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Quantum and classical diffusion on small-world networks
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We study numerically quantum diffusion of a particle on small-world networks by integrating the time-
dependent Schro¨dinger equation with a localized initial state. The participation ratio, which corresponds to the
number of visited sites in the case of classical diffusion, as a function of time is measured and the correspond-
ing diffusion time,t is computed. In a local regular network, i.e., in the network with the rewiring probability
p50, the diffusion time depends on the network sizeN ast;N, while the behaviort; log N is observed as
p becomes finite. Such fast diffusion of a particle on a complex network suggests that the small-world
transition is also the fast-world transition from a dynamic point of view. The classical diffusion behavior is also
studied and compared with the quantum behavior.
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There has been a surge of research activity on var
aspects of complex networks since some important feat
of real networks were successfully explained by sim
model networks.1–3 In particular, the Watts-Strogatz~WS!
model2 was the first to produce networks with small-wor
behavior, characterized by the path length increasing lo
rithmically with the network size. Subsequently, a number
studies have been performed on such complex networks
cused mostly on structural properties of the networks. On
other hand, vertices of a real network may have some in
nal degrees of freedom, interwoven with the structure of
network. Motivated by this observation, a group of resear
ers has also investigated statistical mechanical models
fined on complex networks. For example, spin models s
as the Ising model and theXY model on WS networks hav
been shown to undergo finite-temperature phase transit
of the mean-field nature,4,5 disclosing the role of long-rang
interactions along the shortcuts. In some cases the time
velopment of the network structure may be coupled to
dynamics of degrees of freedom defined on vertices. Still
study of vertex dynamics without considering its influen
on the network structure can be useful as a first step tow
complete understanding. In this spirit, dynamic models
fined on networks draw much attention: Epidemic spread
as well as classical diffusion on complex networks have b
studied,6,7 and very recently, the dynamic universality cla
of the XY model on the WS network has been identified.8

Properties of a quantum-mechanical model put on a c
plex network have also been studied with respect to the s
tral properties of the Laplacian operator9 and the
localization-delocalization transition in the presence of s
disorder.10 In this work we consider quantum as well as cla
sical diffusion of a particle on the WS network without si
disorder, and investigate how the diffusion time scales w
the network size. It is well known that as soon as the W
network ~of sizeN) has a finite fraction of shortcuts, it un
dergoes the small-world transition in which the characteri
path lengthl changes its behavior froml;N to logN.2,11

From the dynamic point of view, this change from larg
world to small-world behavior is expected to be accom
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nied by a sharp change in the behavior of the diffusion tim
If the world is small, the traveling time around the wor
should also be short. Indeed the diffusion timet associated
with the participation ratio is observed to change the s
dependence fromt;N to logN, which is to be compared
with the case of classical diffusion:t;N2 to N.

The low-dimensional tight-binding electron system h
been studied extensively in relation to the localization tra
sition in the presence of disorder. In the absence of disor
the energy eigenstate of a tight-binding electron on a lo
regular lattice is always in the extended state due to
Bloch theorem. Here we consider the tight-binding electr
on the WS network, described by the time-dependent Sc¨-
dinger equation

i
]uC&

]t
5HuC&, ~1!

where we have set\[1 and the ketuC& has the position
representationCn[^nuC& at the nth vertex. The Hamil-
tonian in the position representation takes the form

Hnn85Hn8n5H D for n8PLn ,

0 otherwise,
~2!

where the on-site energy has been assumed to be uni
and set equal to zero (Hnn[0), D is the hopping energy, and
Ln represents the set of neighbors of vertexn. For example,
in a local regular network with the connection ranger 51,
we haveLn5$n21,n11%.

The WS network is constructed according to the stand
procedure in Ref. 2: A one-dimensional~1D! local regular
network with the connection ranger is built first, then with
the rewiring probabilityp each local edge is rewired to an
other randomly chosen vertex.~See Fig. 1, illustrating the
caser 52.! Once the WS network is constructed in this wa
we normalize the timet in units of 1/D, and integrate the
time-dependent Schro¨dinger equation given by Eqs.~1! and
~2! numerically by means of the fourth-order Runge-Ku
method with the discrete time stepdt50.01, starting from
©2003 The American Physical Society04-1
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the initial condition that the electron is localized at a ra
domly chosen vertexm, i.e., Cn(t50)5dn,m . For simplic-
ity, we set the initial positionm[0.

In the absence of shortcuts, the analytic solution of Eq.~1!
is easily found:12 In the simplest case ofr 51, the Fourier
transformationC̃k5(nCneink yields

i
]C̃k

]t
5~eik1e2 ik!C̃k52 coskC̃k , ~3!

which in turn leads to

C̃k~ t !5C̃k~0!e22i t cosk. ~4!

