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Magnetic phase diagram for a nonextensive system: Experimental connection with manganites

M. S. Reis* and V. S. Amaral
Departamento de Fı´sica and CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal

J. P. Arau´jo
IFIMUP, Departamento de Fı´sica, Universidade do Porto, 4150 Porto, Portugal

I. S. Oliveira
Centro Brasileiro de Pesquisas Fı´sicas, Rua Dr. Xavier Sigaud 150 Urca, 22290-180 Rio de Janeiro-RJ, Brazil

~Received 14 January 2003; revised manuscript received 7 April 2003; published 7 July 2003!

In the present paper we make a thorough analysis of a classical spin system, within the framework of Tsallis
nonextensive statistics. From the analysis of the generalized Gibbs free energy, within the mean-field approxi-
mation, a paramagnetic-ferromagnetic phase diagram, which exhibits first- and second-order phase transitions,
is built. The features of the generalized and classical magnetic moment are mainly determined by the values of
q, the nonextensive parameter. The model is successfully applied to the case of La0.60Y0.07Ca0.33MnO3 man-
ganite. The temperature and magnetic field dependence of the experimental magnetization on this manganite
are faithfully reproduced. The agreement between rather ‘‘exotic’’ magnetic properties of manganites and the
predictions of theq statistics comes to support our initial claim that these materials are magnetically nonex-
tensive objects.
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I. INTRODUCTION

In the literature of manganites, various models have
peared as different attempts to reproduce the electric
magnetic properties of these systems. Krivoruchkoet al.,1

Núñez-Regueiro and Kadin,2 and Dionne3 gave interesting
examples of multiparameter models, but failed to achie
full agreement with experimental data. Ravindranathet al.4

compared resistivity data in La0.6Y0.1Ca0.3MnO3 to different
two-parameter models, which do not agree with each othe
the low-temperature range. Other interesting attempts ca
found in the work of Rivaset al.,5 Huesoet al.,6 Heremans
et al.,7 Palet al.,8 Philip and Kutty,9 Szewczyket al.,10 Viret
et al.,11 and Tkachuket al.12 None of these obtained plai
agreement between experiment and theory, irrespectiv
their number of adjusting parameters and approach.

On the other hand, Tsallis generalized statistics13–15 has
been successfully applied to an impressive number
subjects.16 The formalism rests on the definition of genera
ized entropy:17

Sq5k

12(
i

pi
q

q21
, ~1!

whereq is theentropic parameter, pi are probabilities satis
fying ( i pi51, andk is a positive constant. The above fo
mula converges to the usual Maxwell-Boltzmann definiti
of entropy, and to the usual derived thermodynamic fu
tions, in the limitq→1.13–17

For condensed matter problems, applications of Eq.~1!
include Ising ferromagnets,18–20 molecular field
approximation,21,22Landau diamagnetism,23 electron-phonon
systems and tight-binding-like Hamiltonians,24,25 metallic26

and superconductor27 systems, etc. The first evidence that t
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magnetic properties of manganites could be described wi
the framework of Tsallis statistics was presented by R
et al.,28 followed by an analysis29 of the unusual paramag
netic susceptibility of La0.67Ca0.33MnO3, measured by Ama-
ral et al.30

Maximization of Eq.~1! subjected to the constraint of th
normalizedq expectation value of the HamiltonianĤ ~Ref.
13!

