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Energy relaxation in a tail at zero temperature in the hopping regime
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We argue that energy relaxation of nonequilibrium charge carriers at zero temperature in the hopping regime
is Miller-Abraham-like, that is, the charge carriers always jump to the next closest site. The Miller-Abraham-
like motion of the charge carriers manifests itself in the moments of the energy distribution function. Due to the
motion on Miller-Abraham paths the rate of energy relaxation is much smaller, as if the particles would relax
in a percolation-like fashion. In contrast to percolation-like relaxation the dispersion of the transport coeffi-
cients in the Miller-Abraham regime depends truly on two parameters. A small rise of the temperature leads to
a strong increase of the energy relaxation rate and the strength of the increase depends strongly on disorder.
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[. INTRODUCTION the investigation of transport problems in the vicinity of the
Fermi energy might not be applicable to the nonequilibrium
Energy relaxation processes have been investigated isituation, the typical rates used in the investigations of relax-
many disordered materials, in which transport proceeds bwtion processes were the same as those that could have also
phonon-assisted hopping between localized states, e.g., been obtained from percolation thedsee, e.g., the Refs. 1
amorphous semiconductors and polymésse, e.g., Refs. and 14. That is, it was assumed that the characteristic hop-
1-5. In many experiments the excitations are produced eiping length is of the order of the average site distance, so that
ther by illumination(see, e.g., Refs. 6 and @r by an electric  the typical transition probability for a jump of an electron
field (see, e.g., Refs. 8 and.df the charge carriers are far from a site with site energy down in energy space is pro-
from the Fermi energy and the temperatures are sufficientlportional to exp—p.(€)], wherep.(e€) is of the order of the
low, jumps down in energy space are most important. In thigatio between the average spacing between accessible sites
case nearly every jump of a charge carrier is accompanied bgnd the localization length, which in the hopping regime is
a loss of energy, so that it seems to be reasonable to ignoessumed to be large. This notion has also been supported
jumps upward in energy space when modeling this situationfurther by the results of our effective-medium thebty.
The energy-loss hopping model, which is based on this ap- While at first glance the notion that the typical rates in the
proximation, has proven to be successful in explaining theenergy-loss hopping model agree with those from the perco-
experimental data of time-resolved photoluminescence anktion theory close to equilibrium seems to be plausible, its
transport experiments in many strongly disordered materials;onsequence—that the relaxation is determined by the same
including band tails of amorphous semiconductors, polycryspaths as those if the problem would be a percolation problem
talline materials, and polymers(see, e.g., Refs. 1 close to equilibrium—is surprising. Certainly, there is a sub-
and 10-15% stantial part of sites with neighbors within the average site
Despite the neglect of upward jumps the investigation ofspacing, but there is also a substantial part of distribution
relaxation phenomena on the basis of the energy-loss hofroles. Distribution holes are sites without accessible neigh-
ping model is still very intricate. In this model every site is bors within the average site spacing. Since the transition
connected to a huge number of sites by transition probabiliprobability is an exponentially small quantity with respect to
ties ranging over many orders of magnitude. Since thdahe hopping length, we expect that a charge carrier prefers
configuration-averaged transition probabilities do not dejumping to the next closest site. Doing so, it does not matter
scribe the situation adequately typical rates are often tisedwhether this site is a distribution hole or not. If the tempera-
The use of these rates is based on notions, which have begure is zero, as it is assumed to be in the energy-loss hopping
developed in the theory of hopping conduction by Mott in model, the particle cannot return to its initial site. Accord-
his investigation of the hopping conductivity in the variable- ingly, a particle, which has jumped into a distribution hole,
range hopping regim¥. can only leave the distribution hole by an extraordinarily
In the theory of hopping conduction the assumptions unhard jump, that is, a jump over a length which is large com-
derlying the introduction of typical rates have been clarifiedpared to the average site spacing. Therefore, we expect that
by Ambegaokaret al,'” by Shklovskii and Efrod® and by  the relaxation at large times is determined by jumps out of
Pollak® who have reformulated the problem in the languagedistribution holes.
of percolation theory. While it was often pointed out that In the percolation theory of the conductivity for small
relaxation phenomena far from equilibrium might be differ- electric fields, such distribution holes are called dead ends.
ent from conduction phenomena in the vicinity of the FermiThere they are dead since the resistors, which would lead out
energy! and that therefore the conventional procedures foof them, are not taken into account in the percolation con-
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struction, since they are large compared to the critical resisgible. The charge carriers lower their energy by jumps with
tor. If the relaxation at large times is determined by jumpsphonon emission. Only jumps with phonon emission can oc-
out of dead ends, as we suggest in our paper, then the relagur, since the temperature is zero. In this case the transport
ation paths are necessarily different from those which would:an be described by the simple rate equation
be obtained if the conventional percolation theory for close-
to-equilibrium problems were applied, since these paths are dnm(H)

quitioriuirn p! pplied, sin paths G = 2 [Ma()Won=nin() Wi, )
determined by jumps between pairs of sites not taken into n

account in the percolation construction for the conductivitywheren,(t) is the number of particles at sitewith position

close to equilibrium. _ o vectorR,, and site energy,, at an instant of time, and
In the context of the hopping conductivity, dead ends

