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Effects of disorder on the dynamics of theXY chain
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We investigate the effects of disorder on the dynamics ofth&/2 XY model in one dimension. The energy
couplings are randomly drawn independently from a bimodal distribution. We use an extension of the method
of recurrence relations, in which an averaging over realizations of disorder is incorporated into the definition of
the scalar product of the dynamical Hilbert spacerf(ft), to determine analytically the first six basis vectors
as well as the corresponding recurrants. We then use an ansatz for the higher-order recurrants, based on the
behavior of the first ones exactly determined, to obtain the time-dependent correlation functions and spectral
densities for several degrees of disorder. We find that the dynamics at long times is governed by the stronger
couplings present in the system even if only a very small amount of disorder is present. In the long-time limit,
the correlation functions oscillate at the cutoff frequency of the disorderless stronger-coupling case, with the
spectral densities displaying tails that end at the stronger-coupling cutoff frequency.
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I. INTRODUCTION where o are Pauli matrices at sitéis a=x,y,z. J; are
nearest-neighbor coupling constants a&h@ the number of

The behavior of disordered quantum spin chains has beespins. We assume periodic boundary conditions, that is,
of considerable theoretical interest in the the past twar{  =o. In this work, we consider the coupling energies
decades™® Most of the work, though, deals with phase dia- between neighboring sites as random variables that can take
grams, ground-state properties, thermodynamic functionghe valuesl, or Jg. The couplings are drawn independently
etc. Not much attention has been paid to the study of Hamilfrom the bimodal distribution
tonian dynamics in such systems. Only recently, calculations
of dynamic correlation functions have been reported for N
some disordered quantum spin ch&in&In this work, we p{IN =11 [(1-p)8(3—30) +p6(3-3p)], (2
investigate the effects of disorder on the dynamics ofXiYe :
model® in the high-temperature limit. We are interested in
both the time-dependent spin-correlation functions and th
spectral functions in the presence of disorder.

There exist studies in the literature which deal with dy-
namic correlation functions of disorderless spin chains. Y N
There are only a few exact solutions in the infinite tempera- _ =j _ . -
ture limit. For theXY model, the time-dependent longitudi- f %p({J,})f({JI})]_i[ dJ ®
nal spin autocorrelation function is known since the work of
Niemeije? to behave as the squared Bessel function, Our main quantity of interest, the time-dependent correla-
Jo(231)?, whereld is the nearest-neighbor energy coupling. tion function, is defined by
On the other hand, the transverse autocorrelation function
has an exact solution as a Gaussiait® Some exact results C(t)=(c%(0) (1)), (4)
were also reported for finite temperatuféghe dynamics of
the surfacex-component spin in a semi-infinit&XY chain where (- - -) denotes an ensemble average followed by an
was exactly determined by SéhThere is also an exact so- average over the disorder variables. We use the method of
lution by Stolzeet al*® for the spin-autocorrelation functions recurrence relatiod®2®to obtain the short-time expansion
of the first few spins of the semi-infinitdY model in one  of C(t) and a continued-fraction analysis to extend the re-
dimension at infinite temperature. Although some workssults to the long-time region. The results are then used in the
have appeared in the literature for tK& chain with a single  calculation of the spectral densities.

where Osp=<1, p representing the fraction afz bonds.
Bince Eq.(2) is normalized to unity, the average over disor-
der realizations of a given quantiff{J;}) is given by

impurity,'”*®the dynamics of the model with arbitrary con-  We find that disorder induces an unexpected feature: the
centration of disorder is still not understood. long-time behavior is dominated by the presence of stronger
The XY model is defined by the Hamiltonian couplings, even when their concentration is extremely small.

We could not detect numerically any low-concentration

threshold for the onset of the asymptotic stronger-coupling

H=— E 2 Ji(oXa + Vo, ), (1) b_ehavior. Hence, we are led to conclude tha_lt any concen_tra-
27 TR T tion of stronger couplings, however small it may be, will
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make the correlation function to behave like its analog in a

given pure stronger-coupling chain at the long-time limit.

This paper is arranged as follows. In Sec. I, we review
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day(t)

Apiqan () =— o<sn<sd-1,

(11)

the method of recurrence relations employed here to include _
disorder, and in Sec. Ill the method is used to obtain thavhere a_;(t)=0. Hence,ay(t) represents the relaxation

dynamic longitudinal correlation functions of theY model

for different amounts of disorder. Finally, in Sec. IV we sum-

marize our results.

