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Anharmonic scattering of longitudinal acoustic phonons:
Herring processes in tetragonal TeQ crystals
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We calculate the anharmonic scattering rates of low-frequency longitudinahcoustic phonons with
thermally excited phonons via the Herring process 3T—FT (with ST and FT the slow-transverse and
fast-transverse phonons, respectiyaly a tetragonal Te®crystal. For temperatures well below the Debye
temperature, we find a scattering réte Aw?T? as predicted by Herring. An analytical expression is derived
for the variation of the coefficient with propagation direction. A typical valueAofs of the order of
10722 s K~3. For propagation along the fourfold axis, i.e., {l#®1] direction, howeverA=0, indicating that
in this direction L phonons are stable against the Herring processes. This is in contradiction to the recent
experimental result reported by Dameinal. [Phys. Rev. B69, 349(1999]. We show that the vanishing of the
scattering rate in thf001] direction can be understood in terms of the physics of the Herring process.
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I. INTRODUCTION Il. FORMULATION

The studv of th i d tteri f i For temperatures much less than the Debye temperature,
€ study of the propagation and scattering of acous I?)honon interactions can be considered using non-linear elas-

phonons in crystalline solids is of both fundamental améicity theory. To third order in the elastic straip; , the elas-
practical interest. In an important paper, Herring investigatedic energy\w stored in a strained crystal of initial volurhéis
the collision rate of low-frequency longitudinédl) phonons

satisfying w<kgT/% (with T the temperatune and argued 1 1

that these phonons play a special role in determining the heat W:V(icijkl 7ij Ma+ gCijklmnﬂij Mk Tmn

conduction in crystals.He showed that the interaction rate

for these L phonons is dominated by collisions of the typeyhere

L+ ST—FT, where ST and FT denote the slow-transverse

and fast-transverse thermal phonons, respectivdijese 1(au;  duj  duy duy

processes occur for ST and FT phonons with wave vectors 7ij :E(_

close to the degeneracy points of the constant-frequency sur-

faces(or slowness surfacg the Brillouin zone. Herring’s  u(r,t) is the displacement at positionr=(x,y,2)

analysis is limited to cubic anharmonicity and to frequencies=(x,,x,,X3) at timet, and the summation convention over

of L phonons much less than the frequency of the thermallyepeated indices is implied. For a Te@ystal (belonging to

excited ST or FT phonons. Detailed studies of the scatteringhe tetragonal crystal of clags,, or the point group 422he

of L phonons in anisotropic solids are quite limited bothfourth- and sixth-order elastic stiffness tensarg, and

experimentally and theoretically, though the expression fot;ijklmn have six and 12 independent components, respec-

the scattering rate in cubic crystals has been given byjvely.

Simons? In the harmonic approximation, the equations governing
Recently, with a new technique for the generation ofelastic wave propagation in crystalline solids are

monochromatic Fresnel-diffracted phonon beams in the GHz

range! Damenet al. measured the attenuation rate of L ; Pu,

phonons propagating along tfig01] axis as a function of PUI=Cijla oo (i=1,2,3), ()

frequency and temperature in a single crystal of J&@th !

tetragonal symmetry.The measured attenuation rdtevar-  wherep is the mass density of the medium. By putting

ied according toAw®T? with a=1.84+0.2 andb=2.81 .

+0.2 below about 50 K, consistent with Herring’s theory u=aeexpi(q-r—owt)}, 4

which givesI'xw*T° for t~etragona| crystals with th®, with a an amplitude,e a unit polarization vector,q

symmetry. The coefficienA was determined to have the =(dy,dy,d,) =(ds,0,,03) @ wave vector and the angular

valueA=(4.0+0.5)x10" 82~ 1 Kb, frequency, Eq(3) is converted to an eigenvalue equation
The purpose of the present work is to derive an analytical

expression for the scattering rate of the L phonons due to the(|’\7|ik_pw25ik)ek:(cijququ —pw?8,)e=0 (i=1,2,3).

