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Energy relaxation in a tail at zero temperature in the hopping regime
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We argue that energy relaxation of nonequilibrium charge carriers at zero temperature in the hopping regime
is Miller-Abraham-like, that is, the charge carriers always jump to the next closest site. The Miller-Abraham-
like motion of the charge carriers manifests itself in the moments of the energy distribution function. Due to the
motion on Miller-Abraham paths the rate of energy relaxation is much smaller, as if the particles would relax
in a percolation-like fashion. In contrast to percolation-like relaxation the dispersion of the transport coeffi-
cients in the Miller-Abraham regime depends truly on two parameters. A small rise of the temperature leads to
a strong increase of the energy relaxation rate and the strength of the increase depends strongly on disorder.
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I. INTRODUCTION

Energy relaxation processes have been investigate
many disordered materials, in which transport proceeds
phonon-assisted hopping between localized states, e.g
amorphous semiconductors and polymers~see, e.g., Refs
1–5!. In many experiments the excitations are produced
ther by illumination~see, e.g., Refs. 6 and 7! or by an electric
field ~see, e.g., Refs. 8 and 9!. If the charge carriers are fa
from the Fermi energy and the temperatures are sufficie
low, jumps down in energy space are most important. In
case nearly every jump of a charge carrier is accompanie
a loss of energy, so that it seems to be reasonable to ig
jumps upward in energy space when modeling this situat
The energy-loss hopping model, which is based on this
proximation, has proven to be successful in explaining
experimental data of time-resolved photoluminescence
transport experiments in many strongly disordered mater
including band tails of amorphous semiconductors, polycr
talline materials, and polymers~see, e.g., Refs. 1
and 10–15!.

Despite the neglect of upward jumps the investigation
relaxation phenomena on the basis of the energy-loss
ping model is still very intricate. In this model every site
connected to a huge number of sites by transition proba
ties ranging over many orders of magnitude. Since
configuration-averaged transition probabilities do not
scribe the situation adequately typical rates are often us1

The use of these rates is based on notions, which have
developed in the theory of hopping conduction by Mott
his investigation of the hopping conductivity in the variab
range hopping regime.16

In the theory of hopping conduction the assumptions
derlying the introduction of typical rates have been clarifi
by Ambegaokaret al.,17 by Shklovskii and Efros,18 and by
Pollak,19 who have reformulated the problem in the langua
of percolation theory. While it was often pointed out th
relaxation phenomena far from equilibrium might be diffe
ent from conduction phenomena in the vicinity of the Fer
energy,1 and that therefore the conventional procedures
0163-1829/2003/68~1!/014203~14!/$20.00 68 0142
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the investigation of transport problems in the vicinity of th
Fermi energy might not be applicable to the nonequilibriu
situation, the typical rates used in the investigations of rel
ation processes were the same as those that could have
been obtained from percolation theory~see, e.g., the Refs. 1
and 14!. That is, it was assumed that the characteristic h
ping length is of the order of the average site distance, so
the typical transition probability for a jump of an electro
from a site with site energye down in energy space is pro
portional to exp@2rc(e)#, whererc(e) is of the order of the
ratio between the average spacing between accessible
and the localization length, which in the hopping regime
assumed to be large. This notion has also been suppo
further by the results of our effective-medium theory.15

While at first glance the notion that the typical rates in t
energy-loss hopping model agree with those from the pe
lation theory close to equilibrium seems to be plausible,
consequence—that the relaxation is determined by the s
paths as those if the problem would be a percolation prob
close to equilibrium—is surprising. Certainly, there is a su
stantial part of sites with neighbors within the average s
spacing, but there is also a substantial part of distribut
holes. Distribution holes are sites without accessible nei
bors within the average site spacing. Since the transi
probability is an exponentially small quantity with respect
the hopping length, we expect that a charge carrier pre
jumping to the next closest site. Doing so, it does not ma
whether this site is a distribution hole or not. If the tempe
ture is zero, as it is assumed to be in the energy-loss hop
model, the particle cannot return to its initial site. Accor
ingly, a particle, which has jumped into a distribution ho
can only leave the distribution hole by an extraordinar
hard jump, that is, a jump over a length which is large co
pared to the average site spacing. Therefore, we expect
the relaxation at large times is determined by jumps out
distribution holes.

In the percolation theory of the conductivity for sma
electric fields, such distribution holes are called dead en
There they are dead since the resistors, which would lead
of them, are not taken into account in the percolation c
©2003 The American Physical Society03-1
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struction, since they are large compared to the critical re
tor. If the relaxation at large times is determined by jum
out of dead ends, as we suggest in our paper, then the r
ation paths are necessarily different from those which wo
be obtained if the conventional percolation theory for clo
to-equilibrium problems were applied, since these paths
determined by jumps between pairs of sites not taken
account in the percolation construction for the conductiv
close to equilibrium.

In the context of the hopping conductivity, dead en
were referred to in the paper by Miller and Abrahams20 in
their investigation of the hopping conductivity in the neare
neighbor hopping regime. They argued that the elect
would always jump to the next closest site. Doing so,
motion would inevitably be stopped in a dead end and t
the jump out of the dead end would determine the cond
tivity. Following this route they concluded that the condu
tivity

s}exp@2rc
d/(d21)#. ~1!

Here rc is again the ratio between the average spacing
tween sites and the localization length, which is assume
be large. Later it was recognized that Miller-Abraham pa
are not the most effective current paths. More effective pa
can be formed if dead ends are avoided. The most effec
paths are those which avoid all dead ends. These are
percolation paths. A percolation path is different from
Miller-Abraham path since it does not contain jumps out
dead ends. The contributions from percolation paths to
conductivity by far exceed those from Miller-Abraham path
since the contributions of the first are only proportional
exp(2rc) while the contributions of the latter are given b
Eq. ~1!. Only in a very strong electric field, in which th
charge carriers cannot return to their initial sites, have
Miller-Abraham assumptions been proven correct.18,21 For
energy relaxation the situation at zero temperature is v
similar to that in a very strong electric field in that the m
tion is directed. On the other hand, in the case of the c
duction in the presence of a very strong electric field
motion proceeds in position space, and in the case of en
relaxation in energy space. These two spaces are not
same. Therefore, it is not immediately clear whether for
ergy relaxation similar results as those for the conductivity
a very strong electric field hold.

It is the purpose of this paper to investigate whether
relaxation at zero temperature is Miller-Abraham-like or n
and to investigate its consequences. To this end we deve
simplified model for the investigation of Miller-Abraham
relaxation processes at zero temperature and compare
results of our theoretical calculations with results of nume
cal calculations, which do not use further assumptions.
impact of finite temperatures is studied numerically.