were referred to in the paper by Miller and Abrahafvis Wim= 0(€m— €n) (0 — €m+ €n) v €XP(—2a|Ryn|)  (3)
the_ir investigati_on of thg hopping conductivity in the nearest-is the transition probability for a hop from siteto site m.
neighbor hopping regime. They argued that the electrofyere o1 is the localization radiusy is the attempt-to-
wou'ld always jump to the next clos_;est site. Doing so, 'tsescape frequencR, = R,— Ry, and the energy axis is di-
motion would inevitably be stopped in a dead end and thugected down in energy space. Both the positions of the sites
the jump out of the dead end would determine the conducang their site energies are random quantities. The sites are
tivity. Following this route they concluded that the conduc- yistributed randomly homogeneously in space, and the site
tivity energies are distributed statistically independently according
oecexi] — d,(d,l)] 2 toa dist_ri_bution function _proportional to the density of states.
Pe : In writing the expressio3) we have assumed that only a
Here p. is again the ratio between the average spacing besmall amount of energy is transferred from the electron to
tween sites and the localization length, which is assumed téhe phonon system in one hop. This fact manifests itself in
be large. Later it was recognized that Miller-Abraham pathghe second step function in E). If the electron-phonon
are not the most effective current paths. More effective path§oupling is treated as a constant this step function arises
can be formed if dead ends are avoided. The most effectivéiom the integration over all possible intermediate phonon
paths are those which avoid all dead ends. These are tiféates in the calculation of the transition probability. Since a
percolation paths. A percolation path is different from aphonon can maximally have an energy of the order of the
Miller-Abraham path since it does not contain jumps out ofDebye energy the energy is equal to the Debye energy in
dead ends. The contributions from percolation paths to théhis case, if only one process is taken into account. In an
conductivity by far exceed those from Miller-Abraham paths,Anderson insulator, however, the assumption that the
since the contributions of the first are only proportional to€lectron-phonon coupling constant is independent of the en-
exp(—p) While the contributions of the latter are given by ergy transferred in one jump, that is, independent of phonon
Eq. (1). Only in a very strong electric field, in which the momentum, does not hold. The electron-phonon coupling
charge carriers cannot return to their initial sites, have th&onstant is proportional to the overlap integral between the
Miller-Abraham assumptions been proven corféét For  electron wave functions and a phonon wave function, and to
energy relaxation the situation at zero temperature is verihe Fourier-transformed potential, which couples the electron
similar to that in a very strong electric field in that the mo- and the phonon wave electromagnetically. The overlap inte-
tion is directed. On the other hand, in the case of the congral decreases rapidly if the magnitugief the phonon wave
duction in the presence of a very strong electric field thevector becomes larger than twice the inverse localization ra-
motion proceeds in position space, and in the case of enerdius, and thus renders phonons with high energy ineffective.
relaxation in energy space. These two spaces are not the Fourier-transformed potential is usually treated as a con-
same. Therefore, it is not immediately clear whether for enstant, in line with the deformation-potential approximation.
ergy relaxation similar results as those for the conductivity inHowever, this approximation assumes that the electrons can
a very strong electric field hold. move quickly, so that that they can keep the system neutral.
It is the purpose of this paper to investigate whether thdn an Anderson insulator, however, there are no electrons that
relaxation at zero temperature is Miller-Abraham-like or not,could move fast enough to screen out the electric field of the
and to investigate its consequences. To this end we developfdionon wave on a time scale of the order of the inverse
simplified model for the investigation of Miller-Abrahams Phonon frequency for most phonon frequencies. Only very
relaxation processes at zero temperature and compare tlg-wavelength phonons can be screened out in this way.
results of our theoretical calculations with results of numeri-Thus the electro-magnetic potential, which yields the cou-
cal calculations, which do not use further assumptions. Th@ling between the electron and the phonon wave, is of long

impact of finite temperatures is studied numerically. range for most phonon frequencies, so that its Fourier trans-
form rapidly drops to zero. Accordingly we conclude that the
Il. BASIC EQUATIONS electron-phonon coupling constant rapidly drops to zero for

phonons with an energy larger than a characteristic energy
We consider localized nonequilibrium charge carriers farw. Therefore, the sum over the intermediate phonon states is
from the Fermi energy. Such charge carriers can, e.g., beffectively restricted to modes with energy small compared
produced by illumination. We assume that the number oto the Debye energy so that the Debye energy is replaced by
charge carriers is small, so that Fermi correlation is negliw.
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One might argue that the high-energetic part of the phothe calculation of the true transition probability, that is, to
non spectrum is localized, and that the coupling between thdiagrams with one averaging point but arbitrarily many legs.
localized phonon modes and the electron is very strong, ifn the language of standard effective-medium theory these
the electron is placed on a site which carries a localizedire all contributions to the effective transition probability
mode. However, we argue that the number of sites which devhich result from one bond#, in the language of the method
not carry localized modes is large compared to the number dfy Gouchanour, Andersen, and Fayer these are the two circle
sites with localized modes, so that it is unlikely that thediagrams®® and in our method these are the ladder
electron can be found on such a site. diagrams?® The diagrams, which correspond to the

Due to the reasons discussed above we expect that tiovaghar-Schirmacher method, are equivalent to the
energy scalew is small so that an electron can change itsGouchanour-Andersen-Fayer diagrathsHowever, since
energy by a multiple of the energy during its relaxation. To  from the physical point of view these diagrams describe only
assess whether this approximation is in conflict with the exthe oscillations between the initial and the final site, such
perimental data we refer the reader to the application of thisliagrams are completely unimportant in the Miller-Abraham
approximation to amorphous hydrogenated silicon in Sechopping regime. The only approximation which is known to
VI. In the main part of our paper, however, we focus onalways yield a Miller-Abraham-like answer is the CTRW
relaxation in an unbounded constant density of states, imethod by Scher and L&X.
which the density of accessible sites only becomes finite due As a simple alternative to this method, which turns out to
to the finiteness ofv, and equal towN. We believe that contain all of the essential physics, we suggest the consider-
investigations on relaxation processes in such a density aftion of a simplified model. The predictions of this model are
states are relevant for many modern Anderson insulators, fan complete agreement with those which we obtain if we use
which field effect measurements indicate that the density of generalized CRTW method to describe this situation. The
states depends only weakly on enefgge, e.g., Refs. 22 and introduction of this model can be explained as follows. Sup-
23). We would like to stress that the use of E8) for the  pose that the electron is sitting at tinheeO on the sitem
investigation of photoluminescence experiments presumesith site energye,,. According to Eq.(2) the probability to
the existence of an observable low excitation generation refind the sitem still occupied at time is given by
gime, in which the kinetic of the excitations is independent
of their density, that is, of the generation rate. Such a regime Ny(t) =exp —tW,,), (6)
has been observed in numerous photoluminescence experi-
ments(see, e.g, Refs. 24—P6The existence of the low rate Where
excitation generation regime is thus experimentally verified.

In order to investigate the relaxation we focus on the mo- W :2 W )
ments of the energy distribution functiéi{e,, €|t), which is mo4 TTmn
the probability to find an electron at a site with enekggt
timet, if it was at a site with energy, att=0. Of particular Due to Eq.(3) only sites within the slicee,, <€, <en+ o

interest is the rate of energy relaxation contribute to the sum. Thus the electron has effectively left
its site after the time=Wr;1. Most likely it has jumped to a

v(t)=<2 c %> 4) clo_s_e_ site, but_ due to the dispersion_of the_ tra_lnsition prob-

