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Anharmonic scattering of longitudinal acoustic phonons:
Herring processes in tetragonal TeO2 crystals
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We calculate the anharmonic scattering rates of low-frequency longitudinal~L! acoustic phonons with
thermally excited phonons via the Herring process L1ST→FT ~with ST and FT the slow-transverse and
fast-transverse phonons, respectively! in a tetragonal TeO2 crystal. For temperatures well below the Debye
temperature, we find a scattering rateG5Av2T3 as predicted by Herring. An analytical expression is derived
for the variation of the coefficient with propagation direction. A typical value ofA is of the order of
10222 s K23. For propagation along the fourfold axis, i.e., the@001# direction, however,A50, indicating that
in this direction L phonons are stable against the Herring processes. This is in contradiction to the recent
experimental result reported by Damenet al. @Phys. Rev. B59, 349~1999!#. We show that the vanishing of the
scattering rate in the@001# direction can be understood in terms of the physics of the Herring process.

DOI: 10.1103/PhysRevB.68.014302 PACS number~s!: 63.20.Kr, 62.65.1k, 66.70.1f
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I. INTRODUCTION

The study of the propagation and scattering of acou
phonons in crystalline solids is of both fundamental a
practical interest. In an important paper, Herring investiga
the collision rate of low-frequency longitudinal~L! phonons
satisfying v!kBT/\ ~with T the temperature!, and argued
that these phonons play a special role in determining the
conduction in crystals.1 He showed that the interaction ra
for these L phonons is dominated by collisions of the ty
L1ST→FT, where ST and FT denote the slow-transve
and fast-transverse thermal phonons, respectively.2 These
processes occur for ST and FT phonons with wave vec
close to the degeneracy points of the constant-frequency
faces~or slowness surfaces! in the Brillouin zone. Herring’s
analysis is limited to cubic anharmonicity and to frequenc
of L phonons much less than the frequency of the therm
excited ST or FT phonons. Detailed studies of the scatte
of L phonons in anisotropic solids are quite limited bo
experimentally and theoretically, though the expression
the scattering rate in cubic crystals has been given
Simons.3

Recently, with a new technique for the generation
monochromatic Fresnel-diffracted phonon beams in the G
range,4 Damen et al. measured the attenuation rate of
phonons propagating along the@001# axis as a function of
frequency and temperature in a single crystal of TeO2 with
tetragonal symmetry.5 The measured attenuation rateG var-
ied according toÃvaTb with a51.8460.2 and b52.81
60.2 below about 50 K, consistent with Herring’s theo
which gives G}v2T3 for tetragonal crystals with theD4

symmetry. The coefficientÃ was determined to have th
value Ã5(4.060.5)310218 sa21 K2b.

The purpose of the present work is to derive an analyt
expression for the scattering rate of the L phonons due to
Herring processes L1ST→FT, and to see whether or not th
above experimental results, including the magnitude of
coefficientÃ, are reproduced.
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II. FORMULATION

For temperatures much less than the Debye tempera
phonon interactions can be considered using non-linear e
ticity theory. To third order in the elastic strainh i j , the elas-
tic energyW stored in a strained crystal of initial volumeV is

W5VS 1

2
ci jkl h i j hkl1

1

6
ci jklmnh i j hklhmnD , ~1!

where

h i j 5
1

2 S ]ui

]xj
1

]uj

]xi
1

]uk

]xi

]uk

]xj
D ~ i , j 51,2,3!, ~2!

u(r ,t) is the displacement at positionr5(x,y,z)
5(x1 ,x2 ,x3) at time t, and the summation convention ove
repeated indices is implied. For a TeO2 crystal~belonging to
the tetragonal crystal of classD4, or the point group 422! the
fourth- and sixth-order elastic stiffness tensorsci jkl and
ci jklmn have six and 12 independent components, resp
tively.