II. BASIC EQUATIONS

We consider localized nonequilibrium charge carriers
from the Fermi energy. Such charge carriers can, e.g.
produced by illumination. We assume that the number
charge carriers is small, so that Fermi correlation is ne
01420
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gible. The charge carriers lower their energy by jumps w
phonon emission. Only jumps with phonon emission can
cur, since the temperature is zero. In this case the trans
can be described by the simple rate equation

dnm~ t !

dt
5(

n
@nn~ t !Wnm2nm~ t !Wmn#, ~2!

wherenm(t) is the number of particles at sitem with position
vectorRm and site energyem at an instant of timet, and

Wnm5u~em2en!u~v2em1en!n exp~22auRnmu! ~3!

is the transition probability for a hop from siten to site m.
Here a21 is the localization radius,n is the attempt-to-
escape frequency,Rnm5Rn2Rm , and the energy axis is di
rected down in energy space. Both the positions of the s
and their site energies are random quantities. The sites
distributed randomly homogeneously in space, and the
energies are distributed statistically independently accord
to a distribution function proportional to the density of state

In writing the expression~3! we have assumed that only
small amount of energyv is transferred from the electron t
the phonon system in one hop. This fact manifests itsel
the second step function in Eq.~3!. If the electron-phonon
coupling is treated as a constant this step function ar
from the integration over all possible intermediate phon
states in the calculation of the transition probability. Since
phonon can maximally have an energy of the order of
Debye energy the energyv is equal to the Debye energy i
this case, if only one process is taken into account. In
Anderson insulator, however, the assumption that
electron-phonon coupling constant is independent of the
ergy transferred in one jump, that is, independent of pho
momentum, does not hold. The electron-phonon coup
constant is proportional to the overlap integral between
electron wave functions and a phonon wave function, and
the Fourier-transformed potential, which couples the elect
and the phonon wave electromagnetically. The overlap in
gral decreases rapidly if the magnitudeq of the phonon wave
vector becomes larger than twice the inverse localization
dius, and thus renders phonons with high energy ineffect
The Fourier-transformed potential is usually treated as a c
stant, in line with the deformation-potential approximatio
However, this approximation assumes that the electrons
move quickly, so that that they can keep the system neu
In an Anderson insulator, however, there are no electrons
could move fast enough to screen out the electric field of
phonon wave on a time scale of the order of the inve
phonon frequency for most phonon frequencies. Only v
long-wavelength phonons can be screened out in this w
Thus the electro-magnetic potential, which yields the co
pling between the electron and the phonon wave, is of lo
range for most phonon frequencies, so that its Fourier tra
form rapidly drops to zero. Accordingly we conclude that t
electron-phonon coupling constant rapidly drops to zero
phonons with an energy larger than a characteristic ene
v. Therefore, the sum over the intermediate phonon state
effectively restricted to modes with energy small compa
to the Debye energy so that the Debye energy is replace
v.
3-2
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ENERGY RELAXATION IN A TAIL AT ZERO . . . PHYSICAL REVIEW B 68, 014203 ~2003!
One might argue that the high-energetic part of the p
non spectrum is localized, and that the coupling between
localized phonon modes and the electron is very strong
the electron is placed on a site which carries a locali
mode. However, we argue that the number of sites which
not carry localized modes is large compared to the numbe
sites with localized modes, so that it is unlikely that t
electron can be found on such a site.

Due to the reasons discussed above we expect tha
energy scalev is small so that an electron can change
energy by a multiple of the energyv during its relaxation. To
assess whether this approximation is in conflict with the
perimental data we refer the reader to the application of
approximation to amorphous hydrogenated silicon in S
VI. In the main part of our paper, however, we focus
relaxation in an unbounded constant density of states
which the density of accessible sites only becomes finite
to the finiteness ofv, and equal tovN. We believe that
investigations on relaxation processes in such a densit
states are relevant for many modern Anderson insulators
which field effect measurements indicate that the density
states depends only weakly on energy~see, e.g., Refs. 22 an
23!. We would like to stress that the use of Eq.~2! for the
investigation of photoluminescence experiments presu
the existence of an observable low excitation generation
gime, in which the kinetic of the excitations is independe
of their density, that is, of the generation rate. Such a reg
has been observed in numerous photoluminescence ex
ments~see, e.g, Refs. 24–26!. The existence of the low rat
excitation generation regime is thus experimentally verifi

In order to investigate the relaxation we focus on the m
ments of the energy distribution functionF(e0 ,eut), which is
the probability to find an electron at a site with energye at
time t, if it was at a site with energye0 at t50. Of particular
interest is the rate of energy relaxation

v~ t !5K (
n

en

dnn

dt L , ~4!

which coincides with the derivative of the first moment
the energy distributionF function with respect to time, tha
is,

v~ t !5
d

dtEe0

`

deeF~e0 ,eut !, ~5!

the mean-squared deviation of the distribution function, a
their asymmetry. In writing Eq.~5! we have assumed that th
energy axis is directed down in energy space, so that
energy of the particles increases in the relaxation.

III. THE ENERGY DISTRIBUTION FUNCTION

Since we expect that the transport is Miller-Abraham-li
the question arises as to how the transport can be mod
analytically. That percolation theory cannot handle this s
ation is obvious. However, also, the effective-medium th
ries are not suitable to describe this situation. The reason
this is simply that in all of these methods it is assumed t
the consideration can be restricted to ladderlike diagram
01420
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the calculation of the true transition probability, that is,
diagrams with one averaging point but arbitrarily many le
In the language of standard effective-medium theory th
are all contributions to the effective transition probabili
which result from one bond,27 in the language of the metho
by Gouchanour, Andersen, and Fayer these are the two c
diagrams,28 and in our method these are the ladd
diagrams.29 The diagrams, which correspond to th
Movaghar-Schirmacher method, are equivalent to
Gouchanour-Andersen-Fayer diagrams.30 However, since
from the physical point of view these diagrams describe o
the oscillations between the initial and the final site, su
diagrams are completely unimportant in the Miller-Abraha
hopping regime. The only approximation which is known
always yield a Miller-Abraham-like answer is the CTRW
method by Scher and Lax.31

As a simple alternative to this method, which turns out
contain all of the essential physics, we suggest the consi
ation of a simplified model. The predictions of this model a
in complete agreement with those which we obtain if we u
a generalized CRTW method to describe this situation. T
introduction of this model can be explained as follows. Su
pose that the electron is sitting at timet50 on the sitem
with site energyem . According to Eq.~2! the probability to
find the sitem still occupied at timet is given by

nm~ t !5exp~2tWm!, ~6!

where

Wm5(
n

Wmn . ~7!

