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Magnetic phase diagram for a nonextensive system: Experimental connection with manganites
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In the present paper we make a thorough analysis of a classical spin system, within the framework of Tsallis
nonextensive statistics. From the analysis of the generalized Gibbs free energy, within the mean-field approxi-
mation, a paramagnetic-ferromagnetic phase diagram, which exhibits first- and second-order phase transitions,
is built. The features of the generalized and classical magnetic moment are mainly determined by the values of
g, the nonextensive parameter. The model is successfully applied to the casggef LaCa 3dMNO; man-
ganite. The temperature and magnetic field dependence of the experimental magnetization on this manganite
are faithfully reproduced. The agreement between rather “exotic” magnetic properties of manganites and the
predictions of theg statistics comes to support our initial claim that these materials are magnetically nonex-
tensive objects.
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I. INTRODUCTION magnetic properties of manganites could be described within
the framework of Tsallis statistics was presented by Reis
In the literature of manganites, various models have apet al,? followed by an analysfS of the unusual paramag-
peared as different attempts to reproduce the electric andetic suscept|b|I|ty of LggCa 3MNnO;3, measured by Ama-
magnetic properties of these systems. Krivorucletal,! ral et al*°

NUnez-Regueiro and Kadiand Dionné gave interesting Maximization of Eq.(1) subjected to the constraint of the
examples of multiparameter models, but failed to aChleVEhormallzedq expectation value of the HamiltoniaH (Ref.
full agreement with experimental data. Ravindranattal* 13

compared resistivity data in bgYq1Ca 3MnO;3 to different

two-parameter models, which do not agree with each other in Tr{f{;q}

the low-temperature range. Other interesting attempts can be i~ 2
found in the work of Rivast al,® Huesoet al,® Heremans Trip

etal. leal et al,’ Philip and Kutty; Szewczyket al,'* Viret  anq the usual normalization of the density matrixi=1
et al,” and Tkachuket al.© None of these obtained plain . . . -

ields the following expression for the density matpix
agreement between experiment and theory, irrespective Jf

their number of adjusting parameters and approach. 1 o
On the other hand, Tsallis generalized stati$#ics has p= Z—[l—(l—q)ﬁ(H—Uq)]l’(“W, 3
been successfully applied to an impressive number of q
subjects® The formalism rests on the definition of general- where
ized entropy:’ o
Zy=Tr{1-(1-q)B(H—Ug)]"*"9 (4)

1_2 p{ is the partition function angd=B/Tr{p9}. Here, B is the
Sy=k———, ) Lagrange parameter associated with the internal energy.
However, Eg.(3) can be written in a more convenient

whereq is theentropic parameterp, are probabilities satis- form™>>?#in terms of g*, defined asp*=p/[1+(1

fying 2;p;=1, andk is a positive constant. The above for- —q),BUq] In particular, to analyze the physical system de-

mula converges to the usual Maxwell-Boltzmann definitionscribed here, the quantity kjg*) will represent the physical

of entropy, and to the usual derived thermodynamic functemperature scale, as in Refs. 28 and 29. Discussion about

tions, in the limitgq—1.13-%7 the concept of temperature and Lagrange parameters in Tsal-
For condensed matter problems, applications of @y. lis statistics can be found in the literature'28-2%31-3¢n the

include Ising ferromagnet$7?° molecular field present work, the parametqris restricted to the interval 0

approximatiort?2Landau diamagnetisff, electron-phonon  <q=<1, preserving the entropy concavif§®’ Finally, the

systems and tight-binding-like Hamiltoniaffs?® metallic®®  magnetization of a specimen is, accordingly, given

and superconductdrsystems, etc. The first evidence that theby:13-1528:29
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where i is the magnetic moment operator. cothy(x)— X X<1T
In this paper we pursue the idea, based on novel experi- q &