In the harmonic approximation, the equations govern
elastic wave propagation in crystalline solids are

rüi5ci jkl

]2uk

]xj]xl
~ i 51,2,3!, ~3!

wherer is the mass density of the medium. By putting

u5ae exp$ i ~q•r2vt !%, ~4!

with a an amplitude, e a unit polarization vector,q
5(qx ,qy ,qz)5(q1 ,q2 ,q3) a wave vector andv the angular
frequency, Eq.~3! is converted to an eigenvalue equation

~M̃ ik2rv2d ik!ek5~ci jkl qjql2rv2d ik!ek50 ~ i 51,2,3!.
~5!

The explicit expression for the matrix (M̃ ik) for TeO2 is6
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with cIJ the Voigt elastic constants with two indices,c̃12

5c121c66 and c̃135c131c44. From the eigenvalues
rvJ

2 , (J51,2,3), of the matrixM̃ we obtain, for a given
wave vector q, the phase velocitiesvJ5vJ /q ~with q
5uqu) of three bulk modes, i.e., slow transverse~ST, J
51), fast transverse~FT, J52), and longitudinal~L, J
53).

The Herring processes occur for thermally excited ST a
FT phonons with wave vectors close to the directions
which the velocities of these modes are equal. At these po
of degeneracy, the two slowness surfaces either touch o
tersect. According to Herring’s analysis, the degener
points at which two slowness surfacestouch each other
~rather than intersect! play the dominant role in determinin
the scattering rate of L phonons. Thus, in studying the H
ring processes in a tetragonal crystal TeO2, it is important to
note that two transverse sheets touch only along the@001#
and @001̄] directions.6 The slowness surfaces of TeO2 are
shown in Fig. 1.

For q parallel to@001# or @001̄] the velocity of ST and FT
phonons isrvT

25c44. At a polar angleu slightly rotated

away from the@001# ~or @001̄] ! direction the degeneracy i
the velocity of ST and FT is removed, and

rvST
2 5c441x2u25c44~112au2!, ~7!

FIG. 1. Sections of the slowness surfaces of the slow transv
~ST!, fast transverse~FT! and longitudinal~L! phonons in TeO2 in

the sx2sz plane@the slowness vectors is defined bys5q̂/v(q) #.
Solid circles are the points where the ST and FT sheets touch
other.
01430
d
n
ts

in-
te

r-

rvFT
2 5c441x1u25c44~112bu2!, ~8!

wherea5x2/2c44 andb5x1/2c44 with

x65
1

2
F6H1/22 c̃13

2

c332c44
1c111c6622c44G . ~9!

In Eq. ~9! H is

H5H~f!5~ c̃33c̃112 c̃13
2 !2cos22f1~ c̃33c̃122 c̃13

2 !2sin22f,
~10!

where c̃335c332c44 and c̃115c112c66, and f is the azi-
muthal angle ofq.

The expression for the scattering rateGl , or the recipro-
cal of the relaxation timetl of a phonon specified byl
5(q,J) via three-phonon processes, is given by7

Gl5tl
215

p\

8r3Vvl
(

l8l9

uFll8l9u
2

vl8vl9

32~nl82nl9!dq1q8,q9d~vl1vl82vl9!,

~11!

where V is the system volume andnl5n(vl)
5@exp(\vl /kBT)21#21 is the occupation number o
phonons at temperatureT. The explicit expression for the
three-phonon matrix elementFll8l9 is lengthy and is given
in the Appendix. Equation~11! is applied to the scattering o
L phonons via Herring processes withJ5L, J85ST, and
J95FT. Thus, we writevl5vq,L5v, vl85vq8,ST5v8
andvl95vq9,FT5v9. The wave vectors of the initial L pho
non and the ST phonon are expressed in polar coordinate
q5(q,u,f), andq85(q8,u8,f8). We then set

uFll8l9u
25~qq8q9!2uF̃L1ST→FT~u8,f8!u2, ~12!

whereF̃L1ST→FT(u8,f8) is a function that does not depen
on the magnitude of the wave vectors. We then have

GL5
p\q2

4~2p!3r3v
E df8E q82dq8

3E sinu8du8
uF̃L1ST→FT~u8,f8!u2

v8v9

3~q8q9!2~n82n9!d~v1v82v9!, ~13!

