units such thati=1. Since the exchange interaction term in

) , our toy model is quadratic in the total electron spin—see Eq.
and|n,s) are the orthonormal eigenvectors. The elgenvalue§7)_itS contribution to the action for each time ste

€r in Eq. (9) can be identified with the doubly degenerate _y .~k g/N can be represented by a Gaussian integral over
orbital energies of the toy model Hamiltonian in E@). If e e
a real vector fieldA ,=A(7,) as

we now use Eq(10) and the completeness of the eigenstate
{li,;,0)}i ., we can rewrite the exchange interaction of Eq.

: . Ny- =
(7) in the form f dAkexp{ — ﬁAk.Ak
foar -2 0886 2 X358, @
exch™ — 5 {72 OT N & "9 - 1 - e
2Na 2Na4 ij +Ak'§ E ‘pn,s(Tk)O—s,s’l/’n,s’(Tk—l)]
n,s,s’

with QEEILSW. From Eq.(11) it is clear that the toy model -

Hamiltonian with equal exchange constants is equivalent to a oc @™ Hexe (70 (7 1] (14)
microscopic model with dong-range exchangeteraction, ) . ] . )
coupling the spin of each atomic orbital at each atomic site td/Sing this transformation for each time step, we obtain the
all others; hence the term LRE. We emphasize that the eledollowing functional integral over a single auxiliary field
tron spins of all orbitals are coupled in this model, not justA(r) that fluctuates in imaginary time:

the spins ofd orbitals. From Eq.(11) it follows that in a

constrained mean-field approximation where the local mo-

ment(S;) is forced to becoherentacross the sample and the Z:f DLy i T)]j DlA(n)]exp(=S), (19
spins ofall atomic orbitals are exchange coupled, the micro-
scopic LDE model and the LRE model would be equivalentwhere the actiors is
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fdr[—A(r) A<T>+Z wnsm( —u)%s(r)
+Hpand (1), (D) ]+ Hed ¢(7), ()]

1 . - — -
- E[A( T)+ gs:“’BHexr] : nzs ‘//n,s( 7) Os,s! 'r/fn,s( T)} .

(16)

This action can be written in another form which is espe-
cially useful for small nanoparticles at low temperatures. Le
us consider the fluctuating one-body Hamiltonian

N - N “ 1 . .
H1p[ A(7)]=Hpangt Hso— E[A(T)"'gs:u«BHext]

7

—l- -
: 2 Cn,sr Os sCnis-
n.s

In Eq. (15 we can replace the functional integral over the

fermionic coherent state,g( 7),¥(7) by a trace of the opera-
tor,

B . N ~ N
exp(—f dTHlb[A(T)]]=eX;{—GE Hlb(Ak)}
0 k

=1;[ exp — e 1p(A)].

(18)

By inserting at each time steg the resolution of the identity
=3, Wa(A) ) (Wa(A)], where{|W,(4,))}4 is a complete
set of eigenstates of the one-body Hamiltoritap(A,), and
taking the T—0 limit, we obtain Z=fD[5(¢)]exp(—S),
with

862

Xexp — eF1p(Ay_ 1) ]| Wo(Ay_1))X - -
11 oA}

Note that the fluctuating fieltzi(r) is bosonic and satisfies

periodic boundary condition& (0)=A (). Sincee—0 we
can rewrite the action in the form

5= [

Xe~ eﬂlb[&(T)] |WO[5(T)]>_ 1})

Ak Ak |n{<‘1’0(AN)|

X(Wo(Ay)|

XeXF[—eHlb(AN) (19)

—A(T) A(r)- —{<‘1’0[A(T+ e)]l

Na .
J dr[—A(T) R(7)+E[A(7)]

(7)

+(W¥, |a\1f0/aA> —] (20

PHYSICAL REVIEW B 68, 014423(2003

Here E;[A(7)] is the ground-state energy &f;,[A(7)].
The approximations that are implicit in these manipulations
are valid when collective fluctuations of the spin-splitting
field are not strongly coupled to particle-hole excitations.

Equation (20) plays a crucial role in this paper. The
quantity

(21)

N, -
Etot[A(T)]_ A(T) A(r)+Egp[A(7)]

lglves the quantum energy functional of the magnetic nano-

particle as a function of the fluctuating spin-splitting field
A(7); its classical limit, obtained by evaluating at zero fre-
quency(i.e., staticA independent of tim)eEtO{E(T)], cor-
responds to the phenomenological micromagnetic energy
functional for a coherent magnetic particle with magneto-
static contributions neglected.

The last term in the action

( 7)

SBerryE fo d’T(\Irolé\Pol(?A> e (22)

is a Berry phase term, which is related to the reduction of the
total spin component along the magnetization axis due to
spin deviations from the ground-state configurafioff. As
we see in Sec. IV, the Berry phase contribution to the action
captures the quantization condition of the collective elemen-
tary excitations and the way in which spin-orbit interactions
affect this quantization condition.

The Hubbard-Stratonovich decoupling can also be carried
out in the case of the LDE model of E). Here we should,
in principle, introduce an auxiliary fielqid,i(r) that is de-
pendent on the atomic site Complicated inhomogeneous
and noncolinear spin-splitting fields can indeed occur for
very small nanoparticles with a few tens of atotfé°In this
paper, however, we consider only @herent i.e., site-
independent spin-splitting field, which is a good approxima-
tion for the relatively large nanoparticled/f>50) in which
we are interested.

B. Mean-field approximation

The mean-field approximation for the action is obtained
by finding the value of the spin-splitting field at which it is
minimized. Since the minimum occurs for a time-
independent spin-splitting fieIﬂMF, the Berry phase contri-
bution to the action does not enter at this level. In the
coherent-field approximation, the mean-field spin splitting
satisfies

Ny - -
aAMF_ <‘I’MF|Stot|‘I’MF> =0,

(23

Na& aElb(A)

U OmF |AMF

where | ¥ o) =|¥o(Ayr)). Aye may be determined either
by minimizing the energy functional or by solving the self-
consistent-field equations implied by the second form of Eq.
(23). The same set of mean-field equations can be derived
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directly from the more general expression for the action ingral, Eq. (25), is equal to the product of the area of the
which the functional integral over fermion Grassmann vari-enclosed path and the Berry curvature,
ables is still preserft

