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Effects of disorder on the dynamics of theXY chain
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We investigate the effects of disorder on the dynamics of thes51/2 XY model in one dimension. The energy
couplings are randomly drawn independently from a bimodal distribution. We use an extension of the method
of recurrence relations, in which an averaging over realizations of disorder is incorporated into the definition of
the scalar product of the dynamical Hilbert space ofs j

z(t), to determine analytically the first six basis vectors
as well as the corresponding recurrants. We then use an ansatz for the higher-order recurrants, based on the
behavior of the first ones exactly determined, to obtain the time-dependent correlation functions and spectral
densities for several degrees of disorder. We find that the dynamics at long times is governed by the stronger
couplings present in the system even if only a very small amount of disorder is present. In the long-time limit,
the correlation functions oscillate at the cutoff frequency of the disorderless stronger-coupling case, with the
spectral densities displaying tails that end at the stronger-coupling cutoff frequency.
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I. INTRODUCTION

The behavior of disordered quantum spin chains has b
of considerable theoretical interest in the the past t
decades.1–3 Most of the work, though, deals with phase di
grams, ground-state properties, thermodynamic functio
etc. Not much attention has been paid to the study of Ham
tonian dynamics in such systems. Only recently, calculati
of dynamic correlation functions have been reported
some disordered quantum spin chains.4–6 In this work, we
investigate the effects of disorder on the dynamics of theXY
model7,8 in the high-temperature limit. We are interested
both the time-dependent spin-correlation functions and
spectral functions in the presence of disorder.

There exist studies in the literature which deal with d
namic correlation functions of disorderless spin chai
There are only a few exact solutions in the infinite tempe
ture limit. For theXY model, the time-dependent longitud
nal spin autocorrelation function is known since the work
Niemeijer9 to behave as the squared Bessel functi
J0(2Jt)2, whereJ is the nearest-neighbor energy couplin
On the other hand, the transverse autocorrelation func
has an exact solution as a Gaussian.10–13 Some exact results
were also reported for finite temperatures.14 The dynamics of
the surfacex-component spin in a semi-infiniteXY chain
was exactly determined by Sen.15 There is also an exact so
lution by Stolzeet al.16 for the spin-autocorrelation function
of the first few spins of the semi-infiniteXY model in one
dimension at infinite temperature. Although some wo
have appeared in the literature for theXY chain with a single
impurity,17,18 the dynamics of the model with arbitrary con
centration of disorder is still not understood.

The XY model is defined by the Hamiltonian

H52
1

2 (
i 51

N

Ji~s i
xs i 11

x 1s i
ys i 11

y !, ~1!
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where s i
a are Pauli matrices at sitesi, a5x,y,z. Ji are

nearest-neighbor coupling constants andN is the number of
spins. We assume periodic boundary conditions, that
s i 1N

a 5s i
a . In this work, we consider the coupling energi

between neighboring sites as random variables that can
the valuesJA or JB . The couplings are drawn independent
from the bimodal distribution

r~$Ji%!5)
i

N

@~12p!d~Ji2JA!1pd~Ji2JB!#, ~2!

where 0<p<1, p representing the fraction ofJB bonds.
Since Eq.~2! is normalized to unity, the average over diso
der realizations of a given quantityf ($Ji%) is given by

f ~$Ji%!5E
2`

`

r~$Ji%! f ~$Ji%!)
i

N

dJi . ~3!

Our main quantity of interest, the time-dependent corre
tion function, is defined by

C~ t !5^s i
z~0!s i

z~ t !&, ~4!

where ^•••& denotes an ensemble average followed by
average over the disorder variables. We use the metho
recurrence relations19–26 to obtain the short-time expansio
of C(t) and a continued-fraction analysis to extend the
sults to the long-time region. The results are then used in
calculation of the spectral densities.

We find that disorder induces an unexpected feature:
long-time behavior is dominated by the presence of stron
couplings, even when their concentration is extremely sm
We could not detect numerically any low-concentrati
threshold for the onset of the asymptotic stronger-coupl
behavior. Hence, we are led to conclude that any concen
tion of stronger couplings, however small it may be, w
©2003 The American Physical Society06-1
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make the correlation function to behave like its analog in
given pure stronger-coupling chain at the long-time limit.