wheren85nl8 andn95nl9 . We further write

se

ch
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d~v92v82v!5d~vFTq92vSTq82vLq!5
1

vFT
d@g~u8!#,

~14!

wherevL is the sound velocity of the L mode8 depending on
the direction ofq, and

g~u8!5q92gSFq82gLFq, ~15!

with gSF5vST/vFT andgLF5vL /vFT . Since we are consid
ering v!kBT/\, the relationq!q8.q9 holds. Also

gSF5vST/vFT.11~a2b!u82, ~16!

gLF5vL /vFT.g~12bu82!, ~17!

with g5vL /vT . Now, we see thatg(u8)50 has two solu-
tions u85un , (n51,2), with

u15S cosu1g

b2a
•

q

q8D 1/2

and u25p2S 2cosu1g

b2a
•

q

q8D 1/2

~18!

and

b2a5
x12x2

2c44
5

H1/2~f8!

2c44c̃33

. ~19!

Thus, we note that, for a smooth functionf of u8,

E du8 sinu8 f ~u8! d@g~u8!#

5 (
n51

2

sinun f ~un!Fdg~u!

du UunG21

5
1

2~b2a!q8(n51

2

f ~un!. ~20!

Again using the conditionv!kBT/\, we can approximate

n82n95n~v8!2n~v81v!52
]n~v8!

]v8
v, ~21!

and the scattering rate becomes

GL52
p\v2

4~2p!3r3vL
2vT

7
c̃33c44E df8 H21/2~f8!

3 (
n51

2

uF̃L1ST→FT~un ,f8!u2E dv8 v83
]n~v8!

]v8
.

~22!

The integral overv8 can be extended from 0 to infinity an
then

2E
0

`

dv8 v83
]n~v8!

]v8
56z~3!~kBT/\!3, ~23!

wherez(n) is Riemann’s zeta function.
We are left to calculate the integral in Eq.~22! with re-

spect tof8. In the calculation of the Herring processes, w
01430
haveq8.q9i @001#. The associated polarization vectorse8
ande9 of the ST and FT phonons lie in the~001! plane. Thus,
we can make the approximation thate8•e95q8•e85q8•e9
5q9•e95q9•e850. Next we write the wave vectorq of the
L phonon as

q5q~ l ,m,n!, ~24!

where (l ,m,n) are the direction cosines ofq. The polariza-
tion vectore of the initial L phonon is, in general, not col
linear withq except for high symmetry directions due to th
presence of the anisotropy. However,q•e/q is close to unity
(q•e/q>0.9713 for TeO2) at least whenq is oriented in the
~100! and~110!! planes. Consequently, as an approximatio
we takee to be parallel toq and write

e5~ l ,m,n!. ~25!

This approximation becomes exact in the@100#, @001#, @110#
and equivalent directions.9 Also we put the polarization vec
tors of the ST and FT phonons as

e85eST5~cosf8,sinf8,0!,

e95eFT5~sinf8,2cosf8,0!. ~26!

Thus with Eq.~A1! we have

uF̃L1ST→FTu25
1

4~11d2!
@~c1552c14412c44!~ l 22m2!

24d~c4561c44!lm#2, ~27!

where

d5
c̃13

2 2 c̃11c̃33

c̃12c̃332 c̃13
2

cot 2f8. ~28!

Executing the integral overf8in Eq. ~22!, we finally obtain

GL5tL
215

3z~3!kB
3

8p2\2r3vL
2vT

7
v2T3

3
c44uc̃11c̃332 c̃13

2 u

~ c̃112 c̃12!@ c̃33~ c̃111 c̃12!22c̃13
2 #

3$~c155

2c14412c44!
2~ l 22m2!2@E~h!2~12h2!K~h!#

116~c4561c44!
2l 2m2@K~h!2E~h!#%, ~29!

where

h2512
~ c̃33c̃122 c̃13

2 !2

~ c̃33c̃112 c̃13
2 !2

52h̃2, ~30!

andE(h) andK(h) are the integrals defined by

K~h![E
0

p/2 df

@12h2sin2f#1/25E
0

p/2 df

@11h̃2sin2f#1/2
,

~31!
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E~h![E
0

p/2

@12h2sin2f#1/2df5E
0

p/2

@11h̃2sin2f#1/2df.