IV. GAUSSIAN FLUCTUATIONS C(Aye) =2 X < v, (9‘1:0> _ < [Nf 5‘1’3>
Our theory of elementary magnetic excitations of metallic A JA* | IA
nanoparticles is based on a Gaussian fluctuation theory in V- | ow
which the action is expanded to second order around the — (2201270} (27)
static mean-field values of the auxiliary fields. It proves in- IAY | 9A

formative to contrast two approaches that can be used to

evaluate the Gaussian fluctuation action. In the first approxiunlike the integrand of Eq(25), the Berry curvature is in-
mation we work directly with the Berry phase and energydependent of gauge, i.e., it is independent of the arbitrary
terms in the action, which are rather transparently related tphase choice made for the many-electron wave function at
micromagnetic theory and Landau-Liftshitz semiclassical dy-each magnetization orientation. For small fluctuations the in-

namics. This approach cannot, however, deal directly withegrand in Eq(25) can be chosen to be anything whose curl
the coupling of collective and particle-hole elementary exci-.

tations. In the second approach we expand the action to se'(c?hotir(]:ee ;%g?;arggs(?o'\"ag sFr%rmzﬁr?:qp;i’ ;réﬁofcc;n}/srn;eggn_
ond order around\z, without introducing the quasistatic i ' t'g field. lead 3{ gaug

energy functional as an intermediate step. We see that tr¥ant magnetic field, leads to

two approaches are equivalent in the limit of energies
smaller than the minimum particle-hole excitation energy. C(AwF) Al e -

P & SBerry:T [zXA]-dA, (28

A. Energy functional approach

If we are interested only in low-energy excitations, whichif we choose the direction to be the direction ofMF. This
have slow dependence on imaginary time, we can approxiine integral can be parametrized in terms of the imaginary
mate the energy function by its dependencestatic field  time variable,
variations as follows:

e s o] Metes  PERD)| o Soer= 2 [Car B0 D05, @9
tot' MF 2 U &AH&A'B AMF ’ 0
(24 which can also be written in frequency space as

where A®=A%— A%, and Eyr=E(Aye). Since ampli-
tude variations are energetically more costly, the dominant 1 _ -
fluctuations of the order parameter will be rotations. The SBerry:ﬁ > 0 C(AwR[AX(—iwp)AY(iwpy)
second derivative represents the expansion of the micromag- tn
netic energy around its extremum; the dependence of energy —AY(—iw) A wp)]. (30)

on orientation is generally referred to as the anisotropy en-

ergy of the nanoparticle. Equation(30) shows that the Berry phase contributes a term
The bosonic field\(7) is periodic in[0,8]. Therefore the Jinear in frequencyw,, to the imaginary part of the quadratic
Berry phase contribution to the action given in E&2) can  Gaussian fluctuation action. We see in the next section that
be rewritten as the closed line integral that is path dependefrihe same contribution to the action arises from a small fre-
but not dynamics dependent: quency expansion of the spin-fluctuation propagator kernel,
defined in the next section.

SBerry: § dA<\I’0|&\If0/&A> (25)
1. Calculation of the Berry’s curvature
Since We now briefly discuss the numerical evaluation of Berry
P P * curvature®® evaluated at the mean-field-solution point. We
<\po —J}r0> + < v, _»‘I’o> start from the expression faSg.r, given by Eq.(25), and
dA dA consider paths on the unit sphere of exchange-field orienta-
tions. A small area closed path centered on the mean-field
:<‘I’o iﬂlfo> +<iﬂ1’o q,0> orientation encloses a small area on the unit sphere whose
dA dA normal is the direction ofAyz, which we take as the
direction. Using Stoke’s theorem and taking the Berry cur-
_ i(\P 1W)=0 (26) vature out of the surface integral, we obtain
oA O YT
the Berry phaség,, is pure imaginary. For small amplitude Sgery=C(A ) ds,. (31)
rotations around the direction dfy,-, the closed line inte- area
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For our calculation we consider as a closed path a small

right triangle in thexy plane of sides\,=A,= A g6, where |‘I’o(5)>:1_s[ (U(Q)C;rﬂLU(ﬁ)Cll)l;[ chicd,[0)
0 is a small angle describing the rotation aroundxtendy
axes. Then E|‘I’o(ﬁ)>a (37)
1 ) where the indexs runs over theN,—N, singly occupied
SBerryZEC(AMF)AMFaz' (32)  states and the indeat over theN, doubly occupied states.
_ The functionsu(Q)) andv({}) are written in terms of the
This Berry phase can also be expressed as angles® and® specifying the unit vectof)(®,d),
| Sgerry=— IMIN[(W el Wo( 8,0 )(Wo(A,0)|Wo(A,)) u(9)=cog@/2), (39)
X(Wo(Ay)[Wye)], (33 v(Q)=e®sin0/2). (39

where|¥o(A,)) and|Wy(A,)) are the single Slater determi- We obtain
nants of lowest energy for exchange fields that differ from A
the mean-field value by, x andAyQ, respectively. Equation NOEQ)
(32) can be obtained by expandiff o(A,)) and|qfo(5y)) Q)
to quadratic order inA, and Ay, remembering that R
(Wo|(aloA)Wo) is pure imaginary. The expression for the +o(Q)e!DIT eficlylo). (40
Berry phase given in Eq32) is very suitable for numerical d

calculations, since the wave functioano(EX)> and Hence, for rotations of the spin-splitting field,

d) s'#s

>=E (a—ljc;rﬁ %Cll) IT (u@)ecl,
s J

|‘Po(5y)> can be easily calculated. The arbitrary phases of PR PR au v
the wave functions at the three vertices explicitly cancel{ Vo|—=)={( ¥o|— =Z v —+tov*—
since each wave functioand its complex conjugate appears A Q) s a9
in Eqg. (32). If we choose the arbi}rary phases irj such a way 1-cog®). N;—N, 1-cog0) .
that the matrix elements di¥o(A,)) and [Wo(A,)) with =X 2sin®) =13 sin(®) ®
| W \e) are real and positive, then the Berry phase is given by S
the simplified expression (41
_ . . and the Berry phase,
| Sgerry= M IN(Wo(A,)[Wo(A,)). (34) A
B vyl dQ
Finally, one can show that the Berry phdse Berry cur- SBe,,y=f dr{ Wo|—)- ar
vature of the many-body wave function is given by the sum 0 o€}
of the Berry phasesor curvatures of the occupied single- v
particle states, even in the presence of spin-orbit interaction. _ fﬁ v, d AT
The easiest way to prove this is to show that 00
A R S5 aal1-cos6,)]
Vol —=Py) = — , 35 I —C030g)]S
0 oA 0 ; ¢n oA ¢n ( ) 2

where ¢, are single-particle eigenstates of the one-body —i[N;—N ]A[Q] 42)
Hamiltonian. The gradient in Eq35) acts separately on the o

single-particle wave functions and hence it can be regarded AL
as a sum of single-particle operators. It follows that the Berr;)NhereA[Q] is the area enclosed by the pdil() on the

phase can expressed as unit sphere, and&[ (1]/2 is the usual spin-1/2 Berry phase. In
the presence of spin-orbit interactions, the Berry phase be-
occ comes highly nontrivial as we discuss in Sec. V.
i Sgerry= 20 IMIN(Bn(A,)|dn(A,)). (36) For a path enclosing the small right triangle described in
n