Due to Eq.~3! only sites within the sliceem,en,em1v
contribute to the sum. Thus the electron has effectively
its site after the timet5Wm

21 . Most likely it has jumped to a
close site, but due to the dispersion of the transition pr
abilities there is also a small probability of finding the ele
tron on any site within the above-mentioned slice. Thus,
energy distribution function has already started to spre
Sincev is small this spreading is also small. To model th
system we suggest ignoring this spreading. That is, we im
ine that all sites within the above-mentioned slice have
same energy. ThenWm is simply the probability to jump
from a site with energyem to any site with energyem11. All
sites accessible from a site with site energyem are different
from all sites accessible from a site with site energyem11. It
is important to realize thatWm is not the probability of jump-
ing from a site with site energym to a particular site, but to
any site in the slice of widthv. To make this point clear we
now use indicesM ,N, . . . to distinguish between a particu
lar site and the subsystem with energyeM . Thus, the index
M does not refer to a particular site, but to a site with ene
level eM . Every energy levelM containsvNV randomly
distributed sites, whereV is the volume of the system. Th
distance between the energy levels is the random quantit
this case the probabilityrM to find the electron on a site o
the subsystem with site energyeM simply satisfies the equa
tion
3-3
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E. HABA, O. BLEIBAUM, H. BÖTTGER, AND V. V. BRYKSIN PHYSICAL REVIEW B68, 014203 ~2003!
drM

dt
5rM21WM212rMWM . ~8!

Consequently, the Laplace transform of the probability
find an electron on a site of the subsystem with energyeM , if
it was on a site of the subsystem with energye0 at t50, is
given by

rM~s!5 f M )
L50

M21

~12s fL! ~9!

for M.0, and byr05 f 0 for M50, where

f M5
1

s1WM
. ~10!

Here s is the frequency which corresponds to a Lapla
transformation with respect to time. By definition the ener
distribution function satisfies the equation

F~e0 ,e;s!5 (
N51

`

^d~e2e02de12•••2deN!rN~s!&

1d~e2e0!^r0&. ~11!

HeredeN is the energy transferred in theNth jump, eN5e0
1de11•••1deN , and the bracketŝ•••& indicate the con-
figuration average. By construction, the quantitiesdeM are
random quantities, which are uniformly distributed in t
range (0,v). Since the temperature is zero we neglect a
statistical correlation between the quantitiesWN for different
indicesN, and any statistical correlation between the qua
ties deN andWN . The reason for this is simply that no si
can be visited twice, since only hops down in energy c
occur. Furthermore, due to translation invariance in ene
space, we can pute050 and use the Fourier transformatio
to perform the calculation. Then we find that the energy d
tribution function takes the form

F~0,e;s!5
1

2p i E2 i`

i`

dx
f ~s!eex

12@12s f~s!#h~vx!
, ~12!

where

h~vx!5
12e2vx

vx
, ~13!

and

f ~s!5 K 1

s1WN
L . ~14!

The integral~12! is determined by the singularities of th
integrand, that is, by the solutions of the equation

0512~12s f!h~vx!. ~15!

In calculating the integral with respect tox we take into
account that we are only interested in investigating the s
ation for large times, where the frequencys is already very
01420
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small. In this case we can restrict the consideration to t
singularity which has the smallest real part in the limit
small s if e/v@1. For

s f~s!!1, ~16!

this singularity is situated at

x0~s!52
2s f~s!

v
, ~17!

and yields a simple pole. Consequently, we obtain

F~0,e;s!5
1

v~s!
expF2

es

v~s!G , ~18!

where

v~s!5
v

2 f ~s!
. ~19!

Thus, the energy distribution function satisfies the equati

sF~0,e;s!5d~e!2
d

de
~F~0,e;s!v~s!!. ~20!

Thus, v(s) is the energy relaxation rate,15 and the require-
ment ~16!, which we have used in the calculation of th
position of the pole, is equivalent to the requirement that
transitions are quasielastic in the limite/v@1. We would
like to note that our effective-medium theory,15 which is
based on the assumption that the transport is percolation
yields the same equation for the energy distribution funct
in the quasielastic approximation, but a different express
for the energy relaxation ratev(s). This point reflects itself
in the moments of the energy distribution function, as d
cussed below.

IV. THE MOMENTS

If we use Eqs.~5!, ~14!, and ~19! we find that the first
derivative of the first moment with respect to time, the e
ergy relaxation rate, is given by

v~ t !5
1

2p i S v

2 D E ds
est

s f~s!
. ~21!

In calculating this integral we restrict the consideration
large times. Doing so, we find that

v~ t !5v`H 112
v`

vn8

rc
d

d lnd21~n8t !
n8texpF2

lnd~n8t !

rc
d G J ,

~22!

where

rc5
2a

~vN!1/d S d

Sd
D 1/d

, ~23!

d is the dimension of the system,Sd is the solid angle,n8
5n exp(g) (g is the Euler constant!, and
3-4
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v`5
vn8

2I ~rc!
. ~24!

Since

I ~rc!5A 2p

~d21!d1/(d21)
Arc

d/(d21)

3exp@~d21!~rc /d!d/(d21)#, ~25!

we find that

v`}expF2~d21!S rc

d D d/(d21)G . ~26!

Equation~22! is applicable, providedd lnd21(n8t)/rc
d@1. The

details of the calculation leading to Eq.~22! are discussed in
the Appendix.

Equation~22! has to be contrasted with the result whi
would have been obtained if the transport were percolat
like ~see, e.g., Ref. 15!. It differs from that in two ways.
First, if the transport were percolationlike we would ha
obtainedv`}exp(2krc), wherek is a number. Second, th
system would approach the stationary energy relaxation
v` exponentially, if the time was large compared to the
verse characteristic hopping frequency. Equation~22!, how-
ever, leads to extremely slow, nonanalytic relaxation at v
large times.

A further investigation of the situation reveals that the
are further differences between Miller-Abraham relaxat
and percolationlike relaxation. These differences mani
themselves in the higher moments of the distribution fu
tion. Since

^en&~s!5E
0

`

deF~0,e;s!en5n!
vn~s!

sn11
~27!

the higher moments of the distribution function are det
mined by integrals of the type

^en&~ t !5
n!

2p i S v

2 D nE
c
ds

est

sn11f n~s!
. ~28!

Thus, the moments are determined by integrals over
function f (s) @see Eqs.~14! and ~A7!#. The function f (s)
depends truly on both the parameters/n and the paramete
rc , and the integral~A7! which can be used for its calcula
tion cannot be reduced to a simple integral which depe
only on one parameter at smalls. This sets the situation apa
from that in percolation theory where the frequency dep
dence of the transport coefficients at low frequencies
pends truly only on one parameter,s/v0(rc), wherev0(rc)
is a characteristic frequency of the order of the dc cond
tivity. This peculiarity reflects itself in the moments of th
energy distribution function. To calculate the moments
expand the functionf (s) with respect tos, and use this ex-
pansion to generate a Laurent expansion of the integr
with respect to powers ofs. Since thenth derivative off (s)
is
01420
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f (n)~s50!5~21!nn! K 1

~Wm!n11L
'

~21!n

n8n11~n11!
I @~n11!rc# ~29!

we obtain for the first moment

^e&~ t !5v~s50!t1
v

4

I ~2rc!