II. METHOD OF RECURRENCE RELATIONS

The time evolution of a Hermitian operatérin a system
described by a HamiltoniaH is governed by the equation of
motion

At)

dt

wherelL is the Liouville operatorLA=[H,A]=HA—-AH.
The solution to Eq(5) is cast in the form of the orthogonal
expansion,

=iLA(t), )

d-1

A= ay(t)f,,

n=0

(6

where f, are orthogonal
d-dimensional Hilbert spacg

In order to account for disorder, the scalar product is de-

basis vectors spanning a

function of linear-response theory. In the linfit-o0, ag(t)
is simply the time-dependent autocorrelation function
(A0)A(1)).

Thus, the complete time evolution &f(t) can be deter-
mined from RRI and RRII. By taking the Laplace transform
of the recurrence relation RRII, one obtains

A1a1(2)=1—2a0(2), n=0, (12)
An+1a’n+l(2):_Zan(2)+an_l(2), nzl! (13)
where
an(2)= fmexp(—zt)ay(t)dt Rez)0. (14
0

It follows from Eqgs.(12) and (13) that ay(z) can be cast in
the continued-fraction form

ag(2)= (15

Ay
Z+

Az
zZ+
zZ+ -

fined as the Kubo product averaged over the realizations of

the disordeP. Accordingly, it reads

18
(X,Y)=[—3f dN(XON)YTY = (X)(YT, )
0
where X and Y are vectors defined ii5, 8=1/kgT is the
inverse temperature, an€{\) =expAH)Xexp(—\H). In the
high-temperature limitT—oo, the scalar product becomes
Trxvy'/z,

(X,Y)= 8

where the partition functiorZ now yields the number of
guantum states of the systedwTr 1. In the case of spin-1/2
models, Z=2N, where N is the number of spins in the
system.

By choosing fo=A(0), it follows from Eq. (6) that
a9(0)=1 anda,(0)=0 for n=1. Furthermore, the remain-
ing basis vectors are generated by the recurrence relation
(RRI)

fn+1:iLfn+Anfn_1, 0$n$d_1, (9)
where
(fnafn)
Ay=—F——F——, n=l1 10
" o1 fe D) (10

Note that the recurranta, are the sole ingredients that
enter the determination of the dynamic correlation functions.
In addition, the knowledge ok, enables one to obtain the
moments of the spectral density,

JH,of]..

Al (16)

1
Ba=7 Tro{H,[H, ..
in which there are R nested commutators. The moments
can be used to obtain the Taylor time series expansion for
the correlation function in the infinite temperature limit as
follows:

C(t)= 2 (Zk u2kt2k. (17)
Usually, only a fewA, can be determined analytically, since
the calculation of hlgher order recurrants can be too lengthy
Bt time consuming. Even though the moments enter in a
simple manner in the correlation functions, it is preferable to
inspect the behavior of the recurrants in order to devise any
extrapolation scheme.

There are several types of approximations found in the
literature to estimate the time-dependent correlation func-
tions based on the limited information contained in just a few
moments(or recurrants One can truncate the continued
fraction for ag(z) by introducing a terminating function. Ex-

are the relative norms of basis vectors, also known asmples are ther-pole approximatiorfé and the Gaussian

recurrants® By definition, f_;=0 andA,=1. The coeffi-

cients a,(t), which are the relaxation functions, satisfy a

second recurrence relatidRRII)

terminator?®
In the same spirit is the direct summation metHoih
which an ansatz is set for the unknown higher-order recur-
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rants, and the truncation uses as many recurrants as is conr 150 ‘
putationally feasible. In this way, one can manage to obtain G—@pjg
results which are valid at longer times. In any event, once the 130 | o poe

ansatz of recurrants is chosen, one is able to obtain readily
the corresponding moments, since there are as many non
trivial moments as there are recurrants. In this way, one ob-
tains the first coefficients of the short-time expansion for
C(t) from the knowledge of the moments. In general, one An 90
could extend the region of validity in time by constructing
Padeapproximants to the full time series or by using other
extrapolation schemé&.We do not find it necessary to em-
ploy any of those methods, since we already use as many
short-time coefficients from the ansatz as we can to obtain 50 f
sensible results numerically. In the present work, we shall