mental and theoretical results, that manganites are magneti-
cally nonextensive objects. This property appears in systemgherex=uH/kT, and cotlj is the generalized hyperbolic
where long-range interactions and/or fractality exist, andcotangent? The above two-branch function results from the
such features have been invoked in recent models of mangdsallis cutoff**>*?1t is interesting to note the similarity
nites, as well as in the interpretation of experimental resultsbetween the above result and the traditional Langevin func-
They appear, for instance, in the work of Dagotto andtion. In what follows, Eq.(7) will be called generalized
co-workers® who emphasize the role of competition be- Langevin functionand this result can also be derived from
tween different phases in the physical properties of thesghegeneralized Brillouin functionintroduced in Ref. 29, tak-
materials. Various authors have considered the formation ofg the limit of large spin valuesS— ). The result derived
microclusters of competing phasés* with fractal shapes, above is valid only for &q<1.
randomly distributed in the materiééee Ref. 38 and refer- The generalized paramagnetic susceptibijty exhibits
ences thereinand the role oflong-range interactiondn  the usual dependence on the inverse of the absolute tempera-
phase segregatidfi*® Important experimental results in this ture
direction have also been reported by Merithetal*’ Par-
ticularly insightful is the work of Satou and Yamandka, — lim
who derived aCantor spectra for the double-exchange Xa H_0
Hamiltonian, the basis of theoretical models of manganites. ] ) ) )

A major difficulty with Tsallis formulation concerns the @nd is proportional to the usual paramagnetic Langevin sus-
physical meaning of the entropic parametein this direc- pept|bll[ty X1 A smylaggresult was deduced for the general-
tion, Beck and Cohéfi have recently shown that the value of iz&d Brillouin functiont
g gives a direct measure of the internal distribution of tem-
peratures in arinhomogeneousystem. Although their re- lll. MEAN-FIELD APPROXIMATION
sults are not directly applied to magnetic systems, it has been
known for some time that manganites are magnetically inho- . o . )
mogeneous systenisee, for instance, Refs. 38 and 50 and 1he Gibbs free energy is, within the mean field approxi-
references therejnThis fact has been explored very recently mation,
by Salamoret al.>! who applied the idea adistribution of KT (M N

. . e . . q _

the inverse susceptibilitjwhich turns out to be equivalent to G= _J MY MDHAM!— HM— 5 M 2. (9
a distribution of temperaturgs the analysis of the magnetic K Jo a 4 a 2
susceptibility and the effective paramagnetic moment of,here the first term is the entropy, Wngl the inverse of

Lag 7Ca sMNnOs. ) _the generalized Langevin functipiqg. (7)], the second is the

In what follows, we present a magnetic model for classi-zaeman term. and the third. the exchange energy, Wits
cal spinsi(cluste), based on the framework of Tsallis gener- \he mean-field parameter. The equilibrium magnetization can
alized statistics. In the model, we consider that nonextensivVge tound from the minimization of the Gibbs free energy
ity exists in the intracluster interactions, whereas they 4 depending on the value, first- or second-order transi-
intercluster interaction remains extensive. This is importa”{ion’features emerge. At zer(; magnetic field anddor0.5

to maintain the total magnetizgtion proportional to the num- he free energy presents, for any value of temperature, only
ber of clusters. Then, the Gibbs free energy is analyze ne minimum, for positive values of magnetization. Corre-

yv|th|n the rr_1ean-f|eld approximation, and a series of interestg ondingly, a second-order paramagnetic-ferromagnetic
ing magnetic features appears as a consequence of nonextefi- "+ -t cition occurs #9=qT®, as sketched in Fig.

sivity. Finally, connection between the model and eXpe”'léa). Here,T(Cl)z,uz)\Bk is the Curie temperature for the

mental data obtained from magnetic measurements on sorr% - ndard Lanaevin model. From now on. we introduce the
manganite samples is made. 9 ' '

dimensionless temperaturet=T/T&) and field h
= uH/KTY) parameters.

Forg=0.5 the nature of the phase transition is more com-
Consider a classical spin under a homogeneous mag- Plex, presenting a typical behavior of first-order phase

netic field . The Hamiltoniar is given by transition>* As is illustrated in Fig. ), for sufficiently high
temperaturest{tgy), only one minimum atM,=0 is ob-
H=— uH cosé, (6)  served. With decreasing temperature,tattsy, a second
R _ minimum appears with finite magnetization and further low-
where# is the angle betweep andH. Following the usual ering the temperature to=t., this minimum becomes de-
Tsallis formalism:®~*>?%2%he magnetizatiooM, can be de-  generate, corresponding fef,=0. Fort<t, the free energy
termined from Eq(5), global minimum occurs for finite magnetization, determining

_qu?