, @

(i,j=1,2,3, 2

(9Xj (?Xi (9Xi (9Xj

Herring processes+ST—FT, and to see whether or not the (5
above experimental results, including the magnitude of the 5
coefficientA, are reproduced. The explicit expression for the matridM(,) for TeO, is®
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Cu0%+ CSGQ§+ Cas0l2 C10x0y C1901,0x
~ 2 2 2 ~
M= C120xAy Ceelx T Cllqy+ Ca44; C130y0; , (6)
C130,0x C130y0; Can 05+ CI;Z/) +Ca30
|
with ¢, the Voigt elastic constants with two indices;, pUEr=Cast X4 07=Cay(1+2B67), (8)
=c212+ Ces and cqi3=Cqzt c44..~ From thg elgenva'llues where a=x_ /2643 and B=x../2C., with
pwj, (J=1,2,3), of the matrixM we obtain, for a given
wave vectorq, the phase velocities ;=w;/q (with g 12 =2
; 1| =H Ci3
=|q|) of three bulk modes, i.e., slow transver§sT, J Xo=—| ———2 4 ¢+ Ceg— 2Cas). )
=1), fast transverséFT, J=2), and longitudinal(L, J 2| Cg3—Cyq

=3). .
T)he Herring processes occur for thermally excited ST ancsn Eq.(9 His

FT phonons with wave vectors close to the directions in ~ o~ mp -~ o

which the velocities of these modes are equal. At these pointd? =H (&) = (CaxC11— C15)*c0S2¢ + (Castro— C1o) *siF2¢,

of degeneracy, the two slowness surfaces either touch or in- (10

tersect. According to Herring’s analysis, the degenerate ~ ~ . .

points at which two slowness surfacésuch each other WHEreCss=Cag—Caq @Nd €13=C13~Ces, and ¢ is the azi-

(rather than intersecplay the dominant role in determining muthal angle Oh' . .

the scattering rate of L phonons. Thus, in studying the Her- 1€ expression for the scattering rdtg, or the recipro-

ring processes in a tetragonal crystal Je®is important o cal Of the relaxation timer, of a phonon specified by

note that two transverse sheets touch only along[@@g]  — (d:J) via three-phonon processes, is giverf by
and [001] directions® The slowness surfaces of Te@re )
shown in Fig. 1. P —rie wh | Dyl
For q parallel to[001] or [001] the velocity of ST and FT 8p3Vw, \' @)@y
phonons iSpvT=Cyy. At a_poIa.r an'glea slightly rotated. X 2= ) By o qr Sy + wpr — ),
away from the[001] (or [001]) direction the degeneracy in ’
the velocity of ST and FT is removed, and (11)
png: CantX_P=Caf(1+2a6?), (7) where V is the _fys_tem volume _andnh: Nn(wy)
=[exptw, /kgT)—1] is the occupation number of
s phonons at temperatufé The explicit expression for the

three-phonon matrix elemedt,, ,~ is lengthy and is given
in the Appendix. Equatiofill) is applied to the scattering of
L phonons via Herring processes wifh=L, J'=ST, and

=FT. Thus, we writtw,=wy =0, 0y =0y s7= 0
andw,»= wq gr= 0". The wave vectors of the initial L pho-

A

g=(q,0,¢), andq’=(q’,0’,¢’). We then set

P [Py 2=(a0' a2 @ sroer(0, )2 (12

where®, . s1.e1(0',¢’) is a function that does not depend
on the magnitude of the wave vectors. We then have
6x10% T :quf d¢’fq’2dq’
- 42m)%p3w
SLOWNESS (cm-'s) ~ R
P stopr(6, 9]
FIG. 1. Sections of the slowness surfaces of the slow transverse X | sing'dé o' o'
(ST), fast transvers€FT) and longitudinallL) phonons in Te®@in
the s,—s, plane[the slowness vectas is defined bys=qg/v(q) ]. X(q'q")%(n"—n")d(w+w'—o"), (13
Solid circles are the points where the ST and FT sheets touch each
other. wheren’=n,, andn”=n,,. We further write
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1
do"—o'—w)=0q"—vsq' —v Q)= U_':Ta[g(a,)]-
(14

whereuv, is the sound velocity of the L mo8elepending on
the direction ofqg, and

g9(6")=09"—yseQ' — yLeQs (15

with ysp=vgt/ver andy g=v /vgr. Since we are consid-
ering w<<kgT/#, the relationq<q’=q" holds. Also