"dt/’ abilities there is also a small probability of finding the elec-

. o . o i tron on any site within the above-mentioned slice. Thus, the
which coincides with the derivative of the first moment of energy distribution function has already started to spread.
the energy distributiori- function with respect to time, that  gince, is small this spreading is also small. To model this
IS, system we suggest ignoring this spreading. That is, we imag-

d (= ine that all sites within the above-mentioned slice have the
U(t):d_f deeF(eg,€lt), (5) same energy. TheW, is simply the probability to jump
te from a site with energy,, to any site with energy,, 1. All

the mean-squared deviation of the distribution function, angit€S accessible from a site with site eneegyare different
their asymmetry. In writing Eq5) we have assumed that the from all sites accessible from a site with site eneegy ;. It

energy axis is directed down in energy space, so that thi$ Important to realize thaw/y, is not the probability of jump-
energy of the particles increases in the relaxation. ing from a site with site energy to a particular site, but to
any site in the slice of widtlm. To make this point clear we

now use indice,N, ... to distinguish between a particu-
lar site and the subsystem with energy. Thus, the index

Since we expect that the transport is Miller-Abraham-likeM does not refer to a particular site, but to a site with energy
the question arises as to how the transport can be modeldevel €. Every energy leveM containswN(Q randomly
analytically. That percolation theory cannot handle this situ-distributed sites, wher@ is the volume of the system. The
ation is obvious. However, also, the effective-medium theo-distance between the energy levels is the random quantity. In
ries are not suitable to describe this situation. The reason fdhis case the probability,, to find the electron on a site of
this is simply that in all of these methods it is assumed thathe subsystem with site energy, simply satisfies the equa-
the consideration can be restricted to ladderlike diagrams ition

Ill. THE ENERGY DISTRIBUTION FUNCTION
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dpm small. In this case we can restrict the consideration to that
ar = Pv-1Wm-1=puWu . (8)  singularity which has the smallest real part in the limit of
smallsif e/w>1. For
Consequently, the Laplace transform of the probability to

find an electron on a site of the subsystem with enesgy if sf(s)<1, (16)
it was on a site of the subsystem with enekgyatt=0, is g singularity is situated at
given by
2sf(s
e xo(9)= — ) (17
pu(s)=fu [1 (1-sf) 9 ®

and yields a simple pole. Consequently, we obtain
for M>0, and bypy,=f, for M=0, where

F(0e;8)= ! € 18
foy= - _ (10) ( 'e’s)_v(S)eX v(s)]’ 18
St W where
Here s is the frequency which corresponds to a Laplace
transformation with respect to time. By definition the energy v(s)= (19)
distribution function satisfies the equation 2f(s)
o Thus, the energy distribution function satisfies the equation
Fleg,ei9)= 2 (8e—eg=der— -+ = Sen)pn(s)) d
SF(O,e;s)zé(e)—&(F(O,e;s)v(s)). (20
+ 6(e—€0)(po)- 1Y

Thus,v(s) is the energy relaxation raté,and the require-
ment (16), which we have used in the calculation of the
position of the pole, is equivalent to the requirement that the
transitions are quasielastic in the limitw>1. We would
like to note that our effective-medium thedR/which is
Yased on the assumption that the transport is percolationlike,
ields the same equation for the energy distribution function
indicesN, and any statistical correlation between the quanti< ?:] the quaS|elastlcqapprOX|mat|0n butgz)a/ different expression
ties dey andWy . The reason for this is simply that no site for the energy relaxation rate(s). This point reflects itself

can be visited twice, since only hqps (_jown_ In energy can, the moments of the energy distribution function, as dis-
occur. Furthermore, due to translation invariance in energy. <sed below.

space, we can puf;=0 and use the Fourier transformation
to perform the calculation. Then we find that the energy dis-
tribution function takes the form

Here dey is the energy transferred in tidth jump, ey= €

+d8ey+ - - -+ Sey, and the bracketé: - - ) indicate the con-
figuration average. By construction, the quantitiag, are
random quantities, which are uniformly distributed in the
range (Op). Since the temperature is zero we neglect an
statistical correlation between the quantitigg for different

IV. THE MOMENTS

o If we use Egs.(5), (14), and (19) we find that the first
F(0,e:5)= f dx f(s)e 12 derivative of the first moment with respect to time, the en-
1 [1-sf(s)]h(wXx)’ ergy relaxation rate, is given by

where o est
o U(t)—ﬁ E de% (21)
1-e
h(wx)= oX ' (13 In calculating this integral we restrict the consideration to
large times. Doing so, we find that
and
d d
In%(v't
1 v(t)=v., +v’tex - (d ) ,
f(s)= . (14 wv' dIn“"H(v't) Pe
s+ Wy 22)
The integral(12) is determined by the singularities of the where
integrand, that is, by the solutions of the equation
2 d 1d
0=1—(1-sHh(wx). (15) pcz_“<_> 23)
(wN)lld Sd

In calculating the integral with respect towe take into
account that we are only interested in investigating the situd is the dimension of the syster§y is the solid anglep’
ation for large times, where the frequensys already very =wvexp(y) (v is the Euler constajtand
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wv'

“21(p)
Since (—1)"
~—) I[(n+1)pc] (29

\/T v (n+1
| — d7(d—1)
(pc) (d—1)dY@-1) Pe we obtain for the first moment

xexp(d—1)(p/d)¥/@-17, (25 o 1(2pc)

(%3

(24) f(n)(S:O):(—l)nn!<W>

. e)(t)=v(s=0)t+— , 30
we find that {e)(t)=u( ) 4 1(po)]? (30
d/(d-1) for the dispersionr?(t) =(€?)(t) — t)]°
vwxexr{—(d—l)(%) } - p () =(2)(O) ~[()(1)]
w? 1(2p¢) w? 1(3pe)
Equation(22) is applicable, provided In®~Y(v't)/p3>1. The o?(t)= a - i . 3 (3D
details of the calculation leading to E@2) are discussed in [1(pc)] [1(pc)]
the Appendix. and for the asymmetry(t) =([e—(e)(t)]1%)
Equation(22) has to be contrasted with the result which
would have been obtained if the transport were percolation- w3 1(3p.)  3[w\? 1(4py)
like (see, e.g., Ref. 151t differs from that in two ways. X(t)=—5(— Lyt —Pe +_<_) Pe) (32
First, if the transport were percolationlike we would have 2 [(po)]* 412) [1(pc)]*

obtainedv..<exp(—«p.), wherex is a number. Second, the
system would approach the stationary energy relaxation ra
v, exponentially, if the time was large compared to the in-
verse characteristic hopping frequency. Equat@®), how-
ever, leads to extremely slow, nonanalytic relaxation at ver
large times.