- g ®
3kT X1

dH

A. Gibbs free energy

Il. CLASSICAL MODEL
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% FIG. 2. Temperature dependence of the reduced equilibrium
o 2 magnetization for several values gfand h=0. For g<0.5 the
-104 transition shows a first-order character, whereagifef.5 the tran-
151 sition is of second-order type. The dotted line represents the re-
) N duced equilibrium magnetization, just beldw q, for g=0.8, in
-204 First o(r::l") t;a)msntlon t=t_ (b) which the critical exponenB=1/2 could be obtainefEq. (31) in
-25 T : : . : Sec. Il E|. Inset: Thermal hysteresis normally observed in first-
00 02 04 06 08 1.0 order phase transitions, with the superheating-supercooling cycle.

M (2-q)/u
B. Magnetic susceptibility
FIG. 1. Gibbs free energyEqg. (9)], within the mean field ap-

proximation anch=0, as a function of the reduced magnetization.
(a) For g>0.5 only one minimum is observed, for any value of
temperature tc>t, or t<t.), representing a second-order phase
transition for the magnetizatiorib) For g<0.5 andt=t. two de-
generate minima are observed, representing a first-order phase tran-
sition. The tgy and tgc temperatures limit the superheating-
supercooling cycle, responsible for the thermal hysteresis normallyvhere
observed in first-order phase transitions.

The generalized magnetic susceptibily, for any q
value, can be derived from E¢),

c@

Xq

IMg*

M
cl=
ﬁMq

-1
its equilibrium value. However, this equilibrium state is not KT l
necessarily the one observed in finite times, since there is an c Mg(h=01)
energy barrier between the two minima, which prevents then the paramagnetic phasestc, Mg(h—0t)=0 and the
whole system to reach the global minimum of energy. ThefynctionsC(® and 62 =XC@ are constants,
minimum temperature that can sustain zero magnetization is P
the one corresponding tb=tgc, where the energy barrier
goes to zero and only one minimum exists at finite magneti-
zation. In a similar waytgy corresponds to the maximum
temperature that can sustain a finite magnetization. This phe- 99D=q, (15)
nomena is the well-known superheating-supercooling cycle P
and is responsible for the thermal hysteresis normally obresulting in an expression for thgeneralized Curie-Weiss
served in first-order phase transitioi§lhets, andtgctem-  law:
peratures can be analytically derived from the conditions de-

(13

q
(=2
C N (14)

scribed above, and are valid only fg<0.5, yielding :q/_)\ 16
Xq t—q° (16)
3 1
sh=2 2-q)" (10) The temperature dependence xf, and its inverse, is
quite distinct, depending whethgr0.5 org>0.5, as dis-
tec=0. (11)  Played in Figs. 8) and 3b), respectively. Folg>0.5 the

susceptibility diverges &t., the same temperature where its
In contrast, a closed expression tgrcannot be derived, inverse intercepts the temperature axiseg‘f. For q<0.5
since it involves transcendental equations. The temperatuitBe susceptibility is always finite and peaks discontinuously
dependence of the reduced equilibrium magnetizatiomt t.. Correspondingly, its inverse shows a discontinuity
Mq(2—q)/u is sensitive to the features described above, agith finite values and the Curie-Weiss linear behavior ex-
can be seen in Fig. 2 and inset therein. trapolates toﬂgq), which is lower thart..
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(a)
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0. 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x107 = —o7 x10* t
124 tc = ep =071L10 FIG. 4. Temperature dependence of the reduced equilibrium
magnetization for several values lofandq=0.1. Sufficiently high
104 K] magnetic fielch=hg, [Eq. (17)], is able to remove the discontinuity
8 — in the equilibrium magnetization curve.
L6 - . .
6. — -1 trated in Fig. 6. The temperatutg,, which determines the
Xq Xq continuous or discontinuous nature of the magnetization ver-
4. -4 sus field curve is given by
21 2 Gl 1 (18
(b) 0q 2—-q -
0 T : T T 0 L .
0.6 0.7 0.8 0.9 1.0 Above tyq, the curves of magnetization as a function of
t magnetic field are continuouas described aboyepresent-

ing, however, a characteristic change of sloplkatwhich in

FIG. 3. Temperature dependence of the generalized magneu[%m varies linearly with temperature:

susceptibilityy, and its inverse, fofa) g<0.5 and(b) g>0.5.
he=a(t—t"), 19
C. Influence of magnetic field on the magnetization o=al ) (19