Uq5
Tr$Ĥr̂q%

Tr$r̂q%
~2!

and the usual normalization of the density matrix Tr$r̂%51
yields the following expression for the density matrixr̂:

r̂5
1

Zq
@12~12q!b̃~Ĥ2Uq!#1/(12q), ~3!

where

Zq5Tr@12~12q!b̃~Ĥ2Uq!#1/(12q) ~4!

is the partition function andb̃5b/Tr$r̂q%. Here, b is the
Lagrange parameter associated with the internal ene
However, Eq. ~3! can be written in a more convenien
form13–15,28,29 in terms of b* , defined asb* 5b̃/@11(1
2q)b̃Uq#. In particular, to analyze the physical system d
scribed here, the quantity 1/(kb* ) will represent the physica
temperature scale, as in Refs. 28 and 29. Discussion a
the concept of temperature and Lagrange parameters in T
lis statistics can be found in the literature.13,14,28,29,31–36In the
present work, the parameterq is restricted to the interval 0
<q<1, preserving the entropy concavity.29,37 Finally, the
magnetization of a specimen is, accordingly, giv
by:13–15,28,29
©2003 The American Physical Society04-1
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Mq5
Tr$m̂r̂q%

Tr$r̂q%
, ~5!

wherem̂ is the magnetic moment operator.
In this paper we pursue the idea, based on novel exp

mental and theoretical results, that manganites are mag
cally nonextensive objects. This property appears in syst
where long-range interactions and/or fractality exist, a
such features have been invoked in recent models of ma
nites, as well as in the interpretation of experimental resu
They appear, for instance, in the work of Dagotto a
co-workers,38 who emphasize the role of competition b
tween different phases in the physical properties of th
materials. Various authors have considered the formatio
microclusters of competing phases39–44 with fractal shapes,
randomly distributed in the material~see Ref. 38 and refer
ences therein! and the role oflong-range interactionsin
phase segregation.45,46 Important experimental results in th
direction have also been reported by Merithewet al.47 Par-
ticularly insightful is the work of Satou and Yamanaka48

who derived a Cantor spectra for the double-exchang
Hamiltonian, the basis of theoretical models of manganit

A major difficulty with Tsallis formulation concerns th
physical meaning of the entropic parameterq. In this direc-
tion, Beck and Cohen49 have recently shown that the value
q gives a direct measure of the internal distribution of te
peratures in aninhomogeneoussystem. Although their re-
sults are not directly applied to magnetic systems, it has b
known for some time that manganites are magnetically in
mogeneous systems~see, for instance, Refs. 38 and 50 a
references therein!. This fact has been explored very recen
by Salamonet al.,51 who applied the idea ofdistribution of
the inverse susceptibility~which turns out to be equivalent t
a distribution of temperatures! to the analysis of the magneti
susceptibility and the effective paramagnetic moment
La0.7Ca0.3MnO3.

In what follows, we present a magnetic model for clas
cal spins~cluster!, based on the framework of Tsallis gene
alized statistics. In the model, we consider that nonexten
ity exists in the intracluster interactions, whereas
intercluster interaction remains extensive. This is import
to maintain the total magnetization proportional to the nu
ber of clusters. Then, the Gibbs free energy is analyz
within the mean-field approximation, and a series of intere
ing magnetic features appears as a consequence of none
sivity. Finally, connection between the model and expe
mental data obtained from magnetic measurements on s
manganite samples is made.

II. CLASSICAL MODEL

Consider a classical spinmW under a homogeneous ma
netic fieldHW . The HamiltonianH is given by

H52mH cosu, ~6!

whereu is the angle betweenmW andHW . Following the usual
Tsallis formalism,13–15,28,29the magnetizationMq can be de-
termined from Eq.~5!,
01440
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Mq

m
5Lq~x!5

1

~22q!
3H 12

1

x
, x.

1

12q

cothq~x!2
1

x
, x,

1

12q
~7!

wherex5mH/kT, and cothq is the generalizedq hyperbolic
cotangent.52 The above two-branch function results from th
Tsallis cutoff.14,15,53 It is interesting to note the similarity
between the above result and the traditional Langevin fu
tion. In what follows, Eq.~7! will be called generalized
Langevin function, and this result can also be derived fro
thegeneralized Brillouin function, introduced in Ref. 29, tak-
ing the limit of large spin values (S→`). The result derived
above is valid only for 0<q<1.