Sec. IVA 1,A[Q]= 6%2,

2. Berry phase without spin-orbit coupling

&S 43
= (43

. . . SBerry:'

For the case of no spin-orbit coupling, the Berry phase
term can be calculated analytically and is equal to the num-
ber of singly occupied orbitals times the usual spin-1/2 Berry C(Aye) =i i (44)
phase. To show this, let us consider a many-body wave func- 2 "

tion within the long-range exchange model describing a statt\?vhere S=(N;—N,)/2 is the total spin in the nanoparticle

polarized in the directiof)=A/A, ground state.

MF
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B. Gaussian fluctuations: Perturbation theory approach interactions. The componerits, , =K __=0, since the spin

The Gaussian fluctuations theory can be derived mor@f the quasiparticle states is a good quantum numGéis
generally by formally integrating out the fermions and thenPTOPerty depends only on spin-rotational invariance and
expanding to second order aroung,e without making any ~Nolds for the short-range exchange model as yelurther-
quasistatic approximations. We discuss the case of the long°re: since the electron mean-field eigenstates factorize into
range exchange interaction first and then indicate whatPin @nd orbital factors, identical spin-up and spin-down
changes occur in the short-range gnly) exchange model. Wave functions are split energetically By, and we obtain
The formally exact expression for the action is

N;—N,

on— (Ape+Heyw

K+7(iwn):i =K_,(—iwy). (59

BN, . . ~
S= fo EA-A—In defd,+Hi,(Apet A" ], (45
In examining the consequences of this simple property for
_ _ } ) - N the Gaussian action kernel, we first considgy(iw,). We
ping and spin-orbit terms, the spin-splitting term{Ayr  see from Eq(55) that when there is no spin-orbit interaction,
+Hey) - s+As® Itis the second of these two terms that isK,,(iw,=0)=0, a property that reflects invariance under
treated perturbatively. First-order terms in the expansion vanygtations of exchange-field orientation around zhexis. By

ish, since the mean-field value 4f is an extremum of the expandingK,, (i w,) aroundiw,=0, we obtain

action. The second-order terms can be obtained by a standard
calculation with the following result:

whereH ,,(A) includes, in addition to its single-particle hop-

=———lw,.
200 A

1 Kyyliwp) =~ =i
Stue=735 > A~ )Kgalion)A(iw,), (46)

o

) . _ By inserting Eq.(56) into Eq.(46) and comparing the result
¥'Vh|grfe| the kernekK g, (i wy) is ”(‘je_ inverse l:())f the exchange- it Eq. (30), we can identify the term oK,y (i ) linear in
leld-fluctuation propagator and Is given by iwn, iIS/IAZL, with the Berry curvatureg(Aye), in agree-
ment with Eq.(44).

N, n —n
Q]EUaJrE '.:(gj)—_F(gl)<J|sB|l)<l|s“|J>, Similarly, the expansion oK,,(iw,) =K, (i®,) around
3 lopt&—§ iw,=0 yields
(47)

where|l) is a mean-field electron eigenstate afdis the N N;—=N;
corresponding eigenvalue with energies measured from the  Kxx(iwn) =Kyy(iwn)~-5— T+O(wﬁ)
chemical potential. MF

Fluctuations in the magnetization orientation around the =0+ 0O(w}), (57)

mean-field directioz= EMF/AMF are described by the trans-

verse diagonaK,y, K, and off-diagonaK,,, K, compo-  where in the last equality of E¢57) we have used the mean-
nents of the kernel. It is customary to introdu€e (i w,) field relationship U/Ny) S= Ay between the total magneti-
and K_, (iw,). When the spin-orbit interaction is present, zation of the nanoparticle and the spin-splitting field. The
K, .(iw,) andK__(iw,) do not vanish and they play a vanishing of the diagonal componeris, and K, at ,

K pali 0p) =6

role. Note that =0 is again a result of rotational invariance. In the absence
of spin-orbit interactions there is a collective mode at zero
Koi(lwpy) =Ky (—lwy), (48)  energy because of magnetization-orientation rotational
invariance.
Kii(—iwp) =K, (i), (49 The physics that we wish to investigate in this paper is
largely contained in the way that the simple results outlined
Ko _(lwp) =K (—iwy)". (500 above are altered by spin-orbit interactions. As we have
It follows from Eq. (47) that stated, both the Berry phase and the energy term in the action

become highly nontrivial, a property that we now examine
K= Na/U+ (K _+K__ )/4+(K, +K__)/4, (51) from the perturbation theory point of view. From E¢48)—
(54) itis clear thatk (@), Kyx(@n), Kyy(wp), andK, ()
Kyy=Na/U+(K - +K_)/A— (K, +K__)/4, (52 are real atw,=0. Comparing Eq(24) with fche w,=0 term
of Eq. (46), we see that the kernel coefficients reduce to the
time-independent perturbation theory expressions for the
Koy =i(K . —K_ )A—i(K, . —K__)/4, (53) second Qerlvatlves éof the total energy YVIth respect to ex-
change field J2E o App)/ IAXIAX, FPEo App)/AYIAY. In
Kyy=—1(K;_ —K_)A—i(K, . —K__)4. (54 its static limit, the fluctuation kernel reduces to one that
yX + + ++ . . . H
would be obtained from a classical theory with the micro-
The transverse fluctuation action of the long-range exmagnetic energy functional derived from a mean-field-theory
change model is quite simple in the absence of spin-orbitalculation, or for accurate first-principles calculations by

and
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solving spin-density-functional Kohn-Sham equations self-

consistently. By expanding( ,4(iw,) aroundiw,=0, we
obtain

. &zEtot(&MF) 2 2
KXX(Iwn)%W‘FO(&)n):(a‘Fb)"‘O((vn),
(59
. Pl M) 9 2
Kyy(lwn)"‘W+O(wn)_(a_b)+o(wn),
(59
. i , .
ny<|wn>~W—cmwlwfc—cmwnwm
(60)
. PErol Ayie) . .
Kyulion)~ =+ CAp)ion=c+ ClAwg)in,
(61)
where
Na  Ki_(0) K+ (0)+K,(0)*
a—U+ 5 , = 2 , (62)
K 0)—K 0)*
and c=—i ++(0)—K,(0) ' 63

