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Quantum and classical diffusion on small-world networks
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We study numerically quantum diffusion of a particle on small-world networks by integrating the time-
dependent Schdinger equation with a localized initial state. The participation ratio, which corresponds to the
number of visited sites in the case of classical diffusion, as a function of time is measured and the correspond-
ing diffusion time, 7 is computed. In a local regular network, i.e., in the network with the rewiring probability
p=0, the diffusion time depends on the network sita@s r~N, while the behaviorr~logN is observed as
p becomes finite. Such fast diffusion of a particle on a complex network suggests that the small-world
transition is also the fast-world transition from a dynamic point of view. The classical diffusion behavior is also
studied and compared with the quantum behavior.
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There has been a surge of research activity on variousied by a sharp change in the behavior of the diffusion time:
aspects of complex networks since some important featurd$ the world is small, the traveling time around the world
of real networks were successfully explained by simpleshould also be short. Indeed the diffusion timessociated
model networks™ In particular, the Watts-StrogatvS) ~ with the participation ratio is observed to change the size
modef was the first to produce networks with small-world dependence fromr~N to logN, which is to be compared
behavior, characterized by the path length increasing logawith the case of classical diffusion~N? to N.
rithmically with the network size. Subsequently, a number of The low-dimensional tight-binding electron system has
studies have been performed on such complex networks, fdeen studied extensively in relation to the localization tran-
cused mostly on structural properties of the networks. On théition in the presence of disorder. In the absence of disorder,
other hand, vertices of a real network may have some inteithe energy eigenstate of a tight-binding electron on a local
nal degrees of freedom, interwoven with the structure of theegular lattice is always in the extended state due to the
network. Motivated by this observation, a group of researchBloch theorem. Here we consider the tight-binding electron
ers has also investigated statistical mechanical models den the WS network, described by the time-dependent Schro
fined on complex networks. For example, spin models sucklinger equation
as the Ising model and theY model on WS networks have
been shown to undergo finite-temperature phase transitions J|W) _
of the mean-field natur&? disclosing the role of long-range Tt T HIY), @)
interactions along the shortcuts. In some cases the time de-
velopment of the network structure may be coupled to thevhere we have sei=1 and the ke{¥) has the position
dynamics of degrees of freedom defined on vertices. Still théepresentation¥ ,=(n|¥) at the nth vertex. The Hamil-
study of vertex dynamics without considering its influencetonian in the position representation takes the form
on the network structure can be useful as a first step toward
complete understanding. In this spirit, dynamic models de- A forn’eA,,
fined on networks draw much attention: Epidemic spreading Hon =Hnn= 0 otherwise,
as well as classical diffusion on complex networks have been
studied®’ and very recently, the dynamic universality classwhere the on-site energy has been assumed to be uniform
of the XY model on the WS network has been identiffed. and set equal to zerdH(,,=0), A is the hopping energy, and

Properties of a quantum-mechanical model put on a comA ,, represents the set of neighbors of ventexror example,
plex network have also been studied with respect to the spe@a a local regular network with the connection rangel,
tral properties of the Laplacian operatorand the we haveA,={n—1n+1}.
localization-delocalization transition in the presence of site The WS network is constructed according to the standard
disorder! In this work we consider quantum as well as clas-procedure in Ref. 2: A one-dimensiondD) local regular
sical diffusion of a particle on the WS network without site network with the connection rangeis built first, then with
disorder, and investigate how the diffusion time scales wittthe rewiring probabilityp each local edge is rewired to an-
the network size. It is well known that as soon as the WSother randomly chosen vertexSee Fig. 1, illustrating the
network (of size N) has a finite fraction of shortcuts, it un- caser =2.) Once the WS network is constructed in this way,
dergoes the small-world transition in which the characteristiove normalize the time in units of 1A, and integrate the
path lengthl changes its behavior froh~N to logN.>*'  time-dependent Schdinger equation given by Eqél) and
From the dynamic point of view, this change from large-(2) numerically by means of the fourth-order Runge-Kutta
world to small-world behavior is expected to be accompa-method with the discrete time stefi=0.01, starting from
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FIG. 1. Construction of the Watts-Strogd&/S) network. Start-

ing from the regular one-dimensional lattice(@ with the connec- ' J“m " (b)p=02
tion ranger =2, we visit each edge and rewire it with given prob-
ability p, thus generating shortcuts ifp). Via this procedure a 5 PRTTIIN
complicated network structure emerges, as show(t)in

the initial condition that the electron is localized at a ran- -200 -100 0 100 200
domly chosen vertexn, i.e., ¥ (t=0)= 6, . For simplic-
ity, we set the initial positiorm=0. o )
In the absence of shortcuts, the analytic solution of(Ey. FIG. 2. Spread of the wave packet initially localizedkatO on
is easily found*? In the simplest case af=1, the Fourier the Watts-Strogatz network with the connection range? for the
y o= inE . rewiring probabilityp= (a) 0 and(b) 0.2. In both(a) and(b), the
transformationV, =2 ,¥,e"™ yields three curves describe the wave packet at timed.0, 5.0, and
5 10.0, respectivelyfrom top to botton. It is observed that the wave
O ik 3 packet diffuses much faster ifip) than in (a). For clarity, 2W¥|?
—= + = . .
"ot (67 +e )Wy =2 coskWy, © (instead of| ¥|? for t=1.0) is plotted fort=5.0 and 10.0.
which in turn leads to nected nearby sites and thaté may be used as a measure of
the diffusion without any confusion. To avoid this difficulty