The generalized paramagnetic susceptibilityxq exhibits
the usual dependence on the inverse of the absolute tem
ture

xq5 lim
H→0

F]Mq

]H G5
qm2

3kT
5qx1 ~8!

and is proportional to the usual paramagnetic Langevin s
ceptibility x1. A similar result was deduced for the genera
ized Brillouin function.29

III. MEAN-FIELD APPROXIMATION

A. Gibbs free energy

The Gibbs free energy is, within the mean field appro
mation,

G5
kT

m E
0

MqM q
21~Mq8!dMq82HMq2

l

2
M q

2 , ~9!

where the first term is the entropy, withM q
21 the inverse of

the generalized Langevin function@Eq. ~7!#, the second is the
Zeeman term, and the third, the exchange energy, withl as
the mean-field parameter. The equilibrium magnetization
be found from the minimization of the Gibbs free ener
and, depending on theq value, first- or second-order trans
tion features emerge. At zero magnetic field and forq.0.5
the free energy presents, for any value of temperature, o
one minimum, for positive values of magnetization. Cor
spondingly, a second-order paramagnetic-ferromagn
phase transition occurs atTC

(q)5qTC
(1) , as sketched in Fig

1~a!. Here, TC
(1)5m2l/3k is the Curie temperature for th

standard Langevin model. From now on, we introduce
dimensionless temperaturet5T/TC

(1) and field h
5mH/kTC

(1) parameters.
For q<0.5 the nature of the phase transition is more co

plex, presenting a typical behavior of first-order pha
transition.54 As is illustrated in Fig. 1~b!, for sufficiently high
temperatures (t.tSH), only one minimum atMq50 is ob-
served. With decreasing temperature, att5tSH , a second
minimum appears with finite magnetization and further lo
ering the temperature tot5tc , this minimum becomes de
generate, corresponding toMq50. Fort,tc the free energy
global minimum occurs for finite magnetization, determini
4-2
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its equilibrium value. However, this equilibrium state is n
necessarily the one observed in finite times, since there i
energy barrier between the two minima, which prevents
whole system to reach the global minimum of energy. T
minimum temperature that can sustain zero magnetizatio
the one corresponding tot5tSC, where the energy barrie
goes to zero and only one minimum exists at finite magn
zation. In a similar way,tSH corresponds to the maximum
temperature that can sustain a finite magnetization. This p
nomena is the well-known superheating-supercooling cy
and is responsible for the thermal hysteresis normally
served in first-order phase transitions.54 The tSH andtSC tem-
peratures can be analytically derived from the conditions
scribed above, and are valid only forq<0.5, yielding

tSH5
3

4

1

~22q!
, ~10!

tSC5q. ~11!

In contrast, a closed expression fortc cannot be derived
since it involves transcendental equations. The tempera
dependence of the reduced equilibrium magnetiza
Mq(22q)/m is sensitive to the features described above
can be seen in Fig. 2 and inset therein.

FIG. 1. Gibbs free energy@Eq. ~9!#, within the mean field ap-
proximation andh50, as a function of the reduced magnetizatio
~a! For q.0.5 only one minimum is observed, for any value
temperature (t.tc or t,tc), representing a second-order pha
transition for the magnetization.~b! For q,0.5 andt5tc two de-
generate minima are observed, representing a first-order phase
sition. The tSH and tSC temperatures limit the superheatin
supercooling cycle, responsible for the thermal hysteresis norm
observed in first-order phase transitions.
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B. Magnetic susceptibility

The generalized magnetic susceptibiliyxq , for any q
value, can be derived from Eq.~9!,

xq5
C(q)

t2up
(q)

, ~12!

where

C(q)5
m

kTC
(1) F ]M q

21

]Mq
U
Mq(h→0,t)

G21

. ~13!