4

are real constants and the Berry curvature is

_i_ Ne(&5) —Ne(§) 2
Chwr=5 2 — g JOISTIOP 64

This expression for the Berry curvature can also be deriveg,

from Eq.(27) by using time-independent perturbation theory

PHYSICAL REVIEW B 68, 014423(2003

C. Excitation spectrum

The kernel of the fluctuation action is tmeatrix inverse
of the exchange-field propagator, which is proportional to the
spin-susceptibility linear-response function. We refer to this
propagator below as the spin susceptibility,

Xaplin) =[K(iwp)  Hag. (67)

The elementary magnetic excitations of the nanopatrticle
(particle hole and collectiyeoccur at real frequencies at
which x,z(w) has poles. Herg ,z(w) is obtained by ana-
lytically continuing Eg.(67) to real frequenciesiw,— w
+in. Let D(w) denote the complex function

D(w)=defK(w)]. (68)

The condition for the existence of a pole ¥ z(w) can be
expressed by the equation

D(w)=0. (69)

In order to make progress, we will assume that all the com-
ponents ofK involving the longitudinal variable are small
and can be disregarded, except Ky(w). The expression
for the elementary excitation energy then simplifies to

D(w)~K Ky w) Kyy(w) - ny(w) ny(w)] =0,
(70)

where we have used Eq&1) and(53).

Let us consider first the limit of small nanopatrticles,
where the single-particle mean-level spacidgis much
larger than the ferromagnetic resonance, which is of the or-
der of the anisotropy energy per atoid, In cobalt, K
~0.1 meV, and if we use the bulk single-particle density of
stated! we find that this limit is reached in nanoparticles
containingN,<10* atoms. In this case we expect a pure
rromagnetic resonance mode with a large spectral weight
that appears as a separate quantum state below the lowest

expressions for the dependence of single-particle wave fungsaticle-hole excitation energyWe discuss the situation in
tions on exchange-field orientation. Note that the leading fréyhich particle-hole and collective excitations are not cleanly

quency dependencies K,, and K, are quadratic. These
equations are valid fdrw, smaller than the smallest particle-
hole excitation energyé&;—é&|, as we discuss at greater

length below. So far we have completely disregarded ampli-
tude fluctuations of the exchange field, i.e., the components

of the kernel involvingAZ. It is obvious that in absence of
spin-orbit interactions

Kidiwp) =K (iwy)= Kyz(i wy) = sz(i w,)=0, (65

N,

. a O
Kzz(lwn)=U+

n,0
a >

one
¢ le-e

(66)

When the spin orbit is present, the off-diagonal components

involving A% are, in principle, nonzero. However, it turns out
that they are always very sma#iee the next sectipnthere-
fore we will typically neglect them and only keéf, (i w,)
=N,/U. This approximation amounts to neglecting the

weak dependence of the magnitude of the exchange field on

its orientation.

separated at greater length belpWsing the expansions of
Egs.(58)—(60), we obtain

N,

Ua{az—bz—c2—[iC(AMF)]2w2}:O, (71)

which yields a low-energy pole at the real frequency

£ _\/az—bz—cz 79
A 72
Around the pole we have
Z,
[D(w)] *~g——. (73)
res
where the “residue’Z s is
4 N .
Zre§=ZUa\/az—b2—02||C(AM,:)|. (74)
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Thus the collective excitations have a gajEat. The gapis nance lin€'® The Gilbert damping parameter is the ratio
proportional to thequotientof \/a?—b?—c?, which is essen- between the linewidth and the resonance frequency. It is nor-
tially the total anisotropy energy, and the Berry curvaturemally introduced as a phenomenological damping parameter
C(Ayg). For particles that are not too small, both quantitiesin Landau-Liftshitz equations of motion for the magnetiza-
are proportional to the particle volume, thBgsis approxi-  tion direction; these equations are implied by the low-
mately independent of particle volume and approximatelyfrequency dynamics discussed above. Taking the continuum
equal to the anisotropy energy/atoky, The spectral weight limit for the particle-hole excitation spectrum and assuming
of the collective modeZ, is inversely proportional to the that we have approximate rotational symmetry about the
productof the same two quantities. The spectral weight di-exchange-field-orientation axis, it follows from the preceding
vided by the resonance frequency is proportional to the statignalysis that
response of the exchange field, a quantity which can be un-
derstood simply by minimizing the total micromagnetic _ ImK(@0=Erd]
energy. T IMKy(0=Eed] 26%(C(Ayp)|
The considerations described above apply when the col-
lective excitation energy is smaller than the lowest-energyvhere the overbar denotes an average over typical particle-
particle-hole excitation. Even in this limit where particle- hole matrix elements for states near the Fermi energy. Note
hole and collective excitations are well separated, thdhata approaches a constant and the typical matrix element
exchange-field propagator does have some spectral weight #tales such as/,* in the limit of large nanoparticles.
particle-hole excitations as well. The kern@&q. 47 must We can estimate the number of individual particle-hole
have zeros between the poles that occur at each mean-fiedtkcitations that contribute to the ferromagnetic resonance in
particle-hole excitation energy. Therefore we expB¢iw) a large nanoparticle. The density of states for particle-hole
=0 at w:;jimw“ =¢— & and the susceptibility to have excitatiqns grows linearly with energy gnd at the resonance
additional poles aﬁji . Let us expand®(w) around one of energy 1S~ Efes/‘sz'. The number of particle-hole exc!tatlons
these poles, |n'the resonance is the V\2/|dth of the resonapﬁ@s tmes
this density of states; «E-J 8°. This expression implies a
[D’(Z)ji)]‘l condition for the crossover to pure-state ferromagnetic reso-
= . (79 nance whens= \/aE,... The crossover is therefore expected
to occur at larger particle sizes when the ferromagnetic reso-
Thus, in general the residue of each pole is proportional tonance is sharp. Even when the particle is small enough that
the resonance is not normally coupled with particle-hole ex-
Z;=[D'(w;)] ™ (76)  citations, avoided crossings between these two types of ex-
citations will frequently occur as the external magnetic field
or other parameters are varied. We can describe such an
avoided crossing by assuming that the low-frequency limit
If we increase the size of the nanoparticle to a few thoucan be taken for all but one of the particle-hole excitation
sand atoms, the lowest particle-hole excitation enangy  contributions to the kernel. To briefly explain what happens
~ ¢ will start to approaclE s from above. In this situation in this limit, for which the kernel can be written as the sum
the pole atE s will start to lose its collective character. A&  of a partKif;OOthwith a smooth frequency dependence and a
becomes much smaller theff.s, the ferromagnetic reso- part K'®Swith a resonant frequency dependence, we assume