ST — —2it cosk

i)="(0)e ' @ with o2, we instead consider the participation raffig(t) as
The inverse Fourier transformation a function of time:

g T a—ink 2
V=g 2 Tie (5) 2 [0
. - : . . Pol)=—", @
in the limit of N—c0, combined with the Jacobi-Anger ex- D 1P ()]
pansione'?¢°s/=3N__imJ (2™ gives the solution n
1P ,(1)]=|3,(20)] 6) which has the value unity for a wave packet localized com-

pletely at one site. For a completely extended state, on the

with the Bessel functionJ, of the order n. For other hand, we havel |2~ 1/N and accordingly, the partici-
r=2, it is straightforward to obtain W,(t) pation ratio Po~N. The initial localized state wittPq(t
=3 ,(—1)" Py 5p(2t)Jp(21). =0)=1 thus evolves to the extended state WRp(t— )

As time proceeds, the initial localized state diffuses and=0O(N) as the time-dependent Scdinger equation is inte-
eventually evolves to an extended state in whigh#0 at  grated in time.
any n. Figure 2 shows such diffusion of the wave packet on With Eq. (6) and the asymptotic form of the Bessel func-
the WS network with the connection range 2 for the re-  tion, a lengthy but straightforward calculation leads to the
wiring probabilitiesp=0 and 0.2. It is clearly shown that asymptotic behaviolPq(t)~t on the 1D regular network
diffusion occurs much faster in Fig.(l®, namely, forp (without shortcuts regardless of the range. On a
#0. In this case as soon as the wave packet diffuses to @dimensionalregulay network, Eq.(2) still allows the ana-
nearby end point of a shortcut, the other end of the shortcutic solution [W,, ..., (t)|=|Jn,(21) - - -3, (2t)], produc-
becomes a new center for diffusion at the next time stepjg the behaviorPo(t)~t%. To characterize diffusion, we

resulting in a faster spread of the wave packet. define the diffusion timer associated with the participation
To describe the diffusion of the wave packet, one may,4tiq by the condition

measure the variance of the wave pacRetg?(t)

=(W(1)|x?|W(t))—(¥(t)|x|¥(t))> with the one- Po(t=7)=cN (8)
dimensional positiorx on the network. However, the vari-
ance o tends to overestimate the diffusion of the wave
packet. As an example, consider a state in which the wav
packet is localized at two vertices separated by a distance r~NWd 9
O(N). Although the state is well localized in the sense that

the particle can be detected only at a few sites, the variandeor the WS network with shortcuts, the participation ratio in
has a very large valu®(N?). This is in contrast with a local Eqg. (7) is computed numerically at given tinteand the dif-
network, where the particle can hop to only locally con-fusion time 7 is measured from the condition in E(),

with a constantc between zero and unity. For a
g—dimensional network, we thus have the scaling behavior
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FIG. 3. Diffusion timer versus the network siz¥ in the log-log FIG. 4. Diffusion timer versus the rewiring probability in the
scale. The casp=0, corresponding to the local regular network, WS network of various sizes. The behavior p~! is observed in a
exhibits power-law behavior~N, whereas downward curvatures range ofp nearp=1, which expands as the siikis increased.
are present at nonzero valuesmfinset: r versusN for p=0.5 in

the semilog plot: The behaviar~logN is manifested. Error bars
are not larger than the symbols.

where we choose the numerical factor0.25. Another
choice for the value ot does not make any qualitative dif-
ference in the scaling behavior ef only if it is not too close
to zero or unity.

with p is easily understood: The more shortcut end points,
the faster the diffusion, as discussed above. Such anomalous
quantum diffusion, observed in this work for complex net-
works, has also been investigated in various quasiperiodic
quantum systen®'*as well as in quantum systems which
have classically chaotic counterpatts.