A further investigation of the situation reveals that there
are further differences between Miller-Abraham relaxation

By construction the leading term in these asymptotic expan-
sions is the term with the highest power with respect.to
The remaining terms are the next corrections. The require-
ment that the corrections are small compared to the leading
Yerm yields the range of validity of our approximation. If we
use this philosophy we obtain from the first moment the
requirement

and percolationlike relaxation. These differences manifest 1(2pe)
themselves in the higher moments of the distribution func- > P ' (33
tion. Since 1(pc)
"(s) from the second moment the requirement
*® 1%
“s=deO,;s N"=nl——- 2
(N)(s)= | deF(0eis)e’=nl—3 27 Gp)
Vt>T’ (34)
the higher moments of the distribution function are deter- (2pc)
mined by integrals of the type and from the third moment the requirement
n {w\" est 1(4pc)
Y =5—|5 ds———. 28 s ¢
(=55 2) fc ST I(s) 28 SETEPRE 39

Thus, the moments are determined by integrals over th&hus, sincel(2p.)/I1(pc)<<!(3p)/1(2pc)<<1(4p)/1(3pc)
function f(s) [see Eqgs(14) and (A7)]. The functionf(s) <--- there is no simple parameter for the applicability of
depends truly on both the paramegp and the parameter the smalls expansion of the integrand. Every moment needs
pc, and the integralA7) which can be used for its calcula- a new scale. The larger the moment the larger the smallest
tion cannot be reduced to a simple integral which dependsme to which the expansion applies. We would like to stress
only on one parameter at smallThis sets the situation apart that this conclusion also holds for all higher moments. Here
from that in percolation theory where the frequency depenthe fact that the dispersion depends truly on two parameters
dence of the transport coefficients at low frequencies demanifests itself.

pends truly only on one parametefwq(p.), wherewqg(pc) Furthermore, from Eq32) and Fig. 6 below we see that

is a characteristic frequency of the order of the dc conducfor small times the asymmetry is positive and for large times
tivity. This peculiarity reflects itself in the moments of the negative. This fact reflects that more and more particles are
energy distribution function. To calculate the moments wecaptured by distribution holes when time elapses. The asym-
expand the functiori(s) with respect tcs, and use this ex- metry of the distribution function at large times is absolutely
pansion to generate a Laurent expansion of the integranidrge, so that also the deviation of the first moment of the
with respect to powers . Since thenth derivative off(s) center of the distribution function is absolutely large. How-
is ever, despite this fact the distribution function becomes more
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Gaussian when time elapses, since the asymmetry become 00005
small compared to the dispersion, that|ig(t)|/|a?(t)| 2
—0 for t—oo.

We would like to note that the dispersion

) di(d—1)

0.0004

Pc 0.0003

(d=1){5

oA () w?v't exp( [2d’<d—1)—3])

v /ve

( ) 0.0002 |-
depends strongly on the dimension. While fd=3, the
main objective of our paperr?(t)/(vt) is an exponentially
small quantity with respect to the paramet&f®~2 | it is
exponentially large fod=2. The reason for this fact is not
entirely clear. It might be caused by the nonanalytic depen- O S T o500
dence of the functiorii(s) at smalls and largep.., and thus vt
reflects that in two-dimensional systems it is much harder to 5 1 Energy relaxation rate(t)/(wv) versus time ford=3
avoid the distribution hole than in three-dimensional SYS-—,,qNw/ad=0.005.
tems.

0.0001

following property: the packet, including its width, was al-
V. NUMERICAL RESULTS ways well contained in the interv@D,E], that is, in such a

To model the system numerically we have investigatedV@y thate(t) +4o(t)<Ew. This turned out to be the case
the transport Eq(2) both with Runge-Kutta integration and for the valueE=20000 chosen in our simulations.
with Monte Carlo simulations. Basically we have used a " Fig. 1 we have depicted the energy relaxation rate for a
+1-dimensional cube with side lengthand energy depts, ~ three-dimensional system witliw/a”=0.005. According to
where the unit of length was chosen in unitseof: and the ~ this_picture energyﬁgelaxatmn is fast at small tines(t
unit of energy was measured in units of To populate the =0)/(«»)=7.3x10""], and slow at long times. A short,
cube, the spatial positions dfELY sites and their site ener- strong, initial decay to some valu_e close to the stationary
gies were generated with a random number generator in su¢ffiue of the energy relaxation rate is followed by a very slow
a way that the sites could be considered as uniformly distrib@Proach .. (v../wr=6.7x10"").
uted in our cube with volum& 9X E. Then the cube was From the preceding section it is clear that the character of
continued periodically in space. To model the dynamics firsth€ transport is determined by the dependence of the energy
one site of the cube was chosen as the initial sifthen a  '€laxation rate on the parametey. To investigate this de-

jump from sitei to another sitd was performed. To deter- pendence we have measured the energy relaxation rate for
mine the sitef an interval of length various values of the parametgg, and then, at first, have

tried to fit our results to a dependence of the type
Wik

2 Win
n as suggested by percolation theory. Heris a number. Fig-

in the interval[ 0,1] was assigned to every site. Thereafter, aure 2 shows a plot of our data for{in,/(wv)] versusp, for
random numbex was generated from a random number gen.thrEE'dimerISional systems. In this piCtUre the full line is a
erator, which yields uniformly distributed numbers in the in- guide for the eye of the numerical results and the dashed line
terval[0,1], and then that site was chosen, the interval ofiS & simple straight line, drawn for comparison. If the trans-
which contains the numbet. To determine the time; re- ~ Port were per_colat!onllke it should be_p(_)ssmle to fit the re-
quired for the jump a second random numpewas gener- Sults to a straight line. The strong deviation of the numerical

ated with the same random number generator, and then results from the straight line, in particular, at layge shows
was calculated from the equation that is difficult to obtain a good fit. A much better result is

obtained if we plot our result for the energy relaxation rate
versusp>’? and assume that

37 Vo exp— Kkpe), (39

Iny. (38
> Wi v..=wvCop_ Mexp — Cyp?). (40

n C

tif=—

Then the process was repeated. To obtain the final results wsuch a plot(full line) is depicted in Fig. 3. If we fit the data
averaged the results for test particles in 20 000 different confor the full line in Fig. 3 to Eq(40) we obtainC;=0.40 and
figurations. To minimize the impact of the parametethe = Cy=0.758. Our Eqs(24) and (25 yield C,;=0.385 and
results were also studied for different valued.offhe impact C,=0.661. The very good quantitative agreement between
of this parameter turned out to be negligible, if it was choserthe results of our theoretical investigations and the results of
in such a way that >3p.. The parameteE was chosen in the numerical calculations is also demonstrated by the
such a way that the results for the packet's shape had théashed line in Fig. 3, which is a plot of Eq24) and (25)
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FIG. 2. Energy relaxation raie, /(vw) versusp. for d=3. The FIG. 4. Energy relaxation rate ()+In(p2)/2 versusp? for d
full line is a guide for the eye for the numerical results, and the=2 (v.. is measured in units abv). The crosses are the results of
dashed line a straight line drawn for comparison. the numerical calculations. The straight line is the approximation of