adopt the following strategy. First, after examining the struc- 20 ‘ ‘ . ‘ ‘ . ‘ ‘
ture of the recurrants, we will put forward a model for the o & 4 s 8 mo T e
remainingA,. From these we will get the first short-time

coefficients ofC(t). Finally, the spectral densit® (w), de- FIG. 1. Recurrants for the longitudinal dynamic correlation

fined as the Fourier transform of the time-dependent correlaunctions of theXY disordered chain in the high-temperature limit.
tion function, The first six recurrant§ull symbolg are exact, while the remaining

ones(open symbolsare extrapolations, following the ansatz, Egs.
®(w) f@ (22)—(24). In this figure as well as in the other figures of this work,
w =

11.0

7.0 -

18 20

eiC(td, (18 we have setl,=1 andJg=1.5, which are the parameters of the
bimodal distribution, Eq(2). Here,p=0 andp=1 correspond to

will be obtained numerically. That quantity could, in prin- the pure cases where all couplings are of tygeand Jg, respec-

ciple, be compared with experimental results from nucleartively. The lines are guides to the eye.

magnetic resonance, electron-spin resonance, and inelastic

neutron scattering, on appropriate magnetic systems that repalueA ;= (2J)2, J=J, or Jz, and then oscillate about their

—o0

resent one-dimensionAY behavior with disordet* starting value, but with decreasing amplitude. On the other
hand, in the cases with disorder the recurrants tend to oscil-
I1l. DYNAMICS OF THE DISORDERED XY CHAIN late away from their starting valué, toward the stronger-

) ) ) o ~coupling recurrants. Even a small amount of disorder drives

Since we are interested in the longitudinal correlationthe higher-order recurrants to oscillate toward that region.
function, let us consider;(t) as the dynamic variable in the e did consider concentrations as low s 0.01, but ob-

XY linear chain, Eq(1). According to Eq(6), its time evo-  tained qualitatively similar results. Such feature guided us in

lution is given by the construction of the extrapolation scheme for the higher-
d-1 order recurrants.
Z0sy _ We then used the following ansatz for the remaining re-
iV Zo a,(0f,, (19 currants:
with the choicefo=0j(0)= 7. The other basis vectoffs, A
f,, etc., are determined by using the recurrence relation RRI. Ap=—+A,, n=135...,
We have obtained the basis vectors ugd ¢oTheir norms in n”
the limit T—oo are obtained with the use of the scalar prod-
uct, Eq.(8). For examplef; is found to be A=(Az;—A.)37,
fi==Jjo)o{ 1= 3 10]_10)+Jjof0l 1+ 10]_107,
(20) n=—1 BT 8s) (2 (22)
A,—Aj 3)’

while its squared norm is given by

(f1,f1)=4[(1—p)JI3+pJal. (21)

Note that the first recurramk; coincides with the squared
norm offy, since (o,fo)=(0o{,07)=1. The expressions for
the remaining basis vectors are increasingly lengthier and,
thus, shall not be reported hefe.

In Fig. 1, we present numerical results for the first six
recurrants for several concentratiom®f couplings of type
Jg. We useJ,=1 andJz=1.5 in that figure and in all the . —In(Am_ 4)/In(§> 23
others. In the disorderless cases, the recurrants start at the A 2/

and
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0.0 2,0 40 6.0 8.0
t

FIG. 2. Comparison between exact and approximate longitudi- FIG. 3. Time-dependent spin-correlation function for the disor-

E%lhS-Ft)ér:]:;I:)rzreafuergelriﬁ(ietmgr?g;:]at;g ftl;:;mg(r;sctmrf:jﬁzaflgratthtgepur geredXY chain at the high-temperature limit. The energy couplings
casep—1, Jo(3t)2, and those in which a given finite number of are of typeJg=1.5 with probabilityp, otherwise the couplings are

settoJ,=1.
recurrants was used. Note the convergence as the number of recur-

rants increases. . . L .
which the approximation is good is enlarged as more recur-

rants from the ansatz are used. We find that we need at least

Note thaté, B, », and{ depend orp implicitly through the 0 recurrants to obtain reasonable results.

recurrants, as they were determined by imposing that the firs
six recurrants from the ansatz match the six known ones. As
n—oo, each recurrant converges to the terminal value

given by The time-dependent correlation functions for several
2 cases with disorder are displayed in Fig. 3, while the corre-
A,=4Jg for p>0 sponding spectral densities are shown in Fig. 4. Por
) =0.0, we have the disorderlessY model with J;=J,
=4J, for p=0. (24 =1.0, while p=1.0 corresponds td;=Jg=1.5. Thus, the