From the analysis of the Gibbs free energy, we concludé’vhere

that forq<<0.5 andh=0, the equilibrium magnetization has 3q(1-q)
a first-order phase transition. Sufficiently high magnetic field t'=———
h=h,, is able to remove the energy barrier between the two (2=9)
minima in the Gibbs free energy and, consequently, the disand

continuity in the equilibrium magnetization curve. This ef-

fect is illustrated in Fig. 4. The expression fbg, can be 1

derived from the condition described above, yielding 1 (22)

3(1—2q)
N (17 14{9=0.2

The quantityh/ M, is particularly important from the ex- 12 h=3h,,
perimental point of view, and is sketched in Fig. 5, fpr 1
<0.5 andh=3hg, . Another interesting point of this model, 10+
for q<0.5, is the existence of a ferromagnetic phase transi- ¢ 4 |
tion induced by the magnetic field, in the paramagnetic E
phase. This feature is not related to the growing of the fer- = g/
romagnetic clusters, since the cluster size is assumed to be ;
constant in the model. In fact, for temperature values suffi- 4+
ciently close ta., the two minima of the generalized Gibbs
free energy have similar energy values and, consequently, the
magnetic field energy plays a decisive role, being able to 0 1 2 3 4 5 6 7
induce a discontinuous character on the magnetization curve.
However, for sufficiently high temperaturest,,, only one
minimum exists for any value of magnetic field, and the FIG. 5. Temperature dependence of the quartityt,, for g
magnetization curve becomes continuous. This effect is illus=0.2 andh=3h,,..
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FIG. 6. Magnetic field dependence of the reduced equilibrium 1-21 F /(qm, ‘")t 1.0
magnetization for several values of temperature @#d.1. It rep- h 0.8 ""‘==-?

resents a ferromagnetic phase transition induced by magnetic field,
in the paramagnetic phase. For sufficiently high temperattires
=104 [EQ. (18)], the transition becomes continuous.

) . \ . ' (b)
D. Magnetic phase diagrams 0.0 0.2 0.4 0.6 0.8 1.0

At this point it is convenient to summarize the main prop- DI - Discontinuous and Irreversible
erties found so far: the temperature and magnetic field de- 1.5{CR - Continuous and Reversible 9/
pendence of the generalized magnetization and the general- E_ E:::::;Zf:ltf b1 o
ized magnetic susceptibility depend greatly on the values 1.0 ' (t h,)
assumed for the entropic parametgrlt can be the usual h Ferro
second-order paramagnetic-ferromagnetic phase transition e
but it can become first order, exhibiting the properties nor- 0.5+
mally associated with this type of transition.

Figure {a) presents thd-q phase diagram for several 0.0 q=0.1 (c)
values ofh. The solid lines divide the plane in ferromagnetic 0.0 0.5 1.0 1.5

(below) and paramagnetiabove regions. Forh=0 andq t
>0.5 the paramagnetic-ferromagnetic phase transition is al-
ways second order, whereas fqr 0.5 the transition be-

comes first order. The dotted lines limit the irreversibility
regions, whereas the shaded areas between the dotted I|n
represent the ferromagnetic-paramagnpliase coexistence
which can exist for temperatures in the inter¢gq)=<t