In the paramagnetic phase,t.tC , Mq(h→0,t)50 and the
functionsC(q) andup

(q)5lC(q) are constants,

C(q)5
q

l
, ~14!

up
(q)5q, ~15!

resulting in an expression for thegeneralized Curie-Weiss
law:

xq5
q/l

t2q
. ~16!

The temperature dependence ofxq , and its inverse, is
quite distinct, depending whetherq,0.5 or q.0.5, as dis-
played in Figs. 3~a! and 3~b!, respectively. Forq.0.5 the
susceptibility diverges attc , the same temperature where i
inverse intercepts the temperature axis atup

(q) . For q,0.5
the susceptibility is always finite and peaks discontinuou
at tc . Correspondingly, its inverse shows a discontinu
with finite values and the Curie-Weiss linear behavior e
trapolates toup

(q) , which is lower thantc .

.

an-

lly

FIG. 2. Temperature dependence of the reduced equilibr
magnetization for several values ofq and h50. For q,0.5 the
transition shows a first-order character, whereas forq.0.5 the tran-
sition is of second-order type. The dotted line represents the
duced equilibrium magnetization, just belowt5q, for q50.8, in
which the critical exponentb51/2 could be obtained@Eq. ~31! in
Sec. III E#. Inset: Thermal hysteresis normally observed in fir
order phase transitions, with the superheating-supercooling cyc
4-3
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C. Influence of magnetic field on the magnetization

From the analysis of the Gibbs free energy, we conclu
that forq,0.5 andh50, the equilibrium magnetization ha
a first-order phase transition. Sufficiently high magnetic fi
h>h0q is able to remove the energy barrier between the
minima in the Gibbs free energy and, consequently, the
continuity in the equilibrium magnetization curve. This e
fect is illustrated in Fig. 4. The expression forh0q can be
derived from the condition described above, yielding

h0q5
3~122q!

22q
. ~17!

The quantityh/Mq is particularly important from the ex
perimental point of view, and is sketched in Fig. 5, forq
,0.5 andh53h0q . Another interesting point of this mode
for q,0.5, is the existence of a ferromagnetic phase tra
tion induced by the magnetic field, in the paramagne
phase. This feature is not related to the growing of the
romagnetic clusters, since the cluster size is assumed t
constant in the model. In fact, for temperature values su
ciently close totc , the two minima of the generalized Gibb
free energy have similar energy values and, consequently
magnetic field energy plays a decisive role, being able
induce a discontinuous character on the magnetization cu
However, for sufficiently high temperaturest>t0q , only one
minimum exists for any value of magnetic field, and t
magnetization curve becomes continuous. This effect is il

FIG. 3. Temperature dependence of the generalized mag
susceptibilityxq , and its inverse, for~a! q,0.5 and~b! q.0.5.
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trated in Fig. 6. The temperaturet0q , which determines the
continuous or discontinuous nature of the magnetization v
sus field curve is given by

t0q5
3~12q!2

22q
. ~18!

Above t0q , the curves of magnetization as a function
magnetic field are continuous~as described above!, present-
ing, however, a characteristic change of slope athc , which in
turn varies linearly with temperature:

hc5a~ t2t8!, ~19!

where

t85
3q~12q!

~22q!
~20!

and

a5
1

12q
. ~21!

tic

FIG. 4. Temperature dependence of the reduced equilibr
magnetization for several values ofh andq50.1. Sufficiently high
magnetic fieldh>h0q @Eq. ~17!#, is able to remove the discontinuit
in the equilibrium magnetization curve.

FIG. 5. Temperature dependence of the quantityh/Mq , for q
50.2 andh53h0q .
4-4
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D. Magnetic phase diagrams

At this point it is convenient to summarize the main pro
erties found so far: the temperature and magnetic field
pendence of the generalized magnetization and the gen
ized magnetic susceptibility depend greatly on the val
assumed for the entropic parameterq. It can be the usua
second-order paramagnetic-ferromagnetic phase trans
but it can become first order, exhibiting the properties n
mally associated with this type of transition.