the results. If we use this approximation, we find that
and thus does not contain any adjusted parameter. Thus o&0.759 exp-0.2792)/p. .
calculations confirm the notion that the jumps are Miller-
Abraham-like. measured in our numerical simulations. For the second and
For two-dimensional systems the situation turns out to behird moments the situation is similar for large. In order
same. If we try to fit our data to an expression of the type to compare the results of our theoretical calculations for
1 ) these moments with the numerical calculations we have to
v=vwCop. "exp(— Cypg) (41) satisfy the criteria34) and (35), which was not possible in
we find thatCo=0.759 andC, =0.275. Equatior{24) yields ~ Our numerical calculations for largp.. For the mean-
Co=0.502 andC,=0.25. A plot of this fit is given in Fig. 4. Squared deviation our numerical calculations have only met
Unfortunately it turns out to be difficult to compare the the criterion(34) for small p., that is, for 5>p.>1. For

predictions of our model for the time dependence of the enSuch pc we have found very good quantitative agreement

numerical calculations, since for large the corrections to ~ €rtheless, we would like to stress that despite this fact the
the energy relaxation rate, are already so small within the dualitative agreement between our theoretical and numerical

range of applicability of Eq(22), that they cannot reliably be Fesults for largep is quite good. In Figs. 5 and 6 we have
plotted our results for the mean-squared deviation and for the

0 , , asymmetry for three-dimensional systems wilw/a®
=0.005 (p.=7.25) versus time. According to E¢31) the
mean-squared deviation at large times increases linearly with
time, and the first correction to the linear increase is constant
and negative. If we look at Fig. 5 we see that the numerical
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FIG. 3. Energy relaxation rate in{)+3In(p)/4 versusp?’? for
d=3 (v.. is measured in units abv). The crosses are the results of
the numerical calculations; the full line is the approximation of the 0 ! ! !
result by a straight line. The dashed line is a plot of the result of our 0 05 10° 1“3}%"6 1510° 2010°
analytical calculation and does not contain any adjusted parameters.
If we use the data for the full line we find thab. FIG. 5. Mean-squared deviation versus time for a three-
=0.759 *exp(~0.399%>?). dimensional system withw/ 3= 0.005.
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FIG. 6. Asymmetry versus time for a three-dimensional system
with Ne/a®=0.005. FIG. 7. Temperature dependence of the energy relaxation rate

. ) L . v, for a two three-dimensional systems witho/a®=0.005(solid
calculations confirm that the mean-squared deviation INfine) andNaw/a?=0.01 (dashed ling

creases with time, although we can only see the transition to

the linear regime at large times. If we approximate the result

for large times by a straight line, then the next correction is _ . _

obviously negative, in agreement with Eg1). Wom= 0= en eml)vexp{ 20| Rond
In Fig. 6 we have depicted some numerical results for the

asymmetry. According to Fig. 6 the asymmetry is positive at +

small times and becomes negative at large times. Further-

more, if we approximate the time dependence of the asym-

metry in Fig. 6 at large times by a linear function, then thewhereg=1/(kT), T is the temperature, aridthe Boltzmann

next correction is obviously positive, in agreement with Eq.constant. Results for two systems at low temperatures are

(32). This fact reflects that more and more particles jumpdepicted in Fig. 7. The maximum depends strongly on the

into distribution holes when time elapses, as discussefhagnitude of the parametpg . The larger thep. the stron-

above. ger the rise of the energy relaxation rate. Clearly, since the
Since the peculiarities of the relaxation at zero temperaenergy relaxation rate in the Miller-Abrahams regime is

ture result from the fact that a particle, which has jumpednuch smaller than the energy relaxation rate in the percola-

into a distribution hole, can only escape by an extraordinarilytion regime a substantial part of this rise has to be attributed

hard jump, we expect that the relaxation properties ardo the difference between both transport regimes. In our cal-

strongly affected by temperature. If the temperature is finiteculations we always find the maximum BT <w<1, al-

the particle can, in principle, return to its initial site or simply though both quantities are of the same order of magnitude. If

jump to another site with higher energy by phonon absorpwe interpret the temperatuteT~w as the transition tem-

tion, and then choose to jump to a more effective site. In thigerature from the variable-range hopping to the nearest-

way the distribution hole can, in principle, be avoided. Con-neighbor hopping regime then we note that there is obviously

sequently, a small increase of the temperature results in ah smooth crossover between the Miller-Abraham behavior

increase of the energy relaxation rate, since it eliminates thand the percolationlike variable-range hopping behavior. Ac-

hard jumps from the possible relaxation paths. A further in-cordingly, it is difficult to discriminate between both trans-

crease of the temperature leads to elimination of distributiorport regimes, if we merely investigate the temperature de-

holes, until all distribution holes have been cut off from thependence of the relaxation rate. Unfortunately, at present

relaxation path. Thereafter, the relaxation is percolationlikethere is no theory which can describe the rise of the relax-

Miller-Abraham paths are no longer important. Despite thisation rate as a function of temperature in the Miller-

fact the energy relaxation rate increases further with increagAbrahams regime.

ing temperature, since the critical hopping length decreases

with increasing temperature. However, since in our model a VI. GENERALIZATION TO ENERGY-DEPENDENT

charge carrier can exchange at most an energy of the order of DENSITY OF STATES

o the hopping length reaches its minimal value at a tempera-

ture kTecw. Thereafter, the situation becomes nearest- In the preceding sections we have seen that the relaxation

neighbor hoppinglike. Accordingly, the energy relaxationat zero temperature is not percolationlike, but Miller-

rate has a maximum as a function of temperature at an erhbraham-like. Therefore, the question arises as to why this

ergy o~KkT. point was not noticed before. To answer this question we
To investigate the impact of small but finite temperatureswould like to note that in most of the investigations the au-

numerically we use the following transition probabilities in thors have focused either on an exponential density of states,

our Monte Carlo simulation: with

N

: (42

(€m— en_|€n_6m|)
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. : F(eo,€;5)= , (48
(N andA are parameteysor a Gaussian density of states. A v(€,S)
guantity that has been measured in time-resolved photolumi- : L .
nescence experiments is the instantaneous position of tv(\_/_\herev(e,s) is again given by Eq(19) W'.th f(s).replaced.

mean energy. The arguments, which are based on the a Y .f('e,s). Consequently, the energy distribution function
sumption that the transport is percolationlike, lead to a meageuses EA(20) also if the density of states depends on

energy, ifv(s) is replaced by (e,s).
energy of the formisee, e.g., Refs. 1 and 15 In deriving Eq.(47) we have restricted the expansion to