FIG. 7. g magnetic phase diagram summarizing the main prop-
erties found in the mode{a) Projection of the phase diagram in the
% plane. The solid lines divide the plane in ferromagnétielow
d paramagnetitabove phases, with a region of phase coexist-
ence between the dotted lineshaded areaOn the left side of the
dashed line, the transitions are discontinuous and irreverdile
gtSH(_Q)- ) ] ) whereas for the right side, the transitions are continuous and revers-
Strictly speaking, in the presence of a magnetic fietle  jpje (CR) (b) Projection of the phase diagram in theq plane, for
ferromagnetic-paramagnetic phase transition does not exigbveral temperaturds-t.. The curves in this case are completely
for any temperature, sincé1, is always different from zero. analogous to the previous one; however, it is ferromagnetic above
In any case, fog<0.5, if the magnetic field is not too high the transition lines, since it represents a ferromagnetic transition
h<hgq, the Gibbs free energy presents two minima for tem-induced by magnetic fieldc) Projection of the phase diagram in
perature values close tg and we can always distinguish theh-t plane, forg=0.1. Above certain values of fielt=hy, [Eq.
two phases, one with small magnetization$™" and other (1], and temperaturé=toq [Eq. (18)], the transition becomes
with large magnetizatiorM {j"ge Thus, the phase transition continuous.
occurs discontinuously, with the shaded areas in Fig 7
corresponding to the values of temperature gnihere the  one with discontinuous and irreversib(Bl) transitions(at
phase coexistence occurs. The magnitude of the discontinuitgft), and other with continuous and reversilfeR) transi-
A M, decreases with increasing applied magnetic field, distions (at right.
appearing foh=hy, [Eq. (17)], above which the transition As the magnetic field increases, this points travels in the
is always continuougsee Fig. 4. However, in this case, the dashed curve according to the parametric equations
transition occurs with a characteristic slope change in mag-
netization versus temperature curves, which does not occur
for g>0.5. The dashed line cuts the transition lines at the
point (Qon,ton), Which divides the diagram in two regions:

3—2h

Qon="g_p (22

014404-5



REIS, AMARAL, ARAL:IJO, AND OLIVEIRA PHYSICAL REVIEW B 68, 014404 (2003

1 (3+h)? 4]
ton=3 6—n - @3
In an analogous way, Fig(l3) presents the projection of the 0

phase diagram in thb-q plane, for several values of tem-
peraturet>t.. Each solid line divides the plane in the fer-
romagnetic regiofabove the curveand in the paramagnetic - -4
region(below the curve Forq<0.5 and temperature values m
sufficiently close tat., a field-induced phase transition oc-
curs discontinuously, with the shaded areas corresponding t
the regions of phase coexistence and irreversibility. The
magnitude of the discontinuit M, decreases with increas- -12
ing temperature, disappearing foety, [Eq. (18)], above
which the transition is always continuogsee Fig. 6. The
dashed line cuts the transition curves at the paifpt (o),
which similarly as in the previous diagram divides it in two
regions: one with DI transitiont left), and other with CR FIG. 8. The generalized Landau coefficidhy as a function of
transitions(at right. As the temperature increases, the pointthe entropic parametey. For q<0.5, B, assumes negative values,
moves up along the dashed curve according to the parametrigdicating a first-order phase transition. Inset: temperature depen-
equations given below: dence of the coefficient, that represents the inverse of the gen-
eralized susceptibility.

co b b o o

0 02 04 06 08 1.0
t

| 0.6 I 0.7 I 0.8 I 0.9 I 1.0

6—t— Vt2+ 12t
Jou=—"""% (29
C_27(54—318q+623qz—464q3+116q4)t 29
B > a“ 1755 '
. _6(t 3+ t?+12t) 25

ot (D Ao

t+6+Vi°+ 12 Within Landau theory, negative values of the coefficiBnt
represent a first-order transition. In this direction, an obvious
presented in Fig. (€), only for q=0.1, for sake of clarity. correlation between the model proposed here and the usual

Again, the dotted lines limit the irreversibility region, and the Laggau theo;%; |is r?tbl;ameld, since f:zK Or'15’ thtie\?en\?riahzed
shaded area represents the values of field and temperatd'r i f;l]udc_oeF_ce8 Nq tatsho teflss!o(; cga del ?ues’ as
where the two phases can coexist. Above certain values (etehed In F1g. ©. Note that Tar=1.5 our model aiso pre-
field h=ho, and temperature=to,, the transition becomes icts a f|rst-order.trgn3|t|on. Additionally, still within Landau
continuous and the characteristic fiéldvaries linearly with theory, the coefficientd usually takes the formd=a(T