(16)

YiE=v lvpr=y(1-B6'?), 17

with y=v /v1. Now, we see thag(6#')=0 has two solu-
tions ' =6,, (n=1,2), with

co9+ 12
91=( yﬂ,) and 02:7T_(

ysr=vst/vpr=1+(a—pB)0'?,

—cosf+y q )1’2

B—a q B—a ¢
(18
and
X, —X_ Hl/2 ’
B—a=——= Sl (19
2C44 2C44C33
Thus, we note that, for a smooth functibof 6’,
J de’ sing’ f(0’) 5[g(6')]
2 -1
. dg(o)
_nZl siné, f(ﬁn)[w gn}
2
> (6. (20)

2(B-a)q'iT
Again using the conditiom<kgT/A, we can approximate

! n__ ! /+ — an(w,) 21
n'—n"=n(e’)-n(o'+0)=-———o, (21
and the scattering rate becomes
r Wﬁwz = J’ d¢r H71/2(¢,)
=—————>—5— CaC
L 4(277)31)31)5{)-7'- 33%44
2
~ , .5 IN(@’)
X2 | isrorr(0n, ¢ )|2f do’ o' ol
n=1 w
(22

The integral ovew' can be extended from 0 to infinity and

then
% n(w")
_ ’ 13 — 3
fo do’ 0® —===60(3)(ksT/t)%,

(23

where(n) is Riemann’s zeta function.
We are left to calculate the integral in E@®2) with re-

spect tog'. In the calculation of the Herring processes, we
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haveq’=q"|| [001]. The associated polarization vecta's
ande’ of the ST and FT phonons lie in tli@01) plane. Thus,
we can make the approximation thelt-€'=q’'-e'=q’-¢’

=q"-€'=q"-€ =0. Next we write the wave vectay of the
L phonon as

a=q(l,m,n), (29)

where (,m,n) are the direction cosines of The polariza-
tion vectore of the initial L phonon is, in general, not col-
linear with g except for high symmetry directions due to the
presence of the anisotropy. Howevere/q is close to unity
(q-€/g=0.9713 for TeQ) at least whery is oriented in the
(100 and(110) planes. Consequently, as an approximation,
we takee to be parallel tog and write

e=(l,m,n). (25)

This approximation becomes exact in {1€0], [001], [110]
and equivalent directiorfsAlso we put the polarization vec-
tors of the ST and FT phonons as

&' =egr=(cosp’,sing’,0),

€'=e-r=(sing’,—cosp’,0).
Thus with Eqg.(Al1) we have

(26)

|$L+STHFT|2:4(1+5 )[(0155_C144+2044)(|2—m2)

—48(Cys6+ Cag)lM]?,

(27)
where

_ 553_'&11?333

’612533_’6%3

Executing the integral oves’in Eq. (22), we finally obtain

cot2¢’. (28

3¢(3)k3
M=ml=—~~>"—— &?T3
Lk 8w2ﬁ2p3va¥
C44|~011~033_E§3|
=~ = = =~ = ——*x{(C1s5
(C11—C12)[Ca3(C111 C1p) —2CT5]
— Cy44t 2C49)%(12—m?)?[E(h) = (1 - h?)K(h)]
+16(Cys6+ Cag)?1 MK (h) —E(h)]}, (29
where
CasC1o—Co2
ey - S O ~f‘)2=—h2. (30
(C33C11—C1)
andE(h) andK(h) are the integrals defined by
/2 d /2 d
K(h)EJ z(é 1/2:J = ¢ ,
o [1-h%sirfe] o [1+h%sirtg]Y?
(31
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w2 w2 -
E(h)EJO [1-hZsirf¢]Ydgp= fo [1+h%sirt¢]Yd .
(32