@ I ~rc!#
2

, ~30!

for the dispersions2(t)5^e2&(t)2@^e&(t)#2

s2~ t !5
v2

4

I ~2rc!

@ I ~rc!#
3

n8t2
v2

6

I ~3rc!

@ I ~rc!#
3

, ~31!

and for the asymmetryx(t)5Š@e2^e&(t)#3
‹

x~ t !525S v

2 D 3

n8t
I ~3rc!

@ I ~rc!#
4

1
3

4 S v

2 D 3 I ~4rc!

@ I ~rc!#
4

. ~32!

By construction the leading term in these asymptotic exp
sions is the term with the highest power with respect tot.
The remaining terms are the next corrections. The requ
ment that the corrections are small compared to the lead
term yields the range of validity of our approximation. If w
use this philosophy we obtain from the first moment t
requirement

nt@
I ~2rc!

I ~rc!
, ~33!

from the second moment the requirement

nt@
I ~3rc!

I ~2rc!
, ~34!

and from the third moment the requirement

nt@
I ~4rc!

I ~3rc!
. ~35!

Thus, since I (2rc)/I (rc)!I (3rc)/I (2rc)!I (4rc)/I (3rc)
!••• there is no simple parameter for the applicability
the smalls expansion of the integrand. Every moment nee
a new scale. The larger the moment the larger the sma
time to which the expansion applies. We would like to stre
that this conclusion also holds for all higher moments. H
the fact that the dispersion depends truly on two parame
manifests itself.

Furthermore, from Eq.~32! and Fig. 6 below we see tha
for small times the asymmetry is positive and for large tim
negative. This fact reflects that more and more particles
captured by distribution holes when time elapses. The as
metry of the distribution function at large times is absolute
large, so that also the deviation of the first moment of
center of the distribution function is absolutely large. Ho
ever, despite this fact the distribution function becomes m
3-5
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Gaussian when time elapses, since the asymmetry beco
small compared to the dispersion, that is,ux(t)u/us2(t)u23/2

→0 for t→`.
We would like to note that the dispersion

s2~ t !}v2n8t expXF ~d21!S rc

d D d/(d21)G@2d/(d21)23# C
~36!

depends strongly on the dimension. While ford53, the
main objective of our paper,s2(t)/(nt) is an exponentially
small quantity with respect to the parameterrc

d/(d21) , it is
exponentially large ford52. The reason for this fact is no
entirely clear. It might be caused by the nonanalytic dep
dence of the functionf (s) at smalls and largerc , and thus
reflects that in two-dimensional systems it is much harde
avoid the distribution hole than in three-dimensional s
tems.

V. NUMERICAL RESULTS

To model the system numerically we have investiga
the transport Eq.~2! both with Runge-Kutta integration an
with Monte Carlo simulations. Basically we have used ad
11-dimensional cube with side lengthL and energy depthE,
where the unit of length was chosen in units ofa21 and the
unit of energy was measured in units ofv. To populate the
cube, the spatial positions ofNELd sites and their site ener
gies were generated with a random number generator in
a way that the sites could be considered as uniformly dist
uted in our cube with volumeLd3E. Then the cube was
continued periodically in space. To model the dynamics fi
one site of the cube was chosen as the initial sitei. Then a
jump from sitei to another sitef was performed. To deter
mine the sitef an interval of length

Wik

(
n

Win

, ~37!

in the interval@0,1# was assigned to every site. Thereafter
random numberx was generated from a random number ge
erator, which yields uniformly distributed numbers in the i
terval @0,1#, and then that site was chosen, the interval
which contains the numberx. To determine the timet i f re-
quired for the jump a second random numbery was gener-
ated with the same random number generator, and thet i f
was calculated from the equation

t i f 52
1

(
n

Win

ln y. ~38!

Then the process was repeated. To obtain the final result
averaged the results for test particles in 20 000 different c
figurations. To minimize the impact of the parameterL the
results were also studied for different values ofL. The impact
of this parameter turned out to be negligible, if it was chos
in such a way thatL.3rc . The parameterE was chosen in
such a way that the results for the packet’s shape had
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following property: the packet, including its width, was a
ways well contained in the interval@0,E#, that is, in such a
way thate(t)14s(t),Ev. This turned out to be the cas
for the valueE520 000 chosen in our simulations.

In Fig. 1 we have depicted the energy relaxation rate fo
three-dimensional system withNv/a350.005. According to
this picture energy relaxation is fast at small times@v(t
50)/(vn)57.331023#, and slow at long times. A short
strong, initial decay to some value close to the station
value of the energy relaxation rate is followed by a very sl
approach tov` (v` /vn'6.731025).

From the preceding section it is clear that the characte
the transport is determined by the dependence of the en
relaxation rate on the parameterrc . To investigate this de-
pendence we have measured the energy relaxation rate
various values of the parameterrc , and then, at first, have
tried to fit our results to a dependence of the type

v`}exp~2krc!, ~39!

as suggested by percolation theory. Herek is a number. Fig-
ure 2 shows a plot of our data for ln@v` /(vn)# versusrc for
three-dimensional systems. In this picture the full line is
guide for the eye of the numerical results and the dashed
is a simple straight line, drawn for comparison. If the tran
port were percolationlike it should be possible to fit the
sults to a straight line. The strong deviation of the numeri
results from the straight line, in particular, at largerc , shows
that is difficult to obtain a good fit. A much better result
obtained if we plot our result for the energy relaxation ra
versusrc

3/2 and assume that

v`5vnC0rc
23/4exp~2C1rc

3/2!. ~40!

Such a plot~full line! is depicted in Fig. 3. If we fit the data
for the full line in Fig. 3 to Eq.~40! we obtainC150.40 and
C050.758. Our Eqs.~24! and ~25! yield C150.385 and
C050.661. The very good quantitative agreement betw
the results of our theoretical investigations and the result
the numerical calculations is also demonstrated by
dashed line in Fig. 3, which is a plot of Eqs.~24! and ~25!

FIG. 1. Energy relaxation ratev(t)/(vn) versus time ford53
andNv/a350.005.
3-6
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and thus does not contain any adjusted parameter. Thus
calculations confirm the notion that the jumps are Mille
Abraham-like.

For two-dimensional systems the situation turns out to
same. If we try to fit our data to an expression of the typ

v`5nvC0rc
21exp~2C1rc

2! ~41!

we find thatC050.759 andC150.275. Equation~24! yields
C050.502 andC150.25. A plot of this fit is given in Fig. 4.