()()=A InIn(wot) (44) the first derivative of the energy distribution fpnction with
respect to energy. The next term of the expansion, the second

for an exponential density of states. The frequengyn this  derivative with respect te, would describe the energy dif-
equation is equal tor if w=« (Ref. 1) and equal to fusion current. We expect that this term is negligible since
vwl(2A) in the quasielastic approximatidn.The same the temperature is zero. Note that in this approximation the
double logarithmic time dependence was observed in manyidth of the energy distribution function results entirely from
experiments, e.g., in the experiments in amorphous hydrogdhe dispersion of the energy relaxation ratéf we compare
nated silicon of Ref. 32, which seemed to confirm the corthe terms ignored with the terms kept we find that this ap-
rectness of the assumptions used in the theoretical investig@froximation is justified if the following inequalities are sat-
tions. The parameter,, as measured in the experiments, isfied:
was of the order of 1% Hz, thus of the order of a typical

N(e)=Ngexp —de/A) (43 1 p[ e _ s
ex —f de

v(e,s)

phonon frequency, and the parametewas of the order of wS <1 (49)
the tailing parameter of the density of states, as expected. v(e,S) '

Thus, at first glance the agreement between those calcula-

tions which were based on the assumption that the transport wv'(€,9)

is percolationlike and thab=c with the results of the ex- v(e,s) <1 (50)

periments was quite good. On the other hand the transport , o o )
measurements lead to a much larger value of the parameterti€ré the prime again indicates the derivative with respect to
(=10 Hz) which indicates that the transitions are quasi-€- Note that the inequalitie€l6) and (49) are identical.
elastic. We now focus on the first moment of the energy distribu-

To generalize Eq(20) to energy-dependent densities of tion fynction for_the exponential density of states. If we are
states we focus on the quasielastic limit. Doing so, we as@nly interested in the time dependence of the first moment
sume thatwN’(€)/N(e)<<1, where the prime’() indicates for large times we can p=0 inv. Doing so, we f'_”d that
the derivative with respect te. Then, if the electron is sit- &t large times the first moment satisfies the equation
ting on a site with site energy,,, the density of accessible d(e)(t)
sites is given bywN(e,). To calculate the energy distribu- =v[(€)(t),5=0]. (51)
tion function we again use Eq$9)—(11). However, since dt
now the quantityf , (10) depends on the instantaneous posi-accordingly, we find that at large times
tion of the particle in energy space we cannot invoke trans-
lation invariance in energy space when calculating the en- d—1 ~
ergy distribution function, and cannot use the Fourier <€>(t)“AT|n In(vt). (52

transformation. Therefore, we first obtain the set of equations
Here we have used the abbreviations

F(eg,€;5)=1(€,5)G(€g,€;S), 45
oS Tiee e “ pele)=poexptelA), (3
1 (o
G(eg,€;5)=08(eg—€)+ —| deG(eg,e—€1;S) ~  dkg @V
gl Y@ 1 28 4

X[1=sf(e=e,9)] (48) = ZA@-D)a" I, andky=(d—1)/d¥@ D, Thus
Heref(e,s)=fn(s)|. .. Now we use the notion that is  Ed. (52 differs from Eq.(44) only by the factor d—1)/d, a

small to expand the integral with respectdo Doing so, we I_act?r:)hf order unlfty, 't';] fro:wt of the eﬁpgefﬁlon. I;‘twe m;/efr-]
obtain the equation igate the reason for the closeness of both results we further

note that Eq.(51) holds in both cases, if the relaxation is

o) — S . _ percolationlike and if the relaxation is Miller-Abraham-like.

Gleo,€i8)=dle~€o) + Gleo, e8)[1-5H(e,5)] The only difference is that in the percolationlike version

o d v(e)xexg —p.(€e)], and in the Miller-Abraham version

~ 5 getClen.es)[1-sf(es)]}. (47 y(e)xexd—pe¥@ V] Therefore, the energy dependence

of the energy relaxation rate in the Miller-Abraham version

If we use this equation for the calculation of the energy dis-differs from that in the percolationlike version only in num-
tribution function we obtain bers, if the density of states has an exponential dependence
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on energy, as is case in the exponential density of states @vould restrict the consideration to jumps to the next closest
the Gaussian density of states. The agreement between tbite, we would obtain nearly the same energy relaxation rate
result for the mean energy in the Miller-Abraham versionat large times. The only difference would be thétis re-
and the percolationlike version in such densities of states iplaced byr. We would like to note that a model, which in its
therefore purely by chance, and would not occur if there wastructure is close to our model, has also been developed in
no exponential dependence of the density of states on energgef, 11. We believe that with that model it should have also
e.g., in a density of states which depends algebraically 0Bready been possible to note that the transport at zero tem-
energy. , o perature is fundamentally different from the percolationlike
The fact that nearly the same result is obtained in bothyescrintions used in the literature. However, since in this
cases raises the question of whether these two relaxatiqfyher the authors have only focused on energy relaxation in
mechanisms can be distinguished in an experiment on energinsities of states with exponential dependence on energy, it

relaxation in a material with an exponential density of states, 55 difficult to notice this fact, as explained in detail in Sec.
of the type(43). It turns out that the investigation of the

second moment offers this chance. If the relaxation is perco- .According to the predictions of our simplified model the
lationlike then the second moment becomes constant at IarQﬁotion of a particle packet in energy space in the Miller-

times, and of the ord&t Abraham mode differs strongly from that in the percolation-
o2(t)~ wA (55) like ver;ion. Alrgady the energy (elaxation. rate is much
' smaller in the Miller-Abraham version than in the percola-
Thus, in this case the motion of the packet in energy space dionlike version. Furthermore, there are strong differences
large times becomes solitonlike. On the other hand, if we usbetween those quantities which are related to the dispersion
for the investigation of Eq(48) the saddle-point method of of the transport coefficients, such as the mean-squared devia-
Ref. 15 we find that in the Miller-Abraham version tion of the packet in energy space or their asymmetry. While
for a constant density of states the packet becomes Gaussian
at sufficiently large times in the percolationlike version, in
(56)  the Miller-Abraham mode the asymmetry is large and nega-
tive at large times. This fact indicates that in the Miller-
Accordingly, the mean-squared deviation in an exponentiafbraham mode the packet tends to stick. Another way to
density of states in the Miller-Abraham version increasesstate this fact is that the memory of the initial state is kept for
with time, and thus offers a way to distinguish experimen-a very long time.
tally between both cases. If we compare the predictions of our simplified model
We would like to note that for a two-dimensional systemwith the results of numerical calculations, in which do not
Eq. (56) predicts a much faster increase of the dispersion foklSe any assumptions, we find excellent quantitative agree-
particle packets moving in an exponential density of stategnent between the theoretical and numerical results for the
than for particles moving in a constant density of states. Obfirst moment of the energy distribution function. For the

viously, this is odd, and might reflect that the simplified higher moments of the energy distribution function we only
model is not well suited for studying the situation in two find qualitative agreement. We attribute this fact to the com-