This paper is arranged as follows. In Sec. II, we revi
the method of recurrence relations employed here to incl
disorder, and in Sec. III the method is used to obtain
dynamic longitudinal correlation functions of theXY model
for different amounts of disorder. Finally, in Sec. IV we sum
marize our results.

II. METHOD OF RECURRENCE RELATIONS

The time evolution of a Hermitian operatorA in a system
described by a HamiltonianH is governed by the equation o
motion

dA~ t !

dt
5 iLA~ t !, ~5!

whereL is the Liouville operator,LA5@H,A#[HA2AH.
The solution to Eq.~5! is cast in the form of the orthogona
expansion,

A~ t !5 (
n50

d21

an~ t ! f n , ~6!

where f n are orthogonal basis vectors spanning
d-dimensional Hilbert spaceS.

In order to account for disorder, the scalar product is
fined as the Kubo product averaged over the realization
the disorder.5 Accordingly, it reads

~X,Y!5
1

bE0

b

dl^X~l!Y†&2^X&^Y†&, ~7!

where X and Y are vectors defined inS, b51/kBT is the
inverse temperature, andX(l)5exp(lH)Xexp(2lH). In the
high-temperature limit,T→`, the scalar product becomes

~X,Y!5Tr XY†/Z, ~8!

where the partition functionZ now yields the number o
quantum states of the systemZ5Tr 1. In the case of spin-1/2
models, Z52N, where N is the number of spins in the
system.

By choosing f 05A(0), it follows from Eq. ~6! that
a0(0)51 andan(0)50 for n>1. Furthermore, the remain
ing basis vectors are generated by the recurrence rela
~RRI!

f n115 iL f n1Dnf n21 , 0<n<d21, ~9!

where

Dn5
~ f n , f n!

~ f n21 , f n21!
, n<1 ~10!

are the relative norms of basis vectors, also known
recurrants.19 By definition, f 21[0 andD0[1. The coeffi-
cients an(t), which are the relaxation functions, satisfy
second recurrence relation~RRII!
01440
a

e
e

-
of

on

s

Dn11an11~ t !52
dan~ t !

dt
1an21~ t !, 0<n<d21,

~11!

where a21(t)[0. Hence,a0(t) represents the relaxatio
function of linear-response theory. In the limitT→`, a0(t)
is simply the time-dependent autocorrelation functi
^A(0)A(t)&.

Thus, the complete time evolution ofA(t) can be deter-
mined from RRI and RRII. By taking the Laplace transfor
of the recurrence relation RRII, one obtains

D1a1~z!512za0~z!, n50, ~12!

Dn11an11~z!52zan~z!1an21~z!, n>1, ~13!

where

an~z!5E
0

`

exp~2zt!an~ t !dt Rez&0. ~14!

It follows from Eqs.~12! and ~13! that a0(z) can be cast in
the continued-fraction form

a0~z!5
1

z1
D1

z1
D2

z1•••

. ~15!

Note that the recurrantsDn are the sole ingredients tha
enter the determination of the dynamic correlation functio
In addition, the knowledge ofDn enables one to obtain th
moments of the spectral density,

m2k5
1

Z
Tr s i

z@H,†H, . . . @H,s i
z# . . . ‡#, ~16!

in which there are 2k nested commutators. The momen
can be used to obtain the Taylor time series expansion
the correlation function in the infinite temperature limit
follows:

C~ t !5 (
k50

`
~21!k

~2k!!
m2kt

2k. ~17!

Usually, only a fewDn can be determined analytically, sinc
the calculation of higher-order recurrants can be too leng
or time consuming. Even though the moments enter in
simple manner in the correlation functions, it is preferable
inspect the behavior of the recurrants in order to devise
extrapolation scheme.