Here we note that for TeQ h?=—h?<0 becausecgg

>cq;. However, this is an exceptional case. For the majority n-n'=—

of tetragonal crystalggs<c;;, andh?>0 and the integral

equationg31) and(32) become complete elliptic integrals of

the first and second kinds, respectively.
It is interesting to compare formuk®9) with the corre-

sponding expression for cubic crystals derived by Siméns

which can be written in the form

3
F(Lcubic): 3£(3)kg 273
8m2h2pSvivt
(C111+C12)Cas

(C11+2C157F Cag)|C11— C1o— 2C4|
X{(C155~ Craat 2C40)’[ (12—m?)?
+(m2=n?)2+(n?=12)2][E(h) — (1—h?)K(h)]
+16(Cyset Caa) (1M + m?n?+n?1%)]

X[K(h)—E(h)]}. (33

In this formula

(C12+Cyhg)?

h?=1- 5
(C11+C12)

(39

and in the derivation of E¢33), it has been assumed thzt
is positive so thakK(h) andE(h) are the complete elliptic
integrals. Note that, in both Eqs(29) and(33) depends on
the propagation direction. .

Here we note that Eq(29) reduces td™{**® [Eq. (33)]

PHYSICAL REVIEW B68, 014302 (2003
Incidentally, at temperatures higher than the Debye tem-
perature, for which most phonon modes are thermally ex-

cited, the difference of phonon occupation numbEes.
(21)] is replaced with

(35
and the expression for the attenuation rate becomes

kOB

L=
32720 2p%v v

2 C44|E11?333_E%3|
(C11— C19)[ Cag(C11+C10) — 2¢7]
X{(C155— C1aqt 2C49)%(12—m?)?
X[E(h)=(1—h?)K(h)]+ 16(C456T Cag)?
X1Zm?[K(h)—E(h)]},

(36)

where we have put the upper limit of the integral of Etf)
with respect toq’ as qma=kg®p/fivt. Thus the attenua-
tion rate proportional taw?T is obtained in agreement with
Herring.! Of course, Eq(36) is only an approximate result
because it based on the use of elasticity theory.

IIl. NUMERICAL RESULTS

For the evaluation of the attenuation rate we used the
second- and third-order elastic constants of Je@asured
at low temperatures, i.e., c1;=55.9,c33=105.5,
Cas= 26.6, C46=66.3, c1,=51.6, c13= 23.9, ¢c11= — 160,
Cq112= — 600, cq13= — 140, cqp3= — 110, c433= + 180,
Ciaa= —41, Cy55= +36, C156= — 640, C333=—2110, C3y4
= —54, C356= — 260, andc,se=— 250 ( in units of 13° dyn
cm 2).1°The mass density is=5.99 g cm ° and these val-
ues give bulk sound velocities in tH®01] direction v
=4.20x10° cms ! andv1=2.11X10° cm s 1.

We can write Eq(29) as

when cubic symmetry is applied to the elastic constants and
(m?—n?)2+(n?-1%)? is added to (*—m?)? and also
m?n2+n?l? to 1?m?. These added contributions come from
scatterings with transverse phonons propagating close to the

directions along the fourfolf100], [010], [ 100], and[010] (37
axes in cubic crystals. However, for tetragonal crystals the _ o
fourfold Symmetry is absent except about t[ml] (and In this expression, the coefficierBsandC depend oY and

[001]) axis and the degeneracy of the transverse phonon@ Only through the variiltion ob,. The scattering is stron-
along those four direstions is lost. This is the reason that th§€St for propagation &= /2, and there is a variation with
transverse phonons propagating close to [th@0], [010], azimuthal angle sinc8 is not equal toC. From the elastic

— — . constants of Te§ we findh?= —3.11 and the values of the
[100], and[010] directions do not contribute to the scatter- . _
ing of L phonons in tetragonal crystals. This point will be integrals of Eqs(31) and (32) are E(h) =2.446 andK(h)

) o =1.070. The values oA for selected directions are given in
discussed again in Sec. IV.