~32!

Here we note that for TeO2, h252h̃2,0 becausec66
.c11. However, this is an exceptional case. For the majo
of tetragonal crystalsc66,c11, and h2.0 and the integral
equations~31! and~32! become complete elliptic integrals o
the first and second kinds, respectively.

It is interesting to compare formula~29! with the corre-
sponding expression for cubic crystals derived by Simon3,7

which can be written in the form

GL
(cubic)5

3z~3!kB
3

8p2\2r3vL
2vT

7
v2T3

3
~c111c12!c44

~c1112c121c44!uc112c1222c44u

3$~c1552c14412c44!
2@~ l 22m2!2

1~m22n2!21~n22 l 2!2#@E~h!2~12h2!K~h!#

116~c4561c44!
2~ l 2m21m2n21n2l 2!#

3@K~h!2E~h!#%. ~33!

In this formula

h2512
~c121c44!

2

~c111c12!
2

~34!

and in the derivation of Eq.~33!, it has been assumed thath2

is positive so thatK(h) and E(h) are the complete elliptic
integrals. Note thatvL in both Eqs.~29! and~33! depends on
the propagation direction.

Here we note that Eq.~29! reduces toGL
(cubic) @Eq. ~33!#

when cubic symmetry is applied to the elastic constants
(m22n2)21(n22 l 2)2 is added to (l 22m2)2 and also
m2n21n2l 2 to l 2m2. These added contributions come fro
scatterings with transverse phonons propagating close to
directions along the fourfold@100#, @010#, @ 1̄00#, and@01̄0#
axes in cubic crystals. However, for tetragonal crystals
fourfold symmetry is absent except about the@001# ~and

@001̄#! axis and the degeneracy of the transverse phon
along those four direstions is lost. This is the reason that
transverse phonons propagating close to the@100#, @010#,

@ 1̄00#, and@01̄0# directions do not contribute to the scatte
ing of L phonons in tetragonal crystals. This point will b
discussed again in Sec. IV.

Now the most important result we can find from Eq.~29!
is the fact that the rate of scattering by the Herring proces
tetragonal TeO2 vanishes for longitudinal phonons propaga
ing in the@001# and@001̄# directions. To be more precise, w
see that the coefficient of the component of the scatte
rate that varies asv2T3 is zero.14 Thus in the experiment by
Damenet al.5 the attenuation must arise from some effe
other than Herring processes.
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Incidentally, at temperatures higher than the Debye te
perature, for which most phonon modes are thermally
cited, the difference of phonon occupation numbers@Eq.
~21!# is replaced with

n82n95
kBT

\

v

v8v9
, ~35!

and the expression for the attenuation rate becomes

GL5
kB

3QD
2

32p2\2r3vL
2vT

7
v2T3

c44uc̃11c̃332 c̃13
2 u

~ c̃112 c̃12!@ c̃33~ c̃111 c̃12!22c̃13
2 #

3$~c1552c14412c44!
2~ l 22m2!2

3@E~h!2~12h2!K~h!#116~c4561c44!
2

3 l 2m2@K~h!2E~h!#%, ~36!

where we have put the upper limit of the integral of Eq.~13!
with respect toq8 as qmax5kBQD /\vT . Thus the attenua-
tion rate proportional tov2T is obtained in agreement with
Herring.1 Of course, Eq.~36! is only an approximate resul
because it based on the use of elasticity theory.