Figure 7~a! presents thet-q phase diagram for severa
values ofh. The solid lines divide the plane in ferromagne
~below! and paramagnetic~above! regions. Forh50 andq
.0.5 the paramagnetic-ferromagnetic phase transition is
ways second order, whereas forq,0.5 the transition be-
comes first order. The dotted lines limit the irreversibili
regions, whereas the shaded areas between the dotted
represent the ferromagnetic-paramagneticphase coexistence,
which can exist for temperatures in the intervaltSC(q)<t
<tSH(q).

Strictly speaking, in the presence of a magnetic fieldh the
ferromagnetic-paramagnetic phase transition does not e
for any temperature, sinceMq is always different from zero
In any case, forq,0.5, if the magnetic field is not too hig
h,h0q , the Gibbs free energy presents two minima for te
perature values close totC and we can always distinguis
two phases, one with small magnetizationM q

small and other
with large magnetizationM q

large . Thus, the phase transitio
occurs discontinuously, with the shaded areas in Fig. 7~a!
corresponding to the values of temperature andq where the
phase coexistence occurs. The magnitude of the discontin
DMq decreases with increasing applied magnetic field, d
appearing forh>h0q @Eq. ~17!#, above which the transition
is always continuous~see Fig. 4!. However, in this case, the
transition occurs with a characteristic slope change in m
netization versus temperature curves, which does not o
for q.0.5. The dashed line cuts the transition lines at
point (q0h ,t0h), which divides the diagram in two regions

FIG. 6. Magnetic field dependence of the reduced equilibri
magnetization for several values of temperature andq50.1. It rep-
resents a ferromagnetic phase transition induced by magnetic
in the paramagnetic phase. For sufficiently high temperaturet
>t0q @Eq. ~18!#, the transition becomes continuous.
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one with discontinuous and irreversible~DI! transitions~at
left!, and other with continuous and reversible~CR! transi-
tions ~at right!.

As the magnetic field increases, this points travels in
dashed curve according to the parametric equations

q0h5
322h

62h
, ~22!

ld,

FIG. 7. q magnetic phase diagram summarizing the main pr
erties found in the model.~a! Projection of the phase diagram in th
t-q plane. The solid lines divide the plane in ferromagnetic~below!
and paramagnetic~above! phases, with a region of phase coexis
ence between the dotted lines~shaded area!. On the left side of the
dashed line, the transitions are discontinuous and irreversible~DI!,
whereas for the right side, the transitions are continuous and rev
ible ~CR! ~b! Projection of the phase diagram in theh-q plane, for
several temperaturest.tc . The curves in this case are complete
analogous to the previous one; however, it is ferromagnetic ab
the transition lines, since it represents a ferromagnetic transi
induced by magnetic field.~c! Projection of the phase diagram i
theh-t plane, forq50.1. Above certain values of fieldh>h0q @Eq.
~17!#, and temperaturet>t0q @Eq. ~18!#, the transition becomes
continuous.
4-5



e
-
r-
c
s
c-
g
h
-

o

in
et

e
at
s
s

DI

o
-
-
ll

t
us
sual

as

u

r

n-

n

he

for
fer-
s are

nd-

om

s,
en-

n-
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t0h5
1

3

~31h!2

62h
. ~23!

In an analogous way, Fig. 7~b! presents the projection of th
phase diagram in theh-q plane, for several values of tem
peraturet.tc . Each solid line divides the plane in the fe
romagnetic region~above the curve! and in the paramagneti
region~below the curve!. For q,0.5 and temperature value
sufficiently close totc , a field-induced phase transition o
curs discontinuously, with the shaded areas correspondin
the regions of phase coexistence and irreversibility. T
magnitude of the discontinuityDMq decreases with increas
ing temperature, disappearing fort>t0q @Eq. ~18!#, above
which the transition is always continuous~see Fig. 6!. The
dashed line cuts the transition curves at the point (q0t ,h0t),
which similarly as in the previous diagram divides it in tw
regions: one with DI transitions~at left!, and other with CR
transitions~at right!. As the temperature increases, the po
moves up along the dashed curve according to the param
equations given below:

q0t5
62t2At2112t

6
, ~24!

h0t5
6~ t231At2112t !

t161At2112t
. ~25!