nance mode will no longer be a single excitation, but insteaghat the particular particle-hole excitation contributes only to
appear as enhanced spectral weight in response functions agts

C =P ., making a contribution
be spread over several particle-hole excitations. If we further
increase the nanoparticle size, we start to approach the ther- 2w
modynamic limit, where the collective ferromagnetic reso- Kl w)= 2—”2|<J|SX|I>|2. (79
nance will be spread over a large number of particle-hole W™ Wjj
excitations. IfE ¢ is the frequency at which EG70) holds, ¢ f5j10ws that the poles of the exchange-field propagator
by expandingD(w) nearE . the ferromagnetic collective 5. r at energies
mode has a width given by

(s I% (78)

[D(w)] *~

a)—a)ji

D. Coupling between collective and particle-hole excitations

E est wii
IMD(Eed s == = {[(Eres ) 2P+V2}% (80)
r=2——>. 77 2
ReD’(Ered whereV is an avoided crossing gap. Using E@8) we find
The susceptibility then has a resonant denominator and thiat V~ aE,.s. The size of the avoided crossing gap that
ferromagnetic mode has the shape of an asymmetrioccurs in a small nanoparticle when a particle-hole excitation
Lorentzian® energy is tuned through a collective excitation energy by an
It is possible to relate the typical value of matrix elementsexternal field or another parameter is specified by the ferro-
between single-particle states that appear in the kernel for magnetic resonance width in the limit of a large particle.
large nanoparticle and the Gilbert damping parameter usu- It is important to note that the experiments in Refs. 2 and
ally used to characterize the width of a ferromagnetic reso3 are carried out for nanoparticles containing~ 1500 at-
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FIG. 3. Real part of the transverse diagonal component of the
FIG. 2. Anisotropy landscapB(A) as a function of® and® kernel for a hemispherical 26-atom nanoparticle, the long-range ex-
for a 143-atom hemispherical nanoparticlg,, is periodic in®,  change modeka) Without spin-orbit(SO) interaction.(b) With SO
with period /2. interaction.

oms. Thus these experiments are probing the most interestinge four degenerate shallow minima®§,(A). By applying

and difficult intermediate regime of particle size, where thean external field some of these minima become classically

lowest particle-hole excitation energy; ~ 6— \/ZEres. metastable and we can have different hysteretic behaviors
with zero, one, or two reversals of the magnetic moment,

depending on the direction of the field.
V. NUMERICAL RESULTS AND DISCUSSION

In this session we present numerical calculations per- A. Real part of K, (o)
formed on our two ferromagnetic nanoparticle models which
illustrate and support all the main points of the theory of
elementary spin excitations developed above. Since we ¢ : . - ¢
deal with nanoparticles containing up to 260 atoms, we ex: e( w,)—after analytical continuationw,— w+in — for a

pect, on the basis of our theoretical considerations, that th@®-atlom nanoparticle for the case of the LRE model. Con-

exchange-field correlation function will normally display one SiStent with Eqs(55) and (57), for zero spin orbitSO) we

main peak at energies below the lowest particle-hole excitalld that the kemel has just one pole at a particle-hole exci-

tion. In addition to verifying this expectation, we see that thetation energy equal tdyg, and a gapless zero. With SO
ferromagnetic resonance mode is characterized by a very ifdteraction included, many more matrix elemeqs”|l)

teresting behavior when manipulated with an external magWill P€ nonzero, and consequently many more poles corre-
netic field to bring it in coincidence with a particle-hole ex- SPonding to these particle-hole excitations will appear in the
citation. kernel. This is shown in Fig.(8), where we can see that the

As mentioned already in Sec. IV, in discussing the differ-Poles with largest residues still correspond to particle-hole

ent components of the kernel and the susceptibility we tak&Xcitations nean yg. Although not visible in Fig. &) be-

he 7 directi | he directi f th atiéh cause of its very small residue, the first pole in the kernel

:Nez | |rectr|10n aor;]g td_e Irection Ip t ehmagnet|zat_|ax\,( occurs at an energy of order of the single-particle mean-level
e also choose thg direction to lie in the equatori spacingd, which for this particle size is approximately 20

plane of the nanoparticle. Then tkelirection is fixed by the

" ) meV. This is shown in Fig. 4, where we enlarge a small
condition of being orthogonal to boizhandy. Therefore t.he energy window at very low energies.
x andy components of the kernel describ@nsversespin

fl : th he directi f th . Similar results for the LDE model are shown in Fig. 5. We
luctuations with respect to the direction of the magnetiza.,, sedFig. 5@)] that the kernel has already several poles
tion, but these directions in general are not symmetry direc

. . =~ “even in the absence of SO coupling, since not all the energies
tions with respect to the crAystaI structure or the nanoparticley; majority- and minority-spin states are shifted by the same
geometry. The direction of) is determined by minimizing rigid spin-splitting field, as they were in the case of the LRE
the classical micromagnetic energy functio®l(A), or model. Most of the poles are still concentrated nAg;,
equivalently, by solving the mean-field equations self-however. The special properties of the LRE model which

consistently. The variation (Etot(A_)) as a function o® and  resultin rigidlly spl?t.mean—field b_ands do not, therefor.e, |n
® has been studied in detail in Ref. 7. The main conclusiondroduce special artificial features in the low-energy excitation
. L < spectrum. From Fig. (®) it would seem that SO interaction

are summarized in Fig. 2, where we plBt,(A) in the d ; ; .