There are several types of approximations found in
literature to estimate the time-dependent correlation fu
tions based on the limited information contained in just a f
moments~or recurrants!. One can truncate the continue
fraction fora0(z) by introducing a terminating function. Ex
amples are then-pole approximations27 and the Gaussian
terminator.28

In the same spirit is the direct summation method29 in
which an ansatz is set for the unknown higher-order rec
6-2
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rants, and the truncation uses as many recurrants as is
putationally feasible. In this way, one can manage to ob
results which are valid at longer times. In any event, once
ansatz of recurrants is chosen, one is able to obtain rea
the corresponding moments, since there are as many
trivial moments as there are recurrants. In this way, one
tains the first coefficients of the short-time expansion
C(t) from the knowledge of the moments. In general, o
could extend the region of validity in time by constructin
Padéapproximants to the full time series or by using oth
extrapolation schemes.30 We do not find it necessary to em
ploy any of those methods, since we already use as m
short-time coefficients from the ansatz as we can to ob
sensible results numerically. In the present work, we s
adopt the following strategy. First, after examining the str
ture of the recurrants, we will put forward a model for th
remainingDn . From these we will get the first short-tim
coefficients ofC(t). Finally, the spectral densityF(v), de-
fined as the Fourier transform of the time-dependent corr
tion function,

F~v!5E
2`

`

eivtC~ t !dt, ~18!

will be obtained numerically. That quantity could, in prin
ciple, be compared with experimental results from nucle
magnetic resonance, electron-spin resonance, and ine
neutron scattering, on appropriate magnetic systems that
resent one-dimensionalXY behavior with disorder.31

III. DYNAMICS OF THE DISORDERED XY CHAIN

Since we are interested in the longitudinal correlat
function, let us considers j

z(t) as the dynamic variable in th
XY linear chain, Eq.~1!. According to Eq.~6!, its time evo-
lution is given by

s j
z~ t !5 (

n50

d21

an~ t ! f n , ~19!

with the choicef 05s j
z(0)5s j

z . The other basis vectorsf 1 ,
f 2, etc., are determined by using the recurrence relation R
We have obtained the basis vectors up tof 6. Their norms in
the limit T→` are obtained with the use of the scalar pro
uct, Eq.~8!. For example,f 1 is found to be

f 152Jjs j
ys j 11

x 2Jj 21s j 21
x s j

y1Jjs j
xs j 11

y 1Jj 21s j 21
y s j

x ,
~20!

while its squared norm is given by

~ f 1 , f 1!54@~12p!JA
21pJB

2 #. ~21!

Note that the first recurrantD1 coincides with the square
norm of f 1, since (f 0 , f 0)5(s j

z ,s j
z)51. The expressions fo

the remaining basis vectors are increasingly lengthier a
thus, shall not be reported here.32

In Fig. 1, we present numerical results for the first s
recurrants for several concentrationsp of couplings of type
JB . We useJA51 andJB51.5 in that figure and in all the
others. In the disorderless cases, the recurrants start a
01440
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valueD15(2J)2, J5JA or JB , and then oscillate about the
starting value, but with decreasing amplitude. On the ot
hand, in the cases with disorder the recurrants tend to o
late away from their starting valueD1 toward the stronger-
coupling recurrants. Even a small amount of disorder dri
the higher-order recurrants to oscillate toward that regi
We did consider concentrations as low asp50.01, but ob-
tained qualitatively similar results. Such feature guided us
the construction of the extrapolation scheme for the high
order recurrants.

We then used the following ansatz for the remaining
currants:

Dn5
A

nh
1D` , n51,3,5, . . . ,

A5~D32D`!3h,

h52 lnS D`2D5

D`2D3
D / lnS 5

3D , ~22!

and

Dn5
B

nj
1D` , n52,4,6, . . . ,

B5~D42D`!4j,

j52 lnS D`2D4

D`2D6
D / lnS 3

2D . ~23!

FIG. 1. Recurrants for the longitudinal dynamic correlati
functions of theXY disordered chain in the high-temperature lim
The first six recurrants~full symbols! are exact, while the remaining
ones~open symbols! are extrapolations, following the ansatz, Eq
~22!–~24!. In this figure as well as in the other figures of this wor
we have setJA51 andJB51.5, which are the parameters of th
bimodal distribution, Eq.~2!. Here,p50 andp51 correspond to
the pure cases where all couplings are of typeJA andJB , respec-
tively. The lines are guides to the eye.
6-3
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Note thatA, B, h, andj depend onp implicitly through the
recurrants, as they were determined by imposing that the
six recurrants from the ansatz match the six known ones
n→`, each recurrant converges to the terminal valueD` ,
given by

D`54JB
2 for p.0

54JA
2 for p50. ~24!