The inverse Fourier transformation

Cn5
1

N (
k

C̃ke
2 ink ~5!

in the limit of N→`, combined with the Jacobi-Anger ex
pansioneiz cosu5(m52N

N imJm(z)eimu gives the solution

uCn~ t !u5uJn~2t !u ~6!

with the Bessel function Jn of the order n. For
r 52, it is straightforward to obtain Cn(t)
5(p(2 i )n2pJn22p(2t)Jp(2t).

As time proceeds, the initial localized state diffuses a
eventually evolves to an extended state in whichCnÞ0 at
any n. Figure 2 shows such diffusion of the wave packet
the WS network with the connection ranger 52 for the re-
wiring probabilitiesp50 and 0.2. It is clearly shown tha
diffusion occurs much faster in Fig. 2~b!, namely, for p
Þ0. In this case as soon as the wave packet diffuses
nearby end point of a shortcut, the other end of the shor
becomes a new center for diffusion at the next time st
resulting in a faster spread of the wave packet.

To describe the diffusion of the wave packet, one m
measure the variance of the wave packet,13 s2(t)
5^C(t)ux2uC(t)&2^C(t)uxuC(t)&2 with the one-
dimensional positionx on the network. However, the var
ance s2 tends to overestimate the diffusion of the wa
packet. As an example, consider a state in which the w
packet is localized at two vertices separated by a dista
O(N). Although the state is well localized in the sense th
the particle can be detected only at a few sites, the varia
has a very large valueO(N2). This is in contrast with a loca
network, where the particle can hop to only locally co

FIG. 1. Construction of the Watts-Strogatz~WS! network. Start-
ing from the regular one-dimensional lattice in~a! with the connec-
tion ranger 52, we visit each edge and rewire it with given pro
ability p, thus generating shortcuts in~b!. Via this procedure a
complicated network structure emerges, as shown in~c!.
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nected nearby sites and thuss2 may be used as a measure
the diffusion without any confusion. To avoid this difficult
with s2, we instead consider the participation ratioPQ(t) as
a function of time:

PQ~ t ![

(
n

uCn~ t !u2

(
n

uCn~ t !u4
, ~7!

which has the value unity for a wave packet localized co
pletely at one site. For a completely extended state, on
other hand, we haveuCnu2;1/N and accordingly, the partici-
pation ratio PQ;N. The initial localized state withPQ(t
50)51 thus evolves to the extended state withPQ(t→`)
5O(N) as the time-dependent Schro¨dinger equation is inte-
grated in time.

With Eq. ~6! and the asymptotic form of the Bessel fun
tion, a lengthy but straightforward calculation leads to t
asymptotic behaviorPQ(t);t on the 1D regular network
~without shortcuts! regardless of the range. On
d-dimensional~regular! network, Eq.~2! still allows the ana-
lytic solution uCn1n2•••nd

(t)u5uJn1
(2t)•••Jnd

(2t)u, produc-

ing the behaviorPQ(t);td. To characterize diffusion, we
define the diffusion timet associated with the participatio
ratio by the condition

PQ~ t5t!5cN ~8!

with a constant c between zero and unity. For
d-dimensional network, we thus have the scaling behavio

t;N1/d. ~9!

For the WS network with shortcuts, the participation ratio
Eq. ~7! is computed numerically at given timet and the dif-
fusion time t is measured from the condition in Eq.~8!,

FIG. 2. Spread of the wave packet initially localized atx50 on
the Watts-Strogatz network with the connection ranger 52 for the
rewiring probabilityp5 ~a! 0 and~b! 0.2. In both~a! and ~b!, the
three curves describe the wave packet at timest51.0, 5.0, and
10.0, respectively~from top to bottom!. It is observed that the wave
packet diffuses much faster in~b! than in ~a!. For clarity, 2uCu2

~instead ofuCu2 for t51.0) is plotted fort55.0 and 10.0.
4-2
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where we choose the numerical factorc50.25. Another
choice for the value ofc does not make any qualitative di
ference in the scaling behavior oft, only if it is not too close
to zero or unity.