The above ansatz is best visualized in Fig. 1, where we plo?urveS corresponding to the pure cases are the same, aside

the first 20 recurrants for each concentratipnAs can be
seen, in all cases the recurrants start at a given \&juand

IV. DISCUSSION AND CONCLUSIONS

1.8

then oscillate toward\.,, with power-law decaying ampli- — p=1.0
tude. The fact that the recurrants have an upper bound is ¢ 16 o g:g;g

reflection of the fact that the time-dependent correlation ---- p=05
function falls off to zero asymptotically by oscillating with a
finite frequency. That feature is known in the disorderless

case, where D(w)

1
C(t)=Jp(2Jt)2~ ——cog(2Jt— 7/4) (25)
It

ast—. Note that in the long-time regim&(t) oscillates
with frequencyw =4J, since the cosine function is squared.
Our calculations of£(t) involve the determination of the
moments from the knowledge of the recurrants. From a 0.0 05 10
given number of recurrants, one finds an equal number of w/4
moments. Thus, from those moments we construct a polyno- FIG. 4. Spectral density of theY model for several values gt

mial approximation folC(t), that is, a short-time expansion. The energies are in units dfy, which serves to fix the horizontal

Our approximate scheme, as outlined above, including thgcaje. The vertical scale is such that the area under each curve for
use of the ansatz for the recurrants, was tested with thg=q equalsw. Notice the large drops of the spectral density at

known correlation functionJo(2Jt)? for the disorderless =40 and 6.0, which correspond to the pure case.0 (J;
case ofp=1 (Jj=Jg=1.5). The results are shown in Fig. 2. =J,=1.0) andp=1.0 (J;=Jz=1.5), respectively. Those drops are
Note that the power-law ansatz, Eq22)—(24), produces at the cutoff frequenciese(=4J) of the exact results for each re-
accurate results in the scale of the figure. The time region imlization of the coupling energiRef. 10.

2.0
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from a time scale as one would expect. Thus, the correlatiospectral density, Fig. 4, shows smooth curves for the cases
function for the stronger-coupling case oscillates with highewith disorder, 6<p<1. Instead of having a sharp drop, the
frequencies. In the limit—o, it oscillates with a single curves are smooth and show a tail that ends at the cutoff
frequency,w=4Jg, which is the cutoff frequency for the frequency of the stronger-coupling pure case1.0. Thus,
exact spectral density. In our calculations, where we trunaccording to our results, there is also a cutoff frequency for
cated the continued fractions at the 60th level, where somgye disordered cases, which is the same as the cutoff fre-
information on the long-time dynamics was lost, the result isyyency of the pure stronger-coupling case, which is valid for
that the spectral densities for the capes0.0 andp=1.0do 4| p down top=0.01. That is, the long-time dynamics of
not have the sharp edges as the exact functions do at thgjie disordered chain is dominated by the stronger couplings
cutoff frequencies. In addition, the logarithmic divergence ofgyen if their concentration is very small. Based on our nu-
the spectral density ab=0 caused by the * behavior of - merical evidence, we conjecture that such feature holds for
C(t) at large times is only hinted in our numerical results. 5] o< p<1. It would be interesting to see how much of that
There are also some minor spurious structure® () that  asymptotic behavior could also appear in the cases where the
should be ignored. These pitfalls are all due to computationaloypling energies were drawn from a continuous distribu-
constraints that limited us to use only 60 recurrants for eacljon. A similar behavior can be found in the density of states
case. Yet, our approximation still provides a reasonably googf one-electron systems in a binary alloy, where there ap-
account on the effects of disorder in the model. pears a low-energy tail, the so-called Lifshits tail, which is

As p takes on small values, the effect of disorder is to lift gominated by the rare large fluctuations of the potedtial.
up the curve<C(t) above thely(2t)? result of the pure case

Ji=J,=1, as can be seen in Fig. 3. The lifting reaches a
maximum wherp= 0.5, that is, when the chain is most dis-
ordered. Upon further increase pfthe reverse takes place,
that is, the curves fo€(t) start to drop toward the pure case
with stronger energy coupling§g=1.5. The plot of the
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