) ' Table | and in Fig. 2.
o 29 1, THESE Magiues o can e compared wit te core
. ng by gp sponding coefficient for cubic crystals given by
tetragonal Te®@vanishes for longitudinal phonons propagat-

ing in the[001] and[ 001] directions. To be more precise, we
see that the coefficient of the component of the scattering
rate that varies a&°T® is zero'* Thus in the experiment by
Damenet al° the attenuation must arise from some effect
other than Herring processes.

I' =[B(1?-m?)?+4C I’m?] ?T?
=(Bcog2¢+Csirf2¢)sin'0 o?T3
=A(6,¢) T3

F(LCUbiC): {E[(IZ_ m2)2+ (m2_ n2)2+ (n2_ I 2)2]
+4C(1°m?+ m?n?+n?1?)} T3
=A(6,¢) T3, (38)

014302-4



ANHARMONIC SCATTERING OF LONGITUDINAL . .. PHYSICAL REVIEW B 68, 014302 (2003

TABLE |. Calculated values of coefficiem for TeO,, and for T

the cubic crystals Si, GaAs and Ne in units of K = 00 .,z" ]
% e
A L@
[ A(6=0,0=0) A(9=7/2,p=0) A(6=m/2,p=l4) n [s® T
10 1
TeO, 0 1.97x 1022 7.69x10 22 ::
Si 1.29<10 # 1.29x10° % 2.78x10 % 2
GaAs 7.6K10°%  7.67x10 % 1.64x 1024 E 104 ;
Ne 248<10°1°  2.48x10°1° 5.65x 10 2° = v =5GHz
3
108 L
100 1000

whereB andC are the coefficients correspondingB@ndC.
Values ofA for silicon!! GaAs'? and Ne(Ref. 13 are in-
cluded in Table I. As might be expected based on the relative
magnitudes of the sound velocities in these materials, the F|G. 3. Temperature dependence of the attenuation rate of L
scattering is largest in neon and least in silicon. phonons of frequency 5 GHz propagating in {H4.0] direction.
When the temperature is increased so that it is no longeThe solid circles are the results of numerical calculations based on
much less tha®p, it is necessary to evaluate E¢.3) nu-  Eqg. (13). The solid line is the analytical reslEq. (29)] for low
merically. We have taken the Debye temperature as 260 K temperatures and the dotted line is the high temperature formula
and set the upper limit of the integral over as q,.« L[Ed. (36)].
=kgO®p/hvt. The results for a frequencyf @ 5 GHz pho-
non propagating in theL10] direction are shown in Fig. 3. It strain varies very slowly with time, the phonons will adjust
can be seen that there is a crossover frefiT® to w’T  adiabatically, i.e., their frequencies and polarization vectors

TEMPERATURE (K)

behavior at around 50 K. will be modified but if the strain is removed, the phonon
distribution will return to its initial condition. However, if the
IV. DISCUSSIONS strain changes rapidly, the phonons will not adjust adiabati-

cally, irreversible effects will take place, and the phonon sys-
The Herring process is usually considered as a scatteringm will absorb energy. We can expect that these effects will
process in which a low energy L phonon scatters from an She largest for those phonons whose frequenéyor polar-
thermal phonon to produce an FT phonon. But since thgzation vectore’ change rapidly when a strain is applied.
Herring process concerns the scattering of a low energy ph‘Based on this qualitative picture we can understand the van-
non, it should be possible to treat this phonon macroscopishing of the scattering rate for longitudinal phonons propa-
cally, i.e., as a longitudinal sound wave. The scattering rate_ie'fJating in the[001] and[OOT] directions.
i

then equwa]ent to.the rate at which thlzﬁsound wave For most of the thermal phonons, the fractional change in
dampeq by Interactions W'th thermall phonans. o' or €' is of the same order of magnitude &g . However,