The projection of the phase diagram in theh-t plane is
presented in Fig. 7~c!, only for q50.1, for sake of clarity.
Again, the dotted lines limit the irreversibility region, and th
shaded area represents the values of field and temper
where the two phases can coexist. Above certain value
field h>h0q and temperaturet>t0q , the transition become
continuous and the characteristic fieldhc varies linearly with
temperature, as given by Eq.~19!. The open circle (t0q ,h0q)
travels along the dashed curve according to Eqs.~17! and
~18!, and divides the diagram in two regions: one with
transitions~at left!, and other with CR transitions~at right!.

E. Generalized Landau coefficients

In this section we derive the generalized coefficients
Landau theory of phase transitions.54 Let us assume a re
duced Gibbs free energyG5G/kTC

(1) and a reduced magne
tization m5Mq /m. Thus, we are able to expand, for sma
values of magnetization, the Gibbs free energy@Eq. ~9!#,
obtaining

G5
A q

2
m21

B q

4
m41

C q

6
m62hm, ~26!

where

Aq5
3

q
~ t2q!, ~27!

Bq5
9~2318q24q2!t

5q3
, ~28!
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Cq5
27~542318q1623q22464q31116q4!t

175q5
. ~29!

Within Landau theory, negative values of the coefficienB
represent a first-order transition. In this direction, an obvio
correlation between the model proposed here and the u
Landau theory is obtained, since forq,0.5, thegeneralized
Landau coefficientBq also assume negative values,
sketched in Fig. 8. Note that forq,0.5 our model also pre-
dicts a first-order transition. Additionally, still within Landa
theory, the coefficientA usually takes the formA5a(T
2T0) ~Curie law!, and this is exactly the relation found fo
thegeneralized Landau coefficientAq @Eq. ~27!, sketched in
the inset of Fig. 8#, which represents the inverse of the ge
eralized susceptibility@Eq. ~16!#.

It is well known55–57 that, using the classical formulatio
of the Landau theory~or similar!, a negative slope of the
isotherm plotsh/m vs m2 ~Arrot plot! would indicate a first-
order phase transition. Thus, deriving the minimum of t
reduced Gibbs free energy (dG/dm50), we can express the
h/m quantity as

h

m
5Aq1B qm21Cq~m2!2. ~30!

As expected, forq,0.5 the generalized Arrot plothas a
negative slope, indicating a first-order transition, whereas
q.0.5, these plots are straight lines, characteristic of a
romagnetic second-order phase transition. These feature
presented in Figs. 9~b! and 9~c!, for q.0.5 andq,0.5, re-
spectively, whereas Fig. 9~a! represents theq51.0 case.

On the other hand, the critical exponents of the seco
order paramagnetic-ferromagnetic phase transition~for q
.0.5), can be directly derived from the results above. Fr
Eq. ~26! and t&q, one can derive

FIG. 8. The generalized Landau coefficientBq as a function of
the entropic parameterq. For q,0.5, Bq assumes negative value
indicating a first-order phase transition. Inset: temperature dep
dence of the coefficientAq that represents the inverse of the ge
eralized susceptibility.
4-6
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m.FqS q

t
21D 1/2

, ~31!

where

Fq5A5

3

q2

~2318q24q2!
. ~32!

Thus, the critical exponentb51/2 describes, at zero field
the temperature dependence of the reduced magnetizatiom,
as represented by the dotted line in Fig. 2, forq50.8. In
addition, the critical isotherm, attc , of the magnetic field as
a function of the reduced magnetization can also be der
from Eq. ~26!, yielding, for small values ofm,

h.
3

Fq
2

m3 ~33!