- , . . oes not introduce major effects, merely broadening the pre-
(0,®) plane atHe=0 for a hemispherical nanoparticle gyisiing pole structure. In fact SO interaction changes the
consisting of\/,=143 Co atoms, arranged in a fcc lattice. In gpajytical structure of the kernel at low energies, as it did for
this case the magnetization directibnlies in theXY plane  the LRE model. Indeed, Fig. 6 shows that when the SO is
(®==/2), along one of the four directions corresponding toincluded the first pole oK, occurs again at an energy of the

We first consider the spectral representation of the kernel
defined in Eq.(47). In Fig. 3a) we plot ReK,,(iw,) Vs
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FIG. 4. Low-energy behavior of the kernel for the same system FIG. 6. Low-energy behavior of the kernel for the same system
as in Fig. 3. Solid line: without SO interaction; dashed line: with SOas in Fig. 5. Solid line: without SO interaction; dashed line: with SO
interaction. The vertical dotted line marks the position of the firstinteraction. The vertical dotted lines mark the position of particle-
particle-hole excitation, where Rg,, has a pole. hole excitations.

{esidue of this low-energy pole is three orders-of-magnitude
smaller than the residues of the poles occurring mgg+.
The existence of spin-flip particle-hole excitations at en-

order of the single-particle mean-level spacing. We find tha
most of these low-energy particle-hole excitations involve

airs of states that hawaostlythe samaminority-spin char- . . LT
b y ¥ 5P ies of ordew has important implications: we show below

acter, as expected, because essentially all states around Fe h icle-hol . | he |
level are minority-spin states. Obviously matrix elements! "’_‘tt ese pamc €-nolé pairs can coup'e to the ow-energy
(3,1|s*|1,1) are identically zero and therefore there are noSPin collective mode when, by increasing the nanoparticle

poles at these low energies when SO coupling is not preserﬁ!ze and/or by applying an external field, their energy starts

It is only when SO coupling is present that these states obtaif? 2PPrOactEres.
a small admixture of majority-spin character which produces
nonzero matrix elements. It is important to note that even
when the rare presence of majority-spin states near the Fermi We now discuss the spin-fluctuation spectral function, that
level is recognized, their matrix elements with minority-spinis, the imaginary part of the spin susceptibility defined in Eq.
states close in energy are always very small because theig7). In Fig. 8 we plot Imy,,(w) as a function ofw for a
orbital wave functions are almost orthogonal. 143-atom hemispherical nanoparticle for several values of
Figure 7 shows the low-frequency behavior of the kernekhe external magnetic field. As expected from our discussion
for our two models for the case of a 143-atom nanoparticlein Sec. IV, for this nanoparticle size we find that in general
We see essentially the same trend as for the case of smallgfe spectral function has only one pole that has substantial
nanoparticles: when the SO is included the first pole of theveight. At low external fields this pole occurs at a frequency
kernel occurs at an energy of the order of the single-particlgnat satisfies Eq(70), well below the lowest particle-hole
mean-level spacing, which for this nanopatrticle size is of the

B. Spectral function: Imaginary part of y,,(®) vs w

-3

order of a few meV. Note also that at this particle size the x 10
P 1 . .
@ I !
20f[— LDE (@) 5 0 —
= — LRE+SO
5 0 Z | - - p-hexlc.
z" ?‘ 00t ! 2 3
Z . , X
— 201 1.5 2 2.5 ::,2 1 : :
g 20 M !
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(] - -
~ 1 p-h exc. ! 1
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FIG. 7. Real part of the transverse diagonal component of the
FIG. 5. Real part of the transverse diagonal component of th&ernel at low energies, for a hemispherical 143-atom nanoparticle.
kernel for a hemispherical 26-atom nanoparticle, the |deatbital (8 Long-range exchange modelb) Local d-orbital exchange
exchange modela) Without SO interaction(b) With SO interac- model. Vertical dashed lines mark the position of particle-hole ex-
tion. citations, where RK,, has poles.
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FIG. 10. Derivative of the determinant of the kernel given in Eq.
FIG. 8. Imaginary part of the transverse diagonal spin suscepti¢70), calculated aE,s, as a function of the external field for the
bility (x component at different external magnetic fields, for a system of Fig. 8D’ (EJ is inversely proportional to the residue of
hemispherical 143-atom nanoparticle in the LDE motigl, is in ~ the collective-mode. The peak iD’(E.d occurs where the
the ZX plane at an angler/4 with the Z axis. Ho,=0.15T is a collective-mode energy and the first particle-hole excitation energy
reversal point. This low-energy peak in the susceptibility corre-Cross.
sponds to a spin collective mode due to coherent magnetization . . o .
fluctuations. Vertical lines inb) mark the position of the first Uy them as the spin-flip particle-hole excitations discussed
particle-hole excitation energy, which shifts down with increasing!n Sec. IV C.
field. When the collective-mode energy approaches the particle-hole As shown in Fig. 8, we can use an external magnetic field
excitation energy, the collective-mode peak splits and part of it§0 manipulate both energy and spectral weight of the
spectral weight is taken away from the pole. collective-mode. From zero field to the reversal field, the
collective-mode energy and its spectral weight decrease. Be-
excitation. It can therefore be identified as a spin collectiveyond the coercive field they both start to increase monotoni-
mode. In this regime the collective mode is an exact elemercally. As shown in Fig. &), if we keep increasing the field,
tary excitation, at least within the Gaussian approximatiorfhe collective-mode energy starts to approach the first
that we consider. The finite width in Fig. 8 is due to a finite Particle-hole excitation energy, whose energy decreases with
7 in iw,— w+in. Apart from the ferromagnetic resonance increasing field. When the two energies are proximate to
pole, the susceptibility has other poles at higher energies, £ach other, the collective-mode peak splits into two close
seen in Fig. 9, where we pl@(w) given in Eq.(70). These résonances: part of the spectral weight of the magnetization
poles are all very close to MF particle-hole excitation ener-fluctuation is transferred to the nearby particle-hole excita-
gies and have virtually zero spectral weight for this particletion, as also illustrated in Fig. 10 where we plot the deriva-

size, when the external field is zero. We can therefore identivé of D(w) at Esas a function of the external field. The
peak inD' corresponds to a sudden decreas€gfgiven in