To discuss this qualitatively, consider what happens V\.’he or thermal phonons with wave vectors lying close to a di-
through the presence Of. a so_und wave, a small_, .t'mefection in which there is a degeneracy, there can be a much
dependent, elastic straip; is applied to a crystal containing larger change ire’. As a specific example, consider an ST

a distribution of thermal phonons. Because of anharmonicitythermal phonon in Tepwith wave vector €q,0.), wheree

the application of the strain results in a small change in thm?S very small. This phonon has parallel t0[100].5 Now

e o seiran¥®: Shppose that he propagaton drecion of h fongudna
' %ound is alond 100] so that there is an oscillating strain

componentyn;. Such a strain lowers the symmetry of the
TeO, crystal from tetragonal to orthorhombic and &g, is
no longer equal t@ss. Thus the strain removes the degen-
eracy of the transverse phonons propagating in @#4] di-
rection. During the part of the cycle of the sound wave in
which the strain is such thats>c,,, the polarization of the
ST phonon remains parallel {400], but when the sign of
the strain is such thatss<<c,,4, the polarization changes to
become parallel t¢010]. The strain needed to accomplish
this large change ie’ is of the same order of magnitude as
e. Thus if € is small, the change ir’ is very much larger
than the magnitude of the strain of the sound wave, i.e., there
is an anomalously large variation ef with strain. Our idea
is that the Herring processes arise from this effect.

If this is correct, there will be Herring processes provided

FIG. 2. Angular dependence of the coefficignbf the attenu-  that the strain of the L phondfor the strain of the equivalent
ation rate in thg100 (¢$=0) and(110 (¢= m/4) planes of Te@ sound wavg lifts the degeneracy of some transverse

8 T

A(G,9) (102sK3)
~

6 (degrees)
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phonons. For a cubic crystal, the transverse phonons are deas been measured by Ewbank and Newfhdawn to 77 K.
generate along all directions of tyg#00), and so there will At this temperature, they found a conductivity of
always be some Herring processes regardless of the directi@dh09 W cm ! K™%, and from this they estimated a thermal
of propagation of the L phonon. This is in agreement withphonon lifetime of around 4 ps. Thus, at this temperature it is
the results of Simorisas given in Eq.(33). However, in  certainly true thatwr<1 and so the experiment should be
tetragonal Te@the degeneracy occurs only alof@1] and  analyzed in terms of a relaxation process. Unfortunately, we
[OOT] A strain of type N33 does not lift this degeneracy have been unable to find eXperimental data for the thermal
because,,,= 355 and so an L phonon propagating in theseconductivity at lower temperatures and so cannot make a
direction undergoes no Herring Scattering_ reliable estimate of the thermal phonon lifetime.
We want to emphasize that the above ideas are only sug-
gegtive. It would b(_a very interesting to see if it is possible to ACKNOWLEDGMENTS
derive the expression for the rate of Herring processes using
an elaboration of this approach. One of the authorgH. J. M.) would like to acknowledge
Accepting this result, one can ask what is the origin of thethe Japan Society for the Promotion of Scie(&®8P$. This
attenuation seen by Damet al> One possibility is that itis work was supported in part by a Grant-in-Aid for Scientific
a relaxation process. When a low frequency phonanter- Research from the Ministry of Education, Science and Cul-
acts with thermal phonons that have a lifetimesuch that ture of Japan(Grant No. 09640385 and by the U.S. Air
w7<1, the damping of the phonon varies@$which is the =~ Force Office of Scientific Research MURI grant entitled
frequency-dependence observed by Danwtral. Under  “Phonon Enhancement of Electronic and Optoelectronic De-
these conditions, the picture of the low energy phonon makvices” (Grant No. F4962-00-1-0331
ing momentum and energy-conserving collisions with indi-
vidual thermal phonons no longer appligldowever, for this
to be the explanation of the observed results, it would be
necessary for the thermal phonons to have lifetimes less than In this appendix we give explicit expressions for the ma-
(2mx5GHz) 1=30 ps. The thermal conductivity of TeO trix elements®,, \»:

APPENDIX

Dy =¢14(9-9")(q"-€)(e-€)+(q"-q")(q-e)(e-&)+(q"-aq)(q"-€)(e"-e) ]+ Cys(q-a")[(q"-e) (e -€)+(q"-€")
X(€-e)]+(q"-q")[(qg-€)(e"-e)+(q-€)(e-€)]+(q"-q)[(q'-€)(e-€)+(q -e)(e-€)]}+(C13;—Cy3