III. NUMERICAL RESULTS

For the evaluation of the attenuation rate we used
second- and third-order elastic constants of TeO2 measured
at low temperatures, i.e., c11555.9,c335105.5,
c445 26.6, c66566.3, c12551.6, c135 23.9, c11152160,
c1125 2 600 , c1135 2 140 , c1235 2 110 , c1335 1 180,
c1445 241, c1555136, c16652640, c333522110, c344
5254, c36652260, andc45652250 ~ in units of 1010 dyn
cm22).10 The mass density isr55.99 g cm23 and these val-
ues give bulk sound velocities in the@001# direction vL
54.203105 cm s21 andvT52.113105 cm s21.

We can write Eq.~29! as

GL5@B~ l 22m2!214C l2m2# v2T3

5~Bcos22f1Csin22f!sin4u v2T3

5A~u,f! v2T3. ~37!

In this expression, the coefficientsB andC depend onu and
f only through the variation ofvL . The scattering is stron
gest for propagation atu5p/2, and there is a variation with
azimuthal angle sinceB is not equal toC. From the elastic
constants of TeO2, we findh2523.11 and the values of the
integrals of Eqs.~31! and ~32! are E(h)52.446 andK(h)
51.070. The values ofA for selected directions are given i
Table I and in Fig. 2.

These magnitudes ofA can be compared with the corre
sponding coefficient for cubic crystals given by

GL
(cubic)5$B̃@~ l 22m2!21~m22n2!21~n22 l 2!2#

14C̃~ l 2m21m2n21n2l 2!% v2T3

5A~u,f!v2T3, ~38!
2-4
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whereB̃ andC̃ are the coefficients corresponding toB andC.
Values ofA for silicon,11 GaAs,12 and Ne~Ref. 13! are in-
cluded in Table I. As might be expected based on the rela
magnitudes of the sound velocities in these materials,
scattering is largest in neon and least in silicon.

When the temperature is increased so that it is no lon
much less thanQD , it is necessary to evaluate Eq.~13! nu-
merically. We have taken the Debye temperature as 2005

and set the upper limit of the integral overq8 as qmax
5kBQD /\vT . The results for a frequency of a 5 GHz pho-
non propagating in the@110# direction are shown in Fig. 3. I
can be seen that there is a crossover fromv2T3 to v2T
behavior at around 50 K.

IV. DISCUSSIONS

The Herring process is usually considered as a scatte
process in which a low energy L phonon scatters from an
thermal phonon to produce an FT phonon. But since
Herring process concerns the scattering of a low energy p
non, it should be possible to treat this phonon macrosc
cally, i.e., as a longitudinal sound wave. The scattering rat
then equivalent to the rate at which this sound wave
damped by interactions with thermal phonons.15

To discuss this qualitatively, consider what happens w
through the presence of a sound wave, a small, tim
dependent, elastic strainh i j is applied to a crystal containin
a distribution of thermal phonons. Because of anharmonic
the application of the strain results in a small change in
effective elastic constants. This, in turn causes a chang
the phonon frequencies and in the polarization vectors. If

TABLE I. Calculated values of coefficientA for TeO2, and for
the cubic crystals Si, GaAs and Ne in units of s K23.

I A(u50,f50) A(u5p/2,f50) A(u5p/2,f5p/4)

TeO2 0 1.97310222 7.69310222

Si 1.29310224 1.29310224 2.78310225

GaAs 7.67310224 7.67310224 1.64310224

Ne 2.48310219 2.48310219 5.65310220

FIG. 2. Angular dependence of the coefficientA of the attenu-
ation rate in the~100! (f50) and~110! (f5p/4) planes of TeO2.
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strain varies very slowly with time, the phonons will adju
adiabatically, i.e., their frequencies and polarization vect
will be modified but if the strain is removed, the phono
distribution will return to its initial condition. However, if the
strain changes rapidly, the phonons will not adjust adiab
cally, irreversible effects will take place, and the phonon s
tem will absorb energy. We can expect that these effects
be largest for those phonons whose frequencyv8 or polar-
ization vectore8 change rapidly when a strain is applie
Based on this qualitative picture we can understand the v
ishing of the scattering rate for longitudinal phonons prop
gating in the@001# and @001̄# directions.