: . —Ty) (Curie law), and this is exactly the relation found for
temperature, as given by E@.9). The open circlet,,h 0 ) e .
travFe)Is along thefJ dasheyd (ftr\)/e accoFr)ding to E%%) grq1)d the generallze_d Landa_lu coefficienty [Eq. (27)’ sketched in
(18), and divides the diagram in two regions: one with DI the inset of Fig.  which represents the inverse of the gen-

.. . L : eralized susceptibilityEqg. (16)].
transitions(at left), and other with CR transition@t righ. ItIZiS welIJISkncE)V\; n5'5'_¥,7 t?\eft a]sing the classical formulation

of the Landau theoryfor similan, a negative slope of the
isotherm plotsh/m vs m? (Arrot plot) would indicate a first-

In this section we derive the generalized coefficients oforder phase transition. Thus, deriving the minimum of the
Landau theory of phase transitioMsLet us assume a re- reduced Gibbs free energg@/dm=0), we can express the
duced Gibbs free energy=G/kTY) and a reduced magne- h/m quantity as
tizationm= Mg/ u. Thus, we are able to expand, for small

The projection of the phase diagram in the plane is

E. Generalized Landau coefficients

values of magnetization, the Gibbs free enef@g. (9)], h
obtaining == Agt Bqm?+Cy(m?)2. (30)
Aqg , Bq , Cq 4 )
g=7m +Tm +Em —hm, (26)  As expected, forg<<0.5 the generalized Arrot plothas a
negative slope, indicating a first-order transition, whereas for
where g>0.5, these plots are straight lines, characteristic of a fer-

romagnetic second-order phase transition. These features are
3 presented in Figs.(B) and 9c), for g>0.5 andg<0.5, re-
Aq:a(t_Q)a (27)  spectively, whereas Fig.(# represents thg=1.0 case.
On the other hand, the critical exponents of the second-
order paramagnetic-ferromagnetic phase transiiifam g
, (28) >0.5), can be directly derived from the results above. From
Eqg. (26) andt=<q, one can derive

9(—3+8g-4g’)t
By= =

014404-6
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0.8

[(a) t=1.15

0.6-V
-/1.10

FIG. 9. The generalized Arrot Ploh{m vs m? curves, for (a)
g=1.0, (b) g>0.5, and(c) q<0.5.

1/2
m:Fq(%—l> , (31

where

F —\/5 i (32)
9 V3 (-3+89-4q?)
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with the critical exponent= 3. On the other hand, the tem-
perature dependence of the zero-field generalized magnetic
susceptibilityx, can also be obtained from E(R6):

qu{Aq—i-3[m(h—>0,t)]28q}71, (34

where m(h—0t)=0 for values of temperature slightly
above the critical temperature=t. (t.=q, for q>0.5).
Thus, the generalized susceptibility becomes

xe=3(t=a)% (39

as described in Eq16). On another hand, forst., m(h
—0,t) assume the values described in E2{l), and the gen-
eralized susceptibility becomes

1
xq=§%(q—t)*1. (36)

Note thus that the critical exponemt=1, which defines the
temperature dependence of the generalized susceptibility
aroundt;, as well asB8 and 6, is the same as that describing
the mean-field approximation within the Maxwell-
Boltzmann statistic.

IV. CONNECTIONS TO EXPERIMENTAL RESULTS

A. A brief survey

The field and temperature dependencies of some manga-
nites present interesting aspects. Métaal>"* analyzed the
character of the phase transition ins6Ca; | Sr,)15MnO;
and concluded that for=0 the magnetic transition is of first
order, whereas it is second order fpe=1. Other works,
including those using nuclear magnetic resona(dkIR),
support this resuft’®® Amaral et al>*2emphasized that
Lag 6Cap 3MNO3, LaggMnOs, and La eoY 0.07Ca.3MN03
exhibit first order transition character, with additional hyster-
esis for fields below a critical field <H} and temperature
ranges betweeR, and a critical temperaturg . For the last
manganite cited above, for instandd(H) presents an up-
ward inflection point fromT.=150 K up to 220 K, with a
characteristic fieldH .(T), for the inflection point, presenting
an almost linear temperature dependence. In addition, a large
thermal hysteresis is clearly delimited for temperatures
ranging from T, up to the branching poinf ~170 K.
Analogous behavior is found in kgLCa3dVInO;
and Lg gMnO3, %t Sy 6510, 3MNO5 %, and
Pr, <Ca Mn; _,Cr,O3 (x=0.03, 0.05,°* among others.