2Md=1) 57
In vt

02(t)och(7/t)2d"d‘”2(
Kd

dimensions, as already noted before. plicated dispersion of the energy relaxation rate. In contrast
to the percolationlike version, in which the impact of the
VIl. CONCLUSIONS dispersion on the transport coefficients truly depends on only

one parameter, the dispersion of the energy relaxation rate in

Our numerical and theoretical investigations on energythe Miller-Abraham regime truly depends on two parameters.
relaxation of charge carriers at zero temperature lead to th€his fact manifests itself in the range that determines the
conclusion that the relaxation at zero temperature and lowalidity of Egs.(22), (29), and(32). The lower limiting time,
excitation densities is Miller-Abraham-like. In this mode of which is needed in order to establish E29), is much larger
transport the charge carriers almost always jump to the nexhan the lower limiting time for the applicability of EqR2),
closest site. Doing so, their motion inevitably ends up in abut small compared to the lower limit of E¢32). It can be
distribution hole or dead end, that is, on a site without closechecked that the times used for the numerical calculations do
neighbors within the average site spacing. Since the chargeot satisfy the criteria for the applicability of Eq®9) and
carriers cannot return, their relaxation is determined by hard32), but they do for the criterion of applicability of E¢R2).
jumps out of dead ends at long times. Therefore, we believe that the remaining discrepancies be-

To model the relaxation we have developed a simplifiecdtween the numerical and the theoretical calculations of the
model. In its spirit this model differs from the original second and the third moments result from the fact that the
Miller-Abraham model in that the jumps are not restricted totimes, which could be realized in the numerical calculations,
jump to the next-nearest site, but additionally jumps to reswere too small to achieve quantitative agreement.
mote sites have been taken into account. We believe that the The peculiarities of the relaxation at zero temperature re-
consideration of remote sites is important for those quantisult from the fact that the particle loses the connection to its
ties, which are related to the dispersion of the transport costarting site after a jump. However, at any finite temperature
efficients. The remote sites have, however, little impact orthe particle can, in principle, return to its initial site, and then
the first moment of the energy distribution function. If we jump to a more favorable site, rather than to the dead end.
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Therefore, the relaxation rate is strongly affected by a rise ofmost suitable for observing the Miller-Abraham relaxation.
the temperature. To investigate the impact of the temperatur€learly, the steady-state Miller-Abraham relaxation rate can
we have used Monte Carlo simulations. We find that theonly be observed if the number of Miller-Abraham traps is
impact of the temperature is governed by the parameter sufficiently large. This requirement is always satisfied if the
and by the parametes/kT, the ratio between the maximal density of §tates is not bounde(_j from below, as in this paper.
amount of energy transferable in one jump and the thermariowever, in all relevant physical systems the density of
energy. For very low temperatures a weak rise of the temStates for charge carriers far from equilibrium is bounded
perature results in a strong increase of the relaxation ratdfom below by the Fermi surface. Due to the presence of the
The strength of the increase depends on the magnitude of tffe€rmi surface a charge carrier far from equilibrium can at
parameterp,. The larger thep, the stronger the increase. MOSt makenp,, jumps, wherenp,,, is of the order of €
This increase is due to the fact that the relaxation path™ €r)/® (€ is the initial energyer the final energy If all
changes with increasing temperature. Since the magnitude 8f those jumps were performed with the steady-state energy
the relaxation rate at zero temperature is much smaller in theelaxation rate then the relevant hopping length would be of
Miller-Abraham regime than that suggested by percolatiorfhe order ofr oo/~ DniE=Dd(@=1) where| is deter-
theory a significant part of the rise has to be attributed to thénined by the number of site&, below €, according to the
fact that dead ends are gradually switched off from the refelationshipld(eF—eO)N:ZEO, The probability that in none
laxation path. The ene_rgy_relaxation rate reaches a ma_lximur@f n subsequent jumps there is a site within a sphere of
at atemperat_urt.eT, which is of the same orde( of magnitude radiusr . is of the order of

as w, but satisfiekT/w<<1. Beyond the maximum the re-

laxation is nearest-neighbor hoppinglike. Since tofkT 1—exp(—n{exd — rY(nmad H D). (57)
>1 all dead ends have been switched off we expect that the t o/ (Nmad 1}
transport is percolationlike in this limit. In order that the steady-state Miller-Abraham energy relax-

A very interesting question is how the transport mecha-ation rate can be reached the exponent in the expre&sin
nism is affected by an increase of the number of excitationsnecessarily has to be large compared to unity. If we use the
To some extent energy relaxation at zero temperature is simexpression for . above we therefore conclude that the steady
lar to hopping transport in a strong electric field, as alreadyMiller-Abraham relaxation rate can only be reached in sys-
stressed in the Introduction. In Refs. 33 and 34 arguments&ms in which the situatioml <1 can be realized, since
have been put forward leading to the conclusion that the<n,,,x. Accordingly, either the number of states above the
hopping current in a strong electric field in a narrow impurity Fermi energy has to be sufficiently large, @rmust be suf-
band, which is of a Miller-Abraham type for very small ficiently small. Thus, at first glance it seems that band tails of
charge-carrier concentrations, becomes eventually percolamorphous semiconductors, being particularly wide, would
tionlike by increasing the charge-carrier concentration, if thebe the most promising candidates. However, in Sec. VI we
thermal energy is large compared to the bandwidth of thdave shown that in such materials, which typically have a
impurity band. The reason for this is simply that a part of thedensity of states with exponential energy dependence, there
charge carriers can be used to fill the Miller-Abraham trapsis not much difference between the Miller-Abraham energy
so that the remaining charges carriers can pass the sampiglaxation rate and the percolation energy relaxation rate. For
without seeing traps at all. In the case of the current in arsuch densities of states the energy relaxation rates differ only
impurity band this argument leads to a strong dependence @f numbers. While this fact gives some support to the present
the nonohmic current on the charge-carrier concentratiortheory, since it shows that the results of the present theory
Photoluminescence experiments, however, indicate that thisre in line with the experiments, it also makes it hard to
argument affects the relaxation at least less. According talistinguish between both transport regimes experimentally.
experiments on amorphous hydrogenated siliceee, e.g., For such materials the only way to distinguish between the
Refs. 24—-2p there is a low excitation generation regime in two transport mechanisms experimentally is in the investiga-
which the kinetics of the charge carriers is independent of théon of the second and the third moments of the energy dis-
generation rate and in contradiction to the existing theoretitribution function. To our knowledge such measurements
cal predictions. One of the reasons for this might be that irhave not been performed thus far.
contrast to the electric current in the impurity band in the Therefore it seems that the most promising candidates for
limit in question, which is determined by the most effective the investigation of Miller-Abraham relaxation processes are
current path, the energy relaxation rate is determined by thewo-dimensional Anderson insulators such as those used,
position of the maximum of the energy distribution function. e.g., in Refs. 9 and 35-38, with weak dependence of the
Those paths, which are most effective, and thus would beensity of states on energy, which, for our purpose, can be
most important for the current, do not determine the maxiconsidered as materials with a density of states unbounded
mum of the energy distribution function at low excitation from above. For such densities of states the differences be-
generation rates, but only its outer tails, if the density of thetween the Miller-Abraham relaxation and percolationlike re-
charge carriers passing them is not too high. Obviously, furlaxation are particularly strong, as shown in this paper. In
ther numerical simulations have to be performed to detersuch materials a particular slow decay of the relaxation cur-
mine the density, which governs the impact of the chargerent is observed at low temperatures. If, e.g., we look at the
carrier concentration on the relaxation rate. curve for the decay of the excess current in Ref(F&§. 5 of