For most of the thermal phonons, the fractional change
v8 or e8 is of the same order of magnitude ash i j . However,
for thermal phonons with wave vectors lying close to a
rection in which there is a degeneracy, there can be a m
larger change ine8. As a specific example, consider an S
thermal phonon in TeO2 with wave vector (eq,0,q), wheree
is very small. This phonon hase8 parallel to @100#.6 Now
suppose that the propagation direction of the longitudi
sound is along@100# so that there is an oscillating strai
componenth11. Such a strain lowers the symmetry of th
TeO2 crystal from tetragonal to orthorhombic and soc44 is
no longer equal toc55. Thus the strain removes the dege
eracy of the transverse phonons propagating in the@001# di-
rection. During the part of the cycle of the sound wave
which the strain is such thatc55.c44, the polarization of the
ST phonon remains parallel to@100#, but when the sign of
the strain is such thatc55,c44, the polarization changes t
become parallel to@010#. The strain needed to accomplis
this large change ine8 is of the same order of magnitude a
e. Thus if e is small, the change ine8 is very much larger
than the magnitude of the strain of the sound wave, i.e., th
is an anomalously large variation ofe8 with strain. Our idea
is that the Herring processes arise from this effect.

If this is correct, there will be Herring processes provid
that the strain of the L phonon~or the strain of the equivalen
sound wave! lifts the degeneracy of some transver

FIG. 3. Temperature dependence of the attenuation rate o
phonons of frequency 5 GHz propagating in the@110# direction.
The solid circles are the results of numerical calculations based
Eq. ~13!. The solid line is the analytical result@Eq. ~29!# for low
temperatures and the dotted line is the high temperature form
@Eq. ~36!#.
2-5
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phonons. For a cubic crystal, the transverse phonons are
generate along all directions of type^100&, and so there will
always be some Herring processes regardless of the dire
of propagation of the L phonon. This is in agreement w
the results of Simons3 as given in Eq.~33!. However, in
tetragonal TeO2 the degeneracy occurs only along@001# and

@001̄#. A strain of typeh33 does not lift this degenerac
becausec3445c355 and so an L phonon propagating in the
direction undergoes no Herring scattering.

We want to emphasize that the above ideas are only
gestive. It would be very interesting to see if it is possible
derive the expression for the rate of Herring processes u
an elaboration of this approach.

Accepting this result, one can ask what is the origin of
attenuation seen by Damenet al.5 One possibility is that it is
a relaxation process. When a low frequency phononv inter-
acts with thermal phonons that have a lifetimet such that
vt,1, the damping of the phonon varies asv2 which is the
frequency-dependence observed by Damenet al. Under
these conditions, the picture of the low energy phonon m
ing momentum and energy-conserving collisions with in
vidual thermal phonons no longer applies.7 However, for this
to be the explanation of the observed results, it would
necessary for the thermal phonons to have lifetimes less
(2p35GHz)21530 ps. The thermal conductivity of TeO2
01430
e-

ion

g-

ng

e

k-
-

e
an

has been measured by Ewbank and Newman16 down to 77 K.
At this temperature, they found a conductivity o
0.09 W cm21 K21, and from this they estimated a therm
phonon lifetime of around 4 ps. Thus, at this temperature
certainly true thatvt,1 and so the experiment should b
analyzed in terms of a relaxation process. Unfortunately,
have been unable to find experimental data for the ther
conductivity at lower temperatures and so cannot mak
reliable estimate of the thermal phonon lifetime.
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APPENDIX

In this appendix we give explicit expressions for the m
trix elementsFll8l9 :
Fll8l95c13@~q•q8!~q9•e9!~e•e8!1~q8•q9!~q•e!~e8•e9!1~q9•q!~q8•e8!~e9•e!#1c44$~q•q8!@~q9•e!~e8•e9!1~q9•e8!