In Fig. 3, we display the diffusion timet depending on
the sizeN at various values of the rewiring probabilityp.
Here the participation ratioPQ(t) has been computed fo
3000 different network realizations with given parametersN,
r, andp, over which averages have been taken. It is obser
that the dependence onN changes crucially asp is increased:
At p50, the linear behaviort;N is indeed observed in
agreement with the analytical result while the inset manife
the dependencet; logN for p50.5. We have not systemat
cally investigated the scaling behavior at smaller values op;
this is difficult from the computational point of view sinceN
needs to be greatly increased to avoid finite-size effe
Nevertheless it is very plausible to conclude that the beh
ior t; logN persists as far asp is nonzero. The observe
change of the scaling behavior fromt;N to logN is very
interesting in comparison with the change of the characte
tic path length froml;N to logN already observed.2 This
suggests that the small-world transition atp50, separating
the large-world behavior (l;N) from the small-world be-
havior (l; logN), is also the fast-world transition betwee
the slow-world behavior (t;N) and the fast-world behavio
(t; logN) from the dynamical point of view. Note also tha
in view of Eq.~9! for a d-dimensional system, such logarith
mic behavior apparently indicates that the effective dim
sion of the WS network is infinite, which is consistent wi
the observation of the mean-field nature.4,5

In Fig. 4, the diffusion timet versus the rewiring prob
ability p is displayed for various network sizes. As the sizeN
becomes larger, the region described well by the relatiot
;p21 covers a broader range ofp, suggesting that the
power-law behaviort;p21 is valid at any nonzero value o
p in the thermodynamic limit. The monotonic decrease ot

FIG. 3. Diffusion timet versus the network sizeN in the log-log
scale. The casep50, corresponding to the local regular networ
exhibits power-law behaviort;N, whereas downward curvature
are present at nonzero values ofp. Inset:t versusN for p50.5 in
the semilog plot: The behaviort; log N is manifested. Error bars
are not larger than the symbols.
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with p is easily understood: The more shortcut end poin
the faster the diffusion, as discussed above. Such anoma
quantum diffusion, observed in this work for complex ne
works, has also been investigated in various quasiperio
quantum systems13,14 as well as in quantum systems whic
have classically chaotic counterparts.15

For comparison, we also briefly consider diffusion of
classical particle on the WS network. The particle is put o
randomly chosen vertex of the WS network constructed
before, then allowed to hop to one of its neighboring ve
ces, chosen randomly each time. While the return probab
in such classical diffusion was examined,6 it is appropriate
here to consider, by analogy with the quantum-mechan
participation ratioPQ(t), the number of vertices visited b
the particle during timet, denoted byPC(t). Note that this
has two limiting valuesPC(t50)51 and PC(t→`)5N,
which are the same as those ofPQ . We thus callPC the
classical participation ratio for convenience. The diffusi
time t for the classical diffusion is then determined by

FIG. 5. Diffusion timet versus the network sizeN for classical
diffusion. At p50 the behaviort;N2 is observed, whereas a
curves atpÞ0 show the scaling behaviort;N for sufficiently
largeN.

FIG. 4. Diffusion timet versus the rewiring probabilityp in the
WS network of various sizes. The behaviort;p21 is observed in a
range ofp nearp51, which expands as the sizeN is increased.
4-3
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PC~ t5t!50.1N, ~10!

where the use of numerical values other than 0.1 again d
not change the scaling behavior oft. In the absence of short
cuts (p50), the WS network reduces to the simple on
dimensional local regular network, where it is known16

that PC(t);t1/2, and consequently we have the behav
t;N2.

Figure 5 shows the diffusion timet versus the sizeN of
the WS network for various values of the rewiring probab
ity p. As in the quantum case,PC(t) has been computed fo
3000 different network realizations and averages over th
have been taken. As expected, forp50 corresponding to the
local one-dimensional lattice, the standard behaviort;N2 is
observed. In sharp contrast, at any nonzero value ofp the
diffusion time displays the behaviort;N, demonstrating
that classical diffusion on the WS network changes dram
cally as soon asp takes a nonzero value. This behaviort
;N is also consistent with the infinite effective dimension
the WS network, in view of the known result thatPC(t);t
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for dimensionsd>3.16 Comparing this observation for clas
sical diffusion with the previous one for quantum diffusio
one can in both cases draw the conclusion that the sm
world transition atp50, associated with the change of th
scaling behavior of the characteristic path lengthl, is accom-
panied by the fast-world transition in the dynamic vie
point, where the exponenta in the relaxation behaviort
;Na changes toa21. On the other hand, Fig. 6, wheret
versusp for classical diffusion is plotted, shows that th
behaviort;p21 observed for quantum diffusion~see Fig. 4!
does not appear in classical diffusion.

In summary, we have investigated both quantum diffus
and classical diffusion on Watts-Strogatz small-world n
works. To describe these, we have introduced the partic
tion ratio and determined the diffusion time. The obtain
scaling behaviors of the diffusion time, as summarized
Table I, show dramatic changes as one increases the rew
probability from zero to a nonzero value. This is reminisce
of the small-world transition in the scaling behavior of th
characteristic path lengthl from the small-world regimel
;N to the large-world regimel; logN, and suggests that th
small-world transition can also be termed the fast-world tr
sition.
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