For comparison, we also briefly consider diffusion of a

classical particle on the WS network. The particle is put on a
randomly chosen vertex of the WS network constructed as

Here the participation rati®®o(t) has been computed for before, then allowed to hop to one o_f its neighboring vert_i-
3000 different network realizations with given parametdys €S, chosen randomly each time. While the return probability
r, andp, over which averages have been taken. It is observef! Such classical diffusion was (_axamln%d, IS appropriate
that the dependence dhchanges crucially agis increased: Nere to consider, by analogy with the quantum-mechanical
At p=0, the linear behavior~N is indeed observed in part|C|pa_1t|on ratlloPQ.(t), the number of vertices V|S|ted.by
agreement with the analytical result while the inset manifest§h€ particle during time, denoted byP¢(t). Note that this
the dependence~logN for p=0.5. We have not systemati- has two limiting valuesPc(t=0)=1 and Pc(t—=)=N,
cally investigated the scaling behavior at smaller valugs of Which are the same as those B§. We thus callP¢ the
this is difficult from the computational point of view sinde  classical participation ratio for convenience. The diffusion
needs to be greatly increased to avoid finite-size effectdime 7 for the classical diffusion is then determined by
Nevertheless it is very plausible to conclude that the behav-
ior 7~logN persists as far ap is nonzero. The observed
change of the scaling behavior from-N to logN is very
interesting in comparison with the change of the characteris-
tic path length froml~N to logN already observetl This
suggests that the small-world transitionpat 0, separating
the large-world behaviorl &~N) from the small-world be-
havior (~IlogN), is also the fast-world transition between *
the slow-world behavior£~N) and the fast-world behavior
(7~logN) from the dynamical point of view. Note also that,

in view of Eq.(9) for ad-dimensional system, such logarith-
mic behavior apparently indicates that the effective dimen-
sion of the WS network is infinite, which is consistent with
the observation of the mean-field natdre.

In Fig. 3, we display the diffusion time depending on
the sizeN at various values of the rewiring probabilify
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In Fig. 4, the diffusion timer versus the rewiring prob- 10
ability p is displayed for various network sizes. As the dize N
becE)[neS larger, the region described well by the relation  FiG, 5. Diffusion timer versus the network siz for classical
~p~ " covers a broader range qf, suggesting that the diffusion. At p=0 the behaviorr~N?2 is observed, whereas all

power-law behavior~p~* is valid at any nonzero value of curves atp#0 show the scaling behavior~N for sufficiently
p in the thermodynamic limit. The monotonic decreaserof largeN.
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' N=100 —— TABLE I. Quantum and classical diffusion: The diffusion time
10000 | 200 -3 versus the network sizd. For comparison, the scaling behavior of
e o0 the characteristic path lengthis also presented.
R p=0 p#0
1000 | Tl . oo Quantum ~N 7~logN
. B - e S Classical 7~N? ™N
_____ 7 g Characteristic path length I~N I~logN
100 **** ________
""""" e T for dimensiongd= 3.1 Comparing this observation for clas-

"""" sical diffusion with the previous one for quantum diffusion,
10 W one can in both cases draw the conclusion that the small-
world transition atp=0, associated with the change of the
scaling behavior of the characteristic path lenigtis accom-
panied by the fast-world transition in the dynamic view
FIG. 6. Classical diffusion time versus the rewiring probabil- point, where the exponerd in the relaxation behavior
ity p for various network sizes. Unlike quantum diffusion, classical ~ N2 changes tam—1. On the other hand, Fig. 6, where
diffusion is not well described by the behavior of the diffusion time yersusp for classical diffusion is plotted, shows that the
~p L behaviorr~p~?! observed for quantum diffusicisee Fig. 4
does not appear in classical diffusion.
Pc(t=7)=0.1N, (10 In summary, we have investigated both quantum diffusion
. and classical diffusion on Watts-Strogatz small-world net-
fWorks. To describe these, we have introduced the participa-
tion ratio and determined the diffusion time. The obtained
scaling behaviors of the diffusion time, as summarized in
Table I, show dramatic changes as one increases the rewiring
probability from zero to a nonzero value. This is reminiscent
of the small-world transition in the scaling behavior of the
characteristic path length from the small-world regimd
~N to the large-world regimé~log N, and suggests that the
ngmall—world transition can also be termed the fast-world tran-
ition.

not change the scaling behaviorofin the absence of short-
cuts (p=0), the WS network reduces to the simple one-
dimensional local regular network, where it is kndfn
that l;c(t)~t1’2, and consequently we have the behavior
7~N~.

Figure 5 shows the diffusion time versus the siz&l of
the WS network for various values of the rewiring probabil-
ity p. As in the quantum cas®(t) has been computed for
3000 different network realizations and averages over the
have been taken. As expected, fior O corresponding to the
local one-dimensional lattice, the standard behavioN? is We thank H. Park for useful discussions and acknowledge
observed. In sharp contrast, at any nonzero valup tife  the partial support from the Korea Science and Engineering
diffusion time displays the behavior~N, demonstrating Foundation through Grant No. R14-2002-062-01000-0
that classical diffusion on the WS network changes dramati¢B.J.K) and through the SKOREA program, as well as the
cally as soon ap takes a nonzero value. This behavior Ministry of Education of Korea through the BK21 project
~N is also consistent with the infinite effective dimension of (M.Y.C.). Numerical simulations have been performed on the
the WS network, in view of the known result thBg(t)~t  computer clusterCEBERG at Ajou University.
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