Another interesting feature in the magnetization behavior
of some manganites concerns tHéM vs T measurement,

Thus, the critical exponeng=1/2 describes, at zero'fielld, which presents a strong downturn for values of temperature
the temperature dependence of the reduced magnetization nearly abovel. . It makes a deviation from the simple Curie-

as represented by the dotted line in Fig. 2, e 0.8. In

Weiss law, and, af ., the magnetic state is quickly switched

addition, the critical isotherm, at, of the magnetic field as  tg 4 ferromagnetic one. Such a feature is frequently found in
a function of the reduced magnetization can also be deriveghe |iterature of manganites: k&Y o,0Ca 3MNO;

from Eq. (26), yielding, for small values o,

h 3 (33
=—m

2

Fq

and L%.gMnO3,62 Srrb.558r0‘4dv|n03,65'66
Lag g2s5r0.17MN 0 geCU0 14003,>"  Cay_,Pr,MnO;  with
x=<0.1,°% among others.

However, even with the enormous quantity of experimen-
tal measurements on manganitese, for example, the im-
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1.0 210 K| 400 ° o—"
o
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0.8 230 K O/
- ’ 240 K 300 /
-~ o
§ o6 = ¢ oy 0.4 q
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H (kOe) T (K)
FIG. 10. Measuredopen circles and theoretica[solid lines, FIG. 11. Temperature dependence of the fitting parametansl

Egs.(7) and(37)] magnetic moment as a function of magnetic field, # (see text

for several values of temperatures abdye= 150 K.
mw(H+AM,)
X: —_—

pressive review written by Dagotto and co-work8rsthe KT '

nature of the phase transition in ferromagnetic manganites is . , .
still a controv%rsial issue. In this directign, Amam%l'el Where\ is the mean-field parameter. Figure 10 presents the

claim for new models to explain the first-second order charMeasured and theoretical magnetic moment as a function of
acter of the transition in manganites, even with the theoretiMagnetic field, for several values of temperature abbye

cal works developed by Jaimet al,%® Alonso et al,” and The excellent experimental-theoretical agreement is due to
Novak et al5® ’ ’ the use of the Tsallis statistics, which parametrizes the sys-

To inquire about the order of the phase transition and€™ inhomogeneity? _
describe theoretically the behavior of the relevant magnetic H€re, we use, 4, A, andN, the number of clusters in the
quantities, Amaral and co-work&€? used the macroscopic S&mPple, as free parameters. The magnetic momeot the

Landau theory of phase transition, expanding the free energgusters follows the usual temperature tendency of a
up to sixth power of the magnetization. If the coefficight Paramagnetic-ferromagnetic transition, whereamcreases

(with respect toM#) is negative, the transition can be first- towards unity with increasing temperatu(gig. 11). The
order-like. In this case, the magnetization will present a largd€MPerature dependence of the parametevas expected,
field cycling irreversibilityonly for values of magnetic field Since for sufficiently high temperatures there are no clusters,
and temperature belowi; and Tg , respectively. Further and, consequently, the system becomes extengjvel (0).
analysis of Landau theory, even fé#<0 and higher tem- From these results, we were able to compare the anoma-

peratures and magnetic fieldsi&H* and T>T*), shows lous downturn inH/M vs T curves just with the temperature

that the magnetization has a peculiar inflection point at adependence af and « and the approximately _con_stant val-
o o . . . ues ofh andN. The calculated H\1, vs T curve is displayed
characteristic magnetic field . that increases linearly with a

temperatureH ()= (T—To). However, the results of Lan- in Fig. 12, with its corresponding experimental value. One
dau theory are not sufficient to reproduce all peculiar mag-

(37

x10" La, Y, .Ca, .MnO,

netic properties of the manganites, such as the anomalous 164 o.60" 0.07F0.33
behavior of theH/M vs T quantity, presented in Figs. 5 and H=10 kOe s
12. 1 © Experimental data