The above ansatz is best visualized in Fig. 1, where we
the first 20 recurrants for each concentrationp. As can be
seen, in all cases the recurrants start at a given valueD1 and
then oscillate towardD` , with power-law decaying ampli-
tude. The fact that the recurrants have an upper bound
reflection of the fact that the time-dependent correlat
function falls off to zero asymptotically by oscillating with
finite frequency. That feature is known in the disorderle
case, where

C~ t !5J0~2Jt!2;
1

pJt
cos2~2Jt2p/4! ~25!

as t→`. Note that in the long-time regime,C(t) oscillates
with frequencyv54J, since the cosine function is square

Our calculations ofC(t) involve the determination of the
moments from the knowledge of the recurrants. From
given number of recurrants, one finds an equal numbe
moments. Thus, from those moments we construct a poly
mial approximation forC(t), that is, a short-time expansion

Our approximate scheme, as outlined above, including
use of the ansatz for the recurrants, was tested with
known correlation functionJ0(2Jt)2 for the disorderless
case ofp51 (Ji5JB51.5). The results are shown in Fig.
Note that the power-law ansatz, Eqs.~22!–~24!, produces
accurate results in the scale of the figure. The time regio

FIG. 2. Comparison between exact and approximate longit
nal spin time-dependent correlation functions of theXY chain at the
high-temperature limit. Shown are the exact results for the p
casep51, J0(3t)2, and those in which a given finite number o
recurrants was used. Note the convergence as the number of r
rants increases.
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which the approximation is good is enlarged as more rec
rants from the ansatz are used. We find that we need at
60 recurrants to obtain reasonable results.

IV. DISCUSSION AND CONCLUSIONS

The time-dependent correlation functions for seve
cases with disorder are displayed in Fig. 3, while the cor
sponding spectral densities are shown in Fig. 4. Forp
50.0, we have the disorderlessXY model with Ji5JA
51.0, while p51.0 corresponds toJi5JB51.5. Thus, the
curves corresponding to the pure cases are the same,

i-

e

ur-

FIG. 3. Time-dependent spin-correlation function for the dis
deredXY chain at the high-temperature limit. The energy couplin
are of typeJB51.5 with probabilityp, otherwise the couplings are
set toJA51.

FIG. 4. Spectral density of theXY model for several values ofp.
The energies are in units ofJA , which serves to fix the horizonta
scale. The vertical scale is such that the area under each curv
v>0 equalsp. Notice the large drops of the spectral density
v54.0 and 6.0, which correspond to the pure casesp50.0 (Ji

5JA51.0) andp51.0 (Ji5JB51.5), respectively. Those drops ar
at the cutoff frequencies (v54J) of the exact results for each re
alization of the coupling energy~Ref. 10!.
6-4
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from a time scale as one would expect. Thus, the correla
function for the stronger-coupling case oscillates with hig
frequencies. In the limitt→`, it oscillates with a single
frequency,v54JB , which is the cutoff frequency for the
exact spectral density. In our calculations, where we tr
cated the continued fractions at the 60th level, where so
information on the long-time dynamics was lost, the resul
that the spectral densities for the casesp50.0 andp51.0 do
not have the sharp edges as the exact functions do at
cutoff frequencies. In addition, the logarithmic divergence
the spectral density atv50 caused by thet21 behavior of
C(t) at large times is only hinted in our numerical resul
There are also some minor spurious structures inF(v) that
should be ignored. These pitfalls are all due to computatio
constraints that limited us to use only 60 recurrants for e
case. Yet, our approximation still provides a reasonably g
account on the effects of disorder in the model.

As p takes on small values, the effect of disorder is to
up the curvesC(t) above theJ0(2t)2 result of the pure case
Ji5JA51, as can be seen in Fig. 3. The lifting reache
maximum whenp50.5, that is, when the chain is most di
ordered. Upon further increase ofp, the reverse takes place
that is, the curves forC(t) start to drop toward the pure cas
with stronger energy couplingsJB51.5. The plot of the
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