Finally the question remains as to which materials areRef. 35 then we see a slow decay of the excess current for
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timest>1 s, while the main decay of the excess current igate. However, the dependence of the relaxation rate on the
quick and occurs fort<1 s. If we look at the above- €lectron concentration could also reflect a dependence of the
mentioned experimental results then we see that it is neithdtarameterso and @ on the charge-carrier concentration. If
qualitatively nor quantitatively possible to reconcile the ex-this were true, the explanation proposed here could be an
perimental results with percolation theory. In the case of peralternative to the explanation given in the papers referred to
colation theory the time scale which governs the approach tgbove.
the steady relaxation rate is of the ordsee, e.g., Ref. 15
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would be hard to explain why the relaxation rate should in- APPENDIX: CALCULATION OF THE ENERGY
crease so strongly with temperature as observed in the ex- RELAXATION RATE FOR LARGE TIMES
periments, since the distribution holes would not be relevant. ) ) ] ]
Due to the consideration of the distribution holes our theory 10 calculate the integraP1) we restrict the consideration
leads to a much stronger increase of the relaxation rate witfP large times. Doing so, we can use the approximation
temperature such as the percolationlike theory. We admit that 1 1 1 £(0)—f(s)
it is not clear whether the temperatures in the experiments - ~ (
are low enough to observe Miller-Abraham-like behavior. f(s) f(0)—(f(0)—f(s)) f(0) f(0)
Since there is no transition temperature between the Miller- (A1)
Abrahams (egime and t.he percolationlike variable-ranggs e use this approximation in Eq21) we find that
hopping regime the question as to whether the temperatures
1 exp(st) ]
1+ —j ds 1+ ,
2i S
(A2)

are low enough to observe Miller-Abraham behavior simply
cannot be answered by investigating the temperature depen- v(t)=v.
dence of the relaxation rate alone. If, however, despite this
fact we use our theory then we can try to understand the
emergence of glassy dynamics in the above-mentioned mavhere
terials as a transition between two types of different relax-
ation modes, that is, a transition between percolationlike re-
laxation and Miller-Abraham relaxation. Both transport
regimes are separated by a characteristic temperature, the .
glass temperature, which is given by the maximum of th ccordingly,
relaxation rate as a function of temperature. In our case, the d

o : e v(t) f(t)
characteristic time, which sets the fast initial decay apart =—y, ,
from the low approach to equilibrium is given by the Miller- dt f(0)
Abraham time

f(0)—f(s)
f(0)

1

f(0)° (A3)

[

1)
2

(A4)

where

dInd~(wt
—2W=1- (59 f(t)= zij dsf(s)es, (A5)
Pc ml

If we use use the Miller-Abraham time scale to produce &S0 that
relaxation time of the order of 1 s, as observed in the experi-
ment in Ref. 35, we only need a hopping lengthpet 7.4 v()=0..
for d=2. This is perhaps larger than expected, but not unre-
alistically large. If we take this point of view then we con- . . .
clude that obviously those particles that have passed thio calcul_ate the integrals further we ha\_/e to be fam|I|a_r with
samples on percolation paths, since the Miller-Abraham trapt€ functionf(s) [Eq. (14)]. The C;;iICUIat'On of the configu-
on their path have already been occupied by other particlgtion average in Eq14) leads td
as discussed above, are not important at all for the investi-
gation of slow relaxation processes in Anderson insulators. f(s)= fxdtex st E mdxxd*1

We would like to point out that in the above-mentioned 0 pg 0
experiments a strong dependence of the relaxation rate on the
electron concentration has been observed. This has led the
authors of Refs. 9, and 37—39 to the conclusion that interac- X{1—exd — vt exr(—x)]}) : (A7)
tion effects are responsible for the smallness of the relaxation

20, (=
1+—f dt’f(t")|. (AB)
W Jt
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and largep. results from largest we use the approximation J(v't,pe)=— X——

v Jin('t) dj”

Since the main contribution to the integi@7) for small s 1 (= xd
dxexp( (A11)
Pc

d (= To calculate this integral in the limid In%"(+'t)/pd>1 we
exp — —df dxxd ™ H1—exd — vtexp(—x)1} expand the exponent into a power series with respextaib
Pe-? x=In(v't). Under the conditiordlnd‘l(v’t)/pg>1 the first
In9('t) d_erivative of the exponent has a negative _si_gn, and the con-
%exp{ -— (Ag8) tribution from the second derivative is negligible. Therefore,

Pe we obtain
-00i imati i Ind(v't
Then the saddle-point approximation yields exp{ In(v't)— (1; )
p o0
|(pc) ‘](V’tvpc)w ! : f ’ dX
f(0)=—7, (A9) v (1)
14
q In4=Y(»'t) (v’
wherel (p.) is given by Eq.(25). Thus, the problem remain- xexp o [x=In(x"0)]
ing is the calculation of the integral
- In%(v't)
. - Ind(v't) exg Invt) p? pd
J(V’t,pc)zf dt’f(t’)%f dt'exg ————|- = ¢ ¢ ,
t t Pe v’ dind~(»'t)
Al
(A10) (A12)
If we change the integration variables we obtain which together with EqQS(A6) and (A9) yields Eq.(22).
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