Unfortunately it turns out to be difficult to compare th
predictions of our model for the time dependence of the
ergy relaxation rate at large times quantitatively with t
numerical calculations, since for largerc the corrections to
the energy relaxation ratev` are already so small within th
range of applicability of Eq.~22!, that they cannot reliably be

FIG. 2. Energy relaxation ratev` /(nv) versusrc for d53. The
full line is a guide for the eye for the numerical results, and
dashed line a straight line drawn for comparison.

FIG. 3. Energy relaxation rate ln(v`)13 ln(rc)/4 versusrc
3/2 for

d53 (v` is measured in units ofvn). The crosses are the results
the numerical calculations; the full line is the approximation of t
result by a straight line. The dashed line is a plot of the result of
analytical calculation and does not contain any adjusted parame
If we use the data for the full line we find thatv`

50.758rc
23/4exp(20.3998rc

3/2).
01420
ur
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measured in our numerical simulations. For the second
third moments the situation is similar for largerc . In order
to compare the results of our theoretical calculations
these moments with the numerical calculations we have
satisfy the criteria~34! and ~35!, which was not possible in
our numerical calculations for largerc . For the mean-
squared deviation our numerical calculations have only m
the criterion~34! for small rc , that is, for 5.rc.1. For
such rc we have found very good quantitative agreeme
between the theoretical results and the numerical ones. N
ertheless, we would like to stress that despite this fact
qualitative agreement between our theoretical and nume
results for largerc is quite good. In Figs. 5 and 6 we hav
plotted our results for the mean-squared deviation and for
asymmetry for three-dimensional systems withNv/a3

50.005 (rc57.25) versus time. According to Eq.~31! the
mean-squared deviation at large times increases linearly
time, and the first correction to the linear increase is cons
and negative. If we look at Fig. 5 we see that the numer

r
rs.

FIG. 4. Energy relaxation rate ln(v`)1ln(rc
2)/2 versusrc

2 for d
52 (v` is measured in units ofvn). The crosses are the results
the numerical calculations. The straight line is the approximation
the results. If we use this approximation, we find thatv`

50.759 exp(20.275rc
2)/rc .

FIG. 5. Mean-squared deviation versus time for a thr
dimensional system withNv/a350.005.
3-7
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calculations confirm that the mean-squared deviation
creases with time, although we can only see the transitio
the linear regime at large times. If we approximate the re
for large times by a straight line, then the next correction
obviously negative, in agreement with Eq.~31!.

In Fig. 6 we have depicted some numerical results for
asymmetry. According to Fig. 6 the asymmetry is positive
small times and becomes negative at large times. Furt
more, if we approximate the time dependence of the as
metry in Fig. 6 at large times by a linear function, then t
next correction is obviously positive, in agreement with E
~32!. This fact reflects that more and more particles jum
into distribution holes when time elapses, as discus
above.

Since the peculiarities of the relaxation at zero tempe
ture result from the fact that a particle, which has jump
into a distribution hole, can only escape by an extraordina
hard jump, we expect that the relaxation properties
strongly affected by temperature. If the temperature is fin
the particle can, in principle, return to its initial site or simp
jump to another site with higher energy by phonon abso
tion, and then choose to jump to a more effective site. In
way the distribution hole can, in principle, be avoided. Co
sequently, a small increase of the temperature results in
increase of the energy relaxation rate, since it eliminates
hard jumps from the possible relaxation paths. A further
crease of the temperature leads to elimination of distribu
holes, until all distribution holes have been cut off from t
relaxation path. Thereafter, the relaxation is percolationli
Miller-Abraham paths are no longer important. Despite t
fact the energy relaxation rate increases further with incre
ing temperature, since the critical hopping length decrea
with increasing temperature. However, since in our mode
charge carrier can exchange at most an energy of the ord
v the hopping length reaches its minimal value at a temp
ture kT}v. Thereafter, the situation becomes neare
neighbor hoppinglike. Accordingly, the energy relaxati
rate has a maximum as a function of temperature at an
ergy v'kT.

To investigate the impact of small but finite temperatu
numerically we use the following transition probabilities
our Monte Carlo simulation:

FIG. 6. Asymmetry versus time for a three-dimensional syst
with Nv/a350.005.
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Wnm5u~v2uen2emu!n expF22auRnmu

1
b

2
~em2en2uen2emu!G , ~42!

whereb51/(kT), T is the temperature, andk the Boltzmann
constant. Results for two systems at low temperatures
depicted in Fig. 7. The maximum depends strongly on
magnitude of the parameterrc . The larger therc the stron-
ger the rise of the energy relaxation rate. Clearly, since
energy relaxation rate in the Miller-Abrahams regime
much smaller than the energy relaxation rate in the perc
tion regime a substantial part of this rise has to be attribu
to the difference between both transport regimes. In our
culations we always find the maximum atkT,v,1, al-
though both quantities are of the same order of magnitude
we interpret the temperaturekT'v as the transition tem-
perature from the variable-range hopping to the near
neighbor hopping regime then we note that there is obviou
a smooth crossover between the Miller-Abraham behav
and the percolationlike variable-range hopping behavior. A
cordingly, it is difficult to discriminate between both tran
port regimes, if we merely investigate the temperature
pendence of the relaxation rate. Unfortunately, at pres
there is no theory which can describe the rise of the rel
ation rate as a function of temperature in the Mille
Abrahams regime.

VI. GENERALIZATION TO ENERGY-DEPENDENT
DENSITY OF STATES

In the preceding sections we have seen that the relaxa
at zero temperature is not percolationlike, but Mille
Abraham-like. Therefore, the question arises as to why
point was not noticed before. To answer this question
would like to note that in most of the investigations the a
thors have focused either on an exponential density of sta
with

FIG. 7. Temperature dependence of the energy relaxation
v` for a two three-dimensional systems withNv/a350.005~solid
line! andNv/a350.01 ~dashed line!.
3-8
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N~e!5N0exp~2de/D! ~43!

(N0 andD are parameters!, or a Gaussian density of states.
quantity that has been measured in time-resolved photolu
nescence experiments is the instantaneous position of
mean energy. The arguments, which are based on the
sumption that the transport is percolationlike, lead to a m
energy of the form~see, e.g., Refs. 1 and 15!