” Eq. (76): the collective mode can decay into a particle-hole
x 10 B .
—TTT excitation. More precisely, we can say that the two types of
Of———=o o ----- 4--NN excitations are coupled, and therefore it is no longer mean-
2 o ingful to speak about spin collective modes as distinct from
e — Re(IKI) NG | spin-flip particle-hole excitations. In our model the coupling
«% -Apl= = Im(KD @ 1 mechanism is provided by the spin-orbit interaction. Indeed,
Z 0 2 4 6 8 we have checked that without spin-orbit interaction, nothing
~ x10" happens to the collective peak when its energy crosses a
g 10 - particle-hole excitation.
B S— - T The coupling between collective modes and particle-hole
G?—\ excitations described above mimics what would happen if,
— Re(KI) ) : . L ) .
5H == Im(IKI) | (b) instead of manipulating the excitation energies with an ex-
o 505 o1 ternal magnetic field, we could progressively increase the
Ré[i(o ] [me\',] size of the nanoparticle up to a few thousand atoms. In this
n

caseE,s would stay approximately constant bdtwould

FIG. 9. Determinant of the kernel defined in Eg0), for the ~ d€crease. When these two energy scales cross the lowest
system of Fig. 8 at zero external field. The first zero ofiRe) at particle-hole excitations will start to interact with the collec-
0.06 meV corresponds to the ferromagnetic resonance seen in Figfv€ mode. Itis therefore expected that in a nanoparticle with
8. ReD(w) has other zeros very close to its poles that are located a& few thousand atoms whekges~ 6, spin collective modes
particle-hole energiegmarked by vertical dashed linesThe zeros ~ and particle-hole pairs are strongly coupled.
correspond to spin-flip particle-hole excitations, but their spectral Figure 11 shows the external field dependence of the en-
weight in Fig. 9 is virtually zero unless they approach the ferromag-ergy of the collective-mode peak for a 143-atom and a 260-
netic resonance mode. atom nanopatrticle, respectively. The jumps in the energy for
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ever, theweightof the pole in the two spectral functions is
different and its variation as a function of the external field is
opposite. At large fields the difference betweeandy com-
ponents disappears and the transverse susceptibility becomes
isotropic. We find the same trend for hemispherical nanopar-
ticles containing 143 or 260 atoms.

We can get an intuitive understanding of this behavior by
looking again at the classical micromagnetic energy func-
tional E;(€2) as a function of® and ®, shown in Fig. 2.
There are four equivalent minima in th€Y plane at=X
+Y, that is,®=/2 and®=7/4+nmw/2, n=1, 2, and 3.
Note, however, that the energy barrier separating the four
minima at® = 7/2 is very low. We can interpret the collec-

FIG. 11. Variation of the collective-mode ener¢jpw-energy  tive mode as the zero-point motion of a two-dimensional
peak in the susceptibililyas a function of the external field for anisotropic harmonic oscillator, whose potential is obtained
143-atom and 260-atom nanoparticlek,, is in theZX plane atan by expandingz,,(®,®) to second order i® and® around
angle /4 with theZ axis. (b) The detailed low-field behavior. The gne of the minima. Looking at thecomponent of the spec-
discontinuities for the 143-atom nanoparticle correspond to magnera| function corresponds to exciting the collective oscillation
tization reversal points(There are no reversal points in the 260- mainly in the hard direction. We can further pursue this anal-
atom system for this external field directipn. ogy and clarify the effect of the external magnetic field. A

. magnetic field in theZX plane starts to decrease the low
the 143-atom nanoparticle correspond to reversal of the mag;

. | inal h found that th %arriers separating the four minima. Thus the collective-
netic moment. Interestingly, we have found that the Ioeal?node energy decreases. This continues up to reversal. Note
energy follows accurately Eq72) for all values of the ex-

) ) . that at reversal the collective-mode energy does not go to
ternal field, even when its value is larger than the lowes

cle-hol h . bLero because the potential landscape has only a saddle point
particle-hole energ}. The energy gafEres, obtained ex- hare- the potential still increases in the direction of the two
trapolating the curve at zero field, is approximately volume, ias of the unit sphered(=0,7/2). After the last reversal

independent, as expected from our general theory. We woulfs taken place, that is, once the magnetization has flipped to

like to point out that at low fields Heq<1T) Ews 5 stable minimum, a further increase of the magnetic field
~0.1 meV, which is of the order of the anisotropy constant/yes the spring constant of the harmonic oscillator stiffer.
atomK in cobalt,” and is also of the order of the tunneling pence the collective-mode energy starts to increase. This be-
resonance spacing observed in Refs. 2 and 3. havior is summarized in Fig. 11. At strong magnetic fields
the energy functional is dominated by the Zeeman term and
C. Anisotropic fluctuations any anisotropy in the transverse fluctuations disappears.
The dynamical susceptibility displays spatial anisotropy SpPherical particles have a more symmetric anisotropy en-
in its transverse diagonal components due to the strong a®'dy landscape, without the stroXy easy-plane anisotropy
isotropy of the micromagnetic energy functional. We illus- CharaCteriStIiC of hemispherical pa.rtides. A reversal pOint in
trate this point in Fig. 12 by plotting Ing,() together with ~ this case will correspond to the disappearance of the energy
Im xy,(w). We can see that also Ig},(w) has only one barrier inE((2) in all directions perpendicular tdyg, or
dominating collective-mode peak at the same energy of that least to a less pronounced saddle point. Therefore spheri-
collective-mode in Iny,,(w). This is obvious since in both cal nanoparticles show a much stronger decrease of
cases the collective-mode energy is given by ). How-  collective-mode energies at reversal points.

5 sxl 25210

Eﬁ (a) 143 atoms h (b 260 atoms

- 2 — LOTx |} HfI — I,0T,x

3" == LOLy h - il O;fyx FIG. 12. Imaginary part of the transverse di-
s —— I26Tx { - - IL5T ] agonal spin susceptibility, witht andy compo-
2 13 -- m26Ty |{ 1.5h iy nents. The external magnetic field is in tEX
K o 1 — IIL 10T x 1 111, 20T, x gnetic tield Is