3~e9•e!#1~q8•q9!@~q•e8!~e9•e!1~q•e9!~e•e8!#1~q9•q!@~q8•e9!~e•e8!1~q8•e!~e8•e9!#%1~c112c13

22c44!(
i 51

3

qiqi8qi9@ei~e8•e9!1ei8~e9•e!1ei9~e•e8!#1~c332c11!q3q38q39@e3~e8•e9!1e38~e9•e!1e39~e•e8!#

12~c122c13!@~q1q28q29e11q2q18q19e2!~e8•e9!1~q18q29q2e181q28q19q1e28!~e9•e!1~q19q2q28e191q29q1q18e29!~e•e8!#

1~c662c44!@~q1q281q18q2!~q19e291q29e19!~e•e8!1~q18q291q19q28!~q1e21q2e1!~e8•e9!1~q19q21q1q29!~q18e28

1q28e18!~e9•e!#1~c11222c144!~q•e!~q8•e8!~q9•e9!1c144$~q•e!@~q8•q9!~e8•e9!1~q8•e9!~q9•e8!#1~q8•e8!

3@~q9•q!~e9•e!1~q9•e!~q•e9!#1~q9•e9!@~q•q8!~e•e8!1~q•e8!~q8•e!#%1
1

2
~c1662c144!$~q•e8!~q8•e9!

3~q9•e!1~q•e9!~q8•e!~q9•e8!1~q•q8!@~q9•e!~e8•e9!1~q9•e8!~e9•e!#1~q8•q9!@~q•e8!~e9•e!1~q•e9!

3~e•e8!#1~q9•q!@~q8•e9!~e•e8!1~q8•e!~e8•e9!#%1~c1112c11224c166!(
i 51

3

qiqi8qi9eiei8ei91@c3332c111

23~c1131c133!16c112#q3q38q39e3e38e391~2c1442c1121c123!~q1q28q39e1e28e391q18q29q3e18e29e31q19q2q38e19e2e38

1q1q29q38e1e29e381q18q2q39e18e2e391q19q28q3e19e28e3!1
1

2
~c1442c16612c456!3$~q1e21q2e1!@~q28e381q38e28!~q39e19

1q19e39!1~q29e391q39e29!~q38e181q18e38!#1~q18e281q28e18!@~q29e391q39e29!~q3e11q1e3!1~q2e31q3e2!~q39e19

1q19e39!#1~q19e291q29e19!@~q2e31q3e2!~q38e181q18e38!1~q28e381q38e28!~q3e11q1e3!#%1~c1132c112!
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(
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3

@qiqi8q39eiei8e391qi8qi9q3ei8ei9e31qi9qiq38ei9eie38#1~c1332c112!@q3q38e3e38~q9•e9!1q38q39e38e39~q•e!1q39q3e39e3~q8•e8!#

1~c1552c166!@q1e1~q18e381q38e18!~q19e391q39e19!1q18e18~q19e391q39e19!~q1e31q3e1!1q19e19~q1e31q3e1!~q18e381q38e18!

1q2e2~q28e381q38e28!~q29e391q39e29!1q28e28~q29e391q39e29!~q2e31q3e2!1q29e29~q2e31q3e2!~q28e381q38e28!1q3e3~q18e28

1q28e18!~q19e291q29e19!1q38e38~q19e291q29e19!~q1e21q2e1!1q39e39~q1e21q2e1!~q18e281q28e18!#1~c3442c166!

3$q3e3@~q18e281q28e18!~q19e291q29e19!1~q28e381q38e28!~q29e391q39e29!1~q38e181q18e38!~q39e191q19e39!#1q38e38@~q19e29

1q29e19!~q1e21q2e1!1~q29e391q39e29!~q2e31q3e2!1~q39e191q19e39!~q3e11q1e3!#1q39e39@~q1e21q2e1!~q18e281q28e18!

1~q2e31q3e2!~q28e381q38e28!1~q3e11q1e3!~q38e181q18e38!#%1~c3662c34412c1662c1552c144!@q3e3~q18e281q28e18!

3~q19e291q29e19!1q38e38~q19e291q29e19!~q1e21q2e1!1q39e39~q1e21q2e1!~q18e281q28e18!#. ~A1!
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