Present model

—
N
1

B. Experimental and theoretical results
for Lag.60Y 0.01C30,3MNO 3

Ferromagnetic ceramic bkggY o078 3dMNO3 was pre-
pared by standard solid-state mettfSdand the magnetiza-
tion was measured using a Quantum Design superconducting
qguantum interference devic€SQUID) magnetometer(55
kOe) and an Oxford Instruments vibrating sample magneto- 0 T T T T
meter (VSM) (120 kOsg. In this section we will apply 120 140 160 180 200 220 240

. . . . T (K)
the general results obtained in the previous sections to a
quantitative  analysis ~of  experimental data for FiG. 12. Measuredopen circles and theoreticaksolid line)
Lag 60Y 0.0/Ca 3MNO;. As stated in Sec. lll, we work within  values of the quantitid/M vs T. The solid line in this plot does not
the mean-field approximation, for whichassumes the ex- include any fitting parameters, and was calculated using only the
pression fitted parameters obtained from Fig. 10.

H/M (Oe emu™)
®

»
|
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La Y Ca Mno 9(b) and 9c). In addition, Moharet al.”* and Loflandet al.”

4 0T found for the critical exponents gB(y,8), measured

in  LapgSry,MnO;, (0.50,1.05,3.18 and (0.5,1.0;),
respectively, as theoretically obtained in Sec. Ill E. These
3. results contrast with those reported in the literature for
T * Lag gSrg ,C005, (0.46,1.39,4.02 which does not have long-

range interactions below the Curie pofAt.

C

H_ (kOe)

V. CONCLUSION

In two previous publicatiorf§?® we presented evidence
14 that the magnetic properties of manganites can be suitably
b . , , , described in the framework of Tsallis statistics. In the present
160 170 180 190 paper we have extended our analysis and presented compel-
T (K) ling evidence in this direction by deducing a magnetic phase
diagram that matches observed experimental results on
characteristic fielH ., which corresponds to the inflection point of L8o 0¥ 0.00%.3MNQ;, along with some other magnetic
the experimental M vs H curves, measured in properties of this compound. The interpretation of the en-
Lag e0Y 0.0/C8 3MNO;. For T.<T<T? the hysteresis is indicated tropic parz;meteq, glr\]/en by Beckdanqd(;,]ohfé?lrl]n terms of
by the shaded area. The similarity between this experimental plog?e .rath e,tween the mean and width of the temperature
and the theoretical one, shown in Figc)] is striking. _Istrlbutlon in t_he system, comes to supporf[ our propo_sal,
since manganites have long been recognized as objects
should stress that the solid line in this plot does not includé"’?}oSe prpngﬁ,’ses arr(]a d_dorgmgted Lz)y |nt|r|nS|(;:
any other fitting parameter. The curve was calculated usin§!Nomogeneities.*Such a distribution can be translate
only the fitted parameters obtained from Fig. 10. s a distribution 05flthe magnetic susceptibility, as pointed out
Additionally, Amaral and co-workef$ pointed out that PY Salamoret al,> from which a temperature dependence
the inflection point, atH., on the M vs H curves of of q can be expected. Therefore, we conclude that Tsallis
LagsqY 00/C 33Mn0; prescénts two different features: one nonextensive statistics is a handy tool to study, classify, and
for 'T>T§ where the characteristic field. has a linear predict magnetic and thermal properties of manganites.

temperature dependence, and otherTe T<T: , where,
due the irreversibility, there are two characteristic fields. Fig-
ure 13 shows the plot dfl; vs T obtained from experimental The authors thanks FAPERJ/Brazil, FCT/Portugabn-
data. The similarity is striking between this plot and thetract No. POCTI/CTM/35462/99 and ICCTI/CAPES
curve shown in Fig. (©). (Portugal-Brazil bilateral cooperatiprfor financial support.

Finally, the Arrot plots presented by Amatial®*®?and  We are also thankful to A.P. Guimas, E.K. Lenzi, and R.S.
Mira et al®"8 are very similar to those presented in Figs. Mendes for their helpful suggestions.

FIG. 13. The linear temperature dependence;TfofT; , of the
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