£ n - - 1L 10Ty i - - 1, 20Ty plane at an angler/4 with the Z axis. At high
= if, 'l 1 'l l external fields the two transverse components of
= : \ 1l 1 the spin susceptibility become equéh) Hemi-
5 05 " ,'\ JI 4 05 || n 11 NilE spherical 143-atom nanopartici®) Hemispheri-
E r v “ l ﬁ cal 260-atom nanopatrticle.
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155 is valid, in which case it will be a smooth quantity. When the
L e collective-mode energy is close to a particle-hole excitation
150gFer=——o0 i - energy of orded, the low-frequency expansion is meaning-
145 less. One must look at the derivative of the determinant
- (a) D(w) calculated at the pole frequency, given in Egp), to
~<]E 1400 s m 1 find the residue. An important exception occurs when a
@) 155 particle-hole excitation energy approaches Zgm, close to
mean-field quasiparticle level crossing$ These are events
150faarrl— - that can occur only for some particular orientations of the
magnetization and at isolated values of the external fields.
15 1 When the system is close to a mean-field quasiparticle level
140 , . . crossing, the Berry curvature landscaffd) is strongly dis-
0.5 1 L5 torted. In this case the fluctuations @fA) are a direct indi-
IH, | [T] cation of the coupling between the collective mode and

particle-hole excitations, which obliterate the distinction be-
FIG. 13. Berry curvatur€(Aye) for a 143-atom nanoparticle, tween them.
computed using two different methods: the solid line is obtained
from Eq.(64); the dashed line from Eq&32) and(33). (b) Behavior VI. CONCLUSIONS

at low fields.
In summary, we have developed a theory of elementary

spin excitations in ferromagnetic metal nanoparticles that
provides a consistent and unified quantum description of
We conclude this section with a discussion of the numeri'both quasipartic'e and collective-mode physics_ Our formal-
cal results for the Berry curvaturé(Ayg) defined in Eq.  jsm, based on a path-integral approach, allows us to make a
(27). We have seen thal(A ) affects the quantization con- connection between microscopic exchange and spin-orbit in-
dition of the collective-mode energy given in E@2), and is  teractions, and classical micromagnetic theory. We have
inversely proportional to its residue, E(f.4). Variations of  shown that small nanoparticles have a collective excitation at
C(Ayg) from the constant valuis/ A §e reflect the nontrivial — energies below the lowest particle-hole excitation energy,
role played by the spin-orbit interaction. In Fig. 13 we plot whose energy gaR,.sis given by the ratio of the anisotropy
C(Ayg) as a function of an external magnetic field for a energy and the total Berry phase of the system. As the single-
143-atom nanoparticle. We have comput&d ) in two particle mean-level spacing decreases and becomes much
different ways, according to E@64) and Eqs(32) and(33),  smaller than/aE,., the collective excited states evolve into
respectively. The agreement between the two calculatioa damped collective mode whose spectral weight is distrib-
methods is excellent, especially at low fie[dee Fig. 1®)].  uted over a large number of particle-hole excitations. These
The fact that the computation method based on B3) conclusions are summarized in Fig. 1.
works well is significant because this method relies only on  We have illustrated these ideas by performing numerical
the knowledge of the ground state for a given magnetizatioalculations of nanoparticles containing up to 260 atoms, de-
orientation, which, in principle, can be obtained with fairly scribed by a microscopic tight-binding model. We have
good accuracy from density-functional calculations. Thusiound that for this particle size there is typically an isolated
Eq. (33) provides a very convenient expression for comput-collective excited state below the lowest particle-hole exci-
ing C(Aye) beyond the mean-field approximation used in thetation which nearly exhausts the spectral weight of the dy-
present work, and also for more realistic nanoparticlenamical susceptibility. The energy g&p.is of the order of
models. 0.1 meV, and is approximately independent of the particle
From Fig. 13 we can see that the external field depensize. Occasional crossings between primarily single-particle
dence ofC(Ay) is rather smooth and weak, except when theand collective excitations occur as a function of applied mag-
system approaches a reversal point. At a reversal poiietic field. Near the crossing point, the collective-mode peak
C(Avg) suffers a discontinuous jump. On the other handsplits, as a result of resonant coupling between the two types
C(Ayr) is completely insensitive to the crossings mentionedof excitations that is nonzero because of spin-orbit interac-
above between the ferromagnetic resonance mode anfbns. These crossings become more common as the particles
particle-hole excitations, when the latter are of orde. In become larger and cannot be avoided for systems of nano-
fact, if we look at the perturbative expression @A yg) particles with typically more than 10000 atoms.
given in Eq.(64), we can see that there is no reason to expect Although a detailed comparison with the tunneling trans-
any large fluctuations of this quantity when the smallest enport experiments of Refs. 2 and 3 is beyond the scope of the
ergy denominator in the sum is é. If the collective-mode present paper, our analysis sheds light on some essential fea-
energy approaches a particle-hole excitati6fye) will tures which are quite relevant to the understanding of the
still be well defined and smooth, but it will not tell us any- experimental results. What emerges from our theory is a pic-
thing about how the collective-mode spectral weight is deture of elementary excitations that is far more complex than
pleted in favor of the nearby particle-hole excitation. In otherthat derived from earlier phenomenological models, where
words, the residue of the collective mode is inversely prothe effect of spin-orbit interaction is accounted for only in-
portional toC(Ayg) only when the low-frequency expansion directly by means of an uniaxial anisotropy term in a giant

D. Berry curvature
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spin Hamiltonian that represents the coherent magnetizatioequilibrium transitions play a crucial role. The point that we
dynamics. In particular, our results suggest that for the pamwant to make here is that low-lyingguilibrium spin excita-
ticle size considered in the experiments quasiparticle angonsare probably equally important for the interpretation of
spin collective modes are most likely strongly entangled bythe experimental results.
spin-orbit interactions. It is not unconceivable that such an |t would be highly desirable to perform new tunneling
intertwined set of excitations could provide a rich low- experiments in more controlled situations and especially with
energy tunneling spectrum, even in conditions of equilibriumsmalier nanoparticles, so that the spin excitations associated
tunneling. ) with the electronic degrees of freedom and with the magne-
The energy gap of the ferromagnetic resonance mode cafyation collective coordinate could be more easily disen-
be viewed as the characteristic mean—energy-level spacingngled. The physical condition required to reach this regime
between coupled collective-quasiparticle excitations  deis that the single-particle mean-level spacing be larger than
scribed by an effective Hamiltonian. Interestingly enough,ipe total anisotropy energySee Fig. 17 For cobalt this
the value ofE s deduced from our model calculations is of \,qy|d imply dealing with nanoparticles containing of the

the order of the observed tunneling resonance level spacingrder of 100 atoms, which is within reach of present experi-
This value, which is also of the order &, is five times  mental capabilities.

larger than the anisotropy constant estimated from the mea-

sured switching field using,= ug Hsy- The smallness of
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