3
- 2044)241 qia; a;[ei(e' - €") +e/(e"-e) +ef (e €) ]+ (CaaC11)UsUs0s €3(€ - &) +e5(e" - e) +e5(e-€')]

I~ AN AN

+2(C1—C13)[ (01020561 1 020:07€5) (€' - €) + (1050281 + 050701€5) (€7 - €) + (1020567 + 050,01€5) (e-€') ]

+(Ces— C4a)[ (A102+0102) (A7€5+ 0%€7) (e €') + (01051 0102) (016, 02€1) (€' - €) + (01021 d10) (A1 €7

+051)(€"-€) ]+ (C115—2C149(q-€)(q"-€')(q"- € )+ Cra4(q-€)[(q'-q") (e - &) +(q"-€)(q"-€)]+(q"-€)
1
X[(q"-q)(€¢"-e)+(q"-e)(q-€)]+(q"-€)[(q-q")(e-€)+(q-€)(q" -e) ]} + 5 (Cae6™ C1491(q-€)(q"-€")

X(q"-e)+(q-€)(a’-e)(q"-€)+(q-a")[(q"-e) (e -&)+(q"-&)(e"-e]+(q"-q")[(q-&')(€"- &)+ (q-€&)
3

X(e-e)]+(q"-ql(q"-€)(e€)+(q"-e)(e-€)]}+(Ci1— Crio— 40166);1 aig/di'eie/ e/ +[Cazz— C111

- r A I 1 A I I A I A

—3(Cy13+ C139) T 6C112]03030383€3€5+ (2C144— C1101 C129)(010503€1€5€3+ 0105035€1 €563+ 010203€ €,€3

".! i "7’ i nn

1
+ 010503616563+ 010203616563+ q10,03€1€5€3) + E(C144— Cie6t 2C456) X { (01821 02€1)[ (02€3+ G3€5)(0ze]
n_n n_n nn nn nn nn

+07e3) + (0631 q3€5)(0ze; +q1€3) 1+ (a8, 02e1) [ (a2€5+ d3€5)(Gze; + d1€3) + (d2€3+ 03€,) (03€]

" "

+01€3) ]+ (aje5+a5e7)[ (0,63t d3€,)(qse; +01€3) + (0263 03€5)(03€1+01€3) |} +(Cr15— C110)
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3
izl [0iqf 9z€ie/ €3+ q/ ;' dze € es+ 0 0iq3€] €e3]+ (C133— C112)[ 0303€3€5(0" - €') + 0303€3€5(q- €) + q303e5e3(q’ - €) ]
+(C155~ C166)[ 01€1(01 €31+ 03€1 ) (Q1€3+ 03€7) + 0 €1 (01€3+q3€]) (0163 (3€1) +1€7(01€3+ (3€1) (01 €3+ 0z€;)

" nan PN nan PN

+0,€,(0583+ 03€5) (05€5 + 03€5) + 05e5( 0563+ 03e5) (0263 03€;) + 05€5(02€3+ 03€2) (02831 03€5) + 0ze3(qr )

nan " " n.n " nn

+0se1)(q1€5+g5e7) +qsez(qie5+ g5€7) (016, + 42€1) + 3€3(0182+ 02€1)(q1€5+ G2€71) ]+ (C344— C16)

" n.n " n.n

X{0zesl (a1€;+aze;)(aies+aze]) + (d,e3+ 0€5)(ase5+ g3€5) + (gse; +q1e3)(gse] +aies) 1+ gzes[ (g7e)

nn " nn " " nn

+03€7) (0182 + 02€1) + (03631 43€75) (02631 G3€2) + (03€7 + g7€3) (dze1 + q1€3) ]+ q3€3[ (q182+ 42€1) (185 + 4z€))
+ (02631 03€2) (02631 03€;) + (03€1 1 0183) (0381 + 01€3) 1} + (Cag6— Caaat 2C166~ C155— Cr44)[ d3€3(01€5 1 02€7)

" " n.n

X(qres+aze]) +qzez(qres+azel)(giex+ ayer) + g3e3(q.e,+ 0e1) (qres+aser) 1. (A1)
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