^e&~ t !5D ln ln~n0t ! ~44!

for an exponential density of states. The frequencyn0 in this
equation is equal ton if v5` ~Ref. 1! and equal to
nv/(2D) in the quasielastic approximation.15 The same
double logarithmic time dependence was observed in m
experiments, e.g., in the experiments in amorphous hydro
nated silicon of Ref. 32, which seemed to confirm the c
rectness of the assumptions used in the theoretical inves
tions. The parametern0, as measured in the experimen
was of the order of 1012 Hz, thus of the order of a typica
phonon frequency, and the parameterD was of the order of
the tailing parameter of the density of states, as expec
Thus, at first glance the agreement between those calc
tions which were based on the assumption that the trans
is percolationlike and thatv5` with the results of the ex-
periments was quite good. On the other hand the trans
measurements lead to a much larger value of the paramen
('1018 Hz) which indicates that the transitions are qua
elastic.

To generalize Eq.~20! to energy-dependent densities
states we focus on the quasielastic limit. Doing so, we
sume thatvN8(e)/N(e)!1, where the prime (8) indicates
the derivative with respect toe. Then, if the electron is sit-
ting on a site with site energyem , the density of accessibl
sites is given byvN(em). To calculate the energy distribu
tion function we again use Eqs.~9!–~11!. However, since
now the quantityf m ~10! depends on the instantaneous po
tion of the particle in energy space we cannot invoke tra
lation invariance in energy space when calculating the
ergy distribution function, and cannot use the Four
transformation. Therefore, we first obtain the set of equati

F~e0 ,e;s!5 f ~e,s!G~e0 ,e;s!, ~45!

G~e0 ,e;s!5d~e02e!1
1

vE0

v

de1G~e0 ,e2e1 ;s!

3@12s f~e2e1 ,s!#. ~46!

Here f (e,s)5 f m(s)uem5e . Now we use the notion thatv is

small to expand the integral with respect tov. Doing so, we
obtain the equation

G~e0 ,e;s!5d~e2e0!1G~e0 ,e;s!@12s f~e,s!#

2
v

2

d

de
$G~e0 ,e;s!@12s f~e,s!#%. ~47!

If we use this equation for the calculation of the energy d
tribution function we obtain
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F~e0 ,e;s!5
1

v~e,s!
expF2E

e0

e

dẽ
s

v~ ẽ,s!
G , ~48!

wherev(e,s) is again given by Eq.~19! with f (s) replaced
by f (e,s). Consequently, the energy distribution functio
satisfies Eq.~20! also if the density of states depends
energy, ifv(s) is replaced byv(e,s).

In deriving Eq.~47! we have restricted the expansion
the first derivative of the energy distribution function wi
respect to energy. The next term of the expansion, the sec
derivative with respect toe, would describe the energy dif
fusion current. We expect that this term is negligible sin
the temperature is zero. Note that in this approximation
width of the energy distribution function results entirely fro
the dispersion of the energy relaxation rate.15 If we compare
the terms ignored with the terms kept we find that this a
proximation is justified if the following inequalities are sa
isfied:

U vs

v~e,s!
U!1, ~49!

Uvv8~e,s!

v~e,s!
U!1. ~50!

Here the prime again indicates the derivative with respec
e. Note that the inequalities~16! and ~49! are identical.

We now focus on the first moment of the energy distrib
tion function for the exponential density of states. If we a
only interested in the time dependence of the first mom
for large times we can puts50 in v. Doing so, we find that
at large times the first moment satisfies the equation

d^e&~ t !

dt
5v@^e&~ t !,s50#. ~51!

Accordingly, we find that at large times

^e&~ t !'D
d21

d
ln ln~ ñt !. ~52!

Here we have used the abbreviations

rc~e!5r0exp~e/D!, ~53!

ñ5
dkd

~d21!ld

vn8

2D
, ~54!

ld5A2p/@(d21)d1/(d21)#, andkd5(d21)/dd/(d21). Thus
Eq. ~52! differs from Eq.~44! only by the factor (d21)/d, a
factor of order unity, in front of the expression. If we inve
tigate the reason for the closeness of both results we fur
note that Eq.~51! holds in both cases, if the relaxation
percolationlike and if the relaxation is Miller-Abraham-like
The only difference is that in the percolationlike versio
v(e)}exp@2rc(e)#, and in the Miller-Abraham version
v(e)}exp@2rc(e)d/(d21)#. Therefore, the energy dependen
of the energy relaxation rate in the Miller-Abraham versi
differs from that in the percolationlike version only in num
bers, if the density of states has an exponential depend
3-9
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on energy, as is case in the exponential density of state
the Gaussian density of states. The agreement betwee
result for the mean energy in the Miller-Abraham versi
and the percolationlike version in such densities of state
therefore purely by chance, and would not occur if there w
no exponential dependence of the density of states on en
e.g., in a density of states which depends algebraically
energy.

The fact that nearly the same result is obtained in b
cases raises the question of whether these two relaxa
mechanisms can be distinguished in an experiment on en
relaxation in a material with an exponential density of sta
of the type ~43!. It turns out that the investigation of th
second moment offers this chance. If the relaxation is pe
lationlike then the second moment becomes constant at l
times, and of the order15

s2~ t !'vD. ~55!

Thus, in this case the motion of the packet in energy spac
large times becomes solitonlike. On the other hand, if we
for the investigation of Eq.~48! the saddle-point method o
Ref. 15 we find that in the Miller-Abraham version

s2~ t !}vD~ñt !2d/(d21)22S ln ñt

kd
D 21/(d21)25/2

. ~56!

Accordingly, the mean-squared deviation in an exponen
density of states in the Miller-Abraham version increas
with time, and thus offers a way to distinguish experime
tally between both cases.

We would like to note that for a two-dimensional syste
Eq. ~56! predicts a much faster increase of the dispersion
particle packets moving in an exponential density of sta
than for particles moving in a constant density of states. O
viously, this is odd, and might reflect that the simplifie
model is not well suited for studying the situation in tw
dimensions, as already noted before.

VII. CONCLUSIONS

Our numerical and theoretical investigations on ene
relaxation of charge carriers at zero temperature lead to
conclusion that the relaxation at zero temperature and
excitation densities is Miller-Abraham-like. In this mode
transport the charge carriers almost always jump to the n
closest site. Doing so, their motion inevitably ends up in
distribution hole or dead end, that is, on a site without clo
neighbors within the average site spacing. Since the ch
carriers cannot return, their relaxation is determined by h
jumps out of dead ends at long times.

To model the relaxation we have developed a simplifi
model. In its spirit this model differs from the origina
Miller-Abraham model in that the jumps are not restricted
jump to the next-nearest site, but additionally jumps to
mote sites have been taken into account. We believe tha
consideration of remote sites is important for those qua
ties, which are related to the dispersion of the transport
efficients. The remote sites have, however, little impact
the first moment of the energy distribution function. If w
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would restrict the consideration to jumps to the next clos
site, we would obtain nearly the same energy relaxation
at large times. The only difference would be thatn8 is re-
placed byn. We would like to note that a model, which in it
structure is close to our model, has also been develope
Ref. 11. We believe that with that model it should have a
already been possible to note that the transport at zero
perature is fundamentally different from the percolationli
descriptions used in the literature. However, since in t
paper the authors have only focused on energy relaxatio
densities of states with exponential dependence on energ
was difficult to notice this fact, as explained in detail in Se
VI.