FIG. 9. The generalized Arrot Plot (h/m vs m2 curves!, for ~a!
q51.0, ~b! q.0.5, and~c! q,0.5.
01440
d

with the critical exponentd53. On the other hand, the tem
perature dependence of the zero-field generalized magn
susceptibilityxq can also be obtained from Eq.~26!:

xq5$Aq13@m~h→0,t !#2B q%
21, ~34!

where m(h→0,t)50 for values of temperature slightl
above the critical temperaturet*tc (tc5q, for q.0.5).
Thus, the generalized susceptibility becomes

xq5
q

3
~ t2q!21, ~35!

as described in Eq.~16!. On another hand, fort&tc , m(h
→0,t) assume the values described in Eq.~31!, and the gen-
eralized susceptibility becomes

xq5
1

2

q

3
~q2t !21. ~36!

Note thus that the critical exponentg51, which defines the
temperature dependence of the generalized susceptib
aroundtc , as well asb andd, is the same as that describin
the mean-field approximation within the Maxwel
Boltzmann statistic.

IV. CONNECTIONS TO EXPERIMENTAL RESULTS

A. A brief survey

The field and temperature dependencies of some ma
nites present interesting aspects. Miraet al.57,58 analyzed the
character of the phase transition in La2/3(Ca12ySry)1/3MnO3
and concluded that fory50 the magnetic transition is of firs
order, whereas it is second order fory51. Other works,
including those using nuclear magnetic resonance~NMR!,
support this result.59,60 Amaral et al.30,61,62 emphasized tha
La0.67Ca0.33MnO3, La0.8MnO3, and La0.60Y0.07Ca0.33MnO3
exhibit first order transition character, with additional hyst
esis for fields below a critical fieldH,Hc* and temperature
ranges betweenTc and a critical temperatureTc* . For the last
manganite cited above, for instance,M (H) presents an up-
ward inflection point fromTc5150 K up to 220 K, with a
characteristic fieldHc(T), for the inflection point, presenting
an almost linear temperature dependence. In addition, a l
thermal hysteresis is clearly delimited for temperatu
ranging from Tc up to the branching pointTc* ;170 K.
Analogous behavior is found in La0.67Ca0.33MnO3
and La0.8MnO3,61 Sm0.65Sr0.35MnO3

63, and
Pr0.5Ca0.5Mn12xCrxO3 (x50.03, 0.05!,64 among others.

Another interesting feature in the magnetization behav
of some manganites concerns theH/M vs T measurement,
which presents a strong downturn for values of tempera
nearly aboveTc . It makes a deviation from the simple Curie
Weiss law, and, atTc , the magnetic state is quickly switche
to a ferromagnetic one. Such a feature is frequently found
the literature of manganites: La0.60Y0.07Ca0.33MnO3
and La0.8MnO3,62 Sm0.55Sr0.45MnO3,65,66

La0.825Sr0.175Mn 0.86Cu0.14O3,67 Ca12xPrxMnO3 with
x<0.1,68 among others.

However, even with the enormous quantity of experime
tal measurements on manganites~see, for example, the im
4-7
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pressive review written by Dagotto and co-workers38!, the
nature of the phase transition in ferromagnetic manganite
still a controversial issue. In this direction, Amaralet al.61

claim for new models to explain the first-second order ch
acter of the transition in manganites, even with the theor
cal works developed by Jaimeet al.,69 Alonso et al.,70 and
Novák et al.59