According to the predictions of our simplified model th
motion of a particle packet in energy space in the Mille
Abraham mode differs strongly from that in the percolatio
like version. Already the energy relaxation rate is mu
smaller in the Miller-Abraham version than in the perco
tionlike version. Furthermore, there are strong differen
between those quantities which are related to the disper
of the transport coefficients, such as the mean-squared de
tion of the packet in energy space or their asymmetry. Wh
for a constant density of states the packet becomes Gau
at sufficiently large times in the percolationlike version,
the Miller-Abraham mode the asymmetry is large and ne
tive at large times. This fact indicates that in the Mille
Abraham mode the packet tends to stick. Another way
state this fact is that the memory of the initial state is kept
a very long time.

If we compare the predictions of our simplified mod
with the results of numerical calculations, in which do n
use any assumptions, we find excellent quantitative ag
ment between the theoretical and numerical results for
first moment of the energy distribution function. For th
higher moments of the energy distribution function we on
find qualitative agreement. We attribute this fact to the co
plicated dispersion of the energy relaxation rate. In contr
to the percolationlike version, in which the impact of th
dispersion on the transport coefficients truly depends on o
one parameter, the dispersion of the energy relaxation ra
the Miller-Abraham regime truly depends on two paramete
This fact manifests itself in the range that determines
validity of Eqs.~22!, ~29!, and~32!. The lower limiting time,
which is needed in order to establish Eq.~29!, is much larger
than the lower limiting time for the applicability of Eq.~22!,
but small compared to the lower limit of Eq.~32!. It can be
checked that the times used for the numerical calculations
not satisfy the criteria for the applicability of Eqs.~29! and
~32!, but they do for the criterion of applicability of Eq.~22!.
Therefore, we believe that the remaining discrepancies
tween the numerical and the theoretical calculations of
second and the third moments result from the fact that
times, which could be realized in the numerical calculatio
were too small to achieve quantitative agreement.

The peculiarities of the relaxation at zero temperature
sult from the fact that the particle loses the connection to
starting site after a jump. However, at any finite temperat
the particle can, in principle, return to its initial site, and th
jump to a more favorable site, rather than to the dead e
3-10
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Therefore, the relaxation rate is strongly affected by a rise
the temperature. To investigate the impact of the tempera
we have used Monte Carlo simulations. We find that
impact of the temperature is governed by the parameterc

and by the parameterv/kT, the ratio between the maxima
amount of energy transferable in one jump and the ther
energy. For very low temperatures a weak rise of the te
perature results in a strong increase of the relaxation r
The strength of the increase depends on the magnitude o
parameterrc . The larger therc the stronger the increase
This increase is due to the fact that the relaxation p
changes with increasing temperature. Since the magnitud
the relaxation rate at zero temperature is much smaller in
Miller-Abraham regime than that suggested by percolat
theory a significant part of the rise has to be attributed to
fact that dead ends are gradually switched off from the
laxation path. The energy relaxation rate reaches a maxim
at a temperaturekT, which is of the same order of magnitud
as v, but satisfieskT/v,1. Beyond the maximum the re
laxation is nearest-neighbor hoppinglike. Since forv/kT
@1 all dead ends have been switched off we expect that
transport is percolationlike in this limit.

A very interesting question is how the transport mec
nism is affected by an increase of the number of excitatio
To some extent energy relaxation at zero temperature is s
lar to hopping transport in a strong electric field, as alrea
stressed in the Introduction. In Refs. 33 and 34 argume
have been put forward leading to the conclusion that
hopping current in a strong electric field in a narrow impur
band, which is of a Miller-Abraham type for very sma
charge-carrier concentrations, becomes eventually perc
tionlike by increasing the charge-carrier concentration, if
thermal energy is large compared to the bandwidth of
impurity band. The reason for this is simply that a part of t
charge carriers can be used to fill the Miller-Abraham tra
so that the remaining charges carriers can pass the sa
without seeing traps at all. In the case of the current in
impurity band this argument leads to a strong dependenc
the nonohmic current on the charge-carrier concentrat
Photoluminescence experiments, however, indicate that
argument affects the relaxation at least less. According
experiments on amorphous hydrogenated silicon~see, e.g.,
Refs. 24–26! there is a low excitation generation regime
which the kinetics of the charge carriers is independent of
generation rate and in contradiction to the existing theor
cal predictions. One of the reasons for this might be tha
contrast to the electric current in the impurity band in t
limit in question, which is determined by the most effecti
current path, the energy relaxation rate is determined by
position of the maximum of the energy distribution functio
Those paths, which are most effective, and thus would
most important for the current, do not determine the ma
mum of the energy distribution function at low excitatio
generation rates, but only its outer tails, if the density of
charge carriers passing them is not too high. Obviously,
ther numerical simulations have to be performed to de
mine the density, which governs the impact of the char
carrier concentration on the relaxation rate.

Finally the question remains as to which materials
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most suitable for observing the Miller-Abraham relaxatio
Clearly, the steady-state Miller-Abraham relaxation rate c
only be observed if the number of Miller-Abraham traps
sufficiently large. This requirement is always satisfied if t
density of states is not bounded from below, as in this pa
However, in all relevant physical systems the density
states for charge carriers far from equilibrium is bound
from below by the Fermi surface. Due to the presence of
Fermi surface a charge carrier far from equilibrium can
most makenmax jumps, wherenmax is of the order of (e0
2eF)/v (e0 is the initial energy,eF the final energy!. If all
of those jumps were performed with the steady-state ene
relaxation rate then the relevant hopping length would be
the order ofr c}a1/(d21)nmax

1/(d21)l d/(d21), where l is deter-
mined by the number of sitesZe0

below e0 according to the

relationshipl d(eF2e0)N5Ze0
. The probability that in none

of n subsequent jumps there is a site within a sphere
radiusr c is of the order of

12exp„2n$exp@2r c
d/~nmaxl

d!#%…. ~57!