To inquire about the order of the phase transition a
describe theoretically the behavior of the relevant magn
quantities, Amaral and co-workers61,62 used the macroscopi
Landau theory of phase transition, expanding the free en
up to sixth power of the magnetization. If the coefficientB
~with respect toM4) is negative, the transition can be firs
order-like. In this case, the magnetization will present a la
field cycling irreversibilityonly for values of magnetic field
and temperature belowHc* and Tc* , respectively. Further
analysis of Landau theory, even forB,0 and higher tem-
peratures and magnetic fields (H.Hc* and T.Tc* ), shows
that the magnetization has a peculiar inflection point a
characteristic magnetic fieldHc that increases linearly with
temperature,Hc(T)}(T2T0). However, the results of Lan
dau theory are not sufficient to reproduce all peculiar m
netic properties of the manganites, such as the anoma
behavior of theH/M vs T quantity, presented in Figs. 5 an
12.

B. Experimental and theoretical results
for La 0.60Y0.07Ca0.33MnO3

Ferromagnetic ceramic La0.60Y0.07Ca0.33MnO3 was pre-
pared by standard solid-state methods62 and the magnetiza
tion was measured using a Quantum Design supercondu
quantum interference device~SQUID! magnetometer~55
kOe! and an Oxford Instruments vibrating sample magne
meter ~VSM! ~120 kOe!. In this section we will apply
the general results obtained in the previous sections
quantitative analysis of experimental data f
La0.60Y0.07Ca0.33MnO3. As stated in Sec. III, we work within
the mean-field approximation, for whichx assumes the ex
pression

FIG. 10. Measured~open circles! and theoretical@solid lines,
Eqs.~7! and~37!# magnetic moment as a function of magnetic fie
for several values of temperatures aboveTc5150 K.
01440
is

r-
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d
ic

gy

e
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us

ng

-

a

x5
m~H1lMq!

kT
, ~37!

wherel is the mean-field parameter. Figure 10 presents
measured and theoretical magnetic moment as a functio
magnetic field, for several values of temperature aboveTc .
The excellent experimental-theoretical agreement is due
the use of the Tsallis statistics, which parametrizes the s
tem inhomogeneity.38

Here, we useq, m, l, andN, the number of clusters in the
sample, as free parameters. The magnetic momentm of the
clusters follows the usual temperature tendency of
paramagnetic-ferromagnetic transition, whereasq increases
towards unity with increasing temperature~Fig. 11!. The
temperature dependence of the parameterq was expected,
since for sufficiently high temperatures there are no clust
and, consequently, the system becomes extensive (q51.0).

From these results, we were able to compare the ano
lous downturn inH/M vs T curves just with the temperatur
dependence ofq andm and the approximately constant va
ues ofl andN. The calculated H/Mq vs T curve is displayed
in Fig. 12, with its corresponding experimental value. O

FIG. 11. Temperature dependence of the fitting parametersq and
m ~see text!.

FIG. 12. Measured~open circles! and theoretical~solid line!
values of the quantityH/M vs T. The solid line in this plot does no
include any fitting parameters, and was calculated using only
fitted parameters obtained from Fig. 10.
4-8
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should stress that the solid line in this plot does not inclu
any other fitting parameter. The curve was calculated us
only the fitted parameters obtained from Fig. 10.

Additionally, Amaral and co-workers61 pointed out that
the inflection point, atHc , on the M vs H curves of
La0.60Y0.07Ca0.33MnO3 presents two different features: on
for T.Tc* , where the characteristic fieldHc has a linear
temperature dependence, and other forTc,T,Tc* , where,
due the irreversibility, there are two characteristic fields. F
ure 13 shows the plot ofHc vs T obtained from experimenta
data. The similarity is striking between this plot and t
curve shown in Fig. 7~c!.

Finally, the Arrot plots presented by Amaralet al.61,62and
Mira et al.57,58 are very similar to those presented in Fig

*Present address: Centro Brasileiro de Pesquisas Fı´sicas, Rua Dr.
Xavier Sigaud 150 Urca, 22290-180 Rio de Janeiro-RJ, Bra
electronic address: marior@fis.ua.pt
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V. CONCLUSION
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