In order that the steady-state Miller-Abraham energy rel
ation rate can be reached the exponent in the expression~57!
necessarily has to be large compared to unity. If we use
expression forr c above we therefore conclude that the stea
Miller-Abraham relaxation rate can only be reached in s
tems in which the situationa l ,1 can be realized, sincen
,nmax. Accordingly, either the number of states above t
Fermi energy has to be sufficiently large, orv must be suf-
ficiently small. Thus, at first glance it seems that band tails
amorphous semiconductors, being particularly wide, wo
be the most promising candidates. However, in Sec. VI
have shown that in such materials, which typically have
density of states with exponential energy dependence, t
is not much difference between the Miller-Abraham ener
relaxation rate and the percolation energy relaxation rate.
such densities of states the energy relaxation rates differ
in numbers. While this fact gives some support to the pres
theory, since it shows that the results of the present the
are in line with the experiments, it also makes it hard
distinguish between both transport regimes experimenta
For such materials the only way to distinguish between
two transport mechanisms experimentally is in the investi
tion of the second and the third moments of the energy
tribution function. To our knowledge such measureme
have not been performed thus far.

Therefore it seems that the most promising candidates
the investigation of Miller-Abraham relaxation processes
two-dimensional Anderson insulators such as those u
e.g., in Refs. 9 and 35–38, with weak dependence of
density of states on energy, which, for our purpose, can
considered as materials with a density of states unboun
from above. For such densities of states the differences
tween the Miller-Abraham relaxation and percolationlike r
laxation are particularly strong, as shown in this paper.
such materials a particular slow decay of the relaxation c
rent is observed at low temperatures. If, e.g., we look at
curve for the decay of the excess current in Ref. 35~Fig. 5 of
Ref. 35! then we see a slow decay of the excess current
3-11
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times t.1 s, while the main decay of the excess curren
quick and occurs fort,1 s. If we look at the above
mentioned experimental results then we see that it is nei
qualitatively nor quantitatively possible to reconcile the e
perimental results with percolation theory. In the case of p
colation theory the time scale which governs the approac
the steady relaxation rate is of the order~see, e.g., Ref. 15!

tperc'rcexp~rc!/n, ~58!

whererc is the dimensionless critical hopping length. A typ
cal value forn is n'1012 Hz. Thus, in order to produce
relaxation time of the order of 1 s, as observed in the exp
ment in Ref. 35, one would need a hopping length of
order of rc525, which is unreasonably large. Moreover,
would be hard to explain why the relaxation rate should
crease so strongly with temperature as observed in the
periments, since the distribution holes would not be relev
Due to the consideration of the distribution holes our the
leads to a much stronger increase of the relaxation rate
temperature such as the percolationlike theory. We admit
it is not clear whether the temperatures in the experime
are low enough to observe Miller-Abraham-like behavi
Since there is no transition temperature between the Mil
Abrahams regime and the percolationlike variable-ran
hopping regime the question as to whether the temperat
are low enough to observe Miller-Abraham behavior sim
cannot be answered by investigating the temperature de
dence of the relaxation rate alone. If, however, despite
fact we use our theory then we can try to understand
emergence of glassy dynamics in the above-mentioned
terials as a transition between two types of different rel
ation modes, that is, a transition between percolationlike
laxation and Miller-Abraham relaxation. Both transpo
regimes are separated by a characteristic temperature
glass temperature, which is given by the maximum of
relaxation rate as a function of temperature. In our case,
characteristic time, which sets the fast initial decay ap
from the low approach to equilibrium is given by the Mille
Abraham time

d lnd21~ntMA!

rc
d

51. ~59!

If we use use the Miller-Abraham time scale to produce
relaxation time of the order of 1 s, as observed in the exp
ment in Ref. 35, we only need a hopping length ofrc57.4
for d52. This is perhaps larger than expected, but not un
alistically large. If we take this point of view then we con
clude that obviously those particles that have passed
samples on percolation paths, since the Miller-Abraham tr
on their path have already been occupied by other parti
as discussed above, are not important at all for the inve
gation of slow relaxation processes in Anderson insulato

We would like to point out that in the above-mention
experiments a strong dependence of the relaxation rate o
electron concentration has been observed. This has led
authors of Refs. 9, and 37–39 to the conclusion that inte
tion effects are responsible for the smallness of the relaxa
01420
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rate. However, the dependence of the relaxation rate on
electron concentration could also reflect a dependence o
parametersv and a on the charge-carrier concentration.
this were true, the explanation proposed here could be
alternative to the explanation given in the papers referred
above.
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APPENDIX: CALCULATION OF THE ENERGY
RELAXATION RATE FOR LARGE TIMES

To calculate the integral~21! we restrict the consideration
to large times. Doing so, we can use the approximation

1

f ~s!
5

1

f ~0!2~ f ~0!2 f ~s!!
'

1

f ~0! S 11
f ~0!2 f ~s!

f ~0! D .

~A1!

If we use this approximation in Eq.~21! we find that

v~ t !5v`H 11
1

2p i E ds
exp~st!

s F11
f ~0!2 f ~s!

f ~0! G J ,

~A2!

where

v`5
v

2

1

f ~0!
. ~A3!

Accordingly,

dv~ t !

dt
52v`

f ~ t !

f ~0!
, ~A4!

where

f ~ t !5
1

2p i E ds f~s!est, ~A5!

so that

v~ t !5v`F11
2v`

v E
t

`

dt8 f ~ t8!G . ~A6!

To calculate the integrals further we have to be familiar w
the functionf (s) @Eq. ~14!#. The calculation of the configu
ration average in Eq.~14! leads to39

f ~s!5E
0

`

dt expS 2st2
d

rc
dE0

`

dxxd21

3$12exp@2nt exp~2x!#% D . ~A7!
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Since the main contribution to the integral~A7! for small s
and largerc results from largent we use the approximation

expS 2
d

rc
dE0

`

dxxd21$12exp@2nt exp~2x!#% D
'expF2

lnd~n8t !

rc
d G . ~A8!

Then the saddle-point approximation yields

f ~0!5
I ~rc!

n8
, ~A9!

whereI (rc) is given by Eq.~25!. Thus, the problem remain
ing is the calculation of the integral

J~n8t,rc!5E
t

`

dt8 f ~ t8!'E
t

`

dt8expF2
lnd~n8t !

rc
d G .

~A10!

If we change the integration variables we obtain
on

ic,

dr

.

01420
J~n8t,rc!5
1

n8
E

ln(n8t)

`

dx expS x2
xd

rc
dD . ~A11!

To calculate this integral in the limitd lnd21(n8t)/rc
d@1 we

expand the exponent into a power series with respect tox at
x5 ln(n8t). Under the conditiond lnd21(n8t)/rc

d@1 the first
derivative of the exponent has a negative sign, and the c
tribution from the second derivative is negligible. Therefo
we obtain

J~n8t,rc!'

expF ln~n8t !2
lnd~n8t !

rc
d G

n8
E

ln(n8t)

`

dx

3expH 2d
lnd21~n8t !

rc
d

@x2 ln~n8t !#J
5

expF ln~n8t !2
lnd~n8t !

rc
d G

n8

rc
d

d lnd21~n8t !
,

~A12!

which together with Eqs.~A6! and ~A9! yields